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Player One

Are we the authors of our own stories? Or is our apparent freedom of 
choice  really an illusion?  These questions  were brought home to me 
recently as I was watching my son play a video game— one where you 
wander around an open world, meeting in ter est ing denizens of one type 
or another (and killing quite a few of them). As I watched, his character 
entered a tavern and approached the bartender, who offered a generic 
greeting. The game then threw up some options for  things you could 
say in reply to get information about the prospects for fortune and glory 
in the surrounding territory.

In this exchange, my son’s possibilities for action  were  limited by the 
game, but he was  really making choices among them, and  these choices 
then affected how the conversation went and what would subsequently 
unfold. His decisions  were based on his overall goal in the game, the 
tension between his goals of taking some immediate action or to keep 
exploring, his need to have enough information to make a decision with 
confidence, the risk of biting off more than he could chew and losing 
his hard- won stuff: all  these considerations fed into the decisions he 
made. He had his reasons and he acted on them, just like you or I do 
 every day, all day long.

The bartender, in contrast, was not making choices. He was a classic 
“non- player character,” an NPC. His responses  were completely deter-
mined by his programming: he had no degrees of freedom. His actions 
 were merely the inevitable outcome of a flow of electrons through 
the cir cuits of the game console, constrained by the rules encoded in the 
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software. Even the more sophisticated NPCs in the game, including the 
monster that eventually caramelized my son’s avatar,  were similarly con-
strained. The monster’s actions— even in the fast- moving melee— were 
determined by the software programming and mediated by the elec-
tronic components in the console.

Thus the NPCs only appear to be making choices.  They’re not au-
tonomous entities like us:  they’re just a manifestation of lots of lines of 
code, implemented in the physical structure of the computer chips. 
Their be hav ior is entirely determined by the inputs they get and their 
preprogrammed responses. We, in contrast, are  causes of  things in our 
own right. We have agency: we make our own choices and are in charge 
of our own actions.

At least it seems that way. It certainly feels like we have “ free  will,” like 
we make choices, like we are in control of our actions. That’s pretty 
much what we do all day—go around making decisions about what to 
do. Some are trivial, like what to have for breakfast; some are more 
meaningful, like what to say or do in social or professional situations; 
and some are momentous, like  whether to accept a job offer or a marriage 
proposal. Some we deliberate on consciously, and  others we perform 
on autopilot— but we still perform them. Of course, our options may be 
more or less constrained (or informed) by all kinds of  factors at any given 
moment, but generally we feel like the authors of our own actions.

And we interpret other  people’s be hav ior in terms of their reasons for 
selecting diff er ent actions— their intentions, beliefs, and desires that 
make up the content of their  mental states. We constantly analyze each 
other’s motives and habits and character, looking for explanations and 
predictors of their be hav ior and the decisions they make. Why  people 
act the way they do is ultimately the theme of most entertainment, from 
Dostoyevsky to Big  Brother. All this rests on the view that we are not just 
acted on—we are actors.  Things  don’t just happen to us, in the way they 
happen to rocks or spoons or electrons: we do  things.

The prob lem is that, if you think about this view for too long, it be-
comes difficult to escape a discomfiting thought.  After all, like the NPCs, 
our decisions, however complex they may be, are mediated by the flow 
of electrical ions through the cir cuits of our brains and thus are con-
strained by our own “programming,” by how our cir cuits are configured. 
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 Unless you invoke an immaterial soul or some other ethereal substance 
or force that is  really in charge— call it spirit or simply mind, if you 
prefer— you cannot escape the fact that our consciousness and our be-
hav ior emerge from the purely physical workings of the brain.

 There is no shortage of evidence for this from our own experience. If 
 you’ve ever been drunk, for example, or even just a  little tipsy,  you’ve 
experienced how altering the physical workings of your brain alters your 
choices and the way you behave.  There is a  whole industry of recre-
ational drugs— from caffeine to crystal meth— that  people take  because 
of the way that physically tweaking the brain’s machinery in vari ous 
ways makes them feel and act. The ultimate consequence in some cases 
is addiction— perhaps the starkest example of how our actions can 
sometimes be out of our control.

And, of course, if the machinery of your brain gets physically 
damaged—as occurs with head injuries, strokes, brain tumors, neuro-
degenerative disorders, or a host of other kinds of insults—or its 
function is impaired in other ways, as in conditions such as schizo phre-
nia, depression, or mania, then your ability to choose your actions may 
also be impaired. In some situations the integrity of your very self 
may be compromised.

We all like to think that we are Player One in this game of life, but 
perhaps we are just incredibly sophisticated NPCs. Our programming 
may be complex and subtle enough to make it seem as if we are  really 
making decisions and choosing our own actions, but maybe  we’re just 
fooling ourselves. Perhaps “we” are just the manifestations of ge ne tic 
and neural codes, implemented in biological rather than computer 
hardware. Perhaps we are the victims of a cruel joke, tragic figures in the 
grip of the Fates. As Gnarls Barkley sang, “Who do you, who do you, 
who do you think you are? Ha ha ha, bless your soul, you  really think 
 you’re in control.”

Robots with Personality

In my 2018 book Innate I described how we all come pre- wired with a 
set of innate psychological predispositions. At the most basic level, we 
all share the profile of  human nature. Evolution has  shaped the be hav ior 
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of our species just as much as that of any other.  Human nature is encoded 
in our DNA in a ge ne tic program that specifies the building and wiring 
of our  human brains.

However, the details of that ge ne tic program inevitably vary among 
individuals. I use the word “inevitably”  because  there is no way that this 
variation could not exist.  Every time DNA is copied in a cell, including 
when sperm or egg cells are made, some small number of copying errors 
or mutations arise. New variations in the DNA sequence thus enter the 
gene pool in  every generation, and—if their effects are tolerated— they 
can spread through the population over time, leading to the accumula-
tion of ge ne tic variation that we observe.

This leads to the differences that we observe in  people’s physical 
traits, such as how tall they are or the shape of their  faces or vari ous 
aspects of their physiology. This variation occurs just the same in the 
physical structure of their brains and the way they function. The fact 
that all  these traits are affected by ge ne tic variation explains why  people 
who are related to each other resemble each other more than do un-
related  people, both physically and psychologically. So, even though 
the “canonical”  human genome (which  doesn’t  really exist anywhere) 
encodes a program to build a canonical  human brain, your par tic u lar 
genome encodes a program to build a brain like yours.

But not exactly like yours. The program in your genome does not 
encode one par tic u lar outcome, specified down to the level of individ-
ual nerve cells or synaptic connections between them. It does not 
encode the outcome at all, in fact: it just encodes a set of biochemical 
rules that, when played out over the complicated pro cesses of develop-
ment,  will tend to result in an outcome within a certain range. Exactly 
how  these pro cesses played out in your specific case was also affected 
by all kinds of random events during development that added consider-
able variation. If you ran the program again, you would not get exactly the 
same outcome. Even the brains of identical twins who share the same 
ge ne tic program are quite distinct from each other already at birth.

All this means that the way your brain is wired is affected by millions 
of years of common evolution, by the specific ge ne tic variations that 
you carry, and by the unique trajectory of development that occurred 
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while your brain was developing (see Figure 1.1). And the way your 
brain is wired affects how it works and how you  will tend to behave.

We can think of this variation like that in the internal tuning of the 
behavioral controls of a robot. Imagine you and I  were asked to build 
an autonomous robot that has to make its way in the world— finding 

figure 1.1. The making of you. (a) Like all species, the genome of Homo 
sapiens has been  shaped by millions of  years of  evolution, selecting for all the 
traits that comprise “ human nature” generally. (b) Your individual genome 
is a unique version of  the canonical  human genome, reflecting the pro cesses 
of  mutation and se lection in your specific ancestors. (c) The outcome of  brain 
development in any individual is idiosyncratic,  shaped by ge ne tic variation 
and the unique trajectories of development itself. Our individual natures (or 
innate predispositions) are thus variations on the theme of  human nature 
generally.
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fuel, avoiding threats, interpreting sensory information, assessing situa-
tions, and deciding among pos si ble actions.

 There are all kinds of  things we would have to build in our robot for 
it to accomplish its tasks. It would need some sensors, of course, to 
detect  things in the environment, and it would require motors so it 
could move around and perform vari ous actions. It would need to be 
programmed to move  toward fuel and away from threats, but it might 
also require some fancy circuitry for it to recognize which is which. And 
what would happen if fuel supplies and something threatening happen 
to be in the same place? It would have to weigh the opportunity versus 
the risk and make a decision accordingly about where to move. And it 
would be good if that decision  were informed by how much fuel it had 
left at the time. So some way to monitor its internal states and use them 
to inform decisions would certainly be beneficial.

A very fancy robot might also be able to learn from experience; for 
example, it might learn that  there tends to be fuel in some par tic u lar 
spot or that some kind of other wise innocuous stimulus (a rustle in the 
robot grass perhaps) signals a hidden threat. Now imagine we give 
our robot another goal: not just to survive but also to find robot love 
and reproduce. Then it would have to balance the short- term goal of 
ensuring it has enough fuel with the longer- term goal of finding a mate, 
all while not getting destroyed by a bigger robot.

All  those functions— some means for inferring what is out in the 
world from the data gathered by its sensors; integrating both external 
and internal multiple signals to derive a picture of the  whole situation; 
comparing that with the data in its memory bank to help inform its next 
action; weighing threats versus opportunities, short- term versus long- 
term goals, and good versus bad outcomes; and eventually picking one 
action to perform while inhibiting all other possibilities— would have 
to be configured into its circuitry.

With so many cir cuits and par ameters that could vary, it is inevitable 
that the way you would tune your robot would differ from how I would 
tune mine. You might set the threat sensitivity a  little higher and the 
reward sensitivity a  little lower. I might tune the cir cuits in my robot 
with a diff er ent balance between short-  and long- term goals. All  these 
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settings would manifest as diff er ent patterns of be hav ior over time and 
across contexts. Your robot might appear more cautious than mine. 
Mine might show more perseverance: it might be willing to work longer 
for a delayed reward. The robots could differ in how much evidence they 
need to make a decision (impulsivity), how much they value mating 
opportunities (sex drive), and even how salient they find novel objects 
or situations (curiosity). In short, our robots would have personalities, 
just like you and I do.

And just like you or me, they would not have had any hand in 
choosing  those traits. Even if the robots learn over their lifetime and 
adapt to the vari ous scenarios they encounter, all this learning is also 
physically embodied in the configuration of their cir cuits at the mo-
ment they are faced with a decision. The sense of fatalism that this 
realization engenders is aptly summarized by prominent  free  will 
skeptic Sam Harris:

Take a moment to think about the context in which your next deci-
sion  will occur: You did not pick your parents or the time and place 
of your birth. You  didn’t choose your gender or most of your life 
experiences. You had no control whatsoever over your genome or 
the development of your brain. And now your brain is making 
choices on the basis of preferences and beliefs that have been ham-
mered into it over a lifetime—by your genes, your physical develop-
ment since the moment you  were conceived, and the interactions 
you have had with other  people, events, and ideas. Where is the free-
dom in this? Yes, you are  free to do what you want even now. But 
where did your desires come from?1

The essence of the prob lem was captured by the famously pessimistic 
(or some might say realistic) phi los o pher Arthur Schopenhauer, who 
said, “A man can do what he  will, but not  will as he  will.”2 Even if we are 
making choices right now,  those choices are not  free from all kinds of 
prior  causes or influences, over which we had no control.

1. Sam Harris,  Free  will (New York:  Free Press, 2012), 44.
2. Arthur Schopenhauer, Essay on the freedom of the  will (New York: Dover, 1960), 6.
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The Machine

As a neuroscientist, this kind of existential worry is an occupational 
 hazard. But it gets worse. The more we learn about the mechanisms of 
perception and cognition and, in par tic u lar, of decision making and ac-
tion se lection, the more mechanistic it all seems and the less  there seems 
to be for the mind to do. How can we even think that we are making 
choices at all, when we can see that the pro cess is the result of just a 
bunch of gears turning in the machine? What reason is  there to think 
that an entity is in charge?

And, thanks to modern technology, we can actually see the figura-
tive gears turning. Using a variety of neuroimaging tools in  humans 
and animals to track the activity of diff er ent neural cir cuits or brain 
areas, it is pos si ble to tease out the types of information they carry and 
the cognitive operations they perform as the organisms or individuals 
make decisions or select actions. We can, for example, distinguish pat-
terns of neural activity that correlate with (and seem to internally 
“represent”) the accumulation of evidence about something in the world, 
the degree of certainty attached to some signal, the confidence level in 
a belief, the adoption of a new goal, the rewards associated with a 
positive outcome, the learning that happens in response to such rewards, 
the emotional signals that accompany decision making, the gradual 
formation of habits, the real- time switch from habitual to goal- directed 
or exploratory be hav ior as circumstances change, and on and on. We can 
see the thinking happening.

We can even, in some circumstances, predict an incipient action be-
fore the individual performs it.  There are many experimental setups 
using rodents or monkeys where researchers can track patterns of brain 
activity, observe a threshold being approached that  will result in an ac-
tion, and even predict (not with complete accuracy but significantly 
better than chance) what action it  will be— whether a rat  will turn left 
or right in a maze, for example.

In  humans  there is a famous example where an action was not only 
predicted ahead of time but also before the subject even became con-
sciously aware of having chosen to do it. In  these experiments, performed 
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by Benjamin Libet and colleagues in the 1980s, subjects had to ran-
domly decide to move their fin gers while watching a clock and while 
their brainwaves  were being recorded by an electroencephalograph. 
The striking result: the onset of brain activity leading to a movement 
preceded the reported timing of the conscious awareness of the inten-
tion to act by several hundred milliseconds.

Although not relevant to truly deliberative decisions,  these findings 
can still shake your faith in your conscious mind  really being in control 
of your actions. Is the rest of the brain just flattering us, making us feel 
that  we’re in charge, like a wily civil servant expertly managing his 
elected boss?

If pulling back the curtain to expose the neural machinery of decision 
making at work  were not enough of a threat to our egos (in both senses 
of that word), it is also pos si ble to intervene in the machine—to drive 
patterns of neural activity from the outside— and cause the individual 
to behave in certain ways.

Famous experiments carried out in the 1940s by neurologist Wilder 
Penfield and his colleagues in  human subjects undergoing brain surgery 
(who  were awake and aware throughout the procedure) showed that 
stimulating diff er ent parts of the ce re bral cortex with electrodes could 
produce all kinds of sensations, emotions, urges, memories, or move-
ments of vari ous parts of the body (see Figure 1.2). This work contrib-
uted greatly to the mapping of functions across the brain and reinforced 
the view of a complex electrical machine producing the contents of the 
mind, rather than being controlled by that  mental content.

Similar experiments are pos si ble in animals, but, as in  humans, 
 they’re a bit crude. Just poking an electrode into a part of the brain and 
zapping it activates all the neurons in that area in a nonspecific fashion. 
The brain then attempts to make sense of that mini- explosion of activa-
tion, but this pro cess is very diff er ent from how neural signaling normally 
happens. Indeed, within any  little chunk of brain,  there are hundreds of 
diff er ent types of nerve cells connected in intricate microcircuits de-
signed to carry out diverse sorts of computations. Just blasting them all 
at once is thus not hugely informative about how  these computations 
mediate cognitive operations.
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Seventy years  after Penfield’s experiments, the study of the neural 
systems that control be hav ior in animals was revolutionized by the in-
vention of molecular tools that allow researchers to drive the activity of 
very specific subsets of neurons in an animal’s brain while observing its 
be hav ior in real time. Like most techniques in molecular biology, this 
one— called optogenetics— borrows from nature. It uses a protein 
made by blue- green algae that sits in the membrane of the cell and re-
sponds to light by opening up a channel through which electrically 
charged atoms (or ions) can pass. That protein is related to ones that we 

figure 1.2. Brain stimulation. (a) Direct stimulation of brain areas in awake 
subjects can lead to involuntary movements (motor cortex, left), sensory 
percepts (visual cortex,  middle), or even activation of memories (temporal 
lobe, right), depending on the area stimulated. (b) Optoge ne tic techniques in 
rodents allow much more specific activation of genet ically targeted subsets of 
neurons, providing a power ful platform to dissect the functions of neural 
cir cuits in awake, behaving animals.

(a)

(b)
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use in our eyes to detect light, and it is exactly the opening of ion chan-
nels in the membrane that drives nerve cells to “fire” or send a sharp 
electrical signal.

Researchers including Karl Deisseroth, Edward Boyden, and  others 
realized that if they cloned the algal gene that encodes this protein and 
transferred it to mammalian neurons, they could effectively turn “on” the 
neurons with exquisite temporal precision by shining a blue light on them. 
Hooking the piece of DNA that codes for this light- responsive channel 
protein (called channel- Rhodopsin) to the DNA codes that regulate the 
expression of all kinds of diff er ent genes in the mouse brain enabled them 
to generate lines of transgenic mice expressing channel- Rhodopsin in 
extremely specific subsets of neurons in diff er ent brain regions.

Shining a light on the relevant bit of the brain— accomplished by 
threading a minute fiber optic cable through the skull— allows research-
ers to activate just that specific subset of neurons within the cir cuit and 
study the effects on be hav ior of the animal. Using this technique, spe-
cific sets of neurons  were identified that, when activated, drive all kinds 
of be hav iors— from general locomotion to more subtle motor actions 
like reaching or grasping, from aggression to mating, from freezing in 
fright to lunging attacks on prey that are not pre sent, from eating to 
sleeping to looking  after pups, and on and on.

But this research reaches far beyond directly activating par tic u lar ac-
tions from the animal’s repertoire of be hav ior. It has made it pos si ble to 
dissect the cognitive machinery involved in choosing among actions, 
weighing options, signaling rewards and punishments, judging the 
reliability of sensory information, assigning a level of certainty or con-
fidence to a decision, using past memories to guide current actions, 
and selecting one option while inhibiting  every other possibility. It is 
even pos si ble, as my colleague Tomás Ryan and  others have done, to 
implant false memories in an animal’s brain that  will influence its  future 
be hav ior. This is not just remote control of what the animal is  doing: it 
is control of what the animal is thinking.

It’s hard not to look at this growing body of work and see only the 
machine at work. Driving this cir cuit or that one  either directly  causes an 
action or influences the cognitive operations that the animal— mouse 
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or  human or anything else— uses to decide between actions. If we  were 
dissecting a robot in this way we would apply engineering approaches 
to understand the kinds of information being pro cessed, the control 
mechanisms configured into the diff er ent cir cuits, and the computa-
tions that lead to one output or another.  There does not seem to be any 
need for something like a mind in that discussion.  There is no real need 
for life, for that  matter.

If the cir cuits just work on physical princi ples, then who cares what 
the patterns of activity mean? Why does it  matter what the  mental 
content associated with a par tic u lar pattern of neural activity is, if it is 
solely the physical configuration of the circuitry that is  going to deter-
mine what happens next? We may have set out, as neuroscientists, to 
explain how the workings of the brain generate or realize psychological 
phenomena, but we are in danger of explaining  those phenomena away.

It’s All Just Physics at the End of the Day

If the neuroscientists have it bad, pity the poor physicists, whose exis-
tential angst must run much deeper. Where neuroscientists can at least 
hold onto the view that the cir cuits in the brain are  doing  things 
( whether “you” are or not), some physicists claim that even that function-
ality is an illusion.  After all, the brain is made of molecules and atoms 
that must obey the laws of physics, just like the molecules and atoms in 
any other bit of  matter.

 These small bits of  matter are pushed and pulled by all the forces act-
ing on them— gravity, electromagnetism, the so- called strong and weak 
nuclear forces that hold atoms together— and where each atom goes is 
fully determined by the way  those interactions play out.  These pro cesses 
are no doubt complicated, as they would be in any system with so many 
atoms si mul ta neously acting on each other, and in practice how the 
system  will evolve is unpredictable— but it is still all driven by the phys-
ics. Even at the lower levels of subatomic particles, how the system 
evolves is captured by the equations of quantum mechanics in a way 
that many would argue theoretically leaves no room for any other  causes 
to be at play.
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So, then, what does it  matter what you are thinking? You cannot push 
the atoms in your brain around with a thought. You cannot override the 
fundamental laws of physics or exert some ghostly control over the basic 
constituents of  matter. According to this view, the very idea of  mental 
causation—of the content of your thoughts and beliefs and desires 
mattering in some way—is a naive superstition, a conceptual hangover 
inherited from phi los o phers like the famous dualist Rene Descartes.

 Here is the late Stephen Hawking on the subject: “Biological pro-
cesses are governed by the laws of physics and chemistry and therefore 
are as determined as the orbits of the planets. Recent experiments in 
neuroscience support the view that it is our physical brain, following 
the known laws of science, that determines our actions and not some 
agency that exists outside  those laws . . .  so it seems that we are no more 
than biological machines and that  free  will is just an illusion.”3 Brian 
Greene, another well- known physicist and author, agrees: “ Free  will is 
the sensation of making a choice. The sensation is real, but the choice 
seems illusory. Laws of physics determine the  future.”4

 There are two main flavors of this kind of physical determinism. In 
the first, the low- level laws of physics rule completely:  every aspect of the 
way the universe and every thing in it evolves is fully determined by how 
 these interactions play out.  There is no room for any other force and, in 
par tic u lar, no role for any kind of randomness or indeterminacy. This 
model can be summed up as follows:

current state + laws of physics → next state

The consequences of this view are stark. If you keep on working 
through from one state to the next, you quickly realize that the current 
state predicts not just one step ahead but also two, or three, or actually 
an infinite number. And you can work backward just as easily as for-
ward. If this is  really the  whole picture, then the entire history of the 

3. Stephen Hawking and Leonard Mlodinow, The  grand design (New York: Bantam Books, 
2010), 32.

4. Brian Greene (@bgreene) on Twitter, June 5, 2013, https:// twitter . com / bgreene / status 
/ 342376183519916033 ? lang​=​en.
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universe up  until now and for the rest of time was predetermined from 
shortly  after the Big Bang. Indeed, our conception of time as having a 
direction goes out the win dow. The  whole universe, over all time, is 
simply given, as a block:  there is no real difference between the past 
and the  future.  There are no possibilities— only what has happened and 
what  will happen. This view is known as hard determinism.

The implied softer version differs in allowing some randomness or 
indeterminacy to exist. It holds that the  future is not fully predetermined 
by the current state (and certainly not by the initial state of the universe). 
 Here, the past and the  future are very diff er ent: the past is fixed while 
the  future is a branching web of possibilities, only one line of which  will 
be realized at any choice point.

However, even though the branch that is taken is not predetermined 
in this model, it is still de cided by the low- level interactions of all the 
atoms and molecules. It is just that some of  those interactions are a bit 
random. You might sum up this view like this:

current state + laws of physics + randomness → next state

The debate over  whether  there  really is any true randomness in physi-
cal events has been raging since the days of Einstein and Bohr. When 
you get down to the quantum level of subatomic particles, weird  things 
happen, and even though the weirdness can be fully accounted for in 
the equations that physicists use, allowing them to make exquisitely 
precise predictions,  there is no consensus at all about what  these equa-
tions imply about the fundamental nature of real ity.

 We’ll return to this topic of randomness  later. For now, what are the 
implications of this softer version of determinism? It is often summed 
up with the pithy line: “ every event has a cause.” This  doesn’t seem to 
align with the idea of random events happening, which would seem not 
to have a cause, by definition. What this statement  really seems to imply 
is that every thing that happens—at a system level—is caused by the 
interactions of particles at the lowest level, even if some randomness is 
at play  there.

Yet, that view seems to be just as problematic for the idea of organ-
isms like us being in charge of anything that happens. The  future may 
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not be written, but if what happens is still de cided by how the physical 
forces play out at the minutest scale of  matter,  there  doesn’t seem to be 
much scope for us to be in control. Even neuroscientist Patrick Haggard, 
a leader in the study of volition, agrees: “As a neuroscientist,  you’ve got 
to be a determinist.  There are physical laws, which the electrical and 
chemical events in the brain obey.  Under identical circumstances, you 
 couldn’t have done other wise;  there’s no ‘I’ which can say ‘I want to do 
other wise.’ ”5

In hard determinism,  there are no  causes. The universe just inexora-
bly unfolds according to the laws of physics. If nothing could ever be or 
have been diff er ent, then you cannot point to one  thing being a certain 
way and say it caused something  else. The concept just  doesn’t apply. 
In soft determinism,  there are  causes— some  things could be diff er ent, 
depending on how that  little bit of randomness plays out— but all the 
 causes are located at the lowest levels. That lowest level is deemed to be 
the bedrock of real ity.

Some physicists, like Sean Carroll or Sabine Hossenfelder, may 
be magnanimous enough to allow that descriptions at higher levels of 
organ ization are “useful ways of talking about” complicated systems. 
We can productively do chemistry or biology or psy chol ogy with theo-
ries and methods that remain at  those higher levels. But Carroll main-
tains that the real truth— the  whole truth— resides at the lowest level, 
with the fundamental physical interactions of the smallest particles. 
If you had a complete accounting of what is  going on down  there, 
then you would not need any other information to fully predict what 
the system  will do: every thing happening at the higher levels simply 
derives or emerges from the low- level dynamics.  Every other de-
scription is just a kind of coarse- grained picture, a simplification or 
statistical averaging that allows our puny minds to grasp how vari ous 
systems— like cells or brains or minds— behave, despite all the under-
lying complexity.

5. Patrick Haggard, Neuroscience,  free  will and determinism: “I’m just a machine,” interview 
by Tom Chivers, The Telegraph, October 12, 2010, https:// www . telegraph . co . uk / news / science 
/ 8058541 / Neuroscience - free - will - and - determinism - Im - just - a - machine . html.
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Given the phenomenal successes of modern physics in confirming 
the predictions of quantum mechanics with eye- watering precision, it 
is not surprising that the focus has been on continuing to develop and 
test such theories while not worrying too much about what they mean 
for the nature of real ity. The admonition to “Shut up and calculate!” by 
quantum physicist David Mermin is effectively the motto of the field. 
Let the phi los o phers worry about what it all means, especially for meta-
physical concepts like  free  will.

The Blame Game

Phi los o phers, for their part, have been debating the implications of de-
terministic theories of the physical universe for  free  will for thousands 
of years, at least as long ago as Democritus and Epicurus in ancient 
Greece. That  these debates continue  today with unabated fervor tells 
you that they have not yet resolved the issue.

In fairness,  free  will is a uniquely vexing prob lem. The phenomenon 
we are trying to explain— our own experience of having the power to 
make choices— seems inherently at odds with what we know about 
how every thing  else works in the universe. The scientific rejection of 
the idea of an immaterial soul or spirit that is somehow pulling the 
strings has left us scrambling to explain instead how the machine could 
pull its own strings. And the pro gress of physics into the wonderful 
weirdness of the quantum realm has only deepened the mysteries of 
what the machine and the world around it are made of in the first place.

But if philosophy can be excused for not having provided an answer, 
one might at least have hoped for some consensus on what is the right 
question. The popu lar framing, “Do we have  free  will?” is undermined 
in an obvious way by a lack of agreed-on definitions. If you define the 
capacity of  free  will as being able to make decisions in a way that is 
necessarily  free from  every prior cause, then you have set an unattainable 
standard, one that could only be met by super natural means. Alterna-
tively, if your criterion is merely that a person is  doing  things based on 
 causes internal to his or her physical self, then you have not met the chal-
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lenge of physical determinism but merely sidestepped it with appeals to 
complexity and unpredictability.

Less obviously, the question “Do we have  free  will?” is more deeply 
undermined by a lack of clarity of the terms “we” and “have.” We cannot 
profitably approach the question of  whether you have  free  will  until we 
have answered the much more fundamental question, “What kind of 
 thing are you?” The contrasting criteria cited  earlier are founded on dif-
fering conceptions of the nature of the self, where the philosophical 
footing is equally treacherous. Without a shared understanding of what 
every one is talking about, it’s not surprising that the debate seems to go 
round and round interminably.

Another barrier to a clear explication of the arguments around 
 whether  free  will exists is that they are often approached from the direc-
tion of their consequences for our positions on moral responsibility. If 
 people are not  really in control of their actions—if we are nothing more 
than physical automata, mounting a wonderfully sophisticated but ul-
timately empty simulacrum of  free  will— then how can we be worthy 
of praise or blame? How can we defend judgment or punishment? The 
stakes  here could not be higher. The idea of moral responsibility is 
the foundation not only of our  legal systems but also of all our social 
interactions. We are constantly thinking about what we should or 
 shouldn’t do in any given circumstance and prob ably spend even more 
time thinking about what other  people should or  shouldn’t do (or 
should or  shouldn’t have done).

But tying the discussion of  free  will to the issue of moral responsibility 
muddies the  waters. Questions of moral responsibility are crucially 
impor tant, of course, but they are confounded by all kinds of additional 
issues: the nature and origins of our moral sensibilities, the evolution of 
moral norms, the  legal philosophies underpinning our justice systems, 
and the complex and innumerable pragmatic decisions that socie ties 
and individuals have to make to keep our collective existence stable. Ask-
ing what kind of  free  will we want that  will let us maintain our positions 
on moral responsibility can become almost a theological exercise in 
motivated reasoning. It means we are looking for a palatable answer 
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instead of trying to understand what  really is. It is coming at the ques-
tion from the wrong end, picking an answer we like and seeing what 
edifice of arguments we need to build to support it. Instead, I would like 
to know what kind of  free  will we actually have.

Back to the Start

It’s fash ion able  these days to claim that “ free  will is an illusion!”:  either 
it does not exist at all, or it is  really not what we think it is. I am not 
willing to give up on it so easily. In this book I argue that we  really are 
agents. We make decisions, we choose, we act—we are causal forces in 
the universe.  These are the fundamental truths of our existence and 
absolutely the most basic phenomenology of our lives. If science seems 
to be suggesting other wise, the correct response is not to throw our 
hands up and say, “Well, I guess every thing we thought about our own 
existence is a laughable delusion.” It is to accept instead that  there is a 
deep mystery to be solved and to realize that we may need to question 
the philosophical bedrock of our scientific approach if we are to recon-
cile the clear existence of choice with the apparent determinism of the 
physical universe.

But if we want to solve this mystery,  humans are the absolute worst 
place to start. It is a truism in biology to say that nothing makes sense 
except in the light of evolution— and this is surely true of agency. In-
stead of trying to understand it in its most complex form, I go back to 
its beginnings and ask how it emerged, what the earliest building blocks 
 were, and what the basic concepts should be. How can we think about 
 things like purpose and value and meaning without sinking into mysti-
cism or vague meta phor? I argue that we can do so by locating  these 
concepts in simpler creatures and then following how they  were elabo-
rated over the course of evolution, increasing in complexity and sophis-
tication as certain branches of life developed ever- greater autonomy and 
self- directedness.

Indeed, before tackling the question of  free  will in  humans, we have 
a much more fundamental prob lem to solve. How can any organism be 
said to do anything? Most  things in the universe  don’t make choices. 
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Most  things— like rocks or atoms or planets— don’t do anything at all, 
in fact.  Things happen to them, or near them, or in them, but they are 
not capable of action. But you are. You are the type of  thing that can take 
action, that can make decisions, that can be a causal force in the world: 
you are an agent. And  humans are not unique in this capacity. All living 
 things have some degree of agency. That is their defining characteristic, 
what sets them apart from the mostly lifeless, passive universe. Living 
beings are autonomous entities, imbued with purpose and able to act 
on their own terms, not yoked to  every cause in their environment but 
 causes in their own right.

To understand how this could be, we have to go right back to the 
beginning, to the very origins of life itself (see Figure 1.3). This is the 
trajectory that I sketch out in this book.

From the chemistry of rocks and hydrothermal vents— the chemistry 
of the evolving planet itself— life emerged as systems of interacting 
molecules, interlocked in dynamic patterns that became self- sustaining. 
The ones that most robustly maintained their own dynamic organ ization 
persisted, replicated, evolved. They became enclosed in a membrane— a 
tiny subworld unto themselves— exchanging  matter and energy with 
their environment while protecting an internal economy and reconfig-
uring their own metabolism to adapt to changing conditions. They be-
came autonomous entities, causally sheltered from the thermodynamic 
storm outside and selected to persist.

A new trick was in ven ted: action, the ability to move or affect  things 
out in the environment. Information became a valuable commodity, 
and mechanisms evolved to gather it from the environment. With that 
came the crude beginnings of value and meaning. Movement  toward or 
away from vari ous  things out in the world became good or bad for the 
per sis tence of the organism.  These responses  were selected for and 
became wired into the biochemical circuitry of  simple creatures.

As multicellular creatures evolved, a class of cells— neurons— 
emerged that specialized in transmitting and pro cessing information. 
Initial cir cuits acted as internal control systems, designed to coordinate 
the vari ous muscles or other moving parts of the multicellular animal, 
defining a repertoire of useful actions. At the same time, neurons coupled 
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vari ous sensory signals to specific actions in this repertoire, hardwiring 
adaptive instincts for approach or avoidance.

With the elaboration of the ner vous system, this kind of pragmatic 
meaning eventually led to semantic repre sen ta tions. Perception and 
action  were decoupled by layers of intervening cells. Instead of being 
acted on singly and immediately like a reflex, multiple sensory signals 
could be si mul ta neously conveyed to central pro cessing regions and 
operated on in a common space. Cir cuits  were built that integrated, 
amplified, compared, filtered, and other wise pro cessed  those signals 

figure 1.3. The evolution of agency and  free  will. The 
major stages of evolution of perception, cognition, and 
behavioral control.

Origin of life
Dynamic patterns of chemical 
processes persisting out of 
equilibrium with environment.

Behavior in service of persistence. 
Origins of purpose, meaning, value 
� acting for reasons (“agency”)
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to extract information about what was out in the world and what that 
meant for the organism. More and more abstract concepts  were 
extracted— not just about things but also types of  things and types of 
relations between them. Creatures capable of understanding emerged.

Meaning became the driving force  behind the choice of action by the 
organism. That choice is real: the fundamental indeterminacy in the uni-
verse means the  future is not written. The low- level forces of physics by 
themselves do not determine the next state of a complex system. In 
most instances, even the details of the patterns of neural activity do not 
actually  matter and are filtered out in transmission. What  matters is 
what they mean— how they are interpreted by the criteria established 
in the physical configuration of the system. Animals  were now  doing 
 things for reasons.

That causal power does not come for  free: it is packed into the organ-
ism through evolution, through development, and through learning. It 
is encoded in the genome by the actions of natu ral se lection. And it is 
embodied in the physical structure of the ner vous system in the strength 
of neuronal connections that express functional criteria in relation to a 
hierarchy of aims of the organism.  There is nothing  here that violates 
the laws of physics; it just demands a wider concept of causation over 
longer timeframes and an understanding that the dynamic organ-
ization of a system, which encodes meaning, can constrain and direct 
the dynamics of its component parts.

And yes, your actions are at any given moment constrained by all  those 
prior  causes. Yet you could just as well say, more positively, that they 
are informed by prior experience. That is precisely the property that sets 
life apart from other types of  matter: living  things literally incorporate 
their history into their own physical structure to inform  future action. 
For  those who would argue this impinges on the freedom of the self to 
decide at any moment, I  counter that it is this very pro cess that enables 
the self to exist at all.  There is no self in a given moment: the self is de-
fined by per sis tence over time.

And though you are configured in a certain way that reflects all this 
history, you are not hardwired. We  humans have the remarkable ca-
pacity for introspection and metacognition. We can inspect our own 
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programming, treating goals and beliefs and desires as cognitive objects 
that can be recognized and manipulated. We can think about our own 
thoughts, reason about our own reasons, and communicate with each 
other through a shared language. We can access the machine code 
 running in our brains by translating high- level abstract concepts into 
causally efficacious patterns of neural activity. This gives a physical basis 
for how decisions are made in real time, not just as the outcome of com-
plex physical interactions but also for consciously accessible reasons, and 
it provides a firm footing for the other wise troublesome concept of 
 mental causation.

So, if you want to know what kind of  thing you are, you are the kind 
of  thing that can decide. Not just a collection of atoms pushed around 
by the laws of physics. Not a complex automaton whose movements are 
determined by the patterns of electrical activity zipping through its cir-
cuits. And not an NPC, unknowingly driven by its programming. You 
are a new type of  thing in the universe— a self, a causal agent. In the 
game of your life, you are Player One.

What follows is thus a full- throated defense of the idea of  free  will. 
Despite many claims to the contrary, the latest science— whether phys-
ics, ge ne tics, neuroscience, or psy chol ogy— does not in fact imply that 
we have no choice or control over our actions. It’s true that we are learn-
ing more and more about the mechanisms under lying our cognition 
and be hav ior— from neural systems and cir cuits down to the level of 
cells and molecules or even atomic physics. But even though our cogni-
tive systems have a physical instantiation, their workings cannot be re-
duced to this level. We are not a collection of mere mechanisms. As we 
 will see, the ner vous system runs on meaning.

The fact that our capacities for cognitive control are grounded in de-
finable biological systems does, however, have impor tant implications 
for issues of moral and  legal responsibility, though  these are notably 
more subtle than the typical absolutist framing. I return to consider 
 these and related issues in the final chapter.

Along the way, I offer a perspective on life that centers agency as its 
defining characteristic. What distinguishes living organisms is that they 
do  things, for reasons. They behave in a truly purposeful manner. This is 
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not an illusion or just a con ve nient way of talking or thinking about 
them: it’s the right way of thinking about them. Causation does not all 
 bubble up from the bottom, nor is it all instantaneous. The way  things 
are or ga nized can and does govern the way complex systems behave. 
Living organisms accumulate causal power by coming to embody as-
pects of their history in their own structure,  either through evolution or 
over the course of their individual lifetimes. The story of agency is thus 
the story of life itself, and that is where we begin, in chapter two.
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