

CONTENTS

	Preface	xi
1	OVERVIEW	1
1.1	Workshop	10
2	GREENHOUSE	11
2.1	The greenhouse effect	13
	2.1.1 Earth's energy balance	13
	2.1.2 The greenhouse effect: a two-layer model	14
	2.1.3 The emission height and lapse rate	17
2.2	Greenhouse gases	19
	2.2.1 Wavelength-dependent black-body radiation	19
	2.2.2 Energy levels and absorption	20
	2.2.3 Broadening	21
	2.2.4 Radiative forcing, logarithmic dependence on CO ₂	22
	2.2.5 Other greenhouse gases, global warming potential	24
	Box 2.1: The Clausius-Clapeyron relation	25
	2.2.6 The water vapor feedback	26
2.3	Workshop	28

3	TEMPERATURE	31
3.1	Climate sensitivity and the role of the ocean	34
	3.1.1 Equilibrium climate sensitivity	34
	3.1.2 Transient climate sensitivity	36
3.2	Polar amplification	39
3.3	"Hiatus" periods	44
3.4	Stratospheric cooling	45
	3.4.1 Detection and attribution	48
3.5	Workshop	49
4	SEA LEVEL	53
4.1	Global mean sea level changes	56
	4.1.1 Thermal expansion	56
	Box 4.1: Past warm climates	59
	4.1.2 Ice sheets and mountain glaciers	61

-			
4.3	Worksho	p	73
	4.2.3	Gravitational effects: sea level fingerprints of melting	71
	4.2.2	Land changes	70
	4.2.1	Atmosphere-ocean interaction	64
4.2	Regional sea	level changes	64
	4.1.4	Detection of anthropogenic climate change in GMSL	62
	4.1.3	Land water storage	62

5	OCEAN ACIDIFICATION	77
5.1	Calcium carbonate (CaCO ₃) dissolution	80
	Box 5.1: The carbon cycle	81
5.2	The carbonate system	82
	5.2.1 Carbonate system equations	85
	5.2.2 Approximate solution of the carbonate system	87
5.3	Response to perturbations	90
	5.3.1 Response to increased atmospheric CO ₂ concentration	90

vi | CONTENTS

6	OCEAN CI	RCULATION	99
5.4	Worksho	p	95
	5.3.3	Long-term decline of anthropogenic CO_2	92
	5.3.2	Response to warming	91

-		
	Box 6.1: Ocean temperature, salinity, and water masses	102
6.1	Observations and projections	103
6.2	The Stommel model	106
6.3	Multiple equilibria, tipping points, hysteresis	110
6.4	Keeping it simple	113
6.5	Consequences of AMOC collapse	115
6.6	The oceans and global warming	116
6.7	Workshop	119

7 CLOUDS 121 7.1 Cloud fundamentals 123 Moist convection and cloud formation 7.2 125 Cloud microphysics 7.3 131 7.4 Cloud feedbacks and climate uncertainty 134 7.5 Workshop 138

8	HURRICANES	141
8.1	Factors affecting hurricane magnitude	142
8.2	Potential intensity	145
	Box 8.1: El Niño, La Niña	146
8.3	Observed changes to hurricane activity	152
8.4	Workshop	155

9	ARCTIC SEA ICE	157
9.1	Processes and feedbacks	161
9.2	Detection of climate change	165

CONTENTS | vii

9.3	Future projections	167
9.4	Workshop	169

10	GREENLAND AND ANTARCTICA	171
10.1	Terminology	173
10.2	Processes	174
	10.2.1 Accumulation	174
	10.2.2 Surface melting and PDD	175
	10.2.3 Calving	177
	10.2.4 Ice flow	179
	10.2.5 Basal hydrology	181
	Box 10.1: Ice ages	185
10.3	Observed trends and projections	186
10.4	Workshop	190

11	MOUNTAIN GLACIERS	193
11.1	Observed retreat	196
11.2	Mountain glaciers as a climate indicator	198
	11.2.1 Reconstructing temperature from glacier extent	198
	11.2.2 Ice cores from mountain glaciers	202
11.3	Glacier dynamics	203
11.4	Mountain glacier retreat in perspective	206
11.5	Workshop	208

12	DROUGHTS AND PRECIPITATION	211
12.1	Relevant processes and terms	214
12.2	Why droughts happen, climate teleconnections	214
	Box 12.1: The Indian Ocean dipole	217
12.3	Detection of climate change	219
12.4	Observations, paleo proxy data	221
12.5	Example projections: Southwest United States and the Sahel	222

viii CONTENTS

12.6		
	Understanding precipitation trends	224
	12.6.1 Hadley cell expansion and weakening	225
	12.6.2 "Wet getting wetter, dry getting drier" projections	228
	12.6.3 Precipitation extremes in a warmer climate	231
12.7	A bucket model for soil moisture	237
12.8	Workshop	242
13	HEAT WAVES	245
13.1	Physical processes	247
13.2	Heat stress	251
13.3	Future projections	253
13.4	Workshop	258
14	FOREST FIRES	261
14 14.1	FOREST FIRES Tools	261 264
14 14.1 14.2	FOREST FIRES Tools Detection of burnt area due to ACC	261 264 265
14 14.1 14.2 14.3	FOREST FIRES Tools Detection of burnt area due to ACC Fires and natural climate variability	261 264 265 269
14 14.1 14.2 14.3 14.4	FOREST FIRES Tools Detection of burnt area due to ACC Fires and natural climate variability Observed global trends and future projections	261 264 265 269 273
14 14.1 14.2 14.3 14.4 14.5	FOREST FIRES Tools Detection of burnt area due to ACC Fires and natural climate variability Observed global trends and future projections Workshop	261 264 265 269 273 276
14 14.1 14.2 14.3 14.4 14.5	FOREST FIRES Tools Detection of burnt area due to ACC Fires and natural climate variability Observed global trends and future projections Workshop Notes	261 264 265 269 273 276 279
14 14.1 14.2 14.3 14.4 14.5	FOREST FIRES Tools Detection of burnt area due to ACC Fires and natural climate variability Observed global trends and future projections Workshop Notes Bibliography	261 264 265 269 273 276 279 293

CONTENTS | ix

OVERVIEW

C onsider a brief overview of the issues to be surveyed in the following chapters. This overview outlines observed and expected changes, our ability to attribute observed trends and events to anthropogenic climate change, the level and reasons for the uncertainties involved in quantifying both observed and projected changes, and the very diverse timescales of the major processes involved.

The first three chapters address the basics: What are greenhouse gases and how do they lead to warming? How and why does the atmospheric warming vary in time and space (both as a function of latitude and height)? And finally, sea level rise. Beginning with greenhouse gases, the blue line in Figure 1.1a shows the iconic Mauna Loa CO_2 record collected since 1958, preceded by an ice-core-based reconstruction. CO_2 concentration has been at 280 ppm for over 10,000 yr, since the last ice age, and has therefore increased by about 50% so far, at an unprecedented speed. There is, of course, no doubt that CO_2 is increasing and that the increase is attributable to the anthropogenic burning of fossil

Figure 1.1: Greenhouse effect, warming, and sea level rise.

(a) Atmospheric CO_2 concentration (blue) and global mean surface temperature anomaly (in red, defined as the deviation from the mean over 1961–1990) since 1850. Also shown by gray dashed lines are two "hiatus" periods of *seemingly* reduced rates of warming. (b) The projected surface warming over the 21st century in an RCP8.5 scenario in a climate model, as a function of latitude, showing a very pronounced polar (mostly Arctic) amplification. (c) Projected atmospheric temperature changes over the 21st century as a function of altitude and latitude, showing a tropospheric warming and stratospheric cooling in the RCP8.5 scenario. (d) Estimated global-mean sea level anomaly since 1700 (blue line) and the estimated uncertainty (light-blue shading). In red and orange: the satellite record since 1993.

fuel. Once in the atmosphere, we will see that it will take thousands of years for the CO_2 to naturally decline after anthropogenic emissions are eliminated. Chapter 2 addresses the question of how greenhouse gases trap heat and lead to warming, both on a molecular level and by examining the Earth global energy balance. These are ideas that have been well understood for a while now. The warming due to greenhouse gas increase is explored in chapter 3. The red line in Figure 1.1a shows that the globally averaged surface temperature anomaly

2 CHAPTER 1

(defined as the deviation from a reference value, in this case the mean over 1961–1990) has warmed so far by over 1° C. Future climate projections rely on estimates of future greenhouse gas concentrations, referred to as Representative Concentration Pathways (RCPs) and followed by a number indicating the expected enhancement in radiative heating. We discuss these scenarios in section 2.1 and note briefly now that RCP8.5 is what one might think of as a business-as-usual scenario in which CO₂ concentration increases to a very high value of over 1000 ppm by year 2100. While one hopes that such a high future greenhouse gas concentration is not a realistic scenario, it allows us to clearly understand climate change trends and mechanisms that may be more difficult to identify in less severe scenarios. Figure 1.1b shows that the projected surface warming under RCP8.5 is strongly amplified toward the poles (especially the Arctic), while Figure 1.1c shows that the stratosphere is projected under the same scenario to cool significantly above an altitude of about 20 km, while the troposphere warms. Polar amplification and stratospheric cooling are already observed today, and we will examine several mechanisms that are responsible for these signals. We will also see that even at the present level of CO_2 , additional warming would have occurred if not for the cool, deep ocean, which takes hundreds of years to warm in response to the enhanced greenhouse forcing. While CO_2 has increased monotonically, the warming of the global mean surface temperature seems to have paused during 1940–1970 or so and during 1998–2013, as shown by the horizontal dashed lines in Figure 1.1a. We will show that such seeming "hiatus" periods in the increase in global mean surface temperature are an expected consequence of anthropogenic warming in the presence of natural climate variability.

One of the most consequential results of ocean warming and of the expected melting of land-based ice is sea level rise, as analyzed in chapter 4 and shown in Figure 1.1d. Global mean sea level has increased by some 30 cm over the past 150 yr, is currently increasing at about 3.5 mm/yr, and is projected to rise by up to a meter by 2100. Many processes are responsible for sea level rise, from the expansion of warming ocean water to land-based ice melting. Furthermore, sea level rise is expected to vary from region to region, and we will discuss the many mechanisms involved, from wind and atmospheric pressure changes, to the gravitational effect of melting ice over Greenland and Antarctica, and more. The timescales of the processes involved vary from a near-instantaneous

Figure 1.2: Ocean acidification and circulation.

(a) Observed mean surface ocean pH from 1850 to 2000 (blue), followed by projected pH to 2100 in the RCP8.5 scenario (red). (b) Projected sea surface temperature change over the 21st century in the RCP8.5 scenario, showing an overall warming, yet with a local cooling in the northern North Atlantic due to the projected collapse of the ocean overturning circulation.

response (e.g., to changes in atmospheric pressure or ocean currents) to hundreds of years (warming of the deep ocean, melting in Greenland), to many thousands (significant melting of East Antarctica), with uncertainty levels typically higher for processes with longer timescales.

Two more ocean-centered issues are next examined, beginning with ocean acidification in chapter 5 and then the possible collapse of the meridional overturning ocean circulation in chapter 6. Ocean acidification is referred to as "the other global warming problem." The absorption by the ocean of about a quarter of the anthropogenically emitted CO_2 (with another quarter absorbed by the land biosphere) has significantly reduced the warming experienced so far. Yet Figure 1.2a shows that as a result, ocean pH, the measure of seawater acidity, already decreased from 8.16 to 8.06, which implies a significant increase of 25%(!) in the concentration of H⁺ ions in the ocean. We will examine the basic carbonate chemistry behind ocean acidification, how it may affect the deposition of calcium carbonate structures by oceanic organisms, and how atmospheric CO_2 can eventually decline once emissions are significantly reduced, on a timescale of thousands of years. While there is little uncertainty involved in assessing expected ocean pH for a given atmospheric CO_2 level, the response of ocean biology is complex and is still being studied.

Chapter 6 discusses how the oceanic meridional circulation, which carries heat poleward and contributes to the warmth of the high-latitude North Atlantic,

may collapse in a global warming scenario over the next century or so. The circulation collapse is expected to contribute to a regionally reduced warming and even cooling in the northern North Atlantic, as shown in the model projection of Figure 1.2b, as well as to other disruptions to the current state of the ocean. We will analyze how a gradual CO₂ increase may lead to an abrupt ocean circulation response, explaining in the process the concept of climate *tipping points*.

Returning to the atmosphere in the next two chapters, we address two issues surrounded by a larger degree of uncertainty: clouds and hurricanes. In chapter 7 we study clouds, believed to be the main source of uncertainty in global warming projections and one of the main reasons that the uncertainty in global warming projections has not decreased over the past four decades. Unlike the discussion of climate change issues in other chapters, the focus of this chapter is not explaining an observed or projected change but rather making it clear why clouds are a source of such large uncertainty in our climate projections. Clouds have a most significant effect on climate due to both their reflectivity of sunlight, which has a cooling effect, and their trapping of heat emitted by the Earth surface, contributing to the greenhouse warming effect. Figures 1.3a,b show the projected change in clouds over the 21st century in the RCP8.5 scenario in two different climate models. The two models clearly calculate a very different cloud response, demonstrating the model disagreement and therefore the uncertainty in future projections of clouds. This disagreement in the simulation of cloud cover also leads to a very different warming projected by these two models, and we will explain why the representation of clouds in climate models involves such a large uncertainty. The subject of clouds allows us to also explore that of atmospheric convection, which comes up repeatedly in the discussion of many global warming-related issues. Following that, the response of hurricanes to global warming, both observed and projected for a future climate, is analyzed in chapter 8. Figure 1.3c shows the estimated number of Atlantic hurricanes over the past 140 yr. It is difficult to identify a trend in these data, and it turns out that there is currently no reliable and well-understood mechanism that can be used to project future changes to the number of storms. We discuss the formation mechanism of hurricanes, how it depends on the upper ocean temperature, and why the magnitude of hurricanes may be expected to increase in a warmer climate. We also analyze the observed record and examine the many uncertainty factors involved in the projection of future hurricane magnitudes.

Figure 1.3: Clouds and hurricanes.

(a,b) Projected change in cloud cover due to greenhouse forcing, from a preindustrial state to 2100 in the RCP8.5 scenario, for two different climate models, demonstrating the large uncertainty in simulating clouds in climate models. (c) Estimated number of hurricanes over the North Atlantic as a function of year.

The following three chapters deal with the cryosphere: Arctic sea ice, ice sheets over Greenland and Antarctica, and mountain glaciers. Chapter 9 explains the processes and powerful feedbacks behind the dramatic and well-observed decline of summer Arctic sea ice over the past few decades (but not of sea ice near Antarctica, interestingly). This decline is seen in Figure 1.4a, and the same processes and feedbacks may lead to an even more dramatic decline over the next few decades. We also discuss ways of differentiating between a sea ice melt trend due to anthropogenic climate change and trends due to natural variability. Possible mechanisms and feedbacks that may lead to a significant reduction of the ice mass of the large ice sheets of Greenland and Antarctica are presented in chapter 10. Such a reduction can cause a further rise of sea level by many meters over a timescale of hundreds to thousands of years and involves a large degree of uncertainty. There is the (quite uncertain) potential for rapid changes as well, and we explain the mechanisms that may lead to such a tipping point behavior. This is followed by an analysis in chapter 11 of one of the more iconic

(a) The yearly minimum (September) Arctic sea ice area as a function of year over the satellite era, superimposed on NASA images of sea ice cover the first year of satellite data, 1979, and a year of a particularly small sea ice area, 2012. (b) Records of glacier length for a few mountain glaciers, relative to their length in 1960.

consequences of the already observed global warming: the retreat of mountain glaciers, as seen in Figure 1.4b. These changes are already occurring, and we will see that the retreat over the past three or so decades can be clearly attributed to anthropogenic global warming. We explain the processes behind this decline and the relevant dynamics of mountain glaciers that underlie their observed and projected decline.

We conclude with three chapters on possible consequences of climate warming, involving changes to droughts and precipitation, heat waves and forest fires. We review in chapter 12 the types and causes of prolonged droughts, as demonstrated in Figures 1.5a,b, showing how La Niña events in the equatorial east Pacific can lead to California droughts in a climate model. This is then used to consider why droughts might change in the future and why such a prediction

(a,b) An analysis of droughts in a climate model. Colors in (a) show the precipitation anomaly during January drought years over California, with the blue area over California and off-coast there indicating lower precipitation than normal. The black contour lines show a high sea level atmospheric pressure anomaly that typically occurs above drought conditions (contour interval is 1 hPa; zero contour is dash-dot). (b) Sea surface temperature anomaly during these California drought years, showing a La Niña–like cold sea surface temperature (see box 8.1) over the equatorial Pacific and demonstrating how sea surface temperature anomalies drive remote drought conditions. (c) Heat waves in a warming climate. The probability of occurrence of maximum daily temperatures over the great plains in the United States at the beginning of the 20th century (blue) vs at the end of the 21st century in the RCP8.5 scenario (red). The shift to larger daily maximum temperatures is an example of projected changes to the characteristics of heat waves. (d) Forest fires. The red curve shows a decrease in the global burnt area since the 1990s.

> is still uncertain. We will see how the severity of past droughts can be reconstructed, helping to put current drought events into perspective, and we will model the processes that control soil moisture during droughts. We then analyze two test cases, the Sahel and Southwest United States, and explicitly demonstrate the uncertainty in future projections of droughts. Finally, we consider projections for precipitation changes from three perspectives. First, we discuss

the projection that the Hadley meridional atmospheric circulation—of air rising near the equator and sinking at about 30° north and south—might expand poleward. The expansion has possible consequences to the location of desert bands that tend to be located under the subsiding part of the Hadley circulation. Second, we attempt to understand the projection that precipitation changes will follow a pattern of *wet getting wetter and dry getting drier* over large areas of the globe, as well as the limitations of this overall projected pattern, which does not seem robust over land areas. And finally, we examine projections for precipitation extremes and explain why there is a robust expectation for more precipitation to occur in heavy precipitation events in a warmer climate.

Heat waves are studied in chapter 13. These are weather events, and are therefore much shorter than droughts but share some of their physical mechanisms and characteristics. Figure 1.5c shows how the probability of occurrence of a high maximum daily temperature dramatically increases in model projections from the early 20th century (blue bars) to late in the 21st century (red). We demonstrate how the statistics of heat waves may change and what this can teach us about their dynamics in a warmer climate. We conclude with the subject of forest fires (chapter 14). Observations suggest a recent increase in fires over the western United States, for example, as seen in Figure 1.5d (red line), although global fire area has decreased over the past couple of decades (blue). We address factors affecting forest fires and different ways in which humans can affect fires via both climate- and non-climate-related influences. While we do understand qualitatively how fires depend on these many different factors, the issues involved are sufficiently complex that the only way to attempt to differentiate the effect of anthropogenic climate change from other anthropogenic effects and from natural climate variability is statistical analysis, resulting in very significant uncertainty. We discuss, as specific examples, fires in the western United States and Australia, as well as on a global scale, and attempt to identify many of the uncertainties involved.

As we move into the detailed analysis of these issues that arise in global warming science, we keep in mind the following questions: *What* has been observed or what is projected? *Why* do these changes occur, or why are they expected? What is the *timescale* in which these changes operate? What are the *uncertainty levels*, and *sources of uncertainty*?

1.1 WORKSHOP

A Jupyter notebook with the workshop and corresponding data file are available; see https://press.princeton.edu/global-warming-science.

Go over and solve the first python notebook with an introduction to programming and a very brief review of some basic math concepts that are used later in the course.

10 CHAPTER 1

INDEX

Symbols

δ^{18} O	
ice ages	185
mountain glaciers	202
past warm climates	59

Α

ablation	173
zone, ice sheets	174
zone, mountain glaciers	194
absorption	
lines	20
longwave, by CO ₂	21
longwave, by H_2O	21
SW, melt ponds	176
SW, sea ice	161
absorptivity	14
ACC, see Anthropogenic Climate	
Change	
accumulation	173
zone, ice sheets	174
zone, mountain glaciers	194
adiabatic process	125
AMOĈ	283

clouds	125
drying, deserts	225
extreme precipitation	234
hurricane efficiency	150
lapse rate feedback	41
MSE conservation	126
subsidence, droughts	216
warming, heat waves	248
wet bulb temperature	252
aerosols	131
direct effects	133
indirect effects	133
African easterly waves	142
albedo	13
clouds	123
feedback	39
ice	176
land	13
melt ponds	176
polar amplification	39
snow	176
alkalinity	83
carbonate	85
AMO, see Atlantic multidecadal	
oscillation	

AMOC, see Atlantic meridional	
overturning circulation	
Andes glaciers	195
anomaly	
fire season length	273
glacier length	199
sea level	54
soil moisture	224
surface temperature	2, 31, 200,
	213, 216
Antarctic Bottom Water	102
Antarctic Intermediate Water	102
Anthropogenic Climate Change	
detection vs attribution	48
Archimedes' law	71
Arctic amplification, see polar	
amplification	
Atlantic meridional overturning	
circulation	100
abrupt climate change	160
box model	106
collapse consequences	115
hysteresis	113
multiple equilibria	113
sea ice	160
Stommel model	106
streamfunction	105
tipping point	112
Atlantic multidecadal	
oscillation	104
droughts	217
attribution of ACC, see detection	
and attribution	

В

basal	
friction	179
lubrication	181
melting	182
temperature	183
bicarbonate ion	78
black body	13
radiation	20
blocking	
heat waves	250
Boltzmann constant	20

boundary layer	
droughts	216
Hadley cell expansion	227
hurricanes	144
BP, see before present	
bucket model for soil moisture	237
equations	238
buffer effect	91
bulk coefficient	
evaporation	149, 238
friction	146

С

calcium carbonate	78
dissolution at high CO ₂	90
solubility product	80
calving	173, 177
buoyancy force	178
cliff instability	177
hydrofracturing	178
rift propagation	177
slumping	178
carbon cycle	81
carbon dating	197
carbonate ion	78
carbonate system	81
approximate solution	87
buffer effect	91
equations	85
solution	86
carbonic acid	78
Carnot cycle	149
CCN, see cloud condensation nucl	ei
CDF, see cumulative distribution	
function	
CFC	24
Clausius-Clapeyron	26
Arctic lapse rate feedback	43
atmospheric convection	125
droughts	215
Hadley cell expansion	227
hurricanes	144, 148
MSE conservation	127
precipitation extremes	234
sea level	61
surface mass balance	174

tropical lapse rate feedback	42	ocean solubility and warming	91
VPD, fires	264	solubility pump	91
wet getting wetter	230	vs other greenhouse gases	24
cliff instability	177	CO ₂ -equivalent mixing ratio	24, 32
climate sensitivity		coastal flooding	67
equilibrium	36	composite analysis	
of glaciers	199	droughts	218
transient	39	El Niño, hurricanes	145
climatic water deficit	264	heat waves	248
climatology		condensation	
droughts	218	clouds	126
heat waves	250	hurricanes	142
SST, hurricanes	145	precipitation extremes	234
cloud condensation nuclei	133	tropical lapse rate feedback	42
cloud radiative effect	134	convection	126
climate uncertainty	134	heat waves	249
clouds		hurricanes	144
cirrus	124	lapse rate	19
climate uncertainty	137	ocean, AMOC	100
dissipation	133	winter sea ice melting	168
droplet size distribution	132	Coriolis force	
feedbacks	134	АМОС	106
feedbacks, energy balance	135	droughts	215
height	124	heat waves	248
high vs low	124	hurricanes	142
LW emissivity	123	sea level	67
microphysics	131	CRE. see Cloud radiative effect	
mixed phase	123	crevasses	177
model disagreement	134	cumulative distribution function	
mountain glaciers	196	extreme precipitation	233
parameterization	122	heat waves	257
radiative effect	123	CWD, see climatic water deficit	207
stratiform	131		
stratocumulus	124		
subgrid scale	131	D	
SW albedo	123		247
water vs ice	124	Dansgaard-Oeschger events	160
cluster analysis	271	desert belt	225
CO2	-/-	detection and attribution	48
absorption bands	2.0	Antarctic sea ice	164
doubling	23, 32, 35,	droughts	219
doubling	38 57 134	error types I and II	154
doubling cloud feedbacks	136	forest fires	272
fertilization	2.75	Greenland and Antarctica	187
land sink	78	heat waves	257
ocean absorption	91	hurricanes	157
ocean sink	78	mountain glaciers	207
occuit stille	70	mountain Suciers	207

detection and attribution (<i>continued</i>)		energy balance	13
ocean acidification	94	atmosphere	14
ocean circulation, AMOC	104	cloud feedbacks	134
precipitation extremes	237	ice surface	183
sea ice	165	one-layer model	14
sea level, global	63	stratospheric cooling	46
sea level, regional	67	surface	14
stratospheric cooling	48	two-layer model	15
detection of ACC, see detection and		ensemble model runs	253, 254,
attribution			267
DIC, see dissolved inorganic carbon		ENSO, see El Niño-Southern	
dimensional analysis	184	Oscillation	
dissolved inorganic carbon	83	Eocene	59
droughts		equation of state	58
agricultural	212	equilibrium line altitude	204
Australia fires	269	ice sheets	174
California, La Niña	218	mountain glaciers	195
future projections	222	error types I and II	154
hydrological	212	evaporation	
megadroughts	221	droughts	224
megadroughts, La Niña	222	hurricanes	149
meteorological	212	ocean salinity	108
reconstruction	221	potential	238
Sahel	222	soil resistance	238
socioeconomic	212	evapotranspiration	214
Southwest United States	224	potential	214
dry static energy	127		
droughts	216		
heat waves	249	F	
Dust Bowl	251	fires	
dynamic vegetation models	273	area burnt	265
		area burnt versus VPD	265
		A . 1.	2 ()

Ε

El Niño	146
droughts	217
hurricanes	145
Pliocene	61
El Niño-Southern Oscillation	146, 287
ELA, see equilibrium line	
altitude	
elevation-desert effect	174
Ellesmere Island glaciers	198
emission height	18
emissivity	14
clouds	123
sea ice melting	168
stratospheric cooling	46

potential	214
e .	
F fires	
area hurnt	265
area burnt versus VPD	265
Australia	269
Australia, projections	273
climate factors	2.62
deficit	263
fire indices	265
global projections	273
human factors	263
lightnings	262
projections uncertainty	275
season length	273
western US	265
fossil fuels	82
G	

geopotential height

geostrophy		CDF	257
hurricanes	143	decadal statistics	253
sea level	69	PDF	254
geothermal heat flux	182	projected statistics	255
gigaton carbon	81	projections	253
Glen's law	179	subsidence	248
global mean sea level		surface winds	250
Greenland, Antarctica	61, 172	vs droughts	251
global mean surface		Henry's law	82
temperature		buffer effect	91
glacier length	201	heterogeneous nucleation	133
observed	31	"hiatus" periods	33, 44
projected, RCP	31	high pressure	
global warming hiatus	33	droughts	214
global warming potential	24	heat waves	247
GMSL, see global mean sea		hockey-stick curve	32
level		Holocene	185
GRACE satellites	186	homogeneous nucleation	133
gradient balance	143	humidity, see specific humidity	
graupel	131	hurricanes	
Great Plains	247	convection	144
greenhouse gases		development	142
absorption bands	20	energetics	145
Doppler broadening	22	energy input	148
global warming potential	24	eye wall	142
lifetime	24	observed increase	152
pressure broadening	21	power dissipation	146
water vapor feedback	27	shear, ventilation	144
greening	275	warm upper ocean	148
grounding line	173, 179	hydrofracturing	178
MISI	180	hydrometeors	131
groundwater table	238	hydrostatic balance	
GtC, see gigaton carbon		atmospheric pressure	
Gulf Stream	67, 100	profile	129
GWP, see global warming		MSE conservation	284
potential		sea level	66

н

н		I	
Hadley cell	225	ice	
desert belts	225	heat conductivity	183
halocline	165	heat diffusivity	184
heat capacity	34, 37	ice cores	
atmosphere	34	dust layers	202
land	35	isotopic composition	202
ocean	34	melt signal	203
heat stress	251	seasonal cycle	203
heat waves		ice shelf	173

INDEX 309

ice streams	173
acceleration	181
back-pressure	179
retrograde slope	181
IN, see ice nuclei	
Indian Ocean dipole	217
Australia fires	269
droughts	217
instability	
AMOC	110
MISI	181
Intergovernmental Panel on	
Climate Change	12, 281
inversion	43, 252
IOD, see Indian Ocean dipole	
IPCC, see Intergovernmental	
Panel on Climate Change	
isostatic adjustment	71
isotherms	
droughts	216
isotopic composition	
ice cores	202

Κ

Kilimanjaro glaciers	195
kinetic energy	
hurricanes	149

L

La Niña	146
droughts	218
forest fires	271
hurricanes	145
land, see soil	
albedo	13
biosphere	78
greening	275
precipitation	231
water storage, sea level	62
lapse rate	
dry adiabatic	127
feedback, Arctic	43
feedback, tropical	43
greenhouse effect	17
ice sheets	174

moist adiabatic	127
mountain glaciers	195
latent heat	
flux, droughts	248
heat waves	250
hurricanes	148
lapse rate	42
of condensation, evaporation	126
of melting, ice sheets	183
release	126
sea ice	163
lateral friction	179
LCL, see lift condensation level	
leaf area index	290
level of free convection	129
level of neutral buoyancy	129
LFC, see level of free	
convection	
LHS, see left-hand side	
lift condensation level	129
precipitation extremes	234
Little Ice Age	
mountain glaciers	194
sea level	54
log-normal distribution	132
longwave radiation	14
Arctic amplification	41, 43
energy balance	14, 15
ice energy balance	183
Planck feedback	40
trapped by clouds	122
LW, see longwave radiation	

Μ

main development area	145
marginal ice zone	157
marine ice sheet instability	180
marine-based ice sheet	174
MDR, see main development area	
melt ponds	
ice sheets	176
sea ice	161
meridional moisture flux	229
methane	24
microphysics	131
extreme precipitation	235

MISI, see marine ice sheet		North Atlantic Deep Water	102
instability		AMOC	100
mixed layer	56, 102	Arctic sea ice	165
hurricanes	144		
MOC, see meridional			
overturning circulation		0	
moist adiabatic lapse rate	41	ocean	
moist adiabatic temperature		acidification	78
profile	41	circulation, AMOC	100
moist static energy	126	cloud feedbacks	135
graphical solution	128	CO ₂ dissolution	29
lapse rate feedback	43	deep, warming	37
moulins	181	delaying warming	39
Mount Kenya glaciers	195	evaporation, hurricanes	142
mountain glaciers		evaporation, SMB	174
accelerated recent retreat	206	freezing	161
adjustment time	199	ice sheet calving	178
adjustment to warming	202	precipitation	213
and temperature	198	roles in global warming	116
carbon dating the retreat	197	temperature, salinity	102
climate sensitivity	199	upper, warming	37
clouds	196	warming and sea level	56
dynamics of response	205	water density	57
equilibrium length	199	water masses	102
front location	194	OLR, see outgoing longwave	
global trends	197	radiation	
lapse rate	195	omega, saturation state	81
length	194	outgoing longwave radiation	18
length records	197	Arctic amplification	41
Little Ice Age	197	clouds	134
retreat exposes plants	197	cooling, droughts	216
runoff	194	cooling, heat waves	249
sea level	62, 194	emission height	18
tropical	195	energy balance	14
MSE, see moist static energy		ice surface temperature	183
Murray-Darling Basin	271	ozone	
		layer	17, 45–46
		toxic, fires	262
Ν			
negative feedback			

negative feedback	
Arctic amplification	41
sea ice thickness	163
tropical lapse rate	43
NINO3.4 index	
Australian droughts, fires	271
hurricanes	147
nitrous oxide	24

Ρ

Palmer Drought Severity	
Index	214
parameterization	
calving	178
cloud microphysics	132
clouds	122

INDEX | 311

parameterization (continued)		droughts	224
extreme precipitation	235	dry getting drier	228
moist convection	131	efficiency, extremes	234
ocean mixing	106	enhancing fires	262
past warm climates		extremes	231
Eocene	59	Hadley cell	225
Pliocene	61	heat waves	248
pCO ₂	92	meridional moisture flux	229
PDD, see positive degree days		wet getting wetter	228
PDF, see probability distribution		probability distribution function	
function		cloud droplet sizes	132
PDI, see power dissipation index		droughts	220
PET, see potential		heat waves	254
evapotranspiration		sea ice trends	165
pН	78	prograde slope	181
as a function of CO_2	86		
response to CO_2 increase	90		
photon energy	20	Q	
Planck constant	20	Quelccaya ice cap, Peru	198, 202
Planck feedback	40		,
Planck's Law	20		
Pliocene	61	R	
polar amplification	33, 39	radiation	
albedo	39	longwave	14
lapse rate feedback	43	shortwave	14
Planck feedback	40	visible	14
positive degree days	175, 195	radiative cooling	
positive feedback		climate sensitivity	35
atmospheric convection	126	clouds	131
clouds	136	droughts	216
hurricanes	143	heatwaves	249
ice sheet melt ponds	177	radiative effect	
MISI	181	clouds	123
runaway greenhouse	280	radiative forcing	23, 34
sea ice age, roughness	162	CO_2 vs other gases	24
sea ice albedo	161	CO_2 , logarithmic behavior	23
sea ice mobility	163	RAPID	103
water vapor	27	RCP, see Representative	
potential evapotranspiration	214	Concentration Pathway	
droughts, bucket model	238	RCP8.5	24
fires	264	realism and motivation	xii
potential intensity	150	regression	
power dissipation index	146	fires	265
precipitation		hurricanes	153
clouds	133	sea ice	166
deficit and fires	269	relative humidity	25, 126
desert belts	225	convection	130

droughts	215	mobility	163
evaporation, droughts	239	observed record	158
evaporation, hurricanes	149	pancake ice	161
fires	264	projections	168
fixed in global warming	27	roughness	161
global precipitation		thickness	160
projections	230	variability PDF	166
heat stress	251	winter melting	168
heat waves	249	sea level	
Representative Concentration		coastal erosion	70
Pathway	12, 24	global mean	55
retrograde slope	180	gravitational fingerprint	72
RH, see relative humidity		high tide	67
RHS, see right-hand side		iostatic adjustment	71
Rossby waves	216	land water storage	62
runaway greenhouse warming	280	mountain glaciers	62, 194
		pressure loading	64
		relative	55
S		rise, ocean warming	57
Sahel droughts	222	steric	55
salinity		storm surge	67
AMOC	107	wind stress	65
definition	102	sea surface temperature	
North Atlantic	102	AMOC collapse	115
reaction constants	86	forest fires	269
sea level	57	hurricanes	143
seawater density	107	teleconnections, droughts	216
SAM, see southern annular mode		seawater	
Santa Ana winds	262	carbonate system	78
saturation specific humidity, see		density, AMOC	106
Clausius-Clapeyron		heat capacity	37
saturation water vapor pressure	25	thermal expansion	58
scale height	129	shallow ice approximation	206
sea ice		shear	
age	160, 161	ice flow	179
albedo feedback	161	wind, hurricanes	144
Antarctic	164	shortwave radiation	14
area	159	cloud albedo	122
concentration	159	enhanced, droughts	215
decline trend	167	enhanced, heat waves	249
difficulty of attribution	164	mountain glaciers	196
extent	159	sea ice albedo	161
floes	159	slumping, ice cliffs	178
frazil ice	161	SMB, see surface mass balance	
grease ice	161	soil	
insulation feedback	163	carbon cycle	81
loss, impacts	159	droughts	215, 251

evaporation238sea level61heat capacity35surface temperature31moisture237, 238cloud feedbacks135moisture, PDSI214energy balance13moisture, projections224extreme precipitation233porosity238glacier extent200water content238heat waves248solar constant13ice sheet175, 183, 184southern annular mode269MSE conservation126southern oscillation146soil, evaporation238specific heat capacity37Sverdrup100droughts216 T ocean water279ice184forest fires269forest fires269forest fires264temperature-precipitation126269heat waves249feedback174133orders of magnitude123The Day After Tomorrow116precipitation extremes234thermocline56, 102saturation, Clausius-Clapeyron26AMOC106, 112saturation, hurricanes148climate examples115soli moisture238MISI181wet bulb temperature252total CO283spectral radiance20toy models114saturation, clausius-Clapeyron26AMOC106, 112saturation, hurricanes148climate examples115soli moisture <t< th=""><th>soil (continued)</th><th></th><th>PDD</th><th>176</th></t<>	soil (continued)		PDD	176
heat capacity35surface temperature31moisture237, 238cloud feedbacks135moisture, PDSI214energy balance13moisture, projections224extreme precipitation233porosity238glacier extent200water content238heat waves248souhern oscillation146soil, evaporation238southern oscillation146soil, evaporation238specific heat capacity37Sverdrup100droughts216SW, see shortwave radiation248MSE126Tocean water279ocean water37teleconnections269forest fires264temperature-precipitation164pecific humiditydrought217drought217droughts215forest fires269269forest fires264temperature-precipitation164precific humidity213The Day After Tomorrow116precipitation extremes234thermocline56, 102saturation, Clausius-Clapeyron26AMOC106, 112saturation, hurricanes148climate examples115soil moisture225total CO283spectral radiance20toy models114spectral radiance20toy models114spectral radiance20toy models114spectral radiance20toy models	evaporation	238	sea level	61
moisture237, 238cloud feedbacks135moisture, heat waves248daily maximum248moisture, projections224energy balance13prosity238glacier extent200water content238heat waves248solar constant13ice sheet175, 183, 184southern annular mode269MSE conservation126southern oscillation146soil, exaporation238pecific heat capacity37Sverdrup100droughts216T0ocean water37teleconnections217ocean water37teleconnections217droughts215forest fires269forest fires264temperature-precipitationheat waves249fedback174moist convection, clouds125tepminal velocity133orders of magnitude123The Day After Tomorrow116precipitation extremes234thermocline56, 102saturation, fluxius-Clapeyron26AMOC106, 112saturation, hurricanes148climate examples115soll moisture238MISI181wet bulb temperature225total CO283spectral radiance20toy models114saturation, flight20transpiration214stefan-Boltzmann constant13tree rings133AMOC105cloud fo	heat capacity	35	surface temperature	31
moisture, heat waves248daily maximum248moisture, PDSI214energy balance13moisture, projections224extreme precipitation233porosity238glacier extent200water content238heat waves248solar constant13ice sheet175, 183, 184southern annular mode269MSE conservation126southern oscillation146soil, evaporation238specific heat capacity37Sverdrup100droughts216SW, see shortwave radiation146heat waves249ice184MSE126Toccan waterspecific humiditydrought217droughts215forest fires269forest fires264temperature-precipitationheat waves249feedback174moist convection, clouds125terminal velocity133orders of magnitude123The Day After Tomorrow116precipitation extremes234thermocline56, 102saturation, hurricanes148climate examples115solter of light20transpiration214Stefan-Boltzmann constant13tree rings214Stefan-Boltzmann constant13drought reconstruction221stratospheric cooling45turbulence313AMOC105cloud formation126Hadley cell225<	moisture	237, 238	cloud feedbacks	135
moisture, PDSI214energy balance13moisture, projections224extreme precipitation233porosity238glacier extent203water content238heat waves248solar constant13ice sheet175, 183, 184southern annular mode269MSE conservation126southern oscillation146soil, evaporation238specific heat capacity37Sverdrup100droughts216SW, see shortwave radiation16heat waves249forest fires269ice184drought217droughts215forest fires269forest fires264temperature-precipitationheat waves249feedback174moist convection, clouds125terminal velocity133orders of magnitude123The Day After Tomorrow116precipitation extremes234thermocline56, 102saturation, Lausus-Clapeyron26AMOC106, 112saturation, Lausus-Clapeyron26AMOC104, 112seped of light20transpiration214tefan-Boltzmann constant13tree rings214stords velocity133drought reconstruction221stords of light20total Co2_283spectral radiance20total Co2_283spectral radiance20total Co2_283subutcion, ca	moisture, heat waves	248	daily maximum	248
moisture, projections224extreme precipitation233porosity238glacier extent200water content238heat waves248solar constant13ice sheet175, 183, 184southern annular mode269MSE conservation126southern oscillation146soil, evaporation238specific heat capacity37Sverdrup100droughts216SW, see shortwave radiation100heat waves249ice184ice184Iteleconnections269ocean water37teleconnections269forest fires264temperature-precipitation133droughts215forest fires269forest fires264temperature-precipitation133orders of magnitude123The Day After Tomorrow116precipitation extremes234thermocline56, 102saturation, Clausius-Clapeyron26AMOC106, 112saturation, louricanes148climate examples114sepectal radiance20tory models114stores velocity133drought reconstruction221storts waves249fore of magnitude123saturation, clausius-Clapeyron26AMOC106, 112saturation, clausius-Clapeyron26AMOC202saturation125tipping point114storts waves248114131 <td>moisture, PDSI</td> <td>214</td> <td>energy balance</td> <td>13</td>	moisture, PDSI	214	energy balance	13
porosity238glacier extent200water content238heat waves248solar constant13ice sheet175, 183, 184southern annular mode269MSE conservation126southern oscillation146soil, evaporation238specific heat capacity37Sverdrup100droughts216SW, see shortwave radiationheat wavesheat waves249ice184MSE126Tocean water37troughts215forest fires269forest fires264temperature-precipitationheat waves249feedback174droughts215forest fires269forest fires264temperature-precipitationheat waves249feedback174moist convection, clouds125terminal velocity133orders of magnitude123The Day After Tomorrow116precipitation extremes234thermocline56, 102saturation, Clausius-Clapeyron26AMOC106, 112saturation, hurricanes148climate examples115soli moisture238MISI181wet bulb temperature252total CO283spectral radiance20transpiration221stords of light20transpiration221Stokes velocity133drought reconstruction222stords velocity133d	moisture, projections	224	extreme precipitation	233
water content238heat waves248solar constant13ice sheet175, 183, 184southern annular mode269MSE conservation126southern oscillation146soil, evaporation238specific heat capacity37Sverdrup100droughts216SW, see shortwave radiation106heat waves249ice184MSE126Tocean water37ocean water37teleconnections217droughts215forest fires269forest fires264temperature-precipitationheat waves249feedback174moist convection, clouds125terminal velocity133orders of magnitude123The Day After Tomorrow116precipitation extremes234thermocline56, 102saturation125tipping point15soil moisture238MISI181wet bulb temperature252total CO283spectral radiance20toy models114stefan-Boltzmann constant13tree rings133AMOC105cloud formation126Halley cell225entainment131subaduction, carbon cycle81ocean mixing,subaduction, carbon cycle81ocean mixing,subaduction, carbon cycle81ocean mixing,subaduction, carbon cycle81ocean mixing,	porosity	238	glacier extent	200
solar constant13ice sheet175, 183, 184southern annular mode269MSE conservation126southern oscillation146soil, evaporation238specific heat capacity37Sverdrup100heat waves249100ice184100MSE126 T occan water37teleconnectionsspecific humiditydrought217droughts215forest fires269forest fires264temperature-precipitationheat waves249feedback174moist convection, clouds125terminal velocity133orders of magnitude123The Day After Tomorow116precipitation extremes234thermocline56, 102saturation, Clausius-Clapeyron26AMOC106, 112saturation, hurricanes148climate examples115soil moisture238MISI181spectral radiance20toy models114spectral radiance20toy models114spectral radiance20toy models114stefan-Boltzmann constant13drough treconstruction221storm surge67past fire reconstruction226stataspheric cooling45turbulence133subduction, carbon cycle81occan mixing,133subduction, carbon cycle81occan mixing,subduction, carbon cycle8	water content	238	heat waves	248
southern annular mode 269 MSE conservation 126 southern oscillation 146 soil, evaporation 238 specific heat capacity 37 Sverdrup 100 droughts 216 SW, see shortwave radiation heat waves 249 ice 184 MSE 126 T ocean water 37 teleconnections specific humidity drought 217 droughts 215 forest fires 269 forest fires 264 temperature-precipitation heat waves 249 feedback 174 moist convection, clouds 125 terminal velocity 133 orders of magnitude 123 <i>The Day After Tomorrow</i> 116 precipitation extremes 234 thermocline 56, 102 saturation, Clausius-Clapeyron 26 AMOC 106, 112 saturation, hurricanes 148 climate examples 115 soil moisture 238 MISI 181 wet bulb temperature 252 total CO ₂ 83 spectral radiance 20 toy models 114 speed of light 20 transpiration 214 Stefan-Boltzmann constant 13 tree rings Stokes velocity 133 drought reconstruction 221 storm surge 67 past fire reconstruction 221 storm surge 67 past fire reconstruction 226 stratospheric cooling 45 turbulence 133 AMOC 105 cloud formation 126 Hadley cell 225 entrainment 131 usbudution, carbon cycle 81 ocean mixing, subsidence 173, 203 clouds 133 ic sheets 176 extreme precipitation 135 unface mass balance 173, 203 clouds 133 ic sheets 176 extreme precipitation 235 mountain glaciers 195 upwelling 61	solar constant	13	ice sheet	175, 183, 184
southern oscillation146soil, evaporation238specific heat capacity37Sverdrup100droughts216SW, see shortwave radiation100heat waves249100ice184100MSE126Toccan water37teleconnectionsspecific humidity215forest fires269forest fires264temperature-precipitation133heat waves249feedback174moist convection, clouds125terminal velocity133orders of magnitude123The Day After Tomorrow116precipitation extremes234thermocline56, 102saturation, Clausius-Clapeyron26AMOC106, 112saturation, hurricanes148Climate examples115soil moisture238MISI181wet bulb temperature252total CO283speed of light20transpiration221storm surge67past fire reconstruction221storm surge67past fire reconstruction221storm surge67past fire reconstruction221storm surge67past fire reconstruction262stranspination133drought reconstruction221storm surge67past fire reconstruction221storm surge67past fire reconstruction221storm surge67past fire reconstruction	southern annular mode	269	MSE conservation	126
specific heat capacity 37 Sverdrup 100 droughts 216 SW, see shortwave radiation heat waves 249 ice 184 MSE 126 T ocean water 37 teleconnections specific humidity drought 217 droughts 215 forest fires 264 temperature-precipitation heat waves 249 feedback 174 moist convection, clouds 125 terminal velocity 133 orders of magnitude 123 <i>The Day After Tomorrow</i> 116 precipitation extremes 234 thermocline 56, 102 saturation 125 tipping point saturation, Clausius-Clapeyron 26 AMOC 106, 112 saturation, hurricanes 148 climate examples 115 soil moisture 238 MISI 181 wet bulb temperature 252 total CO ₂ 83 spectral radiance 20 toy models 114 Stefan-Boltzmann constant 13 tree rings Stokes velocity 133 drought reconstruction 221 stratospheric cooling 45 turbulence streamfunction 126 tartaloge 170 U subduction, carbon cycle 81 ocean mixing, subduction, carbon cycle 81 ocean mixing, subsidence 173, 203 clouds 133 ice sheets 176 extreme precipitation 235 mountain glaciers 195 upwelling 61	southern oscillation	146	soil, evaporation	238
droughts216SW, see shortwave radiationheat waves249ice184MSE126 \mathbf{T} ocean water37teleconnectionsspecific humiditydrought217droughts215forest fires269forest fires264temperature-precipitationheat waves249feedback174moist convection, clouds125terminal velocity133orders of magnitude123The Day After Tomorrow116precipitation extremes234thermocline56, 102saturation, Clausius-Clapeyron26AMOC106, 112saturation, hurricanes148climate examples115soil moisture238MISI181wet bulb temperature252total CO283spectral radiance20toy models114speed of light20transpiration221stores velocity133drought reconstruction221store were67past fire reconstruction221store surge67past fire reconstruction226store were81ocean mixing,333AMOC105cloud formation126Halley cell225entrainment131subduction, carbon cycle81ocean mixing,subduction, carbon cycle81ocean mixing,subsidenceAMOC103, 106droughts215heat wavesla	specific heat capacity	37	Sverdrup	100
heat waves249ice184MSE126Tocean water37teleconnectionsspecific humiditydrought217droughts215forest fires269forest fires264temperature-precipitationheat waves249feedback174moist convection, clouds125terminal velocity133orders of magnitude123The Day After Tomorrow116precipitation extremes234thermocline56, 102saturation, Clausius-Clapeyron26AMOC106, 112saturation, furricanes148climate examples115soil moisture238MISI181wet bulb temperature252total CO283spectral radiance20toy models114speed of light20transpiration214Stokes velocity133drought reconstruction226stratospheric cooling45turbulence133AMOC105cloud formation126Hadley cell225entrainment131subduction, carbon cycle81ocean mixing,subduction, carbon cycle81ocean mixing,subsidence70Usupersatu	droughts	216	SW, see shortwave radiation	
ice 184 MSE 126 T occan water 37 teleconnections specific humidity drought 217 droughts 215 fores fires 269 forest fires 264 temperature-precipitation heat waves 249 feedback 174 moist convection, clouds 125 terminal velocity 133 orders of magnitude 123 <i>The Day After Tomorrow</i> 116 precipitation extremes 234 thermocline 56,102 saturation 125 tipping point saturation, Clausius-Clapeyron 26 AMOC 106,112 saturation, hurricanes 148 climate examples 115 soil moisture 238 MISI 181 wet bulb temperature 252 total CO ₂ 83 spectral radiance 20 toy models 114 speed of light 200 transpiration 214 Stefan-Boltzmann constant 13 tree rings Stokes velocity 133 drought reconstruction 221 storm surge 67 past fire reconstruction 262 stratospheric cooling 45 turbulence stratospheric cooling 45 turbulence stratice 70 U supersaturation 131 updraft surface mass balance 173, 203 clouds 133 ice sheets 195 upwelling 61	heat waves	249		
MSE126Tocean water37teleconnectionsspecific humiditydrought217droughts215forest fires269forest fires264temperature-precipitationheat waves249feedback174moist convection, clouds125terminal velocity133orders of magnitude123The Day After Tomorrow116precipitation extremes234thermocline56, 102saturation, Clausus-Clapeyron26AMOC106, 112saturation, hurricanes148climate examples115soil moisture238MISI181wet bulb temperature252total CO283speed of light20transpiration214Stefan-Boltzmann constant13tree ringsStokes velocitystratospheric cooling45turbulencestratospheric cooling45turbulencestratospheric cooling45cloud formation126Hadley cell225entrainment131subduction, carbon cycle81ocean mixing,131subduction, carbon cycle81ocean mixing,133subduction, carbon cycle81ocean mixing,133subduction, carbon cycle81ocean mixing,133subduction, carbon cycle81ocean mixing,131subduction, carbon cycle81ocean mixing,131subduction, carbon cycle81ocean mixin	ice	184		
ocean water37teleconnectionsspecific humiditydrought217droughts215forest fires269forest fires264temperature-precipitationheat waves249feedback174moist convection, clouds125terminal velocity133orders of magnitude123The Day After Tomorrow116precipitation extremes234thermocline56, 102saturation125tipping pointsaturation, Clausius-Clapeyron26AMOC106, 112saturation, Untricanes148climate examples115115soil moisture238MISI181181wet bulb temperature252total CO283spectral radiance20toy models114stefan-Boltzmann constant13tree rings212Stokes velocity133drought reconstruction221stratospheric cooling45turbulencestreamfunction215cloud formation126Hadley cell225entrainment131subduction, carbon cycle81ocean mixing,subduction, carbon cycle81ocean mixing,subduction, carbon cycle81ocean mixing,supersaturation131updraftsupfase215heat wavessupersaturation131updraftsupersaturation131updraftsupfase175cloudsstatasphance173,	MSE	126	т	
specific humiditydrought217droughts215forest fires269forest fires264temperature-precipitationheat waves249feedback174moist convection, clouds125terminal velocity133orders of magnitude123The Day After Tomorrow116precipitation extremes234thermocline56, 102saturation125tipping point5saturation, Clausius-Clapeyron26AMOC106, 112saturation, hurricanes148climate examples115soil moisture238MISI181wet bulb temperature252total CO283spectral radiance20toy models114stefan-Boltzmann constant13tree rings214Stokes velocity133drought reconstruction221storm surge67past fire reconstruction221storm surge67past fire reconstruction226stratospheric cooling45turbulencestreamfunctionaround falling drops133AMOC105cloud formation126Hadley cell225entrainment131subduction, carbon cycle81ocean mixing,subsidence248land, sea level70land, sea level70Usurface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain	ocean water	37	teleconnections	
droughts215forest fires269forest fires264temperature-precipitationheat waves249feedback174moist convection, clouds125terminal velocity133orders of magnitude123The Day After Tomorrow116precipitation extremes234thermocline56, 102saturation125tipping pointsaturation, Clausius-Clapeyron26saturation, hurricanes148climate examples115soil moisture238MISI181wet bulb temperature252total CO283spectral radiance20toy models114speed of light20transpiration214Stokes velocity133drought reconstruction221storm surge67past fire reconstruction221storm surge67past fire reconstruction226Hadley cell225entrainment131subduction, carbon cycle81ocean mixing,subsidence215heat waves248land, sea level70Usupersaturationsurface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61	specific humidity		drought	217
forest fires264temperature-precipitationheat waves249feedback174moist convection, clouds125terminal velocity133orders of magnitude123The Day After Tomorrow116precipitation extremes234thermocline56, 102saturation125tipping pointsaturation, clausius-Clapeyron26AMOC106, 112saturation, hurricanes148climate examples115soil moisture238MISI181wet bulb temperature252total CO283spectral radiance20toy models114speed of light20transpiration214Stokes velocity133drought reconstruction221storm surge67past fire reconstruction262stratospheric cooling45turbulencestreamfunctionaround falling drops133AMOC105cloud formation126Hadley cell225entrainment131subduction, carbon cycle81ocean mixing,subsidenceAMOC103, 106droughts215AMOC103, 106droughts215heat waves248land, sea level70Usupersaturation131updraftsurface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61 </td <td>droughts</td> <td>215</td> <td>forest fires</td> <td>269</td>	droughts	215	forest fires	269
heat waves249feedback174moist convection, clouds125terminal velocity133orders of magnitude123The Day After Tomorrow116precipitation extremes234thermocline56, 102saturation125tipping pointsaturation, clausius-Clapeyron26AMOC106, 112saturation, hurricanes148climate examples115soil moisture238MISI181wet bulb temperature252total CO283spectral radiance20toy models114Speed of light20transpiration214Stokes velocity133drought reconstruction221storm surge67past fire reconstruction262stratospheric cooling45turbulencestreamfunctionaround falling drops133AMOC105cloud formation126Hadley cell225entrainment131subduction, carbon cycle81ocean mixing,subsidenceAMOC103, 106droughts215heat wavesland, sea level70Usupersaturation131updraftsurface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61	forest fires	264	temperature-precipitation	
moist convection, clouds125terminal velocity133orders of magnitude123The Day After Tomorrow116precipitation extremes234thermocline56, 102saturation125tipping pointsaturation, Clausius-Clapeyron26AMOC106, 112saturation, hurricanes148climate examples115soil moisture238MISI181wet bulb temperature252total CO283spectral radiance20toy models114speed of light20transpiration214Stokes velocity133drought reconstruction221storm surge67past fire reconstruction221straospheric cooling45turbulencestratospheric cooling45turbulencestreamfunctionaround falling drops133AMOC105cloud formation126Hadley cell225entrainment131subduction, carbon cycle81ocean mixing,subsidence70Udroughts215heat wavesland, sea level70Usupersaturation131updraftsurface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61	heat waves	249	feedback	174
orders of magnitude123The Day After Tomorrow116precipitation extremes234thermocline56, 102saturation125tipping pointsaturation, Clausius-Clapeyron26AMOC106, 112saturation, hurricanes148climate examples115soil moisture238MISI181wet bulb temperature252total CO283spectral radiance20toy models114speed of light20transpiration214Stefan-Boltzmann constant13tree rings215stratospheric cooling45turbulence233AMOC105cloud formation126stratospheric cooling45turbulence133AMOC105cloud formation126Hadley cell225entrainment131subduction, carbon cycle81ocean mixing,subsidenceAMOC103, 106droughts215heat wavesland, sea level70Usupersaturation131updraftsurface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61	moist convection, clouds	125	terminal velocity	133
precipitation extremes234thermocline56, 102saturation125tipping pointsaturation, Clausius-Clapeyron26AMOC106, 112saturation, hurricanes148climate examples115soil moisture238MISI181wet bulb temperature252total CO283spectral radiance20toy models114speed of light20transpiration214Stefan-Boltzmann constant13tree ringsStokes velocity133drought reconstruction221storm surge67past fire reconstruction262stratospheric cooling45turbulencestreamfunctionaround falling drops133AMOC105cloud formation126Hadley cell225entrainment131subduction, carbon cycle81ocean mixing,subsidence70Udroughts215heat wavesland, sea level70Usupersaturation131updraftsurface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61	orders of magnitude	123	The Day After Tomorrow	116
saturation125tipping pointsaturation, Clausius-Clapeyron26AMOC106, 112saturation, hurricanes148climate examples115soil moisture238MISI181wet bulb temperature252total CO283spectral radiance20toy models114speed of light20transpiration214Stefan-Boltzmann constant13tree rings211storm surge67past fire reconstruction221storm surge67past fire reconstruction262stratospheric cooling45turbulencestreamfunctionaround falling drops133AMOC105cloud formation126Hadley cell225entrainment131subduction, carbon cycle81ocean mixing,subsidence70Uupdraftsupersaturation131updraftsupersaturation131updraftsupersaturation137, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61	precipitation extremes	234	thermocline	56, 102
saturation, Clausius-Clapeyron26AMOC106, 112saturation, hurricanes148climate examples115soil moisture238MISI181wet bulb temperature252total CO283spectral radiance20toy models114speed of light20transpiration214Stefan-Boltzmann constant13tree rings21storm surge67past fire reconstruction221storm surge67past fire reconstruction221stratospheric cooling45turbulencestreamfunction105cloud formation126Hadley cell225entrainment131subduction, carbon cycle81ocean mixing,subsidence70U103, 106droughts215heat waves248land, sea level70U103supersaturation131updraft133ice sheets176extreme precipitation235mountain glaciers195upwelling61	saturation	125	tipping point	
saturation, hurricanes148climate examples115soil moisture238MISI181wet bulb temperature252total CO283spectral radiance20toy models114speed of light20transpiration214Stefan-Boltzmann constant13tree rings21storm surge67past fire reconstruction221storm surge67past fire reconstruction226stratospheric cooling45turbulence133AMOC105cloud formation126Hadley cell225entrainment131subduction, carbon cycle81ocean mixing,subsidenceAMOC103106droughts215103, 106droughts215131updraftsupersaturation131updraft133surface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61	saturation, Clausius-Clapeyron	26	AMOC	106, 112
soil moisture238MISI181wet bulb temperature252total CO283spectral radiance20toy models114speed of light20transpiration214Stefan-Boltzmann constant13tree ringsStokes velocity133drought reconstruction221storm surge67past fire reconstruction262stratospheric cooling45turbulencestreamfunctionaround falling drops133AMOC105cloud formation126Hadley cell225entrainment131subduction, carbon cycle81ocean mixing,subsidenceAMOC103, 106droughts215heat waves248land, sea level70Usupersaturation131updraftsurface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61	saturation, hurricanes	148	climate examples	115
wet bulb temperature252total CO283spectral radiance20toy models114speed of light20transpiration214Stefan-Boltzmann constant13tree ringsStokes velocity133drought reconstruction221storm surge67past fire reconstruction262stratospheric cooling45turbulencestreamfunctionaround falling drops133AMOC105cloud formation126Hadley cell225entrainment131subduction, carbon cycle81ocean mixing,subsidenceAMOC103, 106droughts215heat waves248land, sea level70Usupersaturation131updraftsurface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61	soil moisture	238	MISI	181
spectral radiance20toy models114speed of light20transpiration214Stefan-Boltzmann constant13tree ringsStokes velocity133drought reconstruction221storm surge67past fire reconstruction262stratospheric cooling45turbulencestreamfunctionaround falling drops133AMOC105cloud formation126Hadley cell225entrainment131subduction, carbon cycle81ocean mixing,subsidenceAMOC103, 106droughts215AMOC103, 106land, sea level70Usurface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61	wet bulb temperature	252	total CO ₂	83
speed of light20transpiration214Stefan-Boltzmann constant13tree rings133drought reconstruction221Stokes velocity133drought reconstruction262262storm surge67past fire reconstruction262stratospheric cooling45turbulence133AMOC105cloud formation126Hadley cell225entrainment131subduction, carbon cycle81ocean mixing,subsidenceAMOC103, 106droughts215AMOC103, 106supersaturation131updraftsurface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61	spectral radiance	20	toy models	114
Stefan-Boltzmann constant13tree ringsStokes velocity133drought reconstruction221storm surge67past fire reconstruction262stratospheric cooling45turbulencestreamfunctionaround falling drops133AMOC105cloud formation126Hadley cell225entrainment131subduction, carbon cycle81ocean mixing,subsidenceAMOC103, 106droughts215heat waves248land, sea level70Usupersaturation131updraftsurface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61	speed of light	20	transpiration	214
Stokes velocity133drought reconstruction221storm surge67past fire reconstruction262stratospheric cooling45turbulencestreamfunctionaround falling drops133AMOC105cloud formation126Hadley cell225entrainment131subduction, carbon cycle81ocean mixing,subsidenceAMOC103, 106droughts215103heat waves248103land, sea level70Usupersaturation131updraftsurface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61	Stefan-Boltzmann constant	13	tree rings	
storm surge67past fire reconstruction262stratospheric cooling45turbulencestreamfunctionaround falling drops133AMOC105cloud formation126Hadley cell225entrainment131subduction, carbon cycle81ocean mixing,subsidenceAMOC103, 106droughts215103heat waves248103land, sea level70Usupersaturation131updraftsurface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61	Stokes velocity	133	drought reconstruction	221
stratospheric cooling45turbulencestreamfunctionaround falling drops133AMOC105cloud formation126Hadley cell225entrainment131subduction, carbon cycle81ocean mixing,subsidenceAMOC103, 106droughts215103heat waves248103land, sea level70Usupersaturation131updraftsurface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61	storm surge	67	past fire reconstruction	262
streamfunction around falling drops 133 AMOC 105 cloud formation 126 Hadley cell 225 entrainment 131 subduction, carbon cycle 81 ocean mixing, subsidence AMOC 103, 106 droughts 215 heat waves 248 land, sea level 70 U supersaturation 131 updraft surface mass balance 173, 203 clouds 133 ice sheets 176 extreme precipitation 235 mountain glaciers 195 upwelling 61	stratospheric cooling	45	turbulence	
AMOC105cloud formation126Hadley cell225entrainment131subduction, carbon cycle81ocean mixing,subsidenceAMOC103, 106droughts215103heat waves248100land, sea level70Usupersaturation131updraftsurface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61	streamfunction		around falling drops	133
Hadley cell225entrainment131subduction, carbon cycle81ocean mixing,subsidenceAMOC103, 106droughts215103heat waves248103land, sea level70Usupersaturation131updraftsurface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61	AMOC	105	cloud formation	126
subduction, carbon cycle81ocean mixing,subsidenceAMOC103, 106droughts215103heat waves248103land, sea level70Usupersaturation131updraftsurface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61	Hadley cell	225	entrainment	131
subsidenceAMOC103, 106droughts215heat waves248land, sea level70Usupersaturation131updraftsurface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61	subduction, carbon cycle	81	ocean mixing,	
droughts215heat waves248land, sea level70supersaturation131updraftsurface mass balance173, 203ice sheets176extreme precipitation235mountain glaciers195upwelling61	subsidence		AMOC	103, 106
heat waves248land, sea level70Usupersaturation131updraftsurface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61	droughts	215		
land, sea level70Usupersaturation131updraftsurface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61	heat waves	248		
supersaturation131updraftsurface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61	land, sea level	70	U	
surface mass balance173, 203clouds133ice sheets176extreme precipitation235mountain glaciers195upwelling61	supersaturation	131	updraft	
ice sheets176extreme precipitation235mountain glaciers195upwelling61	surface mass balance	173, 203	clouds	133
mountain glaciers 195 upwelling 61	ice sheets	176	extreme precipitation	235
	mountain glaciers	195	upwelling	61

314 INDEX

V

vapor pressure deficit	264
volcanoes, carbon cycle	81
VPD, see vapor pressure deficit	

W

water vapor, see specific	
humidity	
water vapor feedback	26-27
West Antarctic ice sheet	172
wet bulb temperature	251
wind	
evaporation	238
evapotranspiration	214
fire indices	265
forest fires	262

high pressure, droughts	215
high pressure, heat waves	247
hurricane	141
hurricane, eye wall	142
low pressure, hurricane	142
moisture flux	229
ocean circulation	101
sea ice transport	163
shear, hurricanes	144
stress, bulk formula	66
stress, sea level	66
surface, heat waves	250
updrafts, precipitation	235

177

Y

yield stress