TABLE OF CONTENTS

Prologue ix

- 1 The physical world is comprehensible 1
- 2 The laws of physics are the same here, there, and everywhere, the same yesterday, today, and tomorrow 15
- 3 The world is quantum 28
- 4 Quantum fields forever: Einstein's total love 72
- 5 Fearful symmetry: a universe full of symmetries 107
- 6 Einstein, the exterminator of relativity and the choreographer of spacetime 134
- 7 Unity of forces in the universe 176
- 8 The Creator speaks the language of mathematics 208
- 9 Entropy and thermal agitation: all about sharing 236
- 10 Physics is where the action is 268

Parting comments 299
Acknowledgments 307
Bibliography 309
Timeline 311
Index 313

1

THE PHYSICAL WORLD IS COMPREHENSIBLE

The most incomprehensible thing about the world is that it is comprehensible.¹

Why is the world comprehensible?

Of Einstein's many insightful sayings, this is my favorite. Indeed, this apparent miracle, that the world is comprehensible, is what motivates physicists. In a lawless universe behaving with neither rhyme nor reason, physics would be impossible.

I should hasten to say what hardly needs to be said, but with silly nitpickers lurking about I have to say it. What Einstein meant by the world is the physical world, the world studied by physicists. Plenty of questions are beyond the comprehension and grasp of physics, of course. What is the meaning of life? Why are we here at all? Why does the universe exist? Is there another level of existence we know nothing about? You could make up your own list.

We have made stupendous progress since our days in the caves when nearly everything was incomprehensible. But even within almost living memory, the progress has been so vast that it almost beggars imagination. Two hundred years ago, physicists did not know what light was. One hundred and fifty years ago, physicists had no inkling that spacetime was curved. One hundred years ago, physicists struggled to grasp the laws governing the realm of the quantum underlying our world. It is true that progress in theoretical physics has slowed nowadays. Nevertheless, progress is being made.

2 CHAPTER 1

Why should Nature be comprehensible by the mind of these creatures that evolved recently on a dust mite of a planet orbiting an insignificant star drifting in a far-from-prestigious neighborhood of a mediocre average-looking galaxy? Why should the laws of physics be simple and beautiful? We could have found ourselves living in an intrinsically ugly universe, a chaotic world in no way graspable through thinking, as Einstein, he again, put it.

A smashingly revolutionary idea

Some readers might be surprised by my choice of the idea that tops my list of top ideas. The world is comprehensible! We tend to take for granted that physics is possible, that the physical world is comprehensible. But as far as I know, no ancient civilization, East or West, harbored the idea that the world was comprehensible, except, arguably, for a handful of Greeks. Even in the West, this enormous and profound idea surfaced only in the last four or five centuries, and the first inkling that the world could be understood without invoking the divine was met with ferocious resistance. It was a slow, gradual awakening threatened with excommunication, torture, and death.

The sun god pulling his chariot daily across the sky from east to west, and then somehow teleporting himself and his entire conveyance back to the east at night—this was our "understanding" not all that long ago. Yet now, for the first time in human history, a reasonably advanced student of physics could open a book on astrophysics and learn how to calculate the temperature and pressure inside a star, a particularly simple homework exercise for a garden-variety star like the sun, neither a red giant nor a white dwarf, without too many peculiar features.

Why versus how

I cannot tell you why the world is comprehensible. It is important to understand that physics does not answer the why questions. Physicists strive to steadily turn the whys into hows. We cannot tell you why the apple falls, but we can tell you how it falls, and reduce a variety of phenomena into an ever smaller set of underlying phenomena. Along the way, many whys were replaced by fewer whys, and whys by hows. Indeed, a crucial step in making physics possible is to separate the how questions from the why questions.

We can tell you why the sky is blue. It has to do with how light scatters off the air molecules, and after a heroic struggle we have reduced that to how two quantum particles, the photon and the electron, interact with each other. We can tell you that every massive object in the universe attracts every other massive object. We can tell you a lot about this force called gravity, and how it is equivalent to curved spacetime. But we cannot tell you why our universe contains such a force. Of course, were this force absent, then our universe would look quite different from the one we know.

The preceding sentence gives a capsule summary of the anthropic principle. It has been abused to answer every why question with the existence of humans. You know the jingle; various physical constants must have the value they have, since otherwise humans would not exist. A fascinating subject perhaps, but I will stay away from it in this book. Only the tried and true foundational ideas, as I said.

We do not know why there are four fundamental interactions in the universe, instead of two or six, but physics can tell us how three of these four interactions could be unified into a grand unified theory, as we will see in chapter 7.

That the physical world is comprehensible is miraculous

Physics as a subject wouldn't exist were the world not comprehensible.

Yet, if you think about it, the very comprehensibility of the world is miraculous. Sad that we have grown blasé in this enlightened age and take so much for granted. But flash yourself back a few millennia when no one even presumed to imagine the possibility of comprehending the world, let alone to attempt the task of actually comprehending the world.

You need only look at ancient cultures around the world. In school, we learned about the realm of rationality that is ancient Greece. Even in Greek myths, we could discern the urge to understand. But the notion that we could comprehend the physical world was far from universal. For example, the philosophers of ancient China envisaged man in harmony with Nature and emphasized understanding human behavior rather than the physical world. The West emphasized the control of Nature. Perhaps controlling is but one small step from understanding. To some extent, the entire Greco-Roman Judeo-Christian conception of Nature to be conquered and ravaged was missing in ancient China.²

4 CHAPTER 1

Noticing regularity alone is not enough. Certainly, Asians recorded regularity with as much diligence as the Greeks. But the notion that there might be laws governing these regularities was mostly absent. That the world was comprehensible was far from obvious to every thinker in every civilization.

Nor should we assume that the development of physics as it happened on our planet is typical. For example, a civilization could develop in a binary star system, on one of the nineteen planets orbiting the two stars, which in turn waltz around each other in a highly eccentric ellipse. The regularity of the heavens, as well as the usual law of gravitation, might remain hidden from this particular civilization for a long time, perhaps longer than the natural lifetime of the civilization.

Or imagine us in a civilization on a planet much like Terra, except that it is completely covered by a single deep ocean. Electricity might be known as an epiphenomenon associated with some peculiar fish regarded as far inferior to *Pisces sapiens*, which is what we call ourselves scientifically. Magnetism is however totally unknown and light is merely an exotic phenomenon near the edge of the habitable world. Physicists would have developed an extensive understanding of water waves.³ Some of our dead sink to a nether region where none of us are able to roam due to the crushing pressure. Others among our dead would float upward, and from observing these lightweight dead, politicians, celebrities, and such, some bright youngster eventually proposed the existence of a force named buoyancy. Later, a fishy Einstein would have the brilliant insight that buoyancy is due to a more fundamental⁴ force called gravity pulling the water around these lightweight objects down.

We alone could understand the universe?

I do not doubt for a second what my computer science friends tell me, that with massive data analysis, artificial intelligence would in the foreseable future allow us to communicate with animals. At that point, perhaps we could ask them what they understand of the physical world. Yet I also have no doubt that no other lifeforms on earth can understand nonabelian gauge theories (which we will encounter in chapter 7), let alone invent them. But then why is the physical world comprehensible to humans (at least thus far)?

Einstein was absolutely right that it is a profound mystery. It could well be that this particular primate species, after eons of evolution, is no more

5

capable of fully understanding the physical world than one of the gophers in my backyard. (The emphasis is on "fully"!) It is certainly possible, of course, that we will eventually hit a brick wall. The pessimists in the physics community would say that we have already hit that proverbial wall.

I want to be optimistic because I need that optimism to buoy me professionally. Einstein expressed his profound wonderment more than a hundred years ago. He and his contemporaries could also feel, when confronted with the mysteries of the quantum world, that the striking progress in understanding of the physical world gained in the 19th century may come to a grinding halt. But they didn't, and pressed on. And progress has been made for a century and more. Of course, in deciphering the quantum world, that generation of physicists was pushed along by an almost excessive wealth of experiments, which are now sorely lacking, no matter what the cheerleading boosters try to convince us otherwise. Needless to say, I am talking about landmark experiments that reveal some deep truths, not routine experiments measuring the decay rate of an absurdly named particle or the conductivity, super or not, of some newly minted alloy.

I am among those who believe that the universe, with its zillions of galaxies each with zillions of stars, is teeming with intelligent life. I have even thought seriously about communicating with extraterrestrial intelligence. When we finally come into contact with extraterrestrial intelligent beings, what can we talk about? Not terrestrial biology, which may or may not be similar to their biology. And definitely not Tang dynasty poetry, nor Shakespearean plays, which so many scholars spent, are spending, and will spend entire lifetimes on. But surely, if the extraterrestrials have mastered enough technology to communicate with us, they could discuss the classification of Lie algebras* and gauge theories with us, perhaps teaching us a thing or two. Whatever, but I could hardly doubt that they have also come to realize that the universe is comprehensible.

Could have been an impenetrable mess

A priori, the laws of physics governing our universe could have been an impenetrable morass. Or they could be evolving in a horribly complicated way. Or consider the amusing science fiction scenario that our universe

^{*}From a branch of mathematics called group theory and used in advanced physics. More in chapters 4, 7, and 8.

6 CHAPTER 1

is a school-assigned experiment carried out by a high school student in a metauniverse. Perhaps he or she or it has even started a whole bunch of universes, like ant farms, and stashed them away somewhere in the basement, out of his or her parents' way. Perhaps he (that's a lowercase H) has lost interest and forgotten about his universes, leaving some to expand, others to collapse, in utter futility and silence.

In our computer age, we are perhaps more inclined to think that we may be living inside somebody's giant computer. (Whatever that means! I for one have not the foggiest idea, in spite of various popular movies.) If so, then what an elegant program this computer is running!

To the contrary, we could certainly imagine a monster of a nasty program with ten trillion lines of code governing the motion of particles we display on a 3-dimensional screen, with the motion specified by some ghastly mess of an algorithm, but consistent with Newton's laws almost all of the time. For instance, line 4,878,923,767,863 could state that when the time in an internal clock expressed in some unit and truncated to an integer is given by a prime number, the laws of motion would be altered for a brief time equal to the eleventh smallest factor of the number one higher than that prime number. Line 4,878,923,867,863, on the other hand, could state that whenever a country whose English name starts with the letter R, such as Romania, has a national holiday the laws would be reversed for 93 nanoseconds, if we were so provincial as to refer to human coined units and alphabets. The poor physicists living inside this computer would be bitterly frustrated trying to figure out what is going on.

But no! Instead, theoretical physicists have discovered that the laws governing our universe are so simple that they could be written down on the back of a small envelope, as will be described in chapters 7 and 10, and that they are described by established (and elementary) branches of mathematics such as group theory and differential geometry. Furthermore, only the introductory portion of these subjects is needed for physics: the relevant mathematics is simple enough to be mastered by bright undergraduates, as will be discussed in chapter 8. So far, there is absolutely no evidence that physics requires any theory so complicated that it will take bright graduate students several decades, rather than a mere several years, to learn. To me, both a miracle and a mystery!

Physicists from Einstein on have been awed, and mystified, by this truly profound fact that as we examine Nature on deeper and deeper levels, She appears ever more beautiful. This beauty is not just a matter of vague

7

feel-good talk, but a beauty that could be mathematically quantified by the notion of symmetry, as I will explain in chapter 5.

To me, the comprehensibility of the universe that so boggled Einstein's mind testifies that the universe is ordered at a deep level and not thrown together with random abandon.

Nature's kindness to physicists

During my study of physics I was repeatedly struck by Nature's kindness to physicists. It often seems that Nature is taking physicists by the hand and guiding them step by step through a predetermined curriculum.

Starting around the end of the 19th century and up till the 1920s or so, theoretical physicists understood, after much confusion and controversy, that electromagnetism is described by an abelian gauge theory. (For our purposes here, it is not important to even know what this technical term means.) During the same period, spearheaded by experimental discoveries, physicists came to realize that, in addition to gravity and electromagnetism, the world contains two other fundamental interactions, the strong and the weak interactions, which manifest themselves only in the subatomic world. In the 1970s, two of these four interactions, namely electromagnetism and the weak interaction, were unified into a single interaction, now enshrined in textbooks as the electroweak interaction, described by a nonabelian gauge theory, which contains the abelian gauge theory governing electromagnetism as an almost trivial piece. Again, it is not important to know what this gobbledygook term means, besides the fact that nonabelian gauge theories are orders of magnitude more intricate and difficult to master than abelian gauge theories, as you might have guessed.⁷

We will come back to this drive toward unification in chapter 7, but here I want to impress upon you Nature's kindness to physicists. Without first having been exposed to the easy case of electromagnetism, a practice problem as it were, theoretical physicists would have been in no position to tackle the weak interaction. So it is almost as if Nature taught physicists the baby stuff first, and then gently showed them how to move on from the abelian to the nonabelian case. Why not hit them with the nonabelian stuff first and blow them back to the cave of dark ignorance?

Allow me to repeat what I said in the prologue. Readers who have gotten this far must have realized that this book is most useful to those who have had some prior exposure to theoretical physics through popular books and

8 CHAPTER 1

the media. In contrast, those who have never heard of atoms, say, might find this book tough going. In short, this book is meant for those who appreciate an overview of theoretical physics and who are not particularly interested in what Einstein called "this and that."

As easy as possible, but not any easier

As another gesture of kindness, Nature couples the electromagnetic field to the charged fields, such as the electron field, rather feebly, as measured by the fabled fine structure coupling α with the approximate value of 0.007. This teeny number enabled a bright young post–World War II generation of theoretical physicists including Feynman and Schwinger to master quantum electrodynamics. Their perturbative approach involves successive approximation in powers of α , treating the first correction and the next correction as small and even smaller, proportional respectively to $\alpha \simeq 0.007$ and $\alpha^2 \simeq 0.00005$. (Some readers might have heard of Feynman diagrams, which are merely pictorial devices quantum field theorists use to keep track of successive terms in this approximation scheme. If we were so unfortunate as to live in a universe with $\alpha \simeq 7.1$ say (just to write down an arbitrary number), subsequent terms would be explosively larger, and this glorious thrust forward of physics after World War II would have been impossible.

As an older example, the orbit of the moon around the earth and the orbits of the planets around the sun, while not perfectly circular, are fairly close to being circular. Thus, physicists could master the much simpler case of a circular orbit first, and then go on to tackle elliptical orbits. Students are certainly taught this way: first the circle, and then the more complicated ellipse. The eccentricity of the ellipse may be treated as a small perturbation. Why should Nature care? Physicists could have been faced with highly elliptical orbits from the very start.

Nature's kindness pops up again and again. Understanding surface water waves gave physicists the mathematical tools to understand electromagnetic waves, and from that later to quantum waves. As a 20th century example, during their forays into the atomic and nuclear world physicists realized that they had to learn a branch of mathematics known as group theory, as will be discussed in chapter 5. Nature showed them the simplest groups first. Just to give you a flavor, let me mention a few of the groups that popped up in physics in chronological order: SO(2), SO(3), U(1), SU(2), SU(3), SU(5), SO(10). You don't have to

9

know anything about group theory to suspect that the integers represent a progression 11 in baby steps from quasi-triviality to graduate school level stuff. I teach this stuff 12 to undergraduates every year, and even the less endowed students are capable of progressing from SO(2) to SU(3), while the more talented sail on easily to SU(5) and SO(10). In some alternative universe, Nature could easily have been unkind and blasted physicists with SO(10) the moment they set foot in the quantum world.

I feel that Nature takes great care to make physics as easy as possible, but not any easier, to paraphrase Einstein.

Intertwining ideas

The top ten ideas I talk about in this book naturally intertwine with each other to form an organic whole that is fundamental physics. That the world is comprehensible could only be made possible by the existence of immutable and universal laws, to be discussed in chapter 2. We could discover the underlying laws only if physics becomes simpler and simpler as we delve deeper and deeper. This will be discussed in chapters 5 and 7. Imagine, to the contrary, a world in which physics becomes more and more complicated, messier and messier. Many physicists, I for one, would simply give up. At least thus far, there is no sign of that disastrous scenario.

Kelvin versus Newton

There is nothing new to be discovered in physics now. All that remains is more and more precise measurement. 13

—Lord Kelvin, in 1897

I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the seashore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.

-Isaac Newton, ca. 1726

Newton is partly right and partly wrong. Wrong if we take his metaphor too literally. He might not have known it, but Newtonian mechanics was a huge step toward making the universe comprehensible. Many later developments, such as fluid dynamics, amount to applying Newtonian dynamics to fluids, instead of particles and rigid bodies. But of course, he was also mostly right about the vast ocean of physics that he could not

10 CHAPTER 1

possibly know anything about, such as quantum mechanics and quantum field theory.

Kelvin, on the other hand, was entirely wrong, and has ever since been mocked as the paragon of the overly optimistic physicist. His sin consists of not asking too many questions, such as what constituted matter and how did the sun keep on burning for so long. So, let us desist in deriding an otherwise great physicist. Leave Kelvin in peace and pull up another optimist, albeit lesser known than that British Lord, speaking a generation or two later.

It is difficult for those who did not witness it to imagine the enthusiasm, nay presumptuouness, which filled our hearts in those days. I shall never forget the terse way a friend of mine (now a very eminent figure in the world of physics) expressed his view of our future prospects: "In a couple of years," he said, "we shall have cleared up electrodynamics, another couple of years for the nuclei, and physics will be finished. We shall then turn to biology." Léon Rosenfeld (1904–1974), an early quantum physicist

Consider that Rosenfeld was twenty-one when Heisenberg (less than three years his senior) first wrote down, in 1925, quantum mechanics in the form we now know it. I do not know who Rosenfeld's friend was, but almost surely he was also a youngster in his twenties. So we could chalk this up to youthful enthusiasm.¹⁴ At least Rosenfeld suspected that he and his friend were presumptuous.

The question I like to raise is whether our situation is closer to that described by Newton or that described by Rosenfeld's friend. The correct answer is of course nobody knows, least of all I. I am a theoretical physicist, not a fortuneteller. But still, as an exercise in futility, let me try to quantify the question. Does what we know amount to 5%, or 20%, or 80%, or 95% of all the physics there is to know? (Of course, in itself, without the kind of exhausting definitions philosophers are so fond of, this question is meaningless. But I think most working physicists know what I have in mind.) Physics may well never possess a full knowledge of turbulence, but I and many others feel that we have a reasonable understanding of the physics involved. As another example, a few decades ago, a detailed theory of how coffee stains formed was published. Does that mean the physics involved was beyond the ken of Einstein? Or even that of Kelvin? Of course not. They simply did not address the details of this particular phenomenon,

and physicists never finish analyzing every possible physical phenomenon we would encounter. Rather, I am talking about broad understanding of how the universe is put together—what I call fundamental physics without bothering to define that term precisely.

It would be a fool's errand to attach some meaning to the percentages I just threw out glibly, but I will take the risk just so that the reader would have at least a rough idea of what I have in mind. Consider an insect sensitive to light crawling across a computer screen showing a movie being streamed. That insect would have not the faintest glimmer of the meaning behind the patches of changing color, let alone the electronics used to produce them. It has no way of distinguishing one patch from another, of understanding that one represents the Bad, the other the Ugly. In contrast, while I do not know how a computer works, I know about electrons, the emission of light, streaming, the wild American West and all that. I have even heard computer savvy types talking about strings of 0s and 1s. Let what that insect knows and what I know represent what I mean by 5% and 80% respectively. I believe that many of my colleagues in theoretical physics, I included, tend to believe that our understanding of the universe is more like the latter rather than the former. We know quite a lot about the universe already. I find it impossible to believe that the "patches of color" we observe "merely" represent some story enacted for the amusement of the gods.

Yes, the nattering nabobs of negativity can easily sit back and compile a long list of things physicists do not know, such as what constitutes dark matter. And yes, there could also be surprises over the horizon. Indeed, dark matter was unsuspected until Fritz Zwicky inferred its existence in 1933 from observing the rotations of galaxies. Since then, experimentalists have spent decades of their lives searching for the particle responsible, and thus far, they have not detected any terrestrial evidence of its existence. The search goes on, and I sure hope that one of my experimentalist friends find it soon.

I could go on and on. There are lots of questions physicists have yet to answer definitively. While there are plausible theories about dark energy, it has not been pinned down.

Ironically, it is our understanding of quantum physics that bolsters our confidence in what we have yet to detect. Perhaps ironically, thanks to quantum connectedness, we could be more confident than we would be otherwise. To be concrete, when we calculate something apparently

12 CHAPTER 1

innocuous such as the magnetic moment of the electron (which measures how the electron responds to a magnetic field), the existence of a hitherto unknown particle would contribute to the theoretical value of the magnetic moment so that we can say something about its mass for instance.

To use a phrase made famous by a former secretary of defense¹⁷ of the United States, in physics we are confronted with the known knowns, the unknown knowns, the known unknowns, and the unknown unknowns. It is of course the flaming promise of the final category that draws generations of bright young people to a lifetime of physics.

Incomprehensible comprehensibility

Man is only a reed, the most feeble in nature, but he is a thinking reed.

—Blaise Pascal

To conclude, what do we make of Einstein's "incomprehensible comprehensibility"? As I have already declared, we poor physicists cannot tell you why the physical world is comprehensible. For why, we have to defer to the philosophy professors. Meanwhile, you and I could also speculate over afternoon tea and cookies such as those provided at the institute for theoretical physics where I work. Whether or not you share Einstein's incomprehension of the comprehensibility of the physical world is of course completely up to you, and depends on your outlook.

There are those who believe that out of the vastness of the universe we humans are the chosen ones. They point to the fact that, also, out of the vastness of our planet we are the only ones who comprehend. We are somehow uniquely blessed and chosen by some divine creator to grasp and to admire its handiwork.

I refuse to believe our uniqueness, given the sheer number of galaxies, each containing an almost uncountably many stars. And I know of no physicists who would seriously believe this. (But that may be due to my limited circle of acquaintances. No doubt somewhere live religious zealots who also call themselves physicists.)

One possible view is that we comprehend only what we are able to comprehend, and that represents only a fraction of what there is to comprehend. No idea how big or how small that fraction is! The British physicist Arthur Eddington concocted a parable that left an impression on me when I first heard it as a student. Imagine a village of fishermen,

among whom one with a particularly scintillating mind formulated the fundamental law of the sea stating that all fish are longer than 1 cm, not realizing that their fishing nets all have a mesh larger than 1 cm. Is it possible that the human mind filter out of that part of physical reality that we have no way of comprehending, leaving us with what we can comprehend? Notice that I was careful to qualify reality with the word "physical." Personally, I am quite willing to concede that there may be matters beyond the grasp and reach of physics.²⁰

I no longer believe Eddington's parable now that I have understood more physics. Quantum connectedness would appear to make the story less plausible. To extend the parable, perhaps a weak analogy of connectedness would be big fish devouring smaller fish. What we do understand of the four interactions hangs together so seamlessly and wondrously that it is hard to believe that there is a lot more about physical reality that we have missed. I do not mean, of course, to dismiss the possibility that there may be a deeper layer in which quantities that we now treat as mere parameters, such as the masses of the quarks, could be calculated. Indeed, string theory is a possible candidate example for this deeper layer, independently of whether or not you believe it.

Do not be confused by artificial intelligence, at least as it is now known. At present, the advantages of an inanimate computer over a human are its lightning speed and its complete ignorance of mental fatigue. But what was needed to master atomic physics was not massive amount of calculation in classical physics done blindingly fast, but deep insights and synthesis of observational data leading to a new kind of physics, namely quantum physics. Similarly, realizing that gravity is a manifestation of curved spacetime is not a matter of being able to perform a mountain of calculations using Newtonian gravity.

Eventually we could imagine artificial intelligence reaching a stage in which it could consider all possible theories (whatever that may mean in practice) and investigate the consequences and implications of each of them. When we reach that stage, then perhaps we could say that artificial intelligence has developed a measure of insight. But we appear to be far from that vision, and I am not sure that the notion of "all possible theories" could even be formulated.

In the meantime, there are still, and hopefully there will be, physicists to chew over the universe.

14 CHAPTER 1

Notes

¹Albert Einstein "Physics and Reality," Franklin Institute Journal (March 1936).

²Sadly, China is coming late to this highly useful idea, and now a common attitude goes "You ravaged the world, now it is our turn, so don't act holier than thou and preach to us."

³But not the surface water waves we commonly observe and teach to some undergraduates. See *FbN*, chapters VIII.1 and 2, in particular page 282.

⁴An early example of unification that I will talk about in chapter 7.

⁵See my SETI talk and the published papers mentioned therein. https://www.youtube.com/watch?v=MHuXIJzqKqs.

⁶See, for example, A. Kershenbaum, *The Zoologist's Guide to the Galaxy: What Animals on Earth Reveal about Aliens—and Ourselves*, and A. Weir, *Project Hail Mary*.

⁷Sadly, in physics, the name of Niels Henrik Abel (1802–1829), the brilliant Norwegian mathematical prodigy who died of tuberculosis young and poor, carries the connotation of being "simple minded."

⁸ See Schwinger's tombstone shown in chapter 4.

⁹See QFT ASAP, chapter IV.3, and QFT Nut, chapter I.7.

¹⁰Such as that of Halley's comet. Newton in his genius appeared to have done both at the same time in his published treatise, but presumably in his actual work, he mastered the circular case first.

 11 The group SO(2) describes rotations in the plane, as demonstrated all the time by hands in clocks and watches.

¹²Using my textbook *Group Nut*, which is based in turn on my course.

¹³Lord Kelvin, in 1897, speech addressing the British Association for the Advancement of Science.

¹⁴We could hear echoes of that sentiment in the early days of string theory when it was triumphantly called the theory of everything.

¹⁵The mainstream view is that dark matter consists of one or more particles. I, and I dare say most theoretical physicists, find the alternative of modifying Newtonian gravity just to accommodate the observed galactic rotation speeds ad hoc and distasteful. Part of the problem in the search for dark matter is that it is too easy to cook up a theory of the dark matter. You could simply make up a particle, which interacts only with gravity and hardly with anything else, and thus could affect the rotation of galaxies yet be virtually undetectable in any terrestrial laboratory. Such a theory is possible, but rather uninteresting. In this sense, theoretical physics could be laughably easy. Don't be impressed by someone who tells you that he or she has a theory of dark matter. Incidentally, I myself published one of the early particle theories, in which the dark matter is a particle that interacts only with the Higgs sector (never mind what that means for the moment). Hopefully, actual detection and subsequent experiments will help to sort out the theoretical morass.

¹⁶He of the "spherical bastard" fame in physics, a prickly legend even by the combative standards of theoretical physics.

¹⁷Donald Rumsfeld.

¹⁸For an alternative view based on the decoherent histories interpretation of quantum physics, see J. B. Hartle, arXiv:1612.01952 [gr-qc] 2016.

¹⁹See also *Fearful*, page 280.

²⁰Here I could perhaps quote E. F. Sanders from her book *Eating the Sun*: "A sense of wonder can find you in many forms, sometimes loudly, sometimes as a whispering, sometimes even hiding inside other feelings, being in love, or unbalanced, or blue."

INDEX

Page numbers in italics indicate figures, footnotes, and tables

acceleration: action principle and, 268, 277; equivalence principle and, 158–59; F = maand, 16, 128, 268, 275, 294; Galileo and, 277; Newton and, 16–17, 26n7, 89, 159, 268; quantum fields and, 89; spacetime and, 158-59, 163, 164; universal expansion and, 300; universal laws and, 16–17, 26n7; velocity and, 16-17, 158, 268, 277 accelerators: antimatter and, 151; baryons and, 123; conservation laws and, 108; Higgs boson and, 192; Lorentz transformations and, 144; nature of gravity and, 200; quarks and, 188 action principle, xi, 301; acceleration and, 268, 277; boundary problem and, 269; calculus and, 274, 276, 288, 294, 296; classical mechanics and, 282, 285, 297n27; compact nature of, 290-91; complex numbers and, 283-84, 297n32; conservation of energy and, 274; Dirac and, 282-86, 290, 295, 297n29; Dirac-Feynman path integral formulation and, 283, 286, 290; discrimination of, 293-94; at a distance, 54-56, 73-74, 76, 269; duality and, 279–80; $E = mc^2$ and, 295n7; Einstein and, 268, 279, 281, 290-95, 297n30, 298n42, 298n44; electricity and, 268, 278, 280, 290; electromagnetism and, 268, 280-81, 290-93, 298n45; electrons and, 293; electroweak interaction and, 293; Euler and, 274, 276, 283, 285, 291-92, 294; F = ma and, 16, 128, 268, 275, 294; Fermat's least time principle and, 271-72, 274, 281, 295; Fermi and, 290; Feynman and, 278-79, 282-83, 286, 290, 295, 296n18, 297n33; field equation and, 290, 292; as functional of path, 276; fundamental postulate of, 283–85; Galileo and, 277; gravity and, 268, 277, 281,

290-91, 294, 298n42; Hamiltonians and, 281-82, 295, 297n25, 297n27; Heisenberg and, 282, 290; kinetic energy and, 274-77, 296n12, 297n35; Lagrangians and, 274-76, 279, 280-85, 291-95, 296n12, 297n25; least action principle and, 275–80; light and, 270–75, 279–80; local to global, 269-70; Lorentz transformation and, 291-92; magnetic field and, 290; mass and, 272-75, 287, 291-92, 297n35; Maxwell and, 268, 280-81, 290-92, 295; momentum and, 290, 296n9, 298n45; moon and, 269, 293; motion and, 268-69, 274, 277, 280-81, 290-94, 296n10, 296n13, 298n45; neutrons and, 293; Newton and, 74, 268-69, 273-78, 281, 288, 291–94, 296n13; oscillation and, 272, 275; partial differential equations and, 290; photons and, 274, 279; Planck and, 284-86; planets and, 273; potential energy and, 274-77, 295n8, 296n12; probability and, 268, 282-88, 294-95; quarks and, 293; reality and, 269; relativity and, 279, 297n30; Schrödinger and, 268, 282, 286, 290; Schwinger and, 290; spacetime and, 268–69, 276–77, 283, 291–93, 295, 297n30; speed of light and, 281, 291, 297n14; spooky action at a distance, 54-56; statistical physics and, 280; string theory and, 291, 297n40, 298n43; strong interaction and, 289; symmetries and, 291-92; time and, 268-69; transformation and, 282, 291-92; unity of forces and, 292-93; velocity and, 268-69, 270, 274, 277, 294; wave function and, 286; weak interaction and, 293

algebra: Boolean, 70n58; Diophantine equations, 222; Feynman diagrams, 91; Lie, 5, 184, 226–27, 235n48, 235n53;

algebra (continued) linear, 232, 234n30; logical structures and, 211; Newton and, 214; quarks and, 133n32; relevance of, 210; spacetime and, 135–38, 141–44, 149, 173n12; symmetries and, 188 Alsos Mission, 47 Ampère, André-Marie, 75, 223 Anderson, Phil, 178 Andromeda, 180 angular momentum: Bohr and, 42; halfinteger, 33; quantum theory and, 31-33, 42, 45, 54, 67n4, 68n18; symmetries and, 117-19, 128 antimatter: Dirac and, 174n26; mass and, 149–50; positrons, 54, 81, 91–92, 98–99, 103n36, 104n53, 150-51, 174n28, 189, 195–96, *197*; quantum fields and, 81; spacetime and, 149-52, 174n26; symmetries and, 115; unity of forces and, 198, 206n51 antineutrinos, 84, 103n26, 103n29, 189, 195 antiquarks, 213, 233n15 Aristotle, 16–17, 25n2, 172n8, 277 Arkani-Hamed, Nima, 294 Aspect, Alain, 59 atomic bomb, 47, 103n37, 108 atomic spectroscopy, 30-35 atoms: Bohr and, 32, 40, 42, 45, 68n11, 219; comprehensibility and, 7-8, 13; copper, 24; hydrogen, 32, 79, 82, 116, 118, 181, 195-96, 207n65, 219, 235n53; mathematics and, 219, 235n53; oxygen, 82; quantum fields and, 79-82; quantum theory and, 29-32, 42, 43-44, 49-50, 54, 69n33; silver, 42, 69n33; symmetries and, 116, 118; unity of forces and, 195, 201, 207n65; universal laws and, 21–24. See also specific components

Bader, Mr., 278, 295, 296n18 baryons, 100, 123 Beckenstein, Jacob, 259–60 Bell, John: hidden variables and, 58–59; inequalities of, xiii, 59–67, 70nn57– 60, 303; quantum theory and, 58–67, 70nn57–60 Bell Telephone Laboratories, 240 Bentley, Richard, 74 beta decay, 83–85, 99, 103nn28–29 Big Bang, 24, 164, 192 black holes: Beckenstein and, 259-60; Einstein and, 23, 27n24, 167, 199, 258–59; entropy and, 240, 258–60; field equation and, 163-64; gravity and, 23, 27, 99, 165, 167, 199, 203, 240, 258–60; Hawking and, 71n65, 199, 258–60; light and, 23, 27n24, 167, 199, 258–60; mass of, 163–64, 203, 259; mathematics and, 219; quantum fields and, 99; quantum theory and, 71n65; Schwarzschild and, 164-66, 169, 175n42, 259; spacetime and, 163-67; unity of forces and, 199, 203, 206n57; universal laws and, 23, 27n24 Bloch, Felix, 232 Bludman, Sid, 205n23 Bohm, David, 54, 58 Bohr, Niels: angular momentum and, 42; atoms and, 30-32, 40, 42, 45, 68n11, 219; Copenhagen interpretation and, 52-53, 56, 64; Einstein and, 36, 71n74; electron spin and, 35-37; on expertise, 229; God and, 71n64; Heisenberg and, 67n1; hydrogen and, 32, 219; Lorentz and, 36; Niels Bohr Institute, 26n20; Planck and, 32, 219; quantum theory and, 30, 30–32, 35–36, 40, 42, 45–47, 52, 65, 67n1, 68n11, 69n23, 71n64; space quantization and, 42; von Laue and, 40, 234n27 Boltzmann, Ludwig: entropy and, 236-40, 249-61, 264n7, 264n24, 265n25, 266n32; Maxwell and, 78, 102n12, 238-39, 249, 252–54, 260; "On a Thesis of Schopenahuer's", 261; universal laws and, 26n15 Boltzmann distribution: entropy and, 238–39, 249, 252–55, 264n24; microsopic/macroscopic worlds and, 255 - 56Boolean algebra, 70n58

Born, Max, 40, 45-46

bosons, 299; accelerators and, 192; gauge,

87, 192, 215; mathematics and, 215; spacetime and, 299; unity of forces and,

185-98, 205n27, 205n36

boundary problem, 269

Bourbaki movement, 218

Bronstein, Matvei, 207n64

185-87, 190-98, 215, 299; Higgs, 186-

Bose fields, 73

Brout, Robert, 205n29 Bucherer, Alfred, 134 Burton, R., 267n33

calculus: action principle and, 274, 276, 288, 294, 296; classical motion and, 222; differential, 71n66, 135, 212, 222; entropy and, 253, 256; integral, 33, 105n57, 213, 233n10, 249, 269, 270, 274-75, 278, 283, 286-87, 289, 295, 296nn12-13, 297n33, 298n46; Leibniz and, 276, 288; multivariate, 253; Newton and, 16, 214-15, 276, 288; partial differential equations, 71n66, 75, 102n8, 131, 209, 212, 259, 290; quantum theory and, 67n5, 71n66; spacetime and, 135, 137; unity of forces and, 198; universal laws and, 16 caloric fluid, 236 Cartan, Eliè, 33, 226-27 Casimir, Hendrik, 93-95 Catholic Church, 15 causality, 101n1, 302-3 celestial mechanics, 15, 20 Chadwick James, 103n26 China, 3, 14n2, 241 classical mechanics: action principle and, 282, 285, 297n27; entropy and, 263n1; quantum fields and, 85, 92; quantum theory and, 68n18; symmetries and, 116; unity of forces and, 179 Clauser, John, 59

Clausius, Rudolf, 236, 238, 249, 266n32 complex numbers: action principle and, 283–84, 297n32; development of, 210; group theory and, 210; quantum theory and, 50, 53, 70n55; symmetries and, 122; unity of forces and, 184, 204n19, 206n53

comprehensibility, x, 300; atoms and, 7–8, 13; dark energy and, 11; deeper levels of nature and, 6–7; Eddington and, 12–13; Einstein and, 1–10, 12; electromagnetism and, 7–8; electrons and, 3, 8, 11–12; electroweak interaction and, 7; Feynman and, 8; gauge theory and, 7; God and, 12; gravity and, 3–4, 7, 13, 14n15; group theory and, 5–9; light and, 1, 3–4, 11; mass and, 12–13; motion and, 2–8; Newton and, 6, 9–10, 13, 14n10, 14n15; photons and, 3; planets and, 2, 4, 8, 12; possibility of, 1–2; quantum fields and, 99–101; quantum

mechanics and, 10; quarks and, 13; reality and, 13; reasons for, 1–3; Schwinger and, 8; spacetime and, 1, 3, 13; stars and, 4–5, 12; string theory and, 13, 14n14; understanding universe and, 1–5; weak interaction and, 7

conductivity, 5, 24, 125, 178, 240 conservation of charge: quantum fields and, 81, 83; spacetime and, 148, 150; symmetries and, 128; unity of forces and, 189, 195

conservation of energy: accelerators and, 108; action principle and, 274; Einstein and, 108, 195, 299; entropy and, 253, 257–58; least action principle and, 275–80; Noether and, 126–28, 133n36; quantum fields and, 83; as "sacred law", 108; symmetries and, 107–9, 127–28; universal laws and, 21

conservation of mass, 108, 195 conservation of momentum, 54–55, 128 Copenhagen interpretation, 52–53, 56, 64 Copernicus, 15 cosmology: entropy and, 240, 255; space-

time and, 163; universal laws and, 22–24, 26n20 Coulomb's law, 75–77

Creator: comprehensibility and, 12; mathematics and, 221, 301; universal laws and, 16. *See also* God Crick, Francis, 252 Curie, Marie, 83, 126

dark energy, 11, 163, 164
dark matter, 11, 14n15, 163, 164, 302–3
Dashen, Roger, 206n47
diffraction gratings, 21
Diophantine equations, 222
Dirac equation, 79–80, 86–87
Dirac-Feynman path integral formulation, 283, 286, 290
Dirac field, 102n19, 152
Dirac, Paul: action principle and, 282–86, 290, 295, 297n29; antimatter and, 174n26 bra/ket notation and, 55; electron field and, 102n19; entropy and, 240, 248, 264n16; Feynman 240, 290; Feynman

290, 295, 297n29; antimatter and, 174n26; bra/ket notation and, 55; electron field and, 102n19; entropy and, 240, 248, 264n16; Fermi and, 240, 290; Feynman and, 152, 226, 248, 282–83, 286, 290, 295; Lagrangians and, 282; magnetic moment of electron and, 86–88; mathematics and,

Dirac (continued)

226, 235n46; momentum and, 88; probability amplitude and, 284; quantum fields and, 79–80, 86–88, 102n19; Schrödinger and, 79, 286, 290; spacetime and, 152, 174n26; Wigner and, 226, 235n46 disorder: entropy and, 239–40, 250–52, 259; information theory and, 250–51; maximum value of, 239; order v., 250–51

DNA, 252

Doppler shift, 26n17

Dyson, Freeman, 89, 203, 235n60

 $E = mc^2$: action principle and, 295n7; beta decay and, 83; derivation of, 152-56; Einstein and, 83, 108, 125, 152–58, 166, 195, 259, 295n7; entropy and, 259; impact of, 152-55; Lorentz transformation and, 152-55; quantum fields and, 83; spacetime and, 152-58, 166; symmetries and, 108, 125; unity of forces and, 195 Eddington, Arthur, 12–13 Ehrenfest, Paul, 34–36, 68n20, 261, 266n32 Einstein, Albert: action principle and, 268, 279, 281, 290–95, 297n30, 298n42, 298n44; black holes and, 23, 27n24, 167, 199, 258-59; Bohr and, 36, 71n74; comprehensibility and, 1-10, 12; conservation of energy and, 108, 195, 299; $E = mc^2$ and, 83, 108, 125, 152-58, 166, 195, 259, 295n7; entropy and, 240, 258-60, 266n32; equivalence principle and, 158-59, 168, 170, 172, 224; field equation of, 163-64, 167–71, 207n66, 290–92; geometry and, 215, 222; God and, xii, 65, 71n61, 181-82, 302; gravity and, 4, 23-24, 27n24, 71n66, 72–76, 126, 132n12, 135, 145, 158, 161-62, 166-72, 173n18, 175n37, 175n42, 182-84, 199, 201-2, 215, 224-25, 258-59, 268, 281, 290-91, 298n42, 302-3; guiding principles of, 302-3; Hilbert and, 292, 298n42; Lorentz and, 36, 122, 124–25, 138–46, 152, 154, 158–59, 168– 70, 172, 173nn13–16, 174n23, 235n42; mathematics and, 211, 213, 215, 224–25, 229, 233n17, 235n42; Pauli and, 34–36, 111, 181-82, 229; quantum fields and, 72-79, 83-84, 99-101, 102n16, 103n26,

304; quantum theory and, 34-36, 39, 45,

303; relativity and, 45 (see also relativity); Schrödinger and, 70n53, 111, 268; spacetime and, xiv, 134–72, 173n13, 173n18, 174nn31-32, 175n37, 175n42, 300, 303; spiritual formulas and, 126-27; symmetries and, 108, 111, 120, 122, 124–26, 129-30, 132n12; time and, 139-41; unity of forces and, 176-78, 181-84, 189, 195, 199, 201-2, 204n15, 204n21, 206n58, 207n66; universal laws and, 18, 20, 23–24, 27n24; von Neumann and, 229 Einstein locality, 62-64 electricity: action principle and, 268, 278, 280, 290; comprehensibility and, 4; conductivity and, 5, 24, 125, 178, 240; hydroelectricity, 299; mathematics and, 223, 227, 233n18; quantum fields and, 75-78, 93-95, 102n20, 104n49, 105n57; quantum theory and, 35, 36, 41–42, 68n11; spacetime and, 138, 150, 158, 167, 174n27; symmetries and, 107, 119-21, 125, 130–31, 133n32; unity of forces and, 177, 180–82, 187–88, 193–97, 200–1, 205n27, 206n61, 207n65; universal laws and, 24 electromagnetic waves: charged particles and, 298n45; discovery of, 77; frequency of, 30, 95; Galilean relativity and, 138; gravity waves and, 167; historical perspective on, 29–30; light as, 138; nature and, 8; quantum fields and, 77-78, 95; spacetime and, 177; speed of, 24, 173n19; velocity and, 155 electromagnetism: action principle and, 268, 280-81, 290-93, 298n45; Casimir force and, 93-95; comprehensibility and, 7-8; entropy and, 263n1; Faraday and, 76–77; gauge theory and, 7, 130, 182-84, 186, 303; mathematics and, 223-24, 227-28, 233n18, 234n35; Maxwell and, 51, 77–78, 80, 119, 124-25, 130-32, 138, 177, 223,

227, 280–81, 290–92; parity and, 22, 24,

26n19, 115, 193, 222; particle creation

and, 82–83; quantum fields and, 72, 75–82, 87, 91–100, 101n3, 103n36; quantum

155, 167, 173n19, 174n22; symmetries

23; unity of forces and, 176-86, 191,

and, 119-21, 124-25, 130-31, 132nn22-

theory and, 29–30, 51; spacetime and, 138,

47, 54-58, 62-65, 70n53, 71n64, 71n66,

194, 199-202, 205n23, 206n61, 207n69; universal laws and, 24 electrons: action principle and, 293; comprehensibility and, 3, 8, 11–12; creation of, 82-84; energy levels and, 30; entropy and, 258; Feynman diagrams and, 8, 88, 91-92, 104n53, 149, 174n28, 188; magnetic moment of, 12, 35, 36, 40-42, 47, 86–88, 92, 96–100, 104n49, 188; mass of, 12, 24–25, 41, 68n18, 69n33, 83, 86, 89-91, 96, 103n26, 103n36, 104n48, 150, 174n26, 195, 205n34, 206n61; mathematics and, 220, 228; orbital motion of, 21, 29, 32, 42, 45, 47, 54, 89, 103n36, 116, 195; quantum electrodynamics and, 86, 90-92, 96-98, 104n53; quantum fields and, 72, 79–100, 102n16, 102n19, 103n26, 103n36, 104nn48-49, 104n53, 130nn30-31; quantum mechanics and, 33, 40, 68n18, 79-80, 85, 92, 116-17, 228; quantum theory and, 29-37, 40-48, 54-55, 64-66, 68n11, 68nn17-21, 69n33; scattering and, 104n53; spacetime and, 149-52, 174n26, 174n28; symmetries and, 116-17, 118, 122, 125, 132n23; temporal order and, 149-52; unity of forces and, 177–80, 183–89, 193–95, 197, 201, 205n32, 205n34, 206n61, 207nn65-66; universal laws and, 21, 24-25 electron spin: angular momentum and, 33; Bohr and, 35–37; deeper understanding from, 300; Ehrenfest and, 34-36, 68n20, 261, 266n32; Gerlach and, 40; Goudsmit and, 33-36, 40, 46-47; Lorentz and, 34, 68n21; mathematics and, 220; Pauli and, 34, 36, 68n18, 68n21, 220; quantum mechanics and, 33; quantum theory and, 33–37, 40, 45, 47–48, 65–66, 68nn20–21; reality and, 65-66; spectroscopy and, 33; Stern and, 36, 40, 47; symmetries and, 122; Uhlenbeck and, 33–36, 40, 47; unity of forces and, 205n32 electroweak interaction: action principle and, 293; comprehensibility and, 7; gauge theory and, 7, 185–87, 191, 197, 303; quantum fields and, 96; unity of forces and, 182, 185–87, 191–92, 197

elegance, 200, 227

Englert, François, 186

entanglement, 54-56, 181, 301

entropy, xi; biological life and, 251-52; black holes and, 240, 258-60; Boltzmann and, 236-40, 249-61, 264n7, 264n24, 265n25, 266n32; calculus and, 253, 256; classical mechanics and, 263n1; Clausius and, 236, 238, 249, 266n32; concept of, 236-37; conservation of energy and, 253, 257-58; cosmology and, 240, 255; Dirac and, 240, 248, 264n16; disorder and, 239–40, 250–52, 259; $E = mc^2$ and, 259; Einstein and, 240, 258-60, 266n32; electromagnetism and, 263n1; electrons and, 258; Fermi and, 240; Feynman and, 248, 263n2; gas and, 237-39, 249-57, 263n3, 265n26, 266n32; gravity and, 240, 258-60; heat and, 108, 236-38, 256, 259, 266nn27–28; historical perspective on, 237–39; information theory and, 240–52, 259-62, 266n31, 301; kinetic energy and, 253, 263n3; Lagrange multipliers and, 264n24; logarithms and, 239, 242-46, 250, 253, 262, 264n13, 264n15, 264n24; mass and, 252, 255, 259; maximum value of, 239; Maxwell and, 238-39, 249, 252-54, 260; microsopic/macroscopic worlds and, 255-56; molecules and, 238-39, 252-55, 266n32; momentum and, 238, 266n32; motion and, 240; Newton and, 236, 256, 260, 264n24; partial differential equations and, 259; Planck and, 238, 240, 260, 266n32; planets and, 236; pressure and, 237-38; probability and, 245-55, 261-62; quantum mechanics and, 236, 252, 255, 263n1; relativity and, 236, 300; Schrödinger and, 251; Shannon and, 240-42, 245, 247-50, 261-63; shared energy and, 257-58; spacetime and, 258, 266n29; statistical physics and, 238–40, 252, 255, 258, 261, 264nn4-5, 266n32; temperature and, 236-41, 253-59, 263n1, 264n24; thermodynamics and, 239-40, 250, 256-58; transformation and, 236; von Neumann and, 249 equilibrium, 93 equivalence principle, 158–59, 168, 170, 172, 224 Euclid, 144–46, 162–63, 270 Euler, Leonhard, 274, 276, 283, 285, 291–92, 294 Euler's number, 244

Experimental Researches on Electricity (Faraday), 223

F = ma, 16, 128, 268, 275, 294
Faraday, Michael: Coulomb and, 75–77; electromagnetism and, 76–77; Experimental Researches on Electricity, 223; mathematics and, 223–24, 234nn35–36; Maxwell and, 223; quantum fields and, 75–77, 81
Fearful Symmetry (Zee), ix, xii, 109, 110, 124, 232n2, 273, 304
Feinberg, Joshua, 217–18
Fermat's Last Theorem, 218
Fermat's least time principle, 271–72, 274, 281, 295

Fermi, Enrico: action principle and, 290; beta decay and, 83–85, 99, 103nn28–29; Dirac and, 240, 290; entropy and, 240; mathematics and, 228; unity of forces and, 187

fermi fields, 73, 105n65

Feynman diagrams: action principle and, 290; electrons and, 8, 88, 91–92, 104n53, 149, 174n28, 188; as "funny looking diagrams", 87–88; multiple loops and, 91–92, 104n53; quantum fields and, 8, 86–87, 88, 91–92, 104n39, 104n45, 104n53, 130, 149–51, 174n28, 188, 290; Schwinger and, 8, 86, 104n39; successive terms and, 8; symmetries and, 130; unity of forces and, 188

Feynman, Richard, xi; action principle and, 278-79, 282-83, 286, 290, 295, 296n18, 297n33; Bader and, 278, 295, 296n18; comprehensibility and, 8; Dirac and, 152, 226, 248, 282–83, 286, 290, 295; Dirac-Feynman path integral formulation and, 283, 286, 290; entropy and, 248, 263n2; intuition and, 224; magnetic moment and, 88, 97, 104n49, 188; mathematics and, 224-29, 234n39; Putnam Exam and, 234; quantum electrodynamics and, 8, 130, 200; quantum fields and, 86-92, 97, 103n38, 104n39, 104nn49-50, 104n53; quantum theory and, 50, 69n28, 70n47; on rigor, 229; spacetime and, 137, 149–52, 174n28; symmetries and, 130; unity of forces and, 188, 200, 205n37, 206n47; vacuum polarization and, 91, 104n49, 174n28

fiber bundles, 214–15, 224, 228–30 field equation: action principle and, 290, 292; black holes and, 163–64; Einstein and, 163–64, 167–71, 207n66, 290–92; spacetime and, 163–64, 167–71, 207n66 Fields medal, 16, 218 fluid dynamics: caloric fluid and, 236; momentum and, 298n45; Newton and, 9, 102n8, 125; partial differential equations and, 102n8; particle physics and, 105n69; superfluidity, 240; 3–tensors and, 169; velocity and, 100; viscosity, 100, 298n45

Fly by Night Physics (Zee), 219
Fourier analysis, 214
Franklin, Benjamin, 102n20, 103n27
frequency: Doppler shift and, 26n17; electromagnetic waves and, 30; gravity waves and, 27; musical, 94; oscillation and, 21, 31, 93–95; Planck's constant and, 30–32, 68n8, 238, 266n32, 285–86, 300; quantum fields and, 94–95

Frobenius, Ferdinand Georg, 115, 225–26

Galileo: action principle and, 277; Catholic Church and, 15; law of acceleration of, 277; light and, 138, 158; mathematics and, 224; relativity and, 135–38, 170; spacetime and, 135–38, 141, 143–44, 152, 158, 170, 173n16; speed of light and, 138; transformation and, 136; velocity and, 135–36, 152, 277

Galois, Évariste, 211

gas: classical vs. quantum, 240; entropy and, 237–39, 249–57, 263n3, 265n26, 266n32; excited atoms, 29–30; heating, 239; hot, 29–30, 165, 256; molecules and, 237–38; phase transition and, 299; shared energy and, 257–58; stars and, 165; temperature and, 237

gauge bosons, 299; Heisenberg and, 185–86; mass and, 185–87, 190–92, 196, 215; unity of forces and, 183–87, 190–98, 204n18, 205n14, 205n44, 206n54

gauge theory: comprehensibility and, 7; electromagnetism and, 7, 130, 182–84, 186, 303; electroweak interaction and, 7, 185–87, 191, 197, 303; mathematics and, 215, 227, 230; nonabelian, 4, 7, 114, 185–86, 303; phase theory and, 184–85;

symmetries and, 130; unity of forces and, 182, 184-86, 190-92, 198, 205n44, 206n54; Yang-Mills, 185-86 Gauss, Carl Friedrich, 161, 211 Gaussian distribution, 212 Gaussian integral, 233n10, 298n46 Gell-Mann, Murray: group theory and, 122, 221, 234n31; Lévy and, 97, 100; Low and, 89, 100; mathematics and, 220, 226, 233n15; Nobel prize and, 133n34; quantum fields and, 89, 96-100; quarks and, 122-23, 132n30, 133n32, 189-90, 221; symmetries and, 122-25, 132n30, 133n34; unity of forces and, 179, 187-90 geometry, 23; differential, 6, 161–62, 175n37, 215, 222-25, 233n17; Einstein and, 215, 222; Euclidean, 144–46, 162–63, 270; logical structures and, 211; Lorentz transformation and, 144, 159, 291; mass and, 292; Newton and, 214; path of light and, 271; reality and, 210; spacetime and, 139, 144-48, 153, 158-62, 173n18, 174n30, 175n37, 225, 291; symmetries and, 109-12; unity of forces and, 183, 201 Gerlach, Walther: atoms and, 29, 40–49; electron spin and, 40; Stern-Gerlach experiment and, 37, 40-49, 69nn28-29 Gibbs, Josiah Willard, 249, 252, 266n32 Glashow, Shelly, 205n23 gluons: action principle and, 289, 293; quantum fields and, 82, 97; symmetries and, 109; unity of forces and, 190-91, 194 God: Bohr and, 71n64; comprehensibility and, 12; Einstein and, xii, 65, 71n61, 181-82, 302; mathematics and, 221, 301; Maxwell and, 78; Pauli and, 181-82; symmetries and, 123; unity of forces and, 181-82, 193; universal laws and, 16 Goldberger, Murph, 133n38, 213 Goldman, Henry, 45-46, 69n36 Goodstein, D. L., 261 Goudsmit, Samuel: Alsos Mission and, 47; electron spin and, 33–36, 40, 46– 47; mechanics exam of, 68n14; Physical Review and, 68n13 grand unification theories: action principle and, 293; fundamental interactions and,

182, 186, 191-99, 293, 303; gravity and,

182, 199, 303

gravitons: spacetime and, 173n19; unity of forces and, 196, 199-203, 206n62, 207n63; universal laws and, 24 gravity: accelerators and, 200; action principle and, 268, 277, 281, 290–91, 294, 298n42; black holes and, 23, 27, 99, 165, 167, 199, 203, 240, 258-60; comprehensibility and, 3-4, 7, 13, 14n15; Einstein and, 4, 23–24, 27n24, 71n66, 72–76, 126, 132n12, 135, 145, 158, 161–62, 166–72, 173n18, 175n37, 175n42, 182-84, 199, 201-2, 215, 224-25, 258-59, 268, 281, 290-91, 298n42, 302-3; entropy and, 240, 258-60; grand unification theories and, 182, 199, 303; inverse square law and, 25, 102n5, 180; kinetic energy and, 299; Laplace and, 173n19; mass and, 3, 13, 24, 75, 105n55, 145, 166, 186, 200-3, 206n61; mathematics and, 215, 224-25; moon and, 15, 18-19; Newton and, 13, 14n15, 18-19, 23, 26n7, 26n12, 27n24, 74-76, 105n55, 119, 166-70, 200, 291, 300; parity and, 22, 24, 26n19, 115, 193, 222; potential energy and, 105n55, 199, 299; quantum fields and, 72–76, 92, 99, 101n4, 103n34, 104n54, 105n55; quantum theory and, 28, 42, 71n66; red shift and, 166-67; Schwarzschild and, 164-66, 169, 175n42, 259; spacetime and, 135, 145, 158, 161-62, 165-72, 173nn18-19, 175n36, 175n42, 175n45; symmetries and, 119, 126, 132n12; time and, 75; unity of forces and, 176, 180-87, 191, 199-203, 204n11, 206n61, 207n75; universal laws and, 15, 20, 23-24, 26n7, 26n12, 27nn23–24; weakness of, 200 gravity waves: frequency of, 27; quantum fields and, 99; spacetime and, 145, 167, 173n19, 175n45; unity of forces and, 23-24, 27n24, 181, 204n11 Greek letters, 83, 90, 160-61, 172, 187, 248 Greeks, 2-4, 26n10, 119, 214, 270 Grossmann, Marcel, 233n17 group theory: classical physics and, 210; comprehensibility and, 5-9; Gell-Mann and, 122, 220-21, 234n31; group theory and, 193, 198, 205n25, 206n52; Lie groups and, 5, 227; Lorentz group and, 122, 224; as mental construct, 210; quantum theory and, 56; spacetime and,

group theory (continued) 299; symmetries and, 111-23, 132n12, 132nn21-22, 132n27, 132n31, 210, 220; unity of forces and, 193, 198, 205n25, 206n52; von Neumann and, 225-26; Wigner and, 210, 225–26 Guionnet, Alice, 218 Guralnik, Gerry, 205n29 Hamilton, William Rowan, 281 Hamiltonians: action principle and, 281–82, 295, 297n25, 297n27; Lagrangians and, 281-82, 295, 297n25; Legendre transform and, 297n25 Hamilton-Jacobi formation, 297n27 Hawking, Stephen, 71n65, 199, 258–60 heat: entropy and, 108, 236–38, 256, 259, 266nn27–28; Fourier analysis and, 214; Stern-Gerlach experiment and, 43 Heaviside, Oliver, 78, 102n13, 184 Heaviside-Lorentz units, 104n42 Hegel, Georg Wilhelm Friedrich, 260-61 Heisenberg, Werner: action principle and, 282, 290; Bohr and, 36, 67n1; gauge bosons and, 185–86; mathematics and, 212-13, 218, 226, 232, 233n14; quantum fields and, 84, 103n31; quantum theory and, 36, 67n1, 68n19; Rosenfeld and, 10; Schrödinger and, 172n8, 212, 218, 282, 290; spacetime and, 172n8; symmetries and, 121-23, 132n26; uncertainty principle of, 103n31; unity of forces and, 183, 185, 207n64; Weyls and, 185-86 Helios, 22 helium, 22, 29 Hermite, Charles, 214, 216 Herschbach, Dudley, 69n38 Hibbs, A. R., 297n33 Higgs boson, 186-87, 215 Higgs field, 101n2, 192 Higgs mechanism, 186, 192, 196, 215 Higgs, Peter, 186 Higgs sector, 14n15 Hilbert, David, 292, 298n42 Hilbert space, 218, 234n24 Hsu, Steve, 70n48 Hubble constant, 163 Huygens, Christiaan, 22 hydrogen: atom of, 32, 79, 82, 116, 118,

181, 195-96, 207n65, 219, 235n53; Bohr

model and, 32, 219; Lie algebra and, 235n53; molecules of, 207n65; quantum fields and, 79, 82; quantum theory and, 32; symmetries and, 116, 118; unity of forces and, 181, 195–96, 207n65

illusions, 271-72 India, 214, 241 information theory: alternative way of writing, 246–47; biological life and, 251–52; Clausius and, 249; disorder and, 250-51; entropy and, 240-52, 259-62, 266n31, 301; likelihood of event and, 247-48; logarithms and, 239, 242-46, 250, 253, 262, 264n13, 264n15, 264n24; probability and, 245–48; Shannon and, 240–42, 245, 247-50, 261-63 Institute for Advanced Study, 206n47, 213, 234n24, 235n60, 264n11 intelligent life, 5 invariance groups: symmetries and, 112-16, 120–31, 132n26, 133n39; unity of forces

Jehle, Herbert, 282–83 Jordan, Pascal, 36 Judeo-Christians, 3 Jupiter, 22

inverse square law, 25, 102n5, 180

and, 184

Io, 22

idealization, 17–18

Kaluza, Theodor, 201–2, 207n66 kinetic energy: action principle and, 274–77, 296n12, 297n35; $E = mc^2$ and, 152–55; entropy and, 253, 263n3; gravity and, 299; mass and, 31, 152, 274–75, 297n35; spacetime and, 152, 155; symmetries and, 108, 131n1; Waterston and, 263n3 Klein, Oskar, 202, 207n72 Kohn, Walter, 234n28 Kronig, Ralph, 34–35, 68nn18–19

Lagrange, Joseph-Louis: Euler and, 274, 276, 283, 285, 291–92, 294; Lemonnier and, 295n5
Lagrange multipliers, 264n24
Lagrangians: action principle and, 274–76, 279–85, 291–95, 296n12, 297n25; density and, 280–81; Dirac and, 282;

Hamiltonians and, 281–82, 295, 297n25; Legendre transform and, 297n25; mathematics and, 227, 264n24; quantum fields and, 84

Lamoreaux, Steven, 95–96

Laplace, Pierre-Simon de, 173n19, 212, 214

Large Hadron Collider, 192

Larmor, J., 235n42

least action principle, 275-80

Lee, T. D., 26

Legendre transform, 297n25

Leibniz, Gottfried Wilhelm: Boltzmann and, 256; calculus and, 276, 288; Newton and, 256, 264n24, 276, 288

Lemonnier, Émile René, 295n5

leptons: mass of, 222; mathematics and, 222; quantum fields and, 96; unity of forces and, 187, 190–96, 206n54, 300

Lévy, M., 97, 100

Lie algebras, 5, 184, 226–27, 235n48, 235n53

Lie groups, 5, 227

light: action principle and, 270–75, 279– 80; black holes and, 23, 27n24, 167, 199, 258-60; color and, 11, 21, 26n15; comprehensibility and, 1, 3–4, 11; diffraction gratings and, 21; electromagnetic waves and, 138; Fermat's least time principle and, 271-72, 274, 281, 295; Galileo and, 138, 158; geometry and, 271; illusions and, 271-72; nature of, 1, 4, 78; Newton's corpuscles of, 273; as particles, 3, 24, 30–31, 272, 275, 279; path of, 270–71; quantum theory and, 29-31, 34, 54-55; red shift and, 22, 166–67; reflection and, 139, 270, 271, 273; refraction of, 271–72, 273, 280, 295n2; relativity and, 79, 138, 279, 301; scattering of, 3; spacetime and, 139–45, 167, 173n14, 173n19; spectra and, 21-22, 30-35; speed of, 62 (see also speed of light); unity of forces and, 177, 186, 204n4, 204n21; universal laws and, 21-24, 26n10, 26n15, 27n21; as waves, 29–30, 138, 177, 280

light years, 141, 166

logarithms: Boltzmann and, 250; Clausius and, 239; entropy and, 239, 242–46, 250, 253, 262, 264n13, 264n15, 264n24; information theory and, 239, 242–46, 250, 253, 262, 264n13, 264n15, 264n24; Lagrange

and, 264n24; Napier and, 242; Shannon and, 242, 245, 261–63

logic: mathematics and, 126, 211, 219; parsimony and, 302–4; spacetime and, 148; symmetries and, 126, 128

Lorentz group, 122, 224

Lorentz, Hendrik: Bohr and, 36; Einstein and, 36, 122, 124–25, 138–43, 146, 154, 170, 172, 173n13, 235n42; electron spin and, 34, 68n21; Heaviside-Lorentz units, 104n42; Pauli and, 68n21; symmetries and, 122, 124–25, 130, 133n39; velocity and, 138, 143–44, 173n16; Voigt and, 173n13

Lorentz invariance, 124–25, 130, 133n39 Lorentz transformation: action principle and, 291–92; $E = mc^2$ and, 152–55; geometry and, 144, 159, 291; invariant electromagnetism and, 124; mathematics and, 224, 235n42; spacetime and, 139–46, 152, 154–55, 158–59, 168–70, 173nn13–16, 174n23; speed of light and, 141–42; unity of forces and, 202

Low, Francis, 89, 100

Maccone, Lorenzo, 59, 62–64, 70nn59–60 Mach, Ernst, 260, 266n32

magnetic field: action principle and, 290; electron interaction and, 40–43; Faraday and, 76; inhomogenous, 42–43; quantum fields and, 86, 88, 102n9; quantum theory and, 35, 36, 40–44, 48; spacetime and, 138; symmetries and, 130–31. *See also* electromagnetism

magnetic moment: Dirac and, 86–88; of electron, 12, 35, 36, 40–42, 47, 86–88, 92, 96–100, 104n49, 188; Feynman and, 88, 97, 104n49, 188; quantum fields and, 86–88, 92, 96–100, 104n49; Schwinger and, 92, 96–97, 100, 104n49

Mandel, H., 207n71

mass: action principle and, 272–75, 287, 291–92, 297n35; antimatter, 149–50; baryons, 123; black holes, 163–64, 203, 259; bosons, 185–87, 190–92, 196, 215; comprehensibility and, 12–13; *E* = *mc*² and, 83, 108, 125, 152–58, 166, 195, 259, 295n7; electrons, 12, 24–25, 41, 68n18, 69n33, 83, 86, 89–91, 96, 103n26, 103n36, 104n48, 150, 174n26, 195, 205n34,

mass (continued) 206n61; entropy and, 252, 255, 259; F = ma and, 16, 128, 268, 275, 294; as fundamental unit, 300; geometry and, 292; gravity and, 3, 13, 24, 75, 105n55, 145, 166, 186, 200-3, 206n61; kinetic energy and, 31, 152, 274–75, 297n35; leptons, 222; mathematics and, 215, 222, 228; MeV unit and, 132n25; momentum and, 31–33, 42, 90–91, 107, 152, 157, 168-69; neutrons, 103n26, 121-23, 194-96, 205n46, 206n47; nucleons, 98, 121, 195; nucleus, 83, 102n16, 103n26, 121, 195, 205; positrons, 150; protons, 24-25, 69n33, 103n26, 121-23, 174n26, 194-96, 205n34, 205n46, 206n47, 206n61; quarks, 13, 222; spacetime and, 3, 13, 24, 89, 91, 142, 145, 150-58, 163-69, 174n26, 185, 291, 302; speed of light and, 24, 145, 157-58; unity of forces and, 180, 185-87, 190, 192-96, 200-3, 205n33, 205n46, 206n47, 206n57, 206nn60-61; universal stability and, 194–96 208–9, 221–22, 225–26; atoms and, 219,

mathematics:, xi; amount needed for physics, 235n53; black holes and, 219; bosons and, 215; Bourbaki movement and, 218; classification and, 226-27; Diophantine equations, 222; Dirac and, 226, 235n46; Einstein and, 211, 213, 215, 224–25, 229, 233n17, 235n42; electricity and, 223, 227, 233n18; electromagnetism and, 223-24, 227-28, 233n18, 234n35; electrons and, 220, 228; elegance and, 200, 227; Euclidean, 144–46, 162–63, 270; Faraday and, 223-24, 234nn35-36; Fermat's Last Theorem, 218; Fermi and, 228; Feynman and, 224-29, 234n39; fiber bundles, 214-15, 224, 228-30; Fields medal and, 16, 218; Galileo and, 224; gauge theory and, 215, 227, 230; Gell-Mann and, 220, 226, 233n15; God and, 221, 301; gravity and, 215, 224-25; Heisenberg and, 212-13, 218, 226, 232, 233n14; Lagrangians, 227, 264n24; Legendre transform, 297n25; leptons and, 222; logic and, 126, 211, 219; Lorentz transformation, 224, 235n42; mass and, 215, 222, 228; matrices, 71n66, 212-13, 217, 223; Maxwell and, 211, 223-24, 227, 234n35; mental constructs,

209-10; Minkowski and, 225; motion and, 215, 222, 235n58; neutrons and, 220; Newton and, 214–15, 235n46; no go theorems, 228; Planck and, 219; protons and, 220; Putnam Exam and, 234; Pythagorean, 139, 140, 144–46, 225, 232; quantum mechanics and, 213, 226, 228, 234n24; quarks and, 213, 219–22, 226, 233n15; reality and, 214; relevance of, 210; representation theory, 115, 117, 225– 26; Riemann and, 215, 225; rigor, 216–19, 224, 228-29, 232, 234n25, 258, 264n8; roles of in physics, 227-28; Schwinger and, 212; spacetime and, 219, 222–25; string theory and, 214, 216, 221, 224, 234n29; strong interaction and, 221; transformation and, 224, 226, 235n42; use of term, 211–13; von Neumann and, 225, 229, 234n24; Wigner and, 209-11, 220, 225-26, 232n3, 233n5, 235n46. See also specific branch Matthews principle, 102n19 Maxwell-Boltzmann distribution, 238–39 Maxwell, James Clerk: action principle and, 268, 280–81, 290–92, 295; Boltzmann and, 78, 102n12, 238-39, 249, 252-54, 260; electromagnetism and, 51, 77–78, 80, 119, 124-25, 130-32, 138, 177, 223, 227, 280-81, 290-92; entropy and, 238-39, 249, 252-54, 260; Faraday and, 223; God and, 78; mathematics and, 211, 223–24, 227, 234n35; quantum fields and, 77-80, 85, 102n12; quantum theory and, 51; spacetime and, 138; symmetries and, 119, 124–25, 130, 132n21; unity of forces and, 177 Memoirs of Sir Isaac Newton's Life (Stukeley), 20 Mermin, David, 59, 70n47 Milky Way, 180 Mills, Robert, 185–86 Minkowski, Hermann: mathematics and, 225; spacetime and, 145–47, 159–63, 166-69, 173n18, 175n36, 233n17; unity of forces and, 201 molecules: entropy and, 238-39, 252-55, 266n32; hydrogen, 207n65; momentum and, 238; water, 82, 280-81 momentum: action principle and, 290, 296n9, 298n45; angular, 31-33, 42, 45, 54,

67n4, 68n18, 117-19, 128; Dirac and, 88; entropy and, 238, 266n32; fluid dynamics and, 298n45; mass and, 31–33, 42, 90–91, 107, 152, 157, 168–69; Noether and, 126– 28, 133n36; quantum fields and, 88–91, 97, 103n31; quantum theory and, 31–33, 42, 45, 54–55, 57, 67n4, 68n18; spacetime and, 152-58, 168-71; symmetries and, 107, 117–19, 128–30, 132n18 moon: action principle and, 269, 293; gravity and, 15, 18-19; Newton and, 15; quantum fields and, 74-76; spacetime and, 173n19; universal laws and, 15, 18-22, 26nn7-10 motion: action principle and, 268-69, 274, 277, 280-81, 290-94, 296n10, 296n13, 298n45; calculus and, 222; comprehensibility and, 2–8; entropy and, 240; mathematics and, 215, 222, 235n58; Newton and, 6, 21, 108, 125, 127, 129, 215, 268, 277, 291, 296n13; orbital, 18 (see also orbital motion); quantum fields and, 78, 102n16; quantum theory and, 29, 42; spacetime and, 136-37, 141; symmetries and, 108-9, 119, 125-29; unity of forces and, 179; universal laws and, 18-21, 24, 26n13

Nahin, Paul, 233n10
Nambu, Yoichiro, 124, 182, 193, 297n40, 302
Napier, John, 242
Nazis, 47
Néeman, Yuval, 122
neutrinos: quantum fields and, 81–84, 96–99, 103nn26–30; quantum theory and, 28; unity of forces and, 183, 187–95, 205n33, 206n54

neutrons: action principle and, 293; mass of, 103n26, 121–23, 194–96, 205n46, 206n47; mathematics and, 220; nucleus and, 83, 103n26, 181, 205n46; quantum fields and, 82–83, 97, 99, 103nn26–29; symmetries and, 120–23, 133n32; unity of forces and, 181, 183, 185–90, 194–96, 204n22, 205n46, 206n47; universal stability and, 194–96

Newton, Isaac: acceleration and, 16–17, 26n7, 89, 159, 268; action principle and, 74, 268–69, 273–78, 281, 288, 291–94, 296n13; algebra and, 214; Aristotle and,

16-17, 25n2, 277; Bentley and, 74; Boltzmann and, 256; calculus and, 16, 214-15, 276, 288; comprehensibility and, 6, 9–10, 13, 14n10, 14n15; corpuscles of light, 273; entropy and, 236, 256, 260, 264n24; F = ma and, 16, 128, 268, 275, 294; fluid dynamics and, 9, 102n8, 125; geometry and, 214; gravity and, 13, 14n15, 18-19, 23, 26n7, 26n12, 27n24, 74–76, 105n55, 119, 166–70, 200, 291, 300; inverse square law and, 102n5; Kelvin and, 9–10, 301; Leibniz and, 256, 264n24, 276, 288; mathematics and, 214-15, 235n46; moon and, 15; motion and, 6, 21, 108, 125, 127, 129, 215, 268, 277, 291, 296n13; Principia, 75; quantum fields and, 74–78, 85, 89, 102n5, 102n8, 105n55; quantum theory and, 51, 68n18; spacetime and, 143, 152-55, 159, 163, 166-71, 173n19; speed of light and, 129, 152, 166, 273; symmetries and, 108-9, 116-19, 125-30, 132n21; unity of forces and, 200, 206n60; universal laws and, 15–23, 25n3, 26n7, 26nn11–12, 27n24; velocity and, 16–17 Niels Bohr Institute, 26n20 Nobel prize, 65, 281, 301; Anderson and, 178; Aspect and, 59; chemistry and, 219; Cherenkov radiation and, 204n21; Clauser and, 59; electromagnetism and, 205n23; Englert and, 186; Gell-Mann and, 133n34; Gerlach and, 29; Herschbach and, 69n38; Higgs and, 186; Lee and, 26; mathematics and, 209; Nambu and, 124, 182; Newton and, 16; Samios and, 123; Samuelson and, 280; Segré and, 23; Stern and, 29, 40, 47, 234, 234n27; symmetries and, 120; von Laue and, 40, 234n27; Wigner and, 111, 209, 226; Wilson and, 89; Yang and, 26; Zeilinger and, 59 Noether, Emmy, 126-28, 133n36 no go theorems, 228 nonabelian gauge theory, 4, 7, 114, 185–86, 303 nucleons: mass and, 98, 121, 195; quantum fields and, 83, 97–98; symmetries and,

phase transition, 228, 299

nucleus (continued) Phillips, Robert, 235n60, 304 205n46; quantum fields and, 83-84, photons: action principle and, 274, 279; com-102n16, 103n26, 103n31; quantum theprehensibility and, 3; energy levels and, ory and, 29-30, 68n11; unity of forces 30; EPR paper and, 54; quantum fields and, 181, 205n46 and, 79–82, 86, 88–92, 96–98, 104n53; "On a Thesis of Schopenhauer's" quantum theory and, 30–31, 54, 55, 64; (Boltzmann), 261 scattering and, 149, 151; spacetime and, 149-51, 173n19, 174n28; spooky action at Oppenheimer, J. Robert, 23, 101, 106n71, a distance and, 54–56; temporal order and, 248, 304 149–52; unity of forces and, 186–87, 191, 194, 196, 199-203, 206n59; universal laws orbital motion: comprehensibility and, 2, 4, 8; electrons and, 21, 29, 32, 42, 45, 47, and, 21, 24 54, 89, 103n36, 116, 195; planetary, 2, 4, Planck energy, 203, 206n62 8, 108, 116, 120; quantum fields and, 89, Planck, Max: action principle and, 284-86; Bohr and, 32, 219; entropy and, 238, 240, 103n36; quantum theory and, 29, 32, 42, 45, 47, 54; spacetime and, 167, 173n19; 260, 266n32; mathematics and, 219; quanstars and, 2, 4, 8, 21, 32, 116; symmetries tum fields and, 80, 84; quantum theory and, 108, 116–17, 120, 132n18, 132n21; and, xii, 30–32, 68n8; unity of forces and, unity of forces and, 195; universal laws 199, 203, 206n58, 206nn61-62 and, 19, 21, 27n24 Planck's constant: frequency and, 30oscillation: action principle and, 272, 275; 32, 68n8, 238, 266n32, 285-86, 300; frequency of, 21, 31, 93-95; quantum measurement of, 286-87 fields and, 93–95; quantum theory and, 31; planets: action principle and, 273; comuniversal laws and, 21 prehensibility and, 2, 4, 8, 12; entropy oxygen, 82 and, 236; orbital motion of, 2, 4, 8, 108, 116, 120; quantum fields and, 74–75, Palatini, Attilio, 298n42 102n5; symmetries and, 108, 116, 119–20; parity, 22, 24, 26n19, 115, 193, 222 universal laws and, 18-21 Plato, 172n8 parsimony, 302-4 Podolsky, Boris, 54 partial differential equations: action principle and, 290; entropy and, 259; fluids and, Poincaré, Henri, 173n13 102n8; physics and, 209, 212; quantum Poisson, Siméon-Denis, 223, 233n10, fields and, 75, 102n8; quantum theory and, 234n38 71n66; symmetries and, 131 Polchinski, Joe, 214, 221 Pascal, Blaise, 12 positrons: equivalence principle and, 158–59, 168, 170, 172, 224; mass of, 150; quan-Pauli, Wolfgang: Einstein and, 34–36, 111, tum fields and, 81, 91-92, 98-99, 103n36, 181–82, 229; electron spin and, 34, 36, 68n18, 68n21, 220; on elegance, 227; God 104n53; quantum theory and, 54; scatterand, 181-82; Lorentz and, 68n21; quaning and, 104n53; spacetime and, 150–51, tum fields and, 83, 99, 103n28; quantum 174n28; unity of forces and, 189, 195-96, theory and, 34–36, 67n1, 68n15, 68n18, 197 68n21; Schrödinger and, 111, 218; speed potential energy: action principle and, 274of light and, 34; symmetries and, 108, 77, 295n8, 296n12; gravity and, 105n55, 111; unity of forces and, 181–82, 207n64, 199, 299; symmetries and, 108, 131n1 207n72; on von Neumann, 229; Weisskopf pressure: entropy and, 237–38; ocean depths and, 4; temperature and, 2, 165, 237 and, 264n17 Pedersen, Christen, 26n20 Principia (Newton), 75 Peres, Asher, 39 probability: action principle and, 268, 282phase angle, 184–85 88, 294–95; amplitudes, 50–51, 53, 56–60,

64, 68n18, 70n55, 116, 119, 176, 268,

282–88, 294–95, 303; Dirac and, 284; entropy and, 245–55, 261–62; fiber bundles and, 215; Gaussian distribution and, 212; information theory and, 245–48; quantum mechanics and, 50, 59, 68n18, 116–17, 120, 255, 268, 282; quantum theory and, 50–53, 56–66, 68n18, 70n50, 70nn55–56; scattering and, 294; symmetries and, 116–20; unity of forces and, 176, 196, 203

protons: mass of, 24-25, 69n33, 103n26, 121-23, 174n26, 194-96, 205n34, 205n46, 206n47, 206n61; mathematics and, 220; nucleus and, 83, 103n26, 181, 205n46; quantum electrodynamics and, 86, 90-92, 96–98, 104n53; quantum fields and, 82–83, 97–99, 103n26, 103n30; quantum theory and, 32, 47, 69n33; spacetime and, 174n26; symmetries and, 116, 120-23, 133n32; temperature and, 24; unity of forces and, 177-90, 194-97, 200-1, 204n22, 205n34, 205n46, 206n47, 206nn61–62, 207n65; universal laws and, 24–25; universal stability and, 194–96 Purcell, Ed, 102n10, 224 Putnam Exam, 234 Pythagoras, 139, 140, 144-46, 225, 232

quantum chromodynamics (QCD), 97-98 quantum electrodynamics (QED): calculation in, 86, 90-92, 96-98, 104n53; classical electrodynamics and, 85; electrons and, 86, 90-92, 96-98, 104n53; Feynman and, 8, 130, 200; parameters for, 92, 96; protons and, 86, 90-92, 96-98, 104n53; Schwinger and, 8, 200; symmetries and, 130; unity of forces and, 184, 199–200 quantum fields, x, 300; acceleration and, 89; accuracy of theory, 85; action at a distance and, 54-56, 73-74, 76, 269; antimatter and, 81; atoms and, 79-82; beta decay and, 83–85, 99, 103nn28–29; black holes and, 99; Casimir force and, 93-95; classical mechanics and, 85, 92; comprehensibility and, 99–101; conservation of energy and, 83; dancing fields and, 72-73; Dirac and, 79–80, 86–88, 102n19; $E = mc^2$ and, 83; Einstein and, 72-79, 83-84, 99-101, 102n16, 103n26, 304; electricity and,

75-78, 93-95, 102n20, 104n49, 105n57; electromagnetism and, 72, 75-82, 87, 91-100, 101n3, 103n36; electrons and, 72, 79–100, 102n16, 102n19, 103n26, 103n36, 104n53, 104nn48-49, 130nn30-31; electroweak interaction and, 96; Faraday and, 75-77, 81; Fermi and, 83-85, 99, 103nn25-28, 105n65; Feynman and, 86-92, 97, 103n38, 104n39, 104nn49-50, 104n53; Feynman diagrams and, 8, 86-87, 88, 91–92, 104n39, 104n45, 104n53, 130, 149–51, 174n28, 188, 290; frequency and, 94-95; Gell-Mann and, 89, 96-100; gravity and, 72-76, 92, 99, 101n4, 103n34, 104n54, 105n55; gravity waves and, 99; Heisenberg and, 84, 103n31; hydrogen and, 79, 82; identity and, 82; intertwining fields and, 289; Lagrangians and, 84; leptons and, 96; long distances and, 96-99; low energies and, 96-99; magnetic field and, 86, 88, 102n9; magnetic moment and, 86-88, 92, 96-100, 104n49; Maxwell and, 77-80, 85, 102n12; momentum and, 88-91, 97, 103n31; moon and, 74–76; motion and, 78, 102n16; neutrons and, 82–83, 97, 99, 103nn26–29; Newton and, 74–78, 85, 89, 102n5, 102n8, 105n55; nucleons and, 83, 97–98; nucleus and, 83–84, 102n16, 103n26, 103n31; orbital motion and, 89, 103n36; oscillation and, 93-95; partial differential equations and, 75, 102n8; particle creation and, 82-83; Pauli and, 83, 99, 103n28; photons and, 79-82, 86, 88-92, 96-98, 104n53; Planck and, 80, 84; planets and, 74–75, 102n5; positrons and, 81, 91-92, 98-99, 103n36, 104n53; protons and, 82-83, 97-99, 103n26, 103n30; quantum fields and, 83–85, 99, 103nn25–28, 105n65; quarks and, 72, 81-84, 96-99; reality and, 82, 84; relativity and, 79, 98–99; renormalization and, 89–92, 96; Schrödinger equation and, 79-80, 85; Schwinger and, 86–88, 92–93, 96–97, 100, 104n39, 104nn49-50; spacetime and, 28, 72–77, 84, 88, 89–91; speed of light and, 79; stars and, 74, 86; string theory and, 73, 85, 98, 103n32; strong interaction and, 92, 97; velocity and, 100; weak interaction and, 85, 96, 99-100; Wheeler and, 65, 72-73, 101n1

Quantum Field Thoery, as Simply as Possible (Zee), 85 quantum leap, 30 quantum mechanics: advanced, 80, 103n23; Bell's inequalities and, 59, 70n60; comprehensibility and, 10; definiteness and, 62; difficulty in understanding, 65, 71n66, 78; discovery of, 30; electrons and, 33, 40, 68n18, 79-80, 85, 92, 116-17, 228; electron spin and, 33; entropy and, 236, 252, 255, 263n1; GPS and, 301; interpretation of, 51-53, 70n48; intertwining fields and, 289; mathematics and, 213, 226, 228, 234n24; probability and, 50, 59, 68n18, 116–17, 120, 255, 268, 282; Schrödinger's equation and, 80, 85, 268, 282, 286; spooky action at a distance and, 54; Stern-Gerlach experiment and, 40; symmetries and, 116-17, 120; unity of forces and, 178-79; universal laws and, 21; use of term, 85 Quantum Mechanics and Path Integrals

(Feynman and Hibbs), 297n33

quantum theory, x, 300; angular momentum and, 31–33, 42, 45, 54, 67n4, 68n18; atoms and, 29–32, 42, 43–44, 49–50, 54, 69n33; Bell and, 58–67, 70nn57–60; black holes and, 71n65; Bohr and, 30-32, 35-36, 40, 42, 45-47, 52, 65, 67n1, 68n11, 69n23, 71n64; calculus and, 67n5, 71n66; classical mechanics and, 68n18; complex numbers and, 50, 53, 70n55; connectedness and, 11-13; Copenhagen interpretation and, 52-53, 56, 64; counterfactuals and, 62–65; Dirac-Feynman path integral formulation and, 283, 286, 290; Einstein and, 34-36, 39, 45, 47, 54-58, 62–65, 70n53, 71n64, 71n66, 303; electricity and, 35, 36, 41-42, 68n11; electromagnetism and, 29-30, 51; electrons and, 29–37, 40–48, 54–55, 64–66, 68n11, 68nn17-21, 69n33; electron spin and, 33-37, 40, 45, 47-48, 65-66, 68nn20-21; entanglement and, 54–56, 181, 301; EPR paper and, 54; Feynman and, 50, 69n28, 70n47; fundamental postulate of, 283–85; gravity and, 28, 42, 71n66; group theory and, 56; Heisenberg and, 36, 67n1, 68n19; hidden variables and, 58-59; historical perspective on, 29-30;

hydrogen and, 32; light and, 29-31, 34, 54-55; locality and, 62-64; magnetic field and, 35, 36, 40-44, 48; Maxwell and, 51; momentum and, 31–33, 42, 45, 54–55, 57, 67n4, 68n18; motion and, 29, 42; neutrinos and, 28, 81–84, 96–99, 103nn26–30; Newton and, 51, 68n18; nucleus and, 29-30, 68n11; orbital motion and, 29, 32, 42, 45, 47, 54; oscillation and, 31; partial differential equations and, 71n66; Pauli and, 34–36, 67n1, 68n15, 68n18, 68n21; photons and, 30-31, 54, 55, 64; Planck and, xii, 30-32, 68n8; positrons and, 54; probability and, 50-53, 56-66, 68n18, 70n50, 70nn55–56; protons and, 32, 47, 69n33; reality and, 32, 39–40, 52, 63–65; regeneration and, 49–50; relativity and, 45, 54; Schrödinger and, 40, 69n27, 70n53; speed of light and, 34, 62; spooky action at a distance, 54-56; stars and, 47; Stern and, 29, 36-37, 40-49, 69nn28-29; three formulations of, 282-83; velocity and, 31, 68n18

quantum waves, 8, 119

quarks, 300; accelerators and, 188; action principle and, 293; beta decay and, 83-84; comprehensibility and, 13; Gell-Mann and, 122–23, 132n30, 133n32, 189–90, 221; mass of, 13, 222; mathematics and, 213, 219–22, 226, 233n15; quantum fields and, 72, 81–84, 96–99; strong interaction and, 189-90; symmetries and, 109, 121-23, 132n30, 133n32; temperature and, 24; unity of forces and, 178, 183, 186-96, 197, 205n39, 205n41, 206n54; universal laws and, 24, 28

Ramond, Pierre, 206n47 Rayleigh, Lord, 263n3

reality, 302; action principle and, 269; comprehensibility and, 13; electron spin and, 65-66; geometry and, 210; idealization and, 17; mathematics and, 214; quantum fields and, 82, 84; quantum theory and, 32, 39–40, 52, 63–65; revised notion of, 65–66; unity of forces and, 177, 179, 196, 207n66

red shift, 22, 166-67 reflection, 139, 270, 271, 273 refraction, 271-72, 273, 280, 295n2 relativity, 300; action principle and, 279, 297n30; Bucherer and, 134; $E = mc^2$ and, 83, 108, 125, 152–58, 166, 195, 259, 295n7; entropy and, 236; field equation of, 163–64, 167–71, 207n66, 290–92; Galileo and, 135-38, 170; general, 134-35, 158, 168, 172n3; light and, 79, 138, 279, 301; paradox of, 147-48; quantum fields and, 79, 98–99; quantum theory and, 45, 54; reference frame and, 137; simultaneity and, 148-49; spacetime and, 134-38, 143, 145, 147, 153, 158, 161, 168, 172n3, 172n6; special, 79, 98-99, 120, 134-35, 143, 145, 147, 153, 158, 161, 168, 201, 279, 297n30, 301; symmetries and, 120; time and, 139-41; unity of forces and, 201; velocity and, 136–37, 141, 149, 154, 158, 173

renormalization, 89–92, 96 representation theory, 115, 117, 225–26 Ricci curvature, 171

Riemann, Bernhard: Gauss and, 161; mathematics and, 215, 225; spacetime and, 161–62, 170–71, 175n36

rigor: Feynman on, 229; logic and, 219; mathematical proof and, 216–19, 224, 228–29, 232, 234n25, 258, 264n8; rise of, 216–19

Rittenhouse, David, 26n16 Romans, 3 Rømer, Ole, 22, 26n20 Rosen, Nathan, 54 Rosenfeld, Léon, 10, 301

Sackur, Otto, 266n32
Salam, Abdus, 205n23
Samios, Nick, 123, 124
Samuelson, Paul, 280
scattering: electron-electron, 104n53; electron-positron, 104n53; light, 3; photons, 149, 151; pions, 97; probability amplitudes and, 294

Schopenhauer, Arthur, 261
Schrödinger, Erwin: action principle and, 268, 282, 286, 290; Dirac and, 79, 286, 290; Dirac-Feynman path integral formulation and, 286; Einstein and, 70n53, 111, 268; entropy and, 251; equation of, 79–80, 85, 151, 212, 218–19, 268, 286; Heisenberg and, 172n8, 212, 218, 282,

290; Pauli and, 111, 218; quantum fields and, 79–80, 85; quantum mechanics and, 80, 85, 268, 282, 286; quantum theory and, 40, 69n27, 70n53; spacetime and, 151, 172n8; symmetries and, 111; *What Is Life?*, 251–52

Schrödinger's cat, 40, 69n27, 286 Schrödinger wave function, 286 Schur, Issai, 115, 225–26 Schwarzschild, Karl, 164–66, 169, 175n42, 259

Schwinger, Julian: action principle and, 290; comprehensibility and, 8; Feynman diagrams and, 8, 86, 104n39; magnetic moment of electron and, 92, 96–97, 100, 104n49; mathematics and, 212; quantum electrodynamics and, 8, 200; quantum fields and, 86–88, 92–93, 96–97, 100, 104n39, 104nn49–50; spacetime and, 175n44; unity of forces and, 200, 205n23; vacuum polarization and, 91, 104n49, 174n28

Segré, Emilio, 23

Shannon, Claude: entropy and, 240–42, 245, 247–50, 261–63; function of, 241–42, 245; formula of, 261–63; information theory and, 240–42, 245, 247–50, 261–63; logarithms and, 242, 245, 261–63; von Neumann and, 249

silver atoms, 42-49, 69n33

simplification, 105n57; action principle and, 277, 292, 296n13; Einstein's equation and, 172; entropy and, 245; idealization and, 17–18; spacetime and, 141, 172; symmetries and, 121; unity of forces and, 204n22

simultaneity, 148–49 Sommerfeld, Arnold, 69n41, 168 Soviet Union, 47

spacetime, x; acceleration and, 158–59, 163, 164; action principle and, 268–69, 276–77, 283, 291–93, 295, 297n30; algebra and, 135–38, 141–44, 149, 173n12; antimatter and, 149–52, 174n26; black holes and, 163–67; bosons and, 299; calculus and, 135, 137; comprehensibility and, 1, 3, 13; cosmology and, 163; curved, 1, 3, 13, 28, 73, 161–65, 171, 172, 173n19, 175n36, 199–202, 207n75, 219, 222–25, 268, 302–3; dark energy and, 163, 164;

spacetime (continued) dark matter and, 163, 164; Dirac and, 152, 174n26; $E = mc^2$ and, 152–58, 166; Einstein and, xiv, 134–72, 173n13, 173n18, 174nn31-32, 175n37, 175n42, 300, 303; electricity and, 138, 150, 158, 167, 174n27; electromagnetic waves and, 177; electromagnetism and, 138, 155, 167, 173n19, 174n22; electrons and, 149-52, 174n26, 174n28; entropy and, 258, 266n29; equivalence principle and, 158-59, 168, 170, 172, 224; Fermi and, 73, 84; Feynman and, 137, 149-52, 174n28; field equation and, 163-64, 167–71, 207n66; Galileo and, 135–38, 141, 143-44, 152, 158, 170, 173n16; geometry and, 139, 144–48, 153, 158– 62, 173n18, 174n30, 175n37, 225, 291; gravitons and, 173n19; gravity and, 135, 145, 158, 161-62, 165-72, 173nn18-19, 175n36, 175n42, 175n45; gravity waves and, 145, 167, 173n19, 175n45; group theory and, 299; Heisenberg and, 172n8; higher dimensional, 201-2; Kaluza and, 201–2, 207n66; kinetic energy and, 152, 155; light and, 139-45, 167, 173n14, 173n19; logic and, 148; Lorentz transformation and, 154–55, 158–59, 168–70; magnetic field and, 138; mass and, 3, 13, 24, 89, 91, 142, 145, 150-58, 163-69, 174n26, 185, 291, 302; mathematics and, 219, 222-25; Maxwell and, 138; Minkowski and, 145-47, 159-63, 166-69, 173n18, 175n36, 233n17; momentum and, 152–58, 168–71; moon and, 173n19; motion and, 136-37, 141; Newton and, 143, 152-55, 159, 163, 166-71, 173n19; orbital motion and, 167, 173n19; paradox of, 147-48; photons and, 149-51, 173n19, 174n28; positrons and, 150-51, 174n28; protons and, 174n26; Pythagoras and, 139, 140, 144-46; quantum fields and, 28, 72–77, 84, 88, 89–91; relativity and, 134–38, 143, 145, 147, 153, 158, 161, 168, 172n3, 172n6; Riemann and, 161–62, 170–71, 175n36; Schrödinger and, 151, 172n8; Schwarzschild and, 164–66, 169, 175n42, 259; Schwinger and, 175n44; simplification and, 141, 172; simultaneity and, 148-49; speed of light and, 138,

140-46, 149, 152, 155, 157-58, 166, 173n19; stars and, 167; symmetries and, 120, 125, 129–31; temperature and, 165; time reversal and, 149-52; transformation and, 136, 139-46, 152, 154, 158-61, 168, 170, 173nn13–16, 174n23, 175n35, 299; unification of, 28; unity of forces and, 177, 183, 185, 187, 198-203, 204n22, 207n75; universal expansion and, 22, 162-63, 254, 300; universal laws and, 24; variation in, 299; velocity and, 135-37, 141-43, 149, 152-58, 173n14; Wheeler and, 72-73, 258 spectra: atomic spectroscopy and, 30-35; diffraction gratings and, 21; electromagnetism and, 167 (see also electromagnetism); stars and, 22 speed of light: action principle and, 281, 291, 297n14; $E = mc^2$ and, 83, 108, 125, 152-58, 166, 195, 259, 295n7; Galileo and, 138; Huygens and, 22; Kronig and, 33-34; Laplace and, 173n19; Lorentz transformation and, 141-42; mass and, 24, 145, 157–58; Newton and, 129, 152, 166, 273; Pauli and, 34; quantum fields and, 79; quantum theory and, 34, 62; spacetime and, 138, 140–46, 149, 152, 155, 157–58, 166, 173n19; symmetries and, 129; unity of forces and, 204n21; universal laws and, 22, 24, 27n21 spooky action at a distance, 54-56 standard model, 191–92, 205n43 stars: binary, 4; comprehensibility and, 4-5, 12; hot gas and, 165; physics inside, 21–22; quantum fields and, 74, 86; quantum theory and, 47; spacetime and, 167; spectra of, 22; temperature and, 2; unity of forces and, 204n4; universal laws and, 20–22 statistical physics: action principle and, 280; entropy and, 238-40, 252, 255, 258, 261, 264nn4-5, 266n32; thermal physics and, 252 Stern-Gerlach experiment: atoms and, 29, 40–49; quantum theory and, 37, 40–49, 69nn28–29; regeneration and, 49–50; silver atoms and, 42-49, 69n33 Stern, Otto: Born and, 40; electron spin and, 36, 40, 47; Nobel prize and, 234n27; quantum theory and, 36–37; von Laue and, 40, 234n27

string theory, 302; action principle and, 291, 297n40, 298n43; comprehensibility and, 13, 14n14; mathematics and, 214, 216, 221, 224, 234n29; quantum fields and, 73, 85, 98, 103n32; unity of forces and, 200-3, 206n47 strong interaction: action principle and, 289; mathematics and, 221; parity and, 22, 24, 26n19, 115, 193, 222; quantum fields and, 92, 97; quarks and, 189–90; symmetries and, 121-22, 125; unity of forces and, 177, 180-83, 187, 189-94, 197 Stukeley, W., 20 superconductivity, 125, 178, 240 superfluidity, 240 superposition, 49-50, 70n45 symmetries, x, 300; action principle and, 291–92; algebra and, 188; angular momentum and, 117-19, 128; antimatter and, 115; atoms and, 116, 118; beauty and, 107; breaking of, 123-24; classical mechanics and, 116; complex numbers and, 122; conservation of energy and, 107–9, 127–28; as dictating design, 124– 26; discrete vs. continuous, 115; $E = mc^2$ and, 108, 125; Einstein and, 108, 111, 120, 122, 124–26, 129–30, 132n12; electricity and, 107, 119–21, 125, 130–31, 133n32; electromagnetism and, 119-21, 124-25, 130-31, 132nn22-23; electrons and, 116-17, 118, 122, 125, 132n23; electron spin and, 122; enchantment and, 113-15; Feynman diagrams and, 130; as fundamental to physics, 109-11; gauge theory and, 130; Gell-Mann and, 122–25, 132n30, 133n34; geometry and, 109–12; God and, 123; gravity and, 119, 126, 132n12; group theory and, 111–23, 132n12, 132nn21–22, 132n27, 132n31, 210, 220; Heisenberg and, 121-23, 132n26; hydrogen and, 116, 118; invariance groups and, 112–16, 120– 31, 132n26, 133n39; kinetic energy and, 108, 131n1; logic and, 126, 128; Lorentz and, 122, 124-25, 130, 133n39; magnetic field and, 130-31; Maxwell and, 119, 124-25, 130, 132n21; momentum and, 107, 117–19, 128–30, 132n18; motion and, 108-9, 119, 125-29; neutrons and, 120-

23, 133n32; Newton and, 108-9, 116-19,

125-30, 132n21; Noether and, 126-28,

133n36; nucleons and, 120-21; orbital motion and, 108, 116-17, 120, 132n18, 132n21; parity and, 22, 24, 26n19, 115, 193, 222; partial differential equations and, 131; Pauli and, 108, 111; planets and, 108, 116, 119-20; potential energy and, 108, 131n1; probability and, 116-20; protons and, 116, 120-23, 133n32; quantum electrodynamics and, 130; quantum mechanics and, 116-17, 120; quarks and, 109, 121-23, 132n30, 133n32; relativity and, 120; representation theory and, 115, 117; Schrödinger and, 111; situational, 119-20; spacetime and, 120, 125, 129-31; speed of light and, 129; spiritual formulas and, 126–28; strong interaction and, 121–22, 125; transformation and, 111– 13, 122-24, 131n7; universal, 109; "The Unreasonable Effectiveness of Symmetry in Fundamental Physics", 210; von Neumann and, 111, 115; wave function and, 116-19; Wigner and, 111, 115, 117

temperature: Boltzmann distribution and, 238–39, 249, 252–55, 264n24; early universe and, 24; entropy and, 236–41, 253–59, 263n1, 264n24; meaning of, 253– 55; pressure and, 2, 165, 237; protons and, 24; quarks and, 24; spacetime and, 165; stars and, 2 temporal order, 149-52 tensors, 126, 161, 169-71, 174n22 Tetrode, Hugo, 266n32 thermal physics, 252 thermodynamics: caloric fluid and, 236; entropy and, 239-40, 250, 256-58; Hawking radiation and, 199, 258–59; second law of, 239–40, 250, 257–58; shared energy and, 257-58 Thomson, William (Lord Kelvin), 9-10, 233n10, 301 time reversal, 115, 132n16, 149-52, 233n181 Townes, Charlie, 224

transformation (*continued*) symmetries and, 111–13, 122–24, 131n7; unity of forces and, 183–85, 202

Uhlenbeck, George, 33–36, 40, 47 unity of forces, x-xi, 301; action principle and, 292–93; antimatter and, 198, 206n51; atoms and, 195, 201, 207n65; black holes and, 199, 203, 206n57; bosons and, 183-98, 204n18, 205n14, 205n27, 205n36, 205n44, 206n54; calculus and, 198; classical mechanics and, 179; complex numbers and, 184, 204n19, 206n53; $E = mc^2$ and, 195; Einstein and, 176-78, 181-84, 189, 195, 199, 201-2, 204n15, 204n21, 206n58, 207n66; electricity and, 177, 180–82, 187–88, 193–97, 200–1, 205n27, 206n61, 207n65; electromagnetism and, 176–86, 191, 194, 199-202, 205n23, 206n61, 207n69; electrons and, 177-80, 183-89, 193-95, 197, 201, 205n32, 205n34, 206n61, 207nn65-66; electron spin and, 205n32; electroweak interaction and, 182, 185–87, 191–92, 197; Fermi and, 187; Feynman and, 188, 200, 205n37, 206n47; four interactions of, 3, 7, 13, 177–78, 181, 192–94, 199, 289–90, 299; gauge theory and, 182, 184-86, 190-92, 198, 205n44, 206n54; Gell-Mann and, 179, 187-90; geometry and, 183, 201; God and, 181–82, 193; grand unification, 182, 186, 191-99, 293, 303; gravitons and, 196, 199-203, 206n62, 207n63; gravity and, 176, 180-87, 191, 199-203, 204n11, 206n61, 207n75; group theory and, 193, 198, 205n25, 206n52; Hawking and, 199; Heisenberg and, 183, 185, 207n64; hydrogen and, 181, 195–96, 207n65; invariance groups and, 184; leptons and, 187, 190-96, 206n54, 300; light and, 177, 186, 204n4, 204n21; Lorentz transformation and, 202; mass and, 180, 185-87, 190, 192-96, 200-3, 205n33, 205n46, 206n47, 206n57, 206nn60-61; Maxwell and, 177; Minkowski and, 201; motion and, 179; neutrinos and, 183, 187–95, 205n33, 206n54; neutrons and, 181, 183, 185-90, 194–96, 204n22, 205n46, 206n47; Newton and, 200, 206n60; nucleons and, 183, 185, 195; nucleus and, 181, 205n46;

orbital motion and, 195; Pauli and, 181-82, 207n64, 207n72; phase theory and, 184–85; photons and, 186–87, 191, 194, 196, 199–203, 206n59; Planck and, 199, 203, 206n58, 206nn61–62; positrons and, 189, 195–96, 197; probability and, 176, 196, 203; protons and, 177–90, 194– 97, 200-1, 204n22, 205n34, 205n46, 206n47, 206nn61–62, 207n65; quantum electrodynamics and, 184, 199–200; quantum mechanics and, 178–79; quarks and, 178, 183, 186-96, 197, 205n39, 205n41, 206n54; range vs. strength and, 180-81; reality and, 177, 179, 196, 207n66; reduction and, 178; relativity and, 201; Schwinger and, 200, 205n23; spacetime and, 177, 183, 185, 187, 198–203, 204n22, 207n75; speed of light and, 204n21; stability and, 194-96; stars and, 204n4; string theory and, 200-3, 206n47; strong interaction and, 177, 180-83, 187, 189-94, 197; transformation and, 183-85, 202; universal stability and, 194-96; wave function and, 183-84, 204n17; weak interaction and, 177, 180-82, 185-97, 200, 204n16; Weyl and, 183–85, 207n66

Unity of Forces in the Universe (Zee), ix universal expansion, 22, 162-63, 254, 300 universal laws, x, 300; acceleration and, 16-17, 26n7; atoms and, 21-24, 24; black holes and, 23, 27n24; Boltzmann and, 26n15; calculus and, 16; conservation of energy and, 21; cosmology and, 22-24, 26n20; Einstein and, 18, 20, 23–24, 27n24; electricity and, 24; electromagnetism and, 24; electrons and, 21, 24–25; God and, 16; gravitons and, 24; gravity and, 15, 20, 23–24, 26n7, 26n12, 27nn23– 24; light and, 21–24, 26n10, 26n15, 27n21; moon and, 15, 18-22, 26nn7-10; motion and, 18-21, 24, 26n13; Newton and, 15–23, 25n3, 26n7, 26nn11–12, 27n24; orbital motion and, 19, 21, 27n24; oscillation and, 21; photons and, 21, 24; planets and, 18–21; protons and, 24–25; quantum mechanics and, 21; quarks and, 24, 28; spacetime and, 24; speed of light and, 22, 24, 27n21; stars and, 20-22; upper/lower bounds and, 24–25; velocity and, 16-17; weak interaction and, 22

"Unreasonable Effectiveness of Mathematics in the Natural Sciences, The" (Wigner), 209–10

"Unreasonable Effectiveness of Symmetry in Fundamental Physics, The" (Zee), 210

vacuum polarization, 91, 104n49, 174n28 velocity: acceleration and, 16-17, 158, 268, 277; action principle and, 268–69, 270, 274, 277, 294; addition of, 135–37, 143, 154, 173n16; Aristotle and, 16–17, 277; fluid dynamics and, 100; Galileo and, 135-36, 152, 277; Lorentz and, 138, 143-44, 173n16; Newton and, 16-17; quantum fields and, 100; quantum theory and, 31, 68n18; reference frame and, 137; relative, 136–37, 141, 149, 154, 158, 173; spacetime and, 135–37, 141–43, 149, 152–58, 173n14; universal laws and, 16-17 viscosity, 100, 298n45 Voigt, W., 173n13, 235n42 von Laue, Max, 40, 234n27 von Neumann, Jansci (John): Einstein and, 229; entropy and, 249; mathematics and, 225, 229, 234n24; Shannon and, 249; symmetries and, 111, 115; Wigner and, 225 - 26

Waterston, John, 263n3
Watson, James, 252
wave function: action principle and, 286;
collapse of, 53; Copenhagen interpretation and, 53; development of, 303;

Schrödinger, 286; symmetries and, 116–19; unity of forces and, 183–84, 204n17

weak interaction: action principle and, 293; comprehensibility and, 7; Nambu and, 302; parity and, 22–24, 26n19, 115, 193, 222; quantum fields and, 85, 96, 99–100; unity of forces and, 177, 180–82, 185–97, 200, 204n16; universal laws and, 22

unity of forces and, 177, 180–82, 185–97, 200, 204n16; universal laws and, 22
Weierstrass theorem, 217
Weinberg, Steven, 102n19, 105n61, 205n23
Weisskopf, Victor, 264n17
Weyl, Hermann, 183–85, 207n66, 232
What Is Life? (Schrödinger), 251–52
Wheeler, John, 65, 72–73, 101n1, 258–59
Wigner, Eugene: Dirac and, 226, 235n46; mathematics and, 209–11, 220, 225–26, 232n3, 233n5, 235n46; Nobel prize and, 111, 209, 226; symmetries and, 111, 115, 117; "The Unreasonable Effectiveness of Mathematics in the Natural Sciences", 209–10; visual perception of, 232n3; von Neumann and, 225–26

Wiles, Andrew, 218 Wilson, Ken, 89 Witten, Ed, 231, 234n34, 235n60 Wu, C. S., 22, 23, 55

Yang, C. N., 26 Yang-Mills theory, 185–86

Zeilinger, Anton, 59 Zwicky, Fritz, 11