Contents

Preface xiii

PART I. THE PROBLEMS 1

Problem 1. A Military Question: Catapult Warfare 3

Problem 2. A Seemingly Impossible Question: A Shocking Snow Conundrum 4

Problem 3. Two Math Problems: Algebra and Differential Equations Save the Day 6

Problem 4. An Escape Problem: Dodge the Truck 8

Problem 5. The Catapult Again: Where Dead Cows Can’t Go! 9

Problem 6. Another Math Problem: This One Requires Calculus 10

Problem 7. If Theory Fails: Monte Carlo Simulation 11

Problem 8. Monte Carlo and Theory: The Drunkard’s One-Dimensional Random Walk 17

Problem 10. Flying with (and against) the Wind: Math for the Modern Traveler 21
Problem 11. A Combinatorial Problem with Physics
Implications: Particles, Energy Levels, and
Pauli Exclusion 22

Problem 13. When an Integral Blows Up: Can a Physical
Quantity Really Be *Infinite*? 36

Problem 14. Is This Easier Than Falling Off a Log? Well,
Maybe Not 39

Problem 15. When the Computer Fails: When *Every* Day
Is a Birthday 47

Problem 16. When Intuition Fails: Sometimes What *Feels*
Right, Just Isn't 55

Problem 17. Computer Simulation of the Physics of
NASTYGLASS: Is This Serious? . . . Maybe 60

Problem 18. The Falling-Raindrop, Variable-Mass Problem:
Falling *Slower* Than Gravity 72

Problem 19. Beyond the Quadratic: A Cubic Equation and
Discontinuous Behavior in a Physical System 81

Problem 20. Another Cubic Equation: This One Inspired by
Jules Verne 93

Problem 21. Beyond the Cubic: Quartic Equations, Crossed
Ladders, Undersea Rocket Launches, and
Quintic Equations 103

Problem 22. Escaping an Atomic Explosion: Why the
Enola Gay Survived 114

Problem 23. "Impossible" Math Made Easy: Gauss's
Congruence Arithmetic 122

Problem 24. Wizard Math: Fourier’s Series, Dirac’s Impulse,
and Euler’s Zeta Function 126
Problem 25. The Euclidean Algorithm: The Zeta Function and Computer Science 137

Problem 26. One Last Quadratic: Heaviside Locates an Underwater Fish Bite! 147

PART II. THE SOLUTIONS 155

Appendix 1. MATLAB, Primes, Irrationals, and Continued Fractions 225

Appendix 2. A Derivation of Brouncker’s Continued Fraction for $\frac{4}{\pi}$ 247

Appendix 3. Landen’s Calculus Solution to the Depressed Cubic Equation 251

Appendix 4. Solution to Lord Rayleigh’s Rotating-Ring Problem of 1876 261

Acknowledgments 270

Index 273

Also by Paul J. Nahin 281
Problem 1

A Military Question: Catapult Warfare

Our opening problem has a military flavor. Imagine an invading army faced with a huge, VERY tall defensive wall. (Think of The Wall in HBO’s *Game of Thrones*, protected by the Night Watch.) To breach the wall, the invaders decide to attack by launching massive projectiles, to hit as high up the face of the wall as possible. (For a particularly nasty, *really disgusting* attack, one not all that uncommon in ancient times, think of a catapult flinging wooden barrels full of fresh cow dung and/or the dead bodies of animals and soldiers up onto—even better over—the wall.) Given that the launching device (catapult, cannon, whatever) gives each projectile a “muzzle” speed of V, the launcher is distance D from the base of the wall, and g is the acceleration of gravity, you are to calculate the launch angle θ that maximizes the height h of the projectile’s impact point on the wall (see Figure P1.1). Indeed, what *is* this maximum height? Additionally, what’s the flight time, from launch to impact, of the projectile when h is maximized? In all your calculations, ignore the effects of air resistance. *Note:* This problem can be done with nothing but algebra, a touch of trigonometry/geometry, and the quadratic equation. No calculus is required (other than knowing that distance is the integral of speed). No derivatives are required.

![Figure P1.1](image_url)

Figure P1.1. What is θ to maximize h, given V and D?
Index

Abel, Niels Henrik, 30
acceleration, 74; centripetal, 39, 94, 110;
 drop’s, 74, 78, 80, 81; force is mass times,
 xxii; tangential, 40; of projectile, 107
acceleration of gravity, 3, 9, 39, 73, 75, 89,
 99, 100–102, 108, 213, 265
Adventures of a Mathematician (Ulam), xxxiii
aircraft, flight speed, 21, 22
Air Force, 9
Alembert, Jean le Rond d’, 257
algebra, xiii, xiv, xvii, 3, 174, 178, 186;
 deriving power series expansion, xxii;
 differential equations and, 6, 7
amplifiers, 63; cross-over distortion in
 push-pull audio, 63, 64
The Analyst (journal), 188
Apéry, Roger, 128
Archimedes’ principle, 106, 258
arithmetic, 11, 14, 26, 240, 243;
 easy/simple, 226, 228, 231; Gauss’s
 congruence, 122–126, grade school, 57;
 mega-explosion, 50
Arlo & Janis (comic), xiii
Atlantic Ocean, underwater telegraph
 cables, 147–154
atomic bombs, xxxiii, 9, 114, 263
atomic explosion, 10; escaping, 114–121,
 216, 217
attraction force, electrical, 86, 87
balanced bridge, 223
Ball, W. W. Rouse, xix
Ballistics Group of Los Alamos Ordnance
 Division, Manhattan Engineer District,
 114, 115
balls.m, MATLAB code, 58–60, 207
basket, eggs in, 159, 160
Baxter, Stephen, 113
A Beautiful Mind (film), xv
Bernoulli, Jean, 192
Bhaskar, M. R., 116
Big Bang, 63
binomial coefficients, 29–31, 34, 35
binomial theorem, 29, 30
birthday: every day is, 47–55, 205
birthday problem, 56; probability,
 27, 28, 50
Blavier, Edouard Ernst, 149
Blavier circuit, 150
Blavier method, 149
Boltzmann, Ludwig, 23
Bombelli, Rafael, 240, 241
Bose, S. N., 23
Bose-Einstein distribution, 23
Boston Globe letter, xiii, xiv, xxv, 19, 81, 90,
 147, 150
boundary conditions, 168
bricks, random stacking of, 16, 17
bridge: balanced, 223; Wheatstone,
 152, 153
Brouncker, William, 243, 247
Brun, Viggo, 235
Brun’s constant, 235
buoyancy, 106, 107
Burton, David M., xxxi
by inspection (method of proof), 11, 113,
 124, 134, 159, 254, 256
calculus, 3; AP, xvi, 6, 247; differential, 108;
 differential vector, xv; elementary, xiv;
 freshman, xiv, xxvii, 6, 54, 98, 108, 136,
 174, 192, 248; Landen’s, 251–260;
 operational, 129; problem requiring,
 10, 11
Catalan, Eugène, 35
Catalan numbers, 35
Cataldi, Pietro, 241
catapult: launch angle, 9; projectile launch, 176–179; warfare, 3
Cauchy, Augustin-Louis, xxiii
Cauchy-Schwarz inequality, xxiii, xxv, 22, 197
center of mass, 16, 17, 89, 90, 100, 188, 189
centrifugal force, 94, 261, 263
centrifugal acceleration, 39, 94, 112
centripetal acceleration, 39, 94, 110
Cetus constellation, 102
chain rule, 108
Challis, James, 72, 79, 80, 209
Chases and Escapes (Nahin), 114–116, 119
chemical explosions, 93
Chicxulub (Shonting and Ezrailson), 93
circle, circumference, 4, 5
circle, circumference, 4, 5, 266, 268
Clarke, Arthur C., 113
clustering, 26
coefficient of kinetic friction, 45
combinatorial problem, 22–29, 198–200
composite integers, 226
computer: every day is a birthday, 47–55, 205; failing, 204, 205; simulating physics, 39–47
computer simulation: Monte Carlo, 11–17; physics of NASTYGLASS, 60–72, 207, 208
congruence arithmetic, theorems of, 122–126
congruence, theory of, 122
conservation of energy, xxiii, 41, 44, 161
constructively interfering, 131
continued fractions, 240–245, 247–250
continuity, xxv, xxvi
congruent, 241, 244, 247, 248
coprime, 137
coprime.m, MATLAB code, 144
cosine function, 44, 128, 132
Coulomb, Charles Augustin de, 83
Coulomb’s law, 83
crossed ladders, 103–106
crossings.m, MATLAB code, 183–185, 187, 188
crossover distortion, 63; push-pull audio amplifier, 63, 64
cubic equation, 212–215, 260; inspired by Jules Verne, 93–103; Landen’s solution to depressed, 251–260; physical system, 81–93
data encryption, 143
data structure problem, 21
definite integrals, xxiii, xxiv
depressed cubic equation, 251–260
derivation, xix, 7, 56, 74, 127, 136, 141, 151, 244; of Brouncker’s continued fraction, 247–250; physics, 32, 34
derivative, xxv, xxvi, xxvii, 80, 174, 253, 259
destructively interfering, 131
Dibner, Bern, 147
difference equation, 189; second-order, 18, 19
differential equation, 6, 7, 74, 78, 79
differentiation formula, 248
Digital Combat Simulator (DCS), 9
Digital Dice (Nahin), 15
digital picture, 60–63, 65, 66, 70
Diophantine equation, xx
Diophantus of Alexandria, xx
dirac, Paul, 25, 129, 133
dirac delta function, 129
discontinuous force, xxv
discrete random variable, 232
distinguishing balls in distinguishable boxes, 23–29, 32, 33, 47–50, 54–56, 198–200
division algorithm, 138
Dixon, Alfred Cardew, 34
Dixon’s identity, 34
dot notation, 80, 253
double-dot notation, 253
Doyle, Peter G., 20
Dr. Euler’s Fabulous Formula (Nahin), 128
drunkard’s walk, 17–19
Dueling Idiots (Nahin), 12
Earth, 4, 5; gravity, 214; mass of, 213, 214; quintic equation involving Sun and, 110–113; radius of, 95, 102, 213
Earth and Moon, opposing gravitational forces of, 94–96, 102, 103
eggs in basket, 159, 160
EG.m, MATLAB code, 119–121, 216
Einstein, Albert, 23, 65, 70
electrical attraction force, 86, 87
electrical engineering, xxx, 28, 56, 129, 147
Electrical Engineering Department, University of New Hampshire, 70
electrical repulsion force, 82, 83, 85
electric field: incident strength, 66–68; light, 65, 66; NASTYGLASS, 67
electric force, 87
The Electrician (journal), 148
electrons, 23
Elementary Algebra (Ball), xix
elementary calculus, xiv
elementary geometry, random walks, 11–13
Elementary Number Theory (Burton), xxi
Elements (Euclid), 225
energy levels, 23
Enigmas of Chance (Kac), xv
Enola Gay (B–29 bomber), 114–121; escape of, 115; flight path, 117; optimal turning angle, 119
equation.m, MATLAB code, 245
equations as double inequality, xxix, 52
equilibrium state, 43, 85–88, 91–92
Erdős, Paul, xix
escape: atomic explosion, 114–121, 216, 217; of Enola Gay, 115; problem, 173–175
Euclid, 225, 227, 235
Euclidean algorithm, 137–146, 222
Euler, Leonhard, 7, 111, 112, 125, 127, 135, 136, 220, 235
Euler’s number, 10, 11
Euler’s sum, 173
expected value, 57, 232
explosions: atomic, 10, 114–121, 216, 217; kinetic energy, 92, 93; nuclear, 93
Ezrailson, Cathy, 93
falling raindrop, variable-mass problem, 72–81
Feller, William, 49
Fermat, Pierre de, 157
Fermat’s conjecture, 125
Fermi, Enrico, 25
Fermi-Dirac distribution, 25
Ferrari, Ludovico, 105
Feynman, Richard, xxi, xxxii, xxxiii, 55, 81, 246
fictitious force, 261
finite set, 226
finite sliding time, 44
first-order linear differential equations, 79
Fitzwilliam, Earl of, 257, 258
flight speed: modern traveler, 21, 22; time, 196
floating, equilibrium states, 88–90
force: centrifugal force, 94, 261, 263; centripetal acceleration, 39; centripetal force, 39, 94, 112; electrical attraction, 86, 87; electrical repulsion, 82, 83, 85; fictitious, 261; frictional drag, 158; gravitational, 94–96, 98, 215; mechanical compression, 82; mechanical resistive, 83; mechanical spring, 86, 87; net gravitational, 94, 112; Newton’s second law of motion, xxi, xxv, 73; tangential acceleration, 40; zero net, 212
Fourier, Joseph, 128
Fourier series, 128, 132, 133, 135, 221
Fourier series expansions, 131
Fourier’s theorem, 128
fouroverpi.m, MATLAB code, 244
From the Earth to the Moon (Verne), 94, 96, 102
fundamental physics, xxx
galvanometer, 153
Game of Thrones (HBO series), 3
Gauss, Carl F., 122
gcd (greatest common divisor), 137, 222
gcd.m, MATLAB code, 139, 140
geometric series, 182
geometry, xiv, xvi, 3, 256; on a sphere, 4, 5; of walk, 4, 5
gm.m, MATLAB code, 243, 244
golden mean, 242
Goldilocks zone, 102
Good Will Hunting (film), xv
googol, 61, 71
Goudsmit, Samuel, xix
gravitational constant, 95, 111
gravitational force, 73; Earth and Moon, 94–96; Moon, 215; zero tangential, 43
gravitational potential energy, 41
gravity, 162, 267; Earth, 214
greatest common divisor (gcd), 137, 222
half-reversed image, 71
half-ring: integrated vertical force, 264; Rayleigh’s rotating, 261–263
Halpern, Paul, xxi
Hardy, G. H., xv
harmonic series, 233, 234, 236; divergence of, 231
Heaton, Henry, 187, 188
Heaviside, Oliver, 151, 152
hemisphere: sliding on, 40; surface of, 42
Hendricks, Joel, 188
Hidden Figures (film), xv
Hiroshima, Japan, 9, 114, 115
Hofla, Jimmy, 62
Hooke, Robert, 82
Hooke’s law, 82
hyperbolic sine, 255

“imaginary cow” method, xxii
An Imaginary Tale (Nahin), 252, 256
impossible physics, xxxi
incline, sliding on, 158, 159
indefinite integration, 167, 248
induction, method of, xvii
infinite descent, method of, 157
infinite series, 180, 181, 248
infinite set, 225, 227
infinity, xxxii, 7, 36, 38, 46, 91, 128, 129, 161, 227, 231, 233, 235, 236
In Praise of Simple Physics (Nahin), 231, 251, 258
Inside Interesting Integrals (Nahin), 127
Institution of Electrical Engineers, 151
integral, xvi, xxiii, 171, 202–204; definite, xxiii, xxiv; physical quantity, 36–38
integral property, 130
integrand, 36–38
integration, 6, 79, 132, 134; constant of, 221; formula, 248; indefinite, 167, 248; intervals of, 136, 171; variable, 197
International Space Station, 94
intuition, 55–60, 205–207
inverse hyperbolic sine, 255
Jones, David E. H., 62, 63
Jost, Res, xv, xvi
Journal of Applied Physics (journal), xix
just touching condition, xxiv, xxv
just touching spheres, 212, 213

Kac, Mark, xv, xix
Kelvin, Lord, 147
kinetic coefficient of friction, xxi
kinetic energy, 41, 44, 161, 162; explosions, 92, 93

Ladies’ Diary (journal), 257
Lagrange, Joseph, 112
L’Algebra Opera (Bombelli), 240
Lamé, Gabriel, 141
Landen, John, 251, 252, 256, 258; monikers, 257; solution to depressed cubic equation, 251–260
lattice points, xxxii; line through, 160, 161
least common denominator, 235
Leibniz, Gottfried, 30, 252
Le-Jen Shoo, 33
L’Hôpital, G.F.A. de, 192
L’Hôpital’s rule, 192, 193
light, alternating electric field of, 65, 66
Lima, F.M.S., 94
liquid water, 39, 88
Li Shanlan, 33
Li Shanlan identity, 34
Lodge, Oliver, 267
logarithmic inequality, xxviii, 51–53
lumping, 26
m! (m-factorial), xxii
The Man Who Knew Infinity (film), xv
Martin, Artemes, 16
mass, 39, 40; initial speed of, 45; speed of sliding, 42; tangential speed of, 42
mass accretion rule, 72, 75, 76, 80, 210, 211
mathematical, word, xvi
mathematical analysis, 200–202; physical reasoning, 29–35
Mathematical Association of America, 20
The Mathematical Messenger (journal), 188
mathematical physics, xxi, xxxi, 5, 8, 65, 82, 129, 130, 245, 261, 262, 271
mathematical reasoning, xiv, 6, 22
Mathematical Tripos examination (1876), 261, 262, 265
The Mathematical Visitor (journal), 11, 12, 187, 189
mathematics, xiii; appreciating the importance of, xvi, xv; of orbital mechanics, xv
math mode, 216, 218
The MathWorks, Inc., xxxii
MATLAB code: balls.m, 58–60, 207; checking calculations, 124, 125; coprime.m, 144; crossings.m, 183–185, 187; EG.m, 119–121, 216; equation.m, 245; -generated plots, 130, 131; gm.m, 243, 244; lawn.m, 14; paris.m, 195, 194; programming language, xxx; repeat2.m, 206; repeat.m, 205, 206; sevenballs.m, 199, 200; shock.m, 119–121, 216;
INDEX 277

sieve.m, 228, 229; slide1.m, 204; slide2.m, 46, 47; square-root command, 239, 240; stack.m, 187–189; target.m, 182, 183; theo.m, 245; triple.m, 145, 146; walk.m, 191, 192
Maxwell, James Clerk, 23, 262
Maxwell-Boltzmann distribution, 23
mean value theorem, xxvii, xxviii
mechanical compression force balance, 82
mechanical engineering, 147, 261
Meteor Crater, 93
method of infinite descent, 157
method of integrating factors, 79
MIT Radiation Laboratory, xix
MKS system, 83, 149, 265, 266
Moivre, Abraham de, 27
Monte Carlo algorithm, 21
Monte Carlo estimate, 199
Monte Carlo simulation, 11–17, 29, 59, 187; drunkard’s random walk, 17–19; drunken tourist, 193–195; stacking bricks, 187–189; theory, 189–193; two-dimensional random walk, 19–21
Moon: Earth and, 94–96, 102, 103; gravitational force, 215; mass, 215; radius of, 95
Mrs. Perkins’s Electric Quilt (Nahin), 17, 95, 98, 127
Nagasaki, Japan, 9
NASTYGLASS, computer simulation of physics of, 60–72, 207, 208
nasty transmission parameter, 70
neutrons, 23
Newman, James R., 30
New Scientist (journal), 62
Newton, Isaac, 29, 30, 252; dot notation for time, 80; F = ma equation, xxi, 99; gravity, 95, 98; second law of motion, xxiv, 40, 73, 76, 158; superb theorems, 97, 98
The Night Of (HBO series), xv
Niven, Larry, 267
Nobel Prize, 63
North Pole, 4, 5
nuclear explosions, 93
NUMB3RS (television series), xv
Number-Crunching (Nahin), 15, 61
Ohm, Georg Simon, 149
Ohm’s law, 150, 222, 223
Oliver Heaviside (Nahin), 151
orbital mechanics, xv
order of selection, 31
Oresme, Nicholas, 231
Ovshinsky, Stanford, 65; amorphous semiconductor of, 65
Padoa, Alessandro, 171
Padoa’s inequality, 171
Paris, two-dimensional random walk, 19–21
paris.m, MATLAB code, 193, 194
Parseval des Chênes, Marc-Antoine, 132
Parseval’s theorem, 132, 135, 136, 219
Pascal, Blaise, 266
Pauli, Wolfgang, 24
Pauli exclusion principle, 24, 25, 29, 47, 198, 199
Pearson, Karl, 17
periodic function, 128
periodic “square-wave” function, 135
phase transitions, 88
photons, 23
physical quantity, 36–38
physics, xvi; combinatorial problem, 22–29; 198–200; computer simulation of NASTYGLASS, 60–72, 207, 208; computers simulating, 39–47; cubic equations, 93–103; Monte Carlo simulation, 11–17
physics derivation, 32, 34
Plagydus ferox, 148
plane, flying with and against the wind, 195, 196
Plato, 238
Poisson approximation, 54
potential energy, 88, 90, 91, 161, 162
power series expansion, xxi, 10, 11, 55, 179, 248
power series solution, 80
Poynting, John, 261, 262
In Praise of Simple Physics (Nahin), xiv
prime numbers, 225–228, 237
Principia (Newton), 97, 98
probability: for archery target and arrows, 15; for birthday problem, 27, 28, 50, 205; distinguishable balls into boxes, 198, 199; distinguishable balls into distinguishable boxes, 54, 55; random walk and, 18, 20; relatively prime, 143–146; for stacking bricks, 17; for tossing of die, 26
probability theory, 56–59
programming language, MATLAB, xxx

For general queries, contact webmaster@press.princeton.edu
projectile: catapult launch, 176–179; catapult tossing, 9; launch angle, 164; retarding effect of gravity on, 162; underwater launch, 106–110 push-pull audio amplifier, 63, 64 Pythagoras, 236 Pythagorean theorem, 103, 118, 164 Qing dynasty, 33 quadratic equation, xiii, 3, 4, 81, 147, 149–151, 163, 169, 222, 242; random walk, 19 quadratic formula, xxiii, xxiv, 174, 178, 186, 215 quantization, 60, 61, 68, 71 quantum electrodynamics, theory of, 55 quantum mechanics, 36, 55 quantum physics, 56, 129 quartic equation, 103, 105, 106 quintic equation, 105, 110–113 Radiation Laboratory, MIT, xix Rainbird, Higgston, xiii raindrop, falling, variable-mass problem, 72–81, 208–211 Ramanujan, xv random stacking of bricks, 16, 17 random walk: drunkard’s, 17–19; one-dimensional, 17–19; theory, 17; two-dimensional, 19–21 Rankine, William, 268 Rayleigh, half of rotating ring, 261–263 Rayleigh ring, concept of, 267 record year, 231 relatively prime, 137, 143–146 repeat.m, MATLAB code, 205, 206 repeat2.m, MATLAB code, 206 Riemann zeta function, 127 right triangle, 250; spiral of, 238, 239 Ringworld (Niven), 267 Riordan, John, 30 Rivoal, Tanguy, 128 Ross, Sir Ronald, 17 rotating ring, half of Rayleigh’s, 261–263 Round the Moon (Verne), 96 Royal Society, 251, 257 runner speed, 21, 22 sampling property, 130 Schoolday Visitor (journal), 16 Schwarz, Hermann, xxii second law of motion, 40, 73, 76, 158 second-order difference equation, 18, 19 Seitz, Enoch, 188, 189 sequences, 232, 233 sevenballs.m, MATLAB code, 199, 200 shock.m, MATLAB code, 119–121, 216 Shonting, David, 93 sieve.m, MATLAB code, 228, 229 sieve of Eratosthenes, 228 sine function, 128, 132 single-dot notation, 253 slide.m; MATLAB code, 46, 47 slide1.m, MATLAB code, 204 sliding on incline, 158, 159 Smith’s Prize Examination (1853), 72, 79 Snell, J. Laurie, 20 snow conundrum, 4–6 snowplow problem, 166–169 South Pole, 4, 5 speeding truck, escaping, 8 sphere: geometry on, 4, 5; just touching, 212, 213 spiral of right triangles, Theodorus’, 238, 239 spring charge vs. distance, 84 spring compression, 82, 85 spring constant, 83 spring energy, 91 springs, kinetic energy explosions, 92, 93 stack.m, MATLAB code, 187–189 Standage, Tom, 148 state of equilibrium, 83 Stirling, James, 27 Stirling’s asymptotic expression for factorial, 27 straight line, equation for, 38 Sun, quintic equation involving Earth and, 110–113 Sunstorm (Clarke and Baxter), 113 superb theorems, Newton, 97, 98 tangential acceleration force, 40 tangent line, xxvii, xxix target.m, MATLAB code, 182, 183 Taylor, Sir Geoffrey, 263 telegraph cables, underwater, 147–154 Theodorus, 238, 245; spiral of right triangles, 238, 239 theo.m, MATLAB code, 245 Thomson, William, 147 “The Three-Foot Rule” (Rankine), 268, 269
Tibbets, Paul, 116

time, 265; Big Bang, 63; electric field, 66; Enola Gay, 114, 116; escape problem, 173–175; falling drop, 72, 75; flight, 3, 22, 164, 196; fly-off, 43; machine, 6, 239; projectile, 162, 176; projectile under water, 108, 109; run, 22, 195; snowplow, 166, 169; travel, xxv, xxvi

Time Machine Tales (Nahin), xxv

Tolstov, Georgi P., 136
toss bombing, 9, 10
triangle, 6
triangle inequalities, 169
trigonometric identity, 163
trigonometry, xiv, xvi, 3, 256
triple.m, MATLAB code, 145, 146
triple quantization, 60
Trump, Donald, 62
TUPA (The Universal Picture Album), 61–63, 71, 72, 208

Ulam, Stanislaw, xiii
under sea rocket launches, 106–110
underwater, telegraph cables, 147–154
unit impulse function, 129
unit square, random walks, 12, 13
Universal Picture Album (TUPA), 61–63, 71, 72, 208
University of New Hampshire, 28, 227; Electrical Engineering Department, 70

Vandermonde, Alexandre-Théophile, 33
Vandermonde identity, 33, 34
variable-mass problem, falling raindrop, 72–81, 208–211
Verne, Jules, cubic equation inspired by, 93–103

Victorian Internet (Standage), 148

walk.m, MATLAB code, 191, 192
Warwick, Andrew, 261, 262
water droplet, mass of, 72
Wentworth, William, 257
Wheatstone, Charles, 152
Wheatstone bridge circuit, 152, 153
Wheeler, John, xxv
Wiener, Norbert, xix
wizard math, 126–136, 218–221
World War II, xix, xxxiii, 114

YouTube videos, 9

zero-energy state, 88, 89; defined, 90
zero gravity, 96, 100–102, 214
zero net force, 212
zero potential energy, 161, 162
zero tangential gravitational force, 43
zeta function, 133, 137, 143, 145; Euler’s, 7, 126; Riemann, 127
Zhang, Yitang, 227

For general queries, contact webmaster@press.princeton.edu