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3.4 The Hodge-Tate period and the Hodge-Tate period map 69
3.5 The Lubin-Tate period on the supersingular locus 72
3.6 The relative Hodge-Tate filtration 77
3.7 The fake Hasse invariant 78



viii CONTENTS

3.8 Relative de Rham cohomology and the Hodge–de
Rham filtration 79

3.9 Relative p-adic de Rham comparison theorem
applied to A→Y 80

4 The fundamental de Rham periods 83

4.1 A proétale local description of OB
(+)
dR 83

4.2 The fundamental de Rham periods 85
4.3 GL2(Qp)-transformation properties of the fundamental

de Rham periods 86
4.4 The p-adic Legendre relation 89
4.5 Relation to Colmez’s “p-adic period pairing” 94
4.6 Relation to classical (Serre-Tate) theory on

the ordinary locus 97
4.7 The Kodaira-Spencer isomorphism 109
4.8 The fundamental de Rham period zdR 112
4.9 The canonical differential 114

5 The p-adic Maass-Shimura operator 118
5.1 The “horizontal” lifting of the Hodge-Tate filtration 118
5.2 The “horizontal” relative Hodge-Tate decomposition

over OΔ 122
5.3 Definition of the p-adic Maass-Shimura operator 126
5.4 The p-adic Maass-Shimura operator in coordinates and

generalized p-adic modular forms 127
5.5 The p-adic Maass-Shimura operator with “nearly

holomorphic coefficients” 131
5.6 The relative Hodge-Tate decomposition over O†

Δ 138
5.7 The p-adic Maass-Shimura operator in coordinates and

generalized p-adic nearly holomorphic modular forms 141
5.8 Relation of djk and (d†k)

j to the ordinary Atkin-Serre

operator djk,AS and Katz’s p-adic modular forms 147
5.9 Comparison between the complex and p-adic

Maass-Shimura operators at CM points 150
5.10 Comparison of algeraic Maass-Shimura derivatives

on different levels 159

6 p-adic analysis of the p-adic Maass-Shimura operators 162
6.1 qdR-expansions 162
6.2 Relation between qdR-expansions and Serre-Tate expansions 172
6.3 Integrality properties of qdR-expansions:
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CONTENTS ix

6.5 The p-adic Maass-Shimura operator θjk in qdR-coordinates 182
6.6 Integrality of qdR-expansions and the �-operator 184
6.7 p-adic analytic properties of p-adic Maass-Shimura operators 186

7 Bounding periods at supersingular CM points 197
7.1 Periods of supersingular CM points 197
7.2 Weights 205
7.3 Good CM points 208

8 Supersingular Rankin-Selberg p-adic L-functions 216
8.1 Preliminaries for the construction 216
8.2 Construction of the p-adic L-function 219
8.3 Interpolation 228

8.3.1 Interpolation formula 228
8.3.2 Interpolation formula 234

9 The p-adic Waldspurger formula 236
9.1 Coleman integration 237
9.2 Coleman primitives in our situation 237
9.3 The p-adic Waldspurger formula 243
9.4 p-adic Kronecker limit formula 248

Bibliography 251

Index 257



Chapter One

Introduction

1.1 PREVIOUS CONSTRUCTIONS AND KATZ’S THEORY OF

p-ADIC MODULAR FORMS ON THE ORDINARY LOCUS

Let us start by giving a brief account of Katz ([34], [33] and [35]) and Bertolini-
Darmon-Prasanna’s ([5]) construction of p-adic L-functions over imaginary
quadratic fields K in which p splits in K. The splitting assumption of Katz
allows one to make use of his theory of p-adic modular forms in order to construct
his and Bertolini-Darmon-Prasanna/Liu-Zhang-Zhang’s p-adic L-functions, now
colloquially known as the Katz and BDP p-adic L-functions, respectively. The
former is also constructed for CM extensions K/L (i.e., where L/Q is totally
real and K/L is imaginary quadratic) for which all primes of L above p split
in K, and the latter was generalized by Liu-Zhang-Zhang ([46]) to the case
of CM fields and weight 2 newforms. Namely, the p-adic L-functions over K
which Katz, Bertolini-Darmon-Prasanna and Liu-Zhang-Zhang construct are
linear functionals on the space of (p-adic) modular forms, which are obtained
by evaluating p-adic differential operators applied to modular forms at ordinary
CM points associated with K. This means the CM points belong to the ordinary
locus

Y ord⊂Y,

which is the affinoid subdomain of (the rigid analytification of) Y obtained by
removing all points which reduce to supersingular points on the special fiber
(this latter locus being isomorphic to a finite union of rigid analytic open unit
discs). Here, the ordinariness assumption is crucial in order to establish nice
analytic properties of the p-adic L-function, namely that (p-adic) modular forms
have local coordinates in neighborhoods of CM points with respect to which the
differential operators alluded to above have a nice, clearly analytic expression.
In Katz’s setting, one views p-adic modular forms as functions on a proétale
cover called the Igusa tower

Y Ig→Y ord

using an explicit trivialization of the Hodge bundle (by a so-called canoni-
cal differential). Then on Y Ig, he defines a differential operator θ called the
Atkin-Serre operator, which sends p-adic modular forms of weight k to forms of
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weight k+2, and the nice coordinates are provided by Serre-Tate coordinates.
One can express

θAS =(1+T )
d

dT

in terms of the Serre-Tate coordinate T , and using this expression one can show
easily that the family

{θjASf}j∈Z≥0

for a given p-adic modular form f gives rise to a “nearly-analytic” function of
j: after applying a certain Hecke operator known as p-stabilization to f (which
corresponds to removing an Euler factor in the p-adic L-function), one can show
that

θjASf
(p),

where f (p) denotes the p-stabilization, is an analytic function (valued in the
space of p-adic modular forms) of j ∈Z×

p .
One could also use coordinates provided by q-expansions, if one compactifies

all modular curves under our consideration; we stick to the open modular curve
in this article in order to avoid boundary issues occurring at cusps, which present
bigger technical issues when defining the proétale topology later.

The key property of Y Ig→Y ord which allows one to construct the differential
operator θAS is the existence of the unit root splitting of the Hodge filtration on
Y Ig. Namely, one can find sections of the relative de Rham cohomology

H1
dR(A)|Y Ig

which are horizontal with respect to the algebraic Gauss-Manin connection

∇ :H1
dR(A)→H1

dR(A)⊗OY
Ω1
Y

(here a section α being horizontal means that ∇(α)= 0), and which are also
eigenvectors for the canonical (Frobenius-linear) Frobenius endomorphism

F :Y Ig→Y Ig

over W . (The reason for the terminology “unit root” is because one of the
eigenvalues for F is a p-adic unit, i.e., a section of O×

Y Ig , since we restrict to a

covering of the ordinary locus Y ord.) The unit root splitting is a functorial, F -
equivariant splitting of the Hodge filtration, which allows one to then define the
differential operator θAS. This uses a standard formalism of Katz which produces
such a differential (weight-raising) operator, whenever a splitting of the Hodge
filtration with nice properties (e.g., Gal(Y Ig/Y ord)-equivariance) exists.
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Another key property of the unit root splitting is that for CM elliptic curves
A, which by the theory of complex multiplication always have models over Q,
it is induced by the splitting of H1

dR(A) defined over Q given by the eigen-
decomposition under the CM action. This CM splitting over Q also gives rise
to the real analytic Hodge decomposition over C from classical Hodge theory,
which in that setting gives rise to the real analytic Maass-Shimura operator d
sending nearly holomorphic modular forms of weight k to nearly holomorphic
forms of weight k+2. The consequence is that after normalizing by appropriate
“canonical” periods

Ωp and Ω∞,

one can show that given an algebraic modular form w of weight k, the values

θjASw(y)/Ω
k+2j
p and djw(y)/Ωk+2j

∞

at ordinary CM points y ∈Y ord belong to Q and coincide. This observation
of Katz is essential to establishing interpolation properties of the Katz and
BDP/LZZ p-adic L-functions, i.e., to relate them to critical values of complex
L-functions in the interpolation (Panchishkin) range. This is because such crit-
ical L-values can be expressed as period integrals over the CM torus (or finite
sums over orbits of CM points) of djw, and hence by the above discussion these
can be related to such p-adic period sums of θjASw over CM points, which them-
selves give rise to the Katz and BDP/LZZ p-adic L-functions.

Let us elaborate on Serre-Tate coordinates and Katz’s notion of p-adic mod-
ular forms, and expound on the above discussion. To fix ideas, suppose that a
modular curve Y represents a fine moduli space (for example, if its topological
fundamental group as an analytic space over C is neat in the sense that it has
no torsion), and so it admits a universal object

π :A→Y.

The Hodge bundle is then defined as

ω :=π∗Ω1
A/Y

and weight k modular forms can be identified with sections of ω⊗k. Katz’s theory
of modular forms arises by constructing a nonvanishing section known as the
canonical differential

ωKatz
can ∈ω(Y Ig),

and using the induced trivialization

ω|Y Ig
∼=OY Ig
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to view modular forms on Y as functions on Y Ig transforming by some weight
character under the action of

Gal(Y Ig/Y ord)∼=Z×
p .

To obtain the trivialization of ω, Katz uses the simple structure of the
p-divisible groups of ordinary elliptic curves, namely that they are isomor-
phic to

μp∞ ×Qp/Zp.

By the Weil pairing (or Cartier duality), such a trivialization for a given p-divi-
sible group A[p∞] of an ordinary elliptic curve A is determined by fixing an
isomorphism

A[p∞]ét∼=Qp/Zp.

In fact, Y Ig is exactly the cover of Y ord defined over W =W (Fp) parametrizing
such trivializations

α :Qp/Zp
∼−→A[p∞]ét,

or equivalently (by the previous discussion), trivializations

α :μp∞ ×Qp/Zp
∼−→A[p∞]

of the entire p-divisible group.
Let A0/Fp be an elliptic curve corresponding to a closed geometric point y0

on the special fiber

Y ord
0 =Y ord⊗W Fp,

and let A/W denote any lift of A0, i.e., with

A⊗W Fp∼=A0,

corresponding to a point y on Y ord. Formally completing Y Ig along y0 hence gives
the formal moduli space D̂(y0) of deformations of A0 (with some level structure,
which we will suppress for brevity). Since there is a canonical isomorphism

A[p∞]ét∼=A0[p
∞](Fp),

then a choice of trivialization

α0 :Qp/Zp
∼−→A0[p

∞](Fp)
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fixes A[p∞]ét in the formal neighborhood D̃(ỹ0) of ỹ0 =(A0, α0) in Y Ig. Hence
D̃(ỹ0) is parametrized exactly by the connected component A[p∞]0 of A[p∞],
and so there is an (in fact, canonical) isomorphism

D̃(ỹ0)∼= Ĝm.

The canonical coordinate T on the torus gives rise to the Serre-Tate coordinate,
also denoted by T , on

D̃(ỹ0),

and on the associated residue disc

D̃(ỹ0)⊗W W [1/p]

(viewed as the rigid analytic generic fiber of D̃(Ỹ0)).
Katz uses the above description of formal neighborhoods on Y Ig around

closed points of the special fiber as being canonically isomorphic to Ĝm in
order to construct the canonical differential ωcan mentioned before; in terms
of the Serre-Tate coordinate on a residue disc D, the canonical differential is
just given by

ωKatz
can |D = dT/T.

Using tensorial powers of the canonical differential, modular forms, viewed as
sections of powers ω⊗k of the Hodge bundle ω restricted to Y ord, can be identified
as functions on Y Ig. Since the canonical differential transforms by

d∗ωKatz
can = dωKatz

can

for
d∈Z×

p
∼=Gal(Y Ig/Y ord),

then we can even identify a modular form of weight k, i.e., a section of w∈
ω⊗k(Y ord), as a function f of weight k on Y Ig, via

w|Y Ig = f ·ωKatz,⊗k
can ,

where weight k∈Z means that f transforms as

d∗f = d−kf (1.1)

for
d∈Z×

p =Gal(Y Ig/Y ord).
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Katz also uses this viewpoint to generalize modular forms to p-adic modular
forms of weight k∈Z×

p , which are functions on Y Ig which have weight k∈Z×
p

in the same way as defined above.

1.2 OUTLINE OF OUR THEORY OF p-ADIC ANALYSIS ON

THE SUPERSINGULAR LOCUS AND CONSTRUCTION

OF p-ADIC L-FUNCTIONS

The key question addressed by this article is that of developing a satisfactory
theory of p-adic analysis of modular forms on the supersingular locus of modular
curves, and subsequently to construct “supersingular” p-adic L-functions for
Rankin-Selberg families V of twist families of automorphic representations

(πw)K ×χ−1

for anticyclotomic characters χ over an imaginary quadratic field K/Q, where

πw

is the automorphic representation of GL2(AQ) attached to a normalized new
eigenform w (i.e., a newform or Eisenstein series),

(πw)K

denotes its base change to an automorphic representation of GL2(AK), and
χ varies through a family of anticyclotomic Hecke characters over K. Here,
“supersingular” means that we assume that p is inert or ramified in K. This is
analogous, outside the splitting assumption on p, to the “ordinary” setting in
which Katz and Bertolini-Darmon-Prasanna/Liu-Zhang-Zhang construct their
one-variable p-adic L-functions. In fact our theory addresses the ordinary and
supersingular settings uniformly by working on an affinoid subdomain

Yx⊂Y

of the p-adic universal cover
Y→Y

(defined below); in fact, Yx contains a natural cover

YIg→Y Ig,

and restricting our theory to YIg allows one to recover the one-variable p-adic
L-functions in the ordinary case, as well as Katz’s theory of p-adic modular
forms on Y Ig.
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One motivation for the construction of supersingular Rankin-Selberg p-adic
L-functions is to develop special value formulas in the same style as those of
Katz and Bertolini-Darmon-Prasanna, where in the former case a special value
of the Katz p-adic L-function is related to the p-adic logarithm of elliptic units
attached to K, and in the latter case the special value formula is a “p-adic
Waldspurger formula” (following the terminology of [46]) involving the p-adic
formal logarithm of a Heegner point attached to K (when a Heegner hypothesis
holds for K and level N of w). Indeed, we succeed in proving such a formula in
the case p �N in Section 9, though in future work we expect to remove both p �N
as well as relax the Heegner hypothesis on N , which would simply necessitate
considering more general quaternionic Shimura curves than modular curves.

We seek to develop a satisfactory theory of p-adic analysis on the super-
singular locus, namely a notion of p-adic modular forms on the supersingular
locus

Y ss =Y \Y ord

which “behaves well” with respect to some differential operator d; more precisely,
this means there is some notion of “weight” which is raised by 2 under the action
of d, and given a p-adic modular form f ,

djf

or some stabilization
(djf)�

gives rise to some p-adic analytically well-behaved family. To do this, there are
several technical difficulties which must be overcome. One of which is that there
is no obvious canonical differential with which to trivialize ω over a cover in order
to view modular forms as functions on the cover (in the same way as ωKatz

can does
so for ω on Y Ig→Y ord). It is also a difficulty that there is no “canonical line”
in the p-divisible group of a supersingular curve as there is for

μp∞ ⊂A[p∞]

when A is ordinary. Hence there is no natural splitting of the Hodge filtration
with which to define a differential operator d analogous to the Atkin-Serre oper-
ator in the ordinary setting, and even if one were to construct such an operator,
there is no obvious analogue of the Serre-Tate coordinate under which to locally
express p-adic modular forms f and study the analytic properties of djf .

Another difficulty with defining a satisfactory p-adic Maass-Shimura opera-
tor on Y ss comes from the lack of unit root splitting, whose construction comes
from a horizontal basis for the Gauss-Manin connection defined as sections of the
relative étale cohomology H1

ét(A) over Y Ig which are eigenvectors of the canon-
ical Frobenius. This unit root splitting in the ordinary case gives a splitting of



8 CHAPTER 1

the Hodge filtration

0→ω|Y ord→H1
dR(A)|Y ord→ω−1|Y ord→ 0

as an exact sequence of OY ord-modules, where OY denote the rigid analytic
structure sheaf on Y . It is this functorial splitting, which is algebraically defined
and coincides with the real analytic Hodge splitting at CM points, which gives
rise to the ordinary p-adic Maass-Shimura operator θAS with the desired alge-
braicity properties. Note that unlike in the complex analytic setting, we do not
have to extend the sheaf of rigid functions (the analogue of holomorphic func-
tions) to a large sheaf (of “real analytic functions”) in order to obtain the Hodge
decomposition, as long as we restrict to Y ord⊂Y .

To overcome these difficulties, we generalize the strategy of Katz and in some
sense emulate the construction of the complex analytic Maass-Shimura operator
by working on the full p-adic universal cover

Y→Y

and by extending our coefficients from the structure sheaf to some larger sheaf
of periods containing it (viewing this as analogous with extending holomorphic
functions to real analytic functions).

Let us elaborate a little on the motivation of this strategy and how it works.
As no unit root basis of the de Rham cohomology exists outside of Y ord, we
instead consider the moduli space of all horizontal bases of étale cohomology.
This moduli space is representable by the p-adic universal cover Y→Y (which
we define more explicitly in the next paragraph), and with universal object being
given by

(A, α∞)→Y

where α∞ is the universal full p∞-level structure. We then use a relative p-adic de
Rham comparison theorem to view α∞ as a universal horizontal basis for relative
de Rham cohomology; unlike in the ordinary case, this comparison involves
extending the structure sheaf to a certain period sheaf OB+

dR,Y (where this is
really a sheaf on the proétale site Yproét) first constructed by Scholze in [56]. From
this horizontal “framing” of the relative de Rham cohomology H1

dR(A), we get
a “Hodge–de Rham period” measuring the position of the Hodge filtration and
the “Hodge-Tate period” measuring the position of the Hodge-Tate filtration, as
considered by Scholze in loc. cit., and use these periods to construct a relative
Hodge decomposition which we use as a substitute for the unit root splitting.
This splitting is in fact defined over an “intermediate period sheaf”

OΔ :=OB+
dR,Y/(t),

equipped with natural connection

∇ :OΔ→OΔ⊗OY Ω1
Y
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which is B+
dR,Y/(t)-linear, induced by the natural connection

∇ :OB+
dR,Y→OB+

dR,Y ⊗OY Ω1
Y

which is B+
dR,Y -linear. Moreover, there is a natural map

OY ⊂OB+
dR,Y

mod t� OΔ

which is in fact an inclusion compatible with connections, and such that its
composition with the natural map

θ :OΔ � ÔY

where ÔY is the p-adically completed structure sheaf on Y is the natural map

OY→ÔY .

Here θ is induced by the natural relative analogue

θ :OB+
dR,Y � ÔY

of Fontaine’s map θ :B+
dR � Cp. Here,

t∈B+
dR,Y (Y)

is a global analogue of Fontaine’s “2πi” and is a global section of a period sheaf
B+
dR,Y on Y, which is itself a relative version of Fontaine’s ring of periods B+

dR.
We call OΔ “intermediate” because it, in the sense above, lies in between OY
and OB+

dR,Y . In analogy with having to extend from holomorphic to real analytic
functions on the complex universal cover H in order to define the complex ana-
lytic Hodge decomposition, we view OΔ as a sheaf of “p-adic nearly holomorphic
(or rigid) functions on the p-adic universal cover Y.”

Let us go into more detail on the construction of Y. On geometric points, it
has a moduli-theoretic interpretation moduli space parametrizing elliptic curves
with full p∞-level structure represented by a GL2(Zp)-profinite-étale cover Y
of Y (viewing the latter as an adic space over Spa(Qp,Zp)) called the p-adic
universal cover (or infinite-level modular curve)

Y = lim←−
i

Y (pi),

as considered by Scholze in [56] and Scholze-Weinstein in [62]. Here Y (pi) is the
modular curve obtained by adding full pi-level structure to the moduli space
represented by Y , and Y is an adic space over Spa(Qp,Zp) which is an object
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in the proétale site Yproét. Here, the full universal p∞-level structure α∞ is just
a trivialization of the Tate module of A

α∞ : Ẑ⊕2
p,Y

∼−→TpA|Y ,

here Ẑp,Y is the “constant sheaf” on Y associated with Zp, except that sec-
tions are continuous functions into Zp where the latter has the p-adic (and not
discrete) topology. Now let OY denote the proétale structure sheaf on Yproét.
Using the Hodge–de Rham comparison theorem of Scholze ([57]), we then have
a natural inclusion

H1
dR(A)⊗OY

OB+
dR,Y

ιdR⊂ H1
ét(A)⊗Ẑp,Y

OB+
dR,Y

on Yproét compatible with filtrations (on the left, the convolution of the Hodge
filtration on H1

dR(A) and the natural filtration on OB+
dR,Y , and on the right is

just the filtration on OB+
dR,Y ) and connections (on the left, the convolution of

the Gauss-Manin connection on H1
dR(A) and the natural connection on OB+

dR,Y

via the Leibniz rule, and on the right is just the connection on OB+
dR,Y ). Pulling

back to Y, we then have

H1
dR(A)⊗OY

OB+
dR,Y |Y

ιdR
↪→H1

ét(A)⊗Ẑp,Y
OB+

dR,Y |Y
α−1

∞−−→∼ (OB+
dR,Y · t−1)⊕2

(1.2)

where the last isomorphism uses the universal p∞-level structure α∞ and the
isomorphism

H1
ét(A)∼=TpA(−1)

given by the Weil pairing. We also use the fact that there is a natural isomor-
phism

Ẑp,Y(−1)= Ẑp,Y · t−1,

as t is a period for the cyclotomic character.
We note that there is a natural sublocus

YIg = {ẑ=∞}⊂Y

which parametrizes ordinary elliptic curves A together with a trivialization α :
Z⊕2
p

∼−→TpA of their Tate modules TpA and with

αZp⊕{0} :Zp∼=TpA
0⊂TpA

trivializing the canonical line in TpA, viewed as arithmetic p∞-level structures

α :Zp(1)⊕Zp
∼−→TpA,
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together with a trivialization
Zp(1)∼=Zp,

and it is clear that these two data are equivalent to a full p∞-level structure

α :Zp⊕Zp
∼−→TpA.

Thus,
YIg→Y Ig

is a natural Zp � Z×
p -cover of the Igusa tower Y Ig, and a B-cover of Y ord, where

B⊂GL2(Zp) denotes the subgroup of upper triangular matrices.
Using (1.2), one sees that

α∞,1 :=α∞|Ẑp,Y⊕{0} and α∞,2 :=α∞|{0}⊕Ẑp,Y

form a horizontal basis for the connection ∇. Moreover, upon making the iden-
tification (via the Weil pairing)

TpA∼=Hom(A[p∞], μp∞),

we get a natural map

HTA :TpA⊗Ẑp,Y
OY →ω, α �→α∗ dT

T

where dT/T is the canonical invariant differential on μp∞ . (It is also sometimes
customary to denote HTA = d log, as d log T = dT/T .) We then define the fake
Hasse invariant as

s :=HTA(α∞,2),

and in fact we have that on the restriction to YIg,

s|YIg =ωKatz
can |YIg . (1.3)

Consider the affinoid subdomain

Yx= {s �=0}⊂Y .

We note that s∈ω(Yx) is a nonvanishing global section, i.e., a generator. Then
let s−1 ∈ω−1(Yx) the generator corresponding to s under Poincaré duality. The
trivialization

ω|YIg
∼=OYIg
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induced by (1.3), along with the universal level structure on YIg given by α∞|YIg ,
gives rise to a p-adic differential operator (the Atkin-Serre operator)

θAS :OYIg→OYIg

with nice p-adic analytic properties, as seen using Serre-Tate coordinates. The
key to these nice p-adic properties is the identity (see [34, Main Theorem 3.7.2])

σ(ωKatz,⊗2
can )= d log T

where T is the Serre-Tate coordinate, and

σ :ω⊗2 ∼−→Ω1
Y (1.4)

is the Kodaira-Spencer isomorphism.
By the above discussion, s seems like a natural candidate to extend Katz’s

idea of viewing p-adic modular forms (sections of ω) as functions to the (non-
Galois) covering Yx→Y . However, unlike in Katz’s situation on YIg, in our
situation the splitting of (a lift of) the Hodge filtration which we define and
use will require extending coefficients from OYx

to a larger sheaf OΔ,Yx
(which

can be viewed as “the sheaf of nearly rigid functions,” in analogy to extending
coefficients from the sheaf of real analytic functions to the sheaf of nearly holo-
morphic functions in order to define the Hodge decomposition in the complex
analytic situation), and with respect to this splitting s will not be the most
convenient choice for trivializing ω⊗OY

OΔ,Yx
. Instead, we will trivialize using

the generator

ωcan :=
s

ydR
∈ (ω⊗OY

OΔ,Yx
)(Yx)

where ydR ∈OΔ,Yx
(Yx)× is a certain p-adic period associated with s. Hence this

induces a trivialization
ω⊗OY

OΔ,Yx
∼=OΔ,Yx

.

One can show that ydR =1 on the sublocus YIg⊂Y, and so we have

ωcan|YIg =ωKatz
can |YIg . (1.5)

In analogy with (1.4), we also have

σ(ω⊗,2
can )= dzdR (1.6)

where zdR = zdR (mod t) for the fundamental de Rham period zdR, which we
describe in more detail below. We note that the analogy between (1.4) and (1.6),
along with (1.5), suggests that zdR provides the correct analogue of log T . It is
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this observation which later leads to our notion of the qdR =exp(zdR− z̄dR)-
coordinate as an analogue (and extension) for the Serre-Tate coordinate T , and
qdR-expansions as analogues (and extensions) of Serre-Tate T -expansions.

We can also use ωcan to generalize Katz’s notion of p-adic modular forms.
Let U ⊂Yx be a subadic space, let λ :Y→Y denote the natural projection, and
let λ(U)=U . Then letting

Γ=Gal(U/U)⊂Gal(Y/Y )=GL2(Zp),

we have a natural map

ω⊗k|U (U)
λ∗
↪→ω⊗k|U (U) ↪→ (ω⊗OY

OΔ,Yx
|U )⊗k(U) ω⊗k

can−−−→∼ OΔ,Yx
|U (U).

In fact, the image under this map consists of sections f ∈OΔ,Yx
|U (U) such that

(
a b
c d

)∗
f =(ad− bc)−k(czdR + a)kf (1.7)

for any

(
a b
c d

)
∈Γ. In this situation, we say that f has weight k for Γ on U .

We note that when U =YIg and so U =Y ord, and

Γ=B⊂GL2(Zp)

the subgroup of upper triangular matrices, and then (1.7) becomes

(
a b
0 d

)∗
f = d−kf. (1.8)

In particular, f descends to a section in OY (Y Ig) and we recover Katz’s notion
(1.1) of a p-adic modular form of weight k. Our main interest, which is defining
a satisfactory notion of p-adic modular form on the supersingular locus, will
involve the case U =Yss, U =Y ss and Γ=GL2(Zp).

Let us now elaborate on the construction of our splitting of (a lift of) the
Hodge filtration alluded to above, which is crucial to the construction of the
p-adic Maass-Shimura operator and its algebraicity properties. Unlike in Katz’s
theory, outside of YIg, α∞,1 and α∞,2 do not generate either the Hodge or Hodge-
Tate filtrations, and instead we are led to consider certain relative periods

zdR ∈OB+
dR,Y (Yx), ẑ∈ ÔY (Yx),
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where ÔY = Ô+
Y [1/p] and where

Ô+
Y = lim←−

n

O+
Y /p

n⊂ÔY =(lim←−
n

O+
Y /p

n)[1/p]

denotes the p-adic completion integral structure sheaf

O+
Y ⊂OY =O+

Y [1/p].

Both of the above periods can be viewed as sections of an ambient period
presheaf

ÔB+
dR,Y :=OB+

dR,Y ⊗OY
ÔY ,

where OB+
dR,Y is the usual de Rham period sheaf as considered in [57]. The

Hodge–de Rham period zdR ∈OB+
dR,Y (Yx) measures the position of the Hodge

filtration

ω|Yx
=s · ÔYx

⊂H1
dR(A)⊗OY

ÔB+
dR,Yx

ιdR
↪→H1

ét(A)⊗Ẑp,Y
ÔB+

dR,Yx

α−1
∞−−→∼ (ÔB+

dR,Yx
· t−1)⊕2.

The Hodge-Tate period ẑ∈ ÔY (Yx)⊂OB+
dR,Y (Yx) measures the position of the

Hodge-Tate filtration

ω−1|Yx
= s−1 · ÔYx

⊂H1
ét(A)⊗Ẑp,Y

ÔB+
dR,Yx

α−1
∞−−→∼ (ÔB+

dR,Yx
· t−1)⊕2.

Using these periods, and recalling our notation OΔ,Yx
=OB+

dR,Yx
/(t) and defin-

ing ÔΔ,Yx
=OΔ,Yx

⊗OYx
ÔYx

, one can construct a Hodge decomposition

TpA⊗Ẑp,Y
ÔΔ,Yx

∼−→ (ω⊗OY
ÔΔ,Yx

)⊕ (ω−1⊗OY
ÔΔ,Yx

· t) (1.9)

where the projection onto the first factor is given by HTA (i.e., the inclusion
of the first factor is a section of HTA), and so this gives a splitting of the
Hodge-Tate filtration.

However, for the purposes of using this splitting to construct a differential
operator, there is a technical issue that there is no natural way to define a
connection on ÔB+

dR,Y , precisely because it contains a copy of the p-adically

completed structure sheaf ÔY : the pullback ÔY is (essentially) the structure
sheaf of the perfectoid space Ŷ ∼Y associated with Y, and there are no nontrivial
differentials on perfectoid spaces since differentials are infinitely divisible, and
hence 0 in the p-adic completion.
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There are two ways to remedy this. One is to instead replace (1.9) with
another splitting

TpA⊗Ẑp,Y
OΔ,Yx

∼−→ (ω⊗OY
OΔ,Yx

)⊕L, (1.10)

where L is a free OΔ,Yx
-module of rank 1. This splitting is constructed by using

the natural “horizontal” embedding ẑ∈ ÔYx
⊂OΔ,Yx

. Now the projection onto
the first factor is not given by HTA, but instead its kernel is horizontal in the
sense that

∇w(L)⊂L

for any section w of Ω1
Y ⊗OY

OΔ,Yx
. Moreover, (1.10) recovers the usual Hodge-

Tate decomposition upon applying the natural map

θ :OΔ,Yx
� ÔYx

,

where ÔYx
denotes the p-adically completed structure sheaf (and θ is analogous

to Fontaine’s universal cover θ :B+
dR � Cp)

TpA⊗Ẑp,Y
ÔYx

∼−→ (ω⊗OY
ÔYx

)⊕ (ω̂Yx
(1)). (1.11)

The other approach is to instead construct intermediate period sheaves of
“nearly holomorphic coefficients”

OΔ,Yx
⊂O�

Δ,Yx
⊂O†

Δ,Yx
⊂ÔΔ,Yx

,

where O†
Δ contains the Hodge-Tate period ẑ and so is large enough to con-

struct a Hodge splitting (essentially one just adjoins a few sections in ÔΔ,Yx

to OΔ,Yx
), and on which one can also extend the natural connection on OΔ

(namely by declaring that ∇(ẑ)= 0, and showing that this gives rise to a well-

defined connection on O†
Δ,Yx

since ẑ is transcendental over OΔ). One can then

define a splitting like (1.10) using O†
Δ,Yx

, and consequently construct a p-adic

Maass-Shimura operator with coefficients in O†
Δ,Yx

; one can even show that this
differential operator is defined over the smaller sheaf of coefficients O�

Δ,Yx
.

Both approaches have their virtues: while the first approach stays within the
smaller period sheaf OΔ,Yx

, it requires the use of Fontaine’s map θ in order to
recover a true Hodge-Tate decomposition, whereas the second requires enlarging
(slightly) to O�

Δ,Yx
but then does not require the use of θ. While the p-adic

Maass-Shimura operators arising from each approach are different, they satisfy
the same algebraicity properties at CM points and are both equal in value (after
normalizing by a p-adic period) to the value of the complex Maass-Shimura
operator (normalized by a complex period) at CM points. Hence, either Maass-
Shimura operator can be used in order to construct our p-adic L-function.



16 CHAPTER 1

We will follow the first approach in this outline in the introduction. Now
we can define a p-adic Maass-Shimura operator d with respect to the splitting
(1.10). Since (1.11) recovers the relative Hodge-Tate decomposition, it is induced
at CM points by the algebraic CM splitting, and so as in Katz’s theory one can
show (using the horizontalness of (1.10)) that for an algebraic modular form
w∈ω⊗k(Y ), writing

w|Yx
= f ·ω⊗k

can, f ∈OΔ,Yx
(Yx), F · (2πidz)⊗k, F ∈Ohol(H+),

where Ohol denotes the sheaf of (complex) holomorphic function and H+→Y
the complex universal cover (i.e., the complex upper half-plane), we have that
the value

(θ ◦ dj)f(y)/Ωp(y)k+2j

at a CM point y ∈Yx is an algebraic number for an appropriate p-adic period
Ωp(y) (depending on y), and in fact is equal (in Q) to the algebraic number

djF (y)/Ω∞(y)k+2j

at the same CM point y ∈Yx for an appropriate complex period Ω∞(y) (only
depending on the image of y under the natural projection Y→Y ):

(θ ◦ dj)f(y)/Ωp(y)k+2j = djF (y)/Ω∞(y)k+2j . (1.12)

The key fact for proving this algebraicity is that the fiber OΔ,Yx
(y) contains a

unique copy of Qp by Hensel’s lemma, and so composition

Qp⊂OΔ,Yx
(y)

θ� Cp

is the natural inclusion. Then since the specialization ẑ(y)∈Qp, we have

θ(ẑ(y))= ẑ(y),

and so
(θ ◦ dj)f(y)= θ(djf(y))= djf(y),

and this latter value is equal (after normalizing by periods) to

djf(y)

since both (1.10) and the complex analytic Hodge decomposition are both
induced by the CM splitting at y.

It is the algebraicity of θ ◦ dj at CM points, and moreover the fact that it is
equal in value to complex Maass-Shimura derivatives, which makes it applicable
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to questions regarding interpolation of critical L-values and hence construction
of p-adic L-functions. Ultimately, for the construction of the latter, it is necessary
to understand the analytic behavior of

(θ ◦ dj)f

around CM points y, and here the framework for understanding such analytic
properties is provided by qdR-expansions of modular forms, given by a qdR-
expansion map

ω⊗k|Yx

ω⊗k
can−−−→∼ ykdROYx

qdR−exp
↪→ ÔYx

�qdR− 1�⊂OΔ,Yx

ω⊗k
can−−−→∼ ω⊗k⊗OY

OΔ,Yx
.

(1.13)

A key fact is that on the supersingular locus Yss⊂Yx, (1.13) coincides with the
natural inclusion

ω|Yss ↪→ω⊗OY
OB+

dR,Yss

mod t−−−−−→ω⊗OY
OΔ,Yss , (1.14)

which is induced by the composition

OY ⊂OB+
dR,Y

mod t−−−−−→OΔ

which turns out to be an inclusion. In fact, recalling that ÔY denotes the p-adic
completion of the structure sheaf OY , we have a natural inclusion

ÔY�qdR− 1�⊂OΔ

which is compatible with the natural connections on each sheaf, and which is in
fact an equality on Yss:

ÔYss�qdR− 1�=OΔ,Yss .

Hence we see that, at least on the supersingular locus Yss, qdR provides the
correct coordinate when viewing a rigid modular form

w∈ω⊗k(Yss)⊂ (ω⊗OY
OΔ,Yss)⊗k(Yss)

ω⊗k
can−−−→∼ OΔ,Yss(Yss)

as a “nearly rigid function.” The coordinate

qdR ∈OΔ,Yx
(Yx)

plays the role analogous to that of the Serre-Tate coordinate, and in fact the qdR-
expansion of a modular form recovers the Serre-Tate expansion upon restricting
to YIg (due to the fact that ωcan|YIg =ωKatz

can ).
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In fact, one can write down an explicit formula for θ ◦ dj in terms of qdR-
coordinates

θ ◦ dj =
j∑
i=0

(
j

i

)(
j+ k− 1

i

)
i!

(
−θ(ydR)

ẑ

)i
θ ◦
(
qdRd

dqdR

)j−i
. (1.15)

On YIg, as we noted before, ẑ=∞ and so we have

(θ ◦ dj)|YIg = θ ◦
(
qdRd

dqdR

)j
|YIg = θ ◦ θjAS = θjAS

where the last equality follows from the fact that

dqdR
qdR
|YIg = dzdR|YIg = dT |YIg

and that

OYx
⊂OΔ,Yx

θ� ÔYx

is the natural completion map. Hence, again restricting to YIg⊂Yx, we recover
Katz’s theory.

In order to construct the p-adic L-function, we consider the image of a mod-
ular form

w∈ω⊗k(Y )

under the qdR-expansion map (1.13), and study the growth of the coefficients of
its qdR-expansion around supersingular CM points y:

ω⊗k|Yss
qdR−exp−−−−−→ÔYss�qdR− 1�

stalk at y−−−−−→ÔYss,y�qdR− 1�= ÔYss,y�q
1/pb

dR − 1�

for any b∈Q, where the last equality is just a formal change of variables. By the
remarks above involving (1.13) and (1.14), since y ∈Yss, we see that the above
map coincides with the natural map

ω⊗k|Yss ↪→ω⊗k ⊗OY
OΔ,Yss

stalk at y−−−−−→ω⊗k ⊗OY
OΔ,Yss,y

and hence is compatible with the natural connections on all sheaves; in partic-
ular, this compatibility shows that the formula (1.15) gives the action of the
p-adic Maass-Shimura operator θj ◦ dj . One of the main results of Section 6 is
that for appropriate

b∈Q
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(a priori depending on y, but we later show that b is the same for all y in a certain
CM orbit), in fact we have that the above map factors through

ω⊗k|Yss→Ô+
Yss,y�q

1/pb

dR − 1�[1/p]. (1.16)

Proving the integrality of the q
1/pb

dR -expansion involves the consideration of
another Lubin-Tate period zLT coming from the Rapoport-Zink uniformization
of the infinite-level supersingular locus LT∞→Yss by the Lubin-Tate space
LT∞ at infinite level. This aforementioned period comes from the Grothendieck-
Messing crystalline period map LT∞→P1 associated to this Rapoport-Zink
space. Viewing LT∞ as an object in the proétale site of Y , one can in fact show
that there is a canonical isomorphism

OΔ,LT∞
∼= ÔLT∞�zLT− z̄LT�, (1.17)

where z̄LT denotes zLT viewed as a section in ÔLT∞ , which in turn has a natural
(horizontal) embedding into OΔ,LT∞ . From the above isomorphism, one can
show another natural isomorphism

OΔ,Yss ∼= ÔYss�qdR− 1�= ÔYss�q
1/pb

dR − 1�. (1.18)

Using a variant of the Dieudonné-Dwork lemma for integrality of power series,
one can show that integrality of coefficients (at certain geometric stalks) of

the power series expansion (1.17) transfer to integrality in the q
1/pb

dR -expansion
(1.18).

Given
w∈ω⊗k(Y ),

we can construct the p-adic L-function associated with w by considering sums
of the images

w(q
1/pb

dR )y

of w under (1.16), where the subscript y denotes the stalks at various orbits of
CM points y on Yss, then applying the normalized Maass-Shimura operators

pbjθ ◦ dj

using the formula (1.15). By the formula, we see that as long as p-adic valuations

|ydR(y)|, |ẑ(y)|

of the specializations
ydR(y), ẑ(y)
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of the p-adic periods
ydR, ẑ

satisfy certain bounds, then images in the stalks

pbj(θ ◦ dj)w(q1/pbdR )y

“converge” to some p-adic continuous function in j ∈Z/(p− 1)×Zp, in a sense
we now make more precise. Define the stabilization by

w�(q
1/pb

dR )y =w(q
1/pb

dR )y − 1

p

p−1∑
j=0

w(ζjpq
1/pb

dR )y. (1.19)

We also denote
w�(q

1/pb

dR )y = f �(q
1/pb

dR )y ·w⊗k
can,y. (1.20)

One can show directly from (1.15) that

pbj(θ ◦ dj)w�(q1/pbdR )y

is a p-adic continuous function of j ∈Z/(p− 1)×Zp. Then for any j0 ∈Z≥0 we
have

lim
m→∞ pb(j0+p

m(p−1))(θ ◦ dj0+pm(p−1))w(q
1/pb

dR )y = pbj0(θ ◦ dj0)w�(q1/pbdR )y. (1.21)

Roughly, summing

pbj(θ ◦ dj)w�(q1/pbdR )y

against anticyclotomic Hecke characters χ evaluated at ideals corresponding to y
for y over an appropriate CM orbit (associated with an order O of an imaginary
quadratic field K) gives the construction of our p-adic continuous L-function.
In reality, we will be able to bound the p-adic periods at CM points y′ which
are related to the natural CM points y associated with O via

y′ ·
(

1 0
0 q

)
= y,

where q= p if p> 2 and q=8 if p=2. As a consequence, the q
1/q
dR -expansions at

the O-orbit of y′ are well-behaved, and we then construct our p-adic L-function
by summing

w′
j(q

1/q
dR )y′
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against anticyclotomic Hecke characters evaluated at an O orbit of y′, where

w′
j =

(
1 0
0 q

)∗
(qj(θ ◦ dj)w�)

is a certain Hecke translate of the Maass-Shimura derivatives, which allows us
to relate our p-adic L-function to period sums over CM orbits of y, and hence
obtain our interpolation property using the algebraicity theorem (1.12). Namely,
values of the p-adic L-function in a certain range are equal to certain algebraic
normalizations of central critical L-values associated with the Rankin-Selberg
family (w,χ).

We end this outline with a few remarks on how we obtain the p-adic Wald-
spurger formula in Section 9, focusing on the case when k=2. A key property
of the p-adic Maass-Shimura operator dj is that it sends p-adic modular forms
of weight k in the sense of (1.7) to modular forms of weight k+2j. Hence the
limit

lim
m→∞ pbp

m(p−1)(θ ◦ dpm(p−1))w�(qdR)y

converges to a p-adic modular form of weight 0 on some small affinoid neighbor-
hood of y, for some subgroup

Γ⊂GL2(Zp).

Let Kp denote the p-adic completion of K with respect to a fixed embedding

Q ↪→Qp.

In fact, one can show that on some affinoid

U ⊃YIg �C,

where C ⊂Y is a locus of CM points associated with K such that

Gal(C/C)∼=O×
Kp
⊂GL2(Zp)

(induced by some embedding

Kp ↪→M2(Zp);

the subadic space C itself does not depend on this choice of embedding), the
limit

G := lim
m→∞ pbp

m(p−1)(θ ◦ dj)w�(qdR)|U (1.22)
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converges to a p-adic modular form of weight 0 on U for some Γ with

B⊂Γ⊂GL2(Zp).

In particular, by restriction it induces a rigid function on YIg �U , which is of
weight 0 for B on YIg and of weight 0 for Γ on U . This means that G descends
to a section G on an affinoid open

U ⊂Y ′

for some finite étale cover
Y ′→Y ;

here we use the fact that while

YIg⊂Y

is not affinoid open, its image on any finite cover is isomorphic to a copy of the
ordinary locus

Y ord⊂Y,

which, being the complement of a finite union of residue discs (the supersingular
locus), is an (admissible) affinoid open. In particular, G is rigid on U , and one
can show using Coleman’s theory of integration that on

U ∩Y ′ord,

G is in fact equal to the formal logarithm

logw� |U∩Y ′ord

for some p-stabilization w� of the newform w. (Here p-stabilization denotes
the image of w under some explicit Hecke operator at p.) Then the rigidity
of G on U implies that dG is a rigid 1-form on U , and so by the theory of
Coleman integration the rigid primitive G on U is unique up to constant, which
implies

G= logw� |U . (1.23)

Since the relevant special value of our p-adic L-function corresponds to evaluat-
ing (1.22) on an orbit of the CM point y, one sees that we arrive at our p-adic
Waldspurger formula by evaluating (1.23) at an appropriate Heegner point.
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1.3 MAIN RESULTS

We now finally state our main results. We adopt the notation of Chapter 8, and
the reader should refer to there for precise definitions and assumptions.

Fix an algebraic closure Q of Q, and view all number fields as embedded
in Q. Let p denote a prime number. Fix an algebraic closure Qp of Qp, and fix
embeddings

i∞ :Q ↪→C, ip :Q ↪→Qp.

Fix an imaginary quadratic extension K/Q. Now suppose the prime p is inert
or ramified in K, and let w be a new eigenform (i.e., a newform or Eisenstein
series) of weight k≥ 2 for Γ1(N) and nebentype εw, where p �N,N ≥ 4. Let ap(w)
denote the Hecke eigenvalue of Tp. Suppose that

1. k is even or p> 2, and
2. N satisfies the Heegner hypothesis, i.e., that each prime �|N splits or ramifies

in K, and if �2|N then � splits in K.

Let A be a fixed elliptic curve with CM by an order Oc⊂OK of conductor p � c
also with (c,NdK)= 1, let

α :OKp

∼−→TpA

be a choice of full p∞-level structure as in Choice 8.6, let

y=(A,α)∈C(Kp,OKp
)

and let Ωp(y) and Ω∞(y) be the associated periods as in Definition 5.45, and
also let

w|H+ =F · (2πidz)⊗k.

Then for Hecke characters χ∈Σ, in the notation of Chapter 8, Section 8.2,
we have that the values L(F, χ−1, 0) are central critical. On a certain subset
Σ+⊂Σ, characters satisfy root number conditions so that these central critical
L-values are nonvanishing, and so present as candidates for interpolation. Given
an algebraic Hecke character χ, let χ̌ denote its p-adic avatar, and let NK :A×

K→
C× denote the norm character, which has infinity type (1, 1). We let Σ̌ denote

the p-adic closure of the p-adic avatar Σ̌+ (in the space of functions on A
(p∞)
K ,

equipped with the uniform convergence topology) of Σ+: we note that one can

naturally view Σ̌⊂ Σ̌. Finally, suppose (A, t, α) is a suitable CM point on infinite
level (see Choice 8.6), let

θ(Ωp)(A, t, α)∈C×
p

be the period as in Definition 5.45 (see also Propositions 7.3 and 7.7), so that
denoting by p the prime of K above p, #κ=#O/p the order of the residue field
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at p, and e the ramification index of Kp/Qp (= 1 if p is inert in K, = 2 if p is
ramified in K), we have

|θ(Ωp)(A, t, α)|= |2|p
1

p−1− 1
e(#κ−1) =

{
|2|p

p

p2−1 p inert in K

|2|p 1
2(p−1) p ramified in K.

Let
Ω(A, t)∈Q

×

be the period as in Definition 8.10. We collect our results into one Main Theorem.

Theorem 1.1 (Theorems 8.9, 8.14, 9.10). There is a p-adic continuous function

Lp,α(w, ·) : Σ̌+→Cp

that satisfies the following interpolation property. Let q= p if p> 2 and q=8 if
p=2. Then for all χ∈Σ+, when w is a newform we have

Lp,α(w, χ̌)= (qθ(Ωp)(A, t, α))
k+2j

Ω(A, t)j
·Ξp(w,χ) · ip

(
Lalg(F, χ−1, 0)

)
(1.24)

and when w is an Eisenstein series (F =Eψ1,ψ2

k , see Definition 8.3) we have

Lp,α(w, χ̌)= (qθ(Ωp)(A, t, α))
k+2j

Ω(A, t)j
·Ξp(w,χ) · ip

(
Lalg(Eψ1,ψ2

k , χ−1, 0)
)
, (1.25)

where Lalg(F, χ−1, 0) and Lalg(Eψ1,ψ2

k , χ−1, 0) are certain algebraic normaliza-
tions of square roots of the Rankin-Selberg central L-value L((πw)K ×χ−1, 1/2)

and Hecke central L-value Lalg(Eψ1,ψ2

k , χ−1, 0) as defined in Definition 8.5, and

Ξp(w,χ)=

{
1− ap(w)2χ−1(p)p−1

p+1 − 1
p2 p inert in K

1− ap(w)χ−1(p)p−1
p − 1

p2 p ramified in K.

We have the following “ p-adic Waldspurger formula”: For any χ∈ Σ̌−⊂ Σ̌+

of infinity type (k− (j+1), j+1) where 0≤ j≤ r := k− 2, that

Lp,α(w, χ̌)= (qθ(Ωp)(A, t, α))
k−2(j+1)

Ω(A, t)−(j+1)
Ξp(w, χ̌) · c

−j

j!
AJF (ΔχN

−1
K
)(w∧ωjA0

ηr−jA0
),

where
AJF (ΔχN

−1
K
)(w∧ωjA0

ηr−jA0
)
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is the p-adic Abel-Jacobi image of a specific generalized Heegner cycle as defined
in Chapter 10, Section 9.2 (which depends on some fixed elliptic curve A0

with CM by OK). In particular, we have the following application toward the
Beilinson-Bloch conjecture. Let χ take values in E. In particular, if

Lp,α(w, χ̌) �=0, (1.26)

then

εwεχN−1
K ΔχN

−1
K
∈ εwεχN

−1
K
CHr+1

0 (Xr)(F )
χN

−1
K

E

is nontrivial, where the right-hand side denotes the εwεχN
−1
K
-isotypic component

of an appropriate Chow group for the underlying (Chow) motive attached to
(w,χ−1).

When k=2, we have a simpler statement. Let Hc denote the ring class field

associated with the order Oc. For any character χ : C�(Oc)→Q
×
p with ŇKχ∈

Σ̌−⊂ Σ̌+, we have

Lp,α(w, ŇKχ)=Ω(A, t)Ξp(w, Ňkχ) · logw PK(χ)

where PK(χ)∈ Jac(Y1(N))(Hc) is the Heegner point as defined in Section 9.
In particular, if

Lp,α(w, ŇKχ) �=0,

then PK(χ) projects via a modular parametrization to a non-torsion point in
Aw(Hc)

χ, where Aw/Q is the GL2-type abelian variety associated uniquely up
to isogeny with w. Then by the Gross-Zagier formula and Kolyvagin, we have

rankZAw(Hc)
χ=dimQ Aw =ords=1 L(Aw, χ, s).

1.4 SOME REMARKS ON OTHER WORKS IN

SUPERSINGULAR IWASAWA THEORY

Finally, we point out that there has been much groundbreaking work done in
supersingular Iwasawa theory by many other authors. We give a brief summary
of some of these results. In our setting of Iwasawa theory for imaginary quadratic
fields in which p is inert or ramified, Rubin ([54]), following methods of Katz
and invoking the machinery of Coleman power series, succeeded in construct-
ing 1-variable continuous p-adic L-functions in the Lubin-Tate direction (i.e.,
for characters of type (k, 0) and varying k∈Z/(p− 1)×Zp). In [53], he also
formulated analogues of supersingular main conjectures assuming certain con-
jectures on the structure of the Iwasawa module of universal norms of local
units. Agboola-Howard ([1]) also developed anticyclotomic main conjectures
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for imaginary quadratic fields, assuming the aforementioned conjecture on the
structure of local units (though even with this assumption, they did not con-
struct an analytic anticyclotomic p-adic L-function, as we do in this book).
Schneider-Teitelbaum ([63]), using their p-adic Fourier theory and Coleman
power series, also constructed distributions interpolating Hecke L-values over
imaginary quadratic fields in which p is inert or ramified.

In the GL2-setting, particularly for newforms attached to elliptic curves,
there has also been great progress, although not directly related to our situa-
tion. Previous works have mainly addressed the Iwasawa theory of families of
twists V ⊗χ where the weight of V is greater than the weight of the characters
χ. In this case the Galois representations in consideration are supersingular at
p exactly when V itself is supersingular at p, since the Hodge-Tate weights of V
dominate those of χ. In contrast, we address the case where the weight of the χ’s
is at least the weight of V , and hence the twists are supersingular precisely when
the character χ is supersingular at p (i.e., p is inert or ramified in K), since the
Hodge-Tate weights of χ dominate those of V . The former situation, however,
already has potent applications to the Birch and Swinnerton-Dyer conjecture.
For V attached to elliptic curves over Q, see the fundamental work of Pol-
lack ([50]) who introduced “+/−” constructions in order to produce 1-variable
(cyclotomic) measures from the classical distributions attached to elliptic curves
with good supersingular reduction at p (the construction of which is due to Vǐsik
[66], Amice-Vélu [2], and Mazur-Tate-Teitelbaum [47]). Kobayashi, soon after
Pollack, gave an algebraic construction of these “+/−” p-adic L-functions (see
[39]) by defining a suitable “+/−” Coleman map and evaluating on Kato’s Euler
system (see [32]). Later, Sprung ([65]) extended this to the ap �=0 case by con-
structing an appropriate generalization of the “+/−” Coleman map. From their
algebraic constructions of p-adic L-functions, Kobayashi and Sprung were also
able to formulate appropriate “+/−” cyclotomic main conjectures in the non-
CM case, and use Kato’s Euler system to prove one divisibility of these main
conjectures. Pollack-Rubin soon afterward formulated and proved the CM ana-
logue of this main conjecture ([51]), building on Kobayashi’s construction and
Rubin’s previous work on the Euler system of elliptic units ([55]). Kim was also
able to generalize Kobayashi’s constructions to 2 variables in certain height 1 set-
tings ([38]). In more general settings, for elliptic curves there is also the work of
Wan ([67]), who proved the supersingular analogue of Skinner-Urban’sGL2 main
conjecture ([64]), and of Castella-Wan ([11]), who formulated and proved +/−
analogues of Perrin-Riou’s main conjecture on Heegner points ([49]). See also
the works addressing more general settings such as that of Lei-Loeffler-Zerbes
([45]), Büyükboduk-Lei ([7]), and Castella-Çiperiani-Skinner-Sprung ([10]), who
also addressed the setting of a general elliptic modular form.
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