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Lockdown Mathematics:  
A Historical Perspective

Viktor Blåsjö

Isolation and Productivity

“A mathematician is comparatively well suited to be in prison.” That 
was the opinion of Sophus Lie, who was incarcerated for a month in 
1870. He was 27 at the time. Being locked up did not hamper his re-
search on what was to become Lie groups. “While I was sitting for a 
month in prison . . ., I had there the best serenity of thought for devel-
oping my discoveries,” he later recalled [11, pp. 147, 258].

Seventy years later, André Weil was to have a very similar experi-
ence. The circumstances of their imprisonments—or perhaps the lit-
erary tropes of their retellings—are closely aligned. Having traveled 
to visit mathematical colleagues, both found themselves engrossed in 
thought abroad when a war broke out: Lie in France at the outbreak of 
the Franco-Prussian War, and Weil in Finland at the onset of World 
War II. They were both swiftly suspected of being spies, due to their 
strange habits as eccentric mathematicians who incessantly scribbled 
some sort of incomprehensible notes and wandered in nature without 
any credible purpose discernible to outsiders. Both were eventually 
cleared of suspicion upon the intervention of mathematical colleagues 
who could testify that their behavior was in character for a mathemati-
cian and that their mysterious notebooks were not secret ciphers [11, 
pp. 13–14, 146–147; 13, pp. 130–134].

Weil was deported back to France, where he was imprisoned for 
another few months for skirting his military duties. Like Lie, he had a 
productive time in prison. “My mathematics work is proceeding beyond 
my wildest hopes, and I am even a bit worried—if it’s only in prison 
that I work so well, will I have to arrange to spend two or three months 
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locked up every year?” “I’m hoping to have some more time here to 
finish in peace and quiet what I’ve started. I’m beginning to think that 
nothing is more conducive to the abstract sciences than prison.” “My 
sister says that when I leave here I should become a monk, since this 
regime is so conducive to my work.”

Weil tells of how colleagues even expressed envy of his prison re-
search retreat. “Almost everyone whom I considered to be my friend 
wrote me at this time. If certain people failed me then, I was not dis-
pleased to discover the true value of their friendship. At the beginning 
of my time in [prison], the letters were mostly variations on the follow-
ing theme: ‘I know you well enough to have faith that you will endure 
this ordeal with dignity.’ . . . But before long the tone changed. Two 
months later, Cartan was writing: ‘We’re not all lucky enough to sit 
and work undisturbed like you.’ ” And Cartan was not the only one: 
“My Hindu friend Vij[ayaraghavan] often used to say that if he spent six 
months or a year in prison he would most certainly be able to prove 
the Riemann hypothesis. This may have been true, but he never got the 
chance.”

But Weil grew weary of isolation. He tried to find joy in the little 
things: “[In the prison yard,] if I crane my neck, I can make out the 
upper branches of some trees.” “When their leaves started to come out 
in spring, I often recited to myself the lines of the Gita: ‘Patram puspam 
phalam toyam . . .’ (‘A leaf, a flower, a fruit, water, for a pure heart 
everything can be an offering’).” Soon he was reporting in his letters 
that “My mathematical fevers have abated; my conscience tells me that, 
before I can go any further, it is incumbent upon me to work out the 
details of my proofs, something I find so deadly dull that, even though I 
spend several hours on it every day, I am hardly getting anywhere” [13, 
pp. 142–150].

Judging by these examples, then, it would seem that solitary con-
finement and a suspension of the distractions and obligations of daily 
life could be very conducive to mathematical productivity for a month 
or two, but could very well see diminishing returns if prolonged. Of 
course, it is debatable whether coronavirus lockdown is at all analogous 
to these gentleman prisons of yesteryear. When Bertrand Russell was 
imprisoned for a few months for pacifistic political actions in 1918, he 
too “found prison in many ways quite agreeable. . . . I read enormously; 
I wrote a book, Introduction to Mathematical Philosophy.” But his diagnosis 
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of the cause of this productivity is less relatable, or at least I have yet to 
hear any colleagues today exclaiming about present circumstances that 
“the holiday from responsibility is really delightful” [9, pp. 29–30, 32].

Mathematics Shaped by Confinement

“During World War II, Hans Freudenthal, as a Jew, was not allowed to 
work at the university; it was in those days that his interest in mathe-
matics education at primary school level was sparked by ‘playing school’ 
with his children—an interest that was further fueled by conversations 
with his wife.” This observation was made in a recent editorial in Edu-
cational Studies in Mathematics [1]—a leading journal founded by Hans 
Freudenthal. Coronavirus lockdown has put many mathematicians in 
a similar position today. Perhaps we should expect another surge in 
interest in school mathematics among professional mathematicians.

Freudenthal’s contemporary Jakow Trachtenberg, a Jewish engineer, 
suffered far worse persecution, but likewise adapted his mathemati-
cal interests to his circumstances. Imprisoned in a Nazi concentration 
camp without access to even pen and paper, he developed a system of 
mental arithmetic. Trachtenberg survived the concentration camp and 
published his calculation methods in a successful book that has gone 
through many printings and has its adherents to this day [12].

Another Nazi camp was the birthplace of “spectral sequences and 
the theory of sheaves . . . by an artillery lieutenant named Jean Leray, 
during an internment lasting from July 1940 to May 1945.” The cir-
cumstances of the confinement very much influenced the direction of 
this research: Leray “succeeded in hiding from the Germans the fact 
that he was a leading expert in fluid dynamics and mechanics. . . . He 
turned, instead, to algebraic topology, a field which he deemed unlikely 
to spawn war-like applications” [10, pp. 41–42].

An earlier case of imprisonment shaping the course of mathematics 
is Jean-Victor Poncelet’s year and a half as a prisoner of war in Rus-
sia. Poncelet was part of Napoleon’s failed military campaign of 1812 
and was only able to return to France in 1814. During his time as a 
prisoner, he worked on geometry. Poncelet had received a first-rate 
education in mathematics at the École Polytechnique, and his role in 
the military was as a lieutenant in the engineering corps. In his Rus-
sian prison, he did not have access to any books, so he had to work out 
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all the mathematics he knew from memory. Perhaps it is only because 
mathematics lends itself so well to being reconstructed in this way that 
Poncelet ended up becoming a mathematician; other scientific or engi-
neering interests would have been harder to pursue in isolation without 
books. The absence of books for reference would also naturally lead to 
a desire to unify geometrical theory and derive many results from a few 
key principles in Poncelet’s circumstances. This is a prominent theme 
in early nineteenth-century geometry overall; it was not only the im-
prisoned who had this idea. But it is another sense in which Poncelet 
could make a virtue out of necessity with the style of mathematics he 
was confined to during his imprisonment.

The same can be said for another characteristic of early nineteenth-
century geometry, namely, the prominent role of visual and spatial in-
tuition. This too was a movement that did not start with Poncelet, but 
was fortuitously suited to his circumstances. Consider, for instance, 
the following example from the Géométrie descriptive of Monge, who had 
been one of Poncelet’s teachers at the École Polytechnique. Monge was 
led to consider the problem of representing three-dimensional objects 
on a plane for purposes of engineering, but he quickly realized that such 
ideas can yield great insights in pure geometry as well, for instance, in 
the theory of poles and polars, which is a way of realizing the projective 
duality of points and lines. The foundation of this theory is to establish 
a bijection between the set of all points and the set of all lines in a plane. 
Polar reciprocation with respect to a circle associates a line with every 
point and a point with every line as follows. Consider a line that cuts 
through the circle (Figure 1). It meets the circle at two points. Draw 
the tangents to the circle through these points. The two tangents meet 
in a point. This point is the pole of the line. Conversely, the line is the 
polar of the point.

But what about a line outside the circle (or, equivalently, a point 
inside the circle, Figure 2)? Let L be such a line. For every point on L 

P

L

Figure 1. Polar reciprocation with respect to a 
circle: simplest case. Points P outside the circle 
are put in one-to-one correspondence with lines L 
intersecting the circle.
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there is a polar line through the circle, as above. We claim that all these 
polar lines have one point in common, so that this point is the natural 
pole of L. Monge proves this by cleverly bringing in the third dimen-
sion. Imagine a sphere that has the circle as its equator. Every point on 
L is the vertex of a tangent cone to this sphere. The two tangents to the 
equator are part of this cone, and the polar line is the perpendicular 
projection of the circle of intersection of the sphere and the cone. Now 
consider a plane through L tangent to the sphere. It touches the sphere 
at one point P. Every cone contains this point (because the line from any 
point on L to P is a tangent to the sphere and so is part of the tangent 
cone). Thus, for every cone, the perpendicular projection of the inter-
section with the sphere goes through the point perpendicularly below 
P, and this is the pole of L, and L is the polar of this point. QED

One is tempted to imagine that Poncelet was forced to turn to this 
intuitive style of geometry due to being deprived of pen and paper, just 
as Trachtenberg had to resort to mental arithmetic. But this is a half-
truth at best, for Poncelet evidently did have crude writing implements 
at his disposal: the prisoners were allocated a minimal allowance, for 
which he was able to obtain some sheets of paper, and he also managed 
to make his own ink for writing [5, p. 20].

Ibn al-Haytham is another example of a mathematician starting out 
as an engineer and then turning increasingly to mathematics while in 
confinement. Early in his career, he devised an irrigation scheme that 
would harness the Nile to water nearby fields. When his plans proved 

P

L

Figure 2. Polar reciprocation with 
respect to a circle: trickier case. 
Points P inside the circle are put in 
one-to-one correspondence with 
lines L that don’t intersect the circle. 
The mapping works because of the 
collinearity of the meeting points 
of the tangents: a nontrivial result 
that becomes intuitively evident by 
introducing the third dimension 
and viewing the figure as the cross 
section of a configuration of cones 
tangent to a sphere.
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unworkable, “he feigned madness in order to escape the wrath of the 
Caliph and was confined to a private house for long years until the 
death of the tyrannical and cruel ruler. He earned his livelihood by 
copying in secret translations of Euclid’s and Ptolemy’s works” [7, p. 
156]. Euclidean geometry and Ptolemaic astronomical calculations are 
certainly better suited to house arrest scholarship than engineering 
projects. One may further wonder whether it is a coincidence that Ibn 
al-Haytham, who was forced to spend so many sunny days indoors, also 
discovered the camera obscura and gave it a central role in his optics.

From these examples, we can conclude that if coronavirus measures 
are set to have an indirect impact on the direction of mathematical re-
search, it would not be the first time lockdown conditions have made 
one area or style of mathematics more viable than another.

Newton and the Plague

Isaac Newton went into home isolation in 1665, when Cambridge 
University advised “all Fellows & Scholars” to “go into the Country 
upon occasion of the Pestilence,” since it had “pleased Almighty God 
in his just severity to visit this towne of Cambridge with the plague” 
[14, p. 141]. Newton was then 22 and had just obtained his bachelor’s 
degree. His productivity during plague isolation is legendary: this was 
his annus mirabilis, marvelous year, during which he made a number of 
seminal discoveries. Many have recently pointed to this as a parable for 
our time, including, for instance, the Washington Post [3]. The timeline 
is none too encouraging for us to contemplate: the university effec-
tively remained closed for nearly two years, with an aborted attempt 
at reopening halfway through, which only caused “the pestilence” to 
resurge.

It is true that Newton achieved great things during the plague years, 
but it is highly doubtful whether the isolation had much to do with it, or 
whether those years were really all that much more mirabili than others. 
Newton was already making dramatic progress before the plague broke 
out and was on a trajectory to great discoveries regardless of public 
health regulations. Indeed, Newton’s own account of how much he ac-
complished “in the two plague years of 1665 & 1666” attributes his 
breakthroughs not to external circumstances but to his inherent intel-
lectual development: “For in those days I was in the prime of my age for 
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invention & minded Mathematicks & Philosophy more then at any time 
since” [15, p. 32].

“Philosophy” here means physics. And indeed, in this subject Newton 
did much groundwork for his later success during the plague years, but 
the fundamental vision and synthesis that we associate with Newtonian 
mechanics today was still distinctly lacking. His eventual breakthrough 
in physics depended on interactions with colleagues rather than isola-
tion. In 1679, Hooke wrote to Newton for help with the mathemati-
cal aspects of his hypothesis “of compounding the celestiall motions of 
the planetts of a direct motion by the tangent & an attractive motion 
towards the centrall body.” At this time, “Newton was still mired in 
very confusing older notions.” To get Newton going, Hooke had to ex-
plicitly suggest the inverse square law and plead that “I doubt not but 
that by your excellent method you will easily find out what that Curve 
[the orbit] must be.” Only then, “Newton quickly broke through to 
dynamical enlightenment . . . following [Hooke’s] signposted track” [2, 
pp. 35–37, 117].

Newton later made every effort to minimize the significance of 
Hooke’s role. Indeed, Hooke was just one of many colleagues who 
ended up on Newton’s enemies list. This is another reason why New-
ton’s plague experience is a dubious model to follow. Newton could be 
a misanthropic recluse even in normal times. When Cambridge was 
back in full swing, Newton still “seldom left his chamber,” contempo-
raries recalled, except when obligated to lecture—and even that he 
might as well have done in his chamber for “ofttimes he did in a manner, 
for want of hearers, read to the walls” [4, n. 11]. He published reluc-
tantly, and when he did, Newton “was unprepared for anything except 
immediate acceptance of his theory”: “a modicum of criticism sufficed, 
first to incite him to rage, and then to drive him into isolation” [14, 
pp. 239, 252]. With Hooke, as with so many others, it may well be that 
Newton only ever begrudgingly interacted with him in the first place 
for the purpose of proving his own superiority. But that’s a social influ-
ence all the same. Even if Hooke’s role was merely to provoke a sleeping 
giant, the fact remains that Newton’s Principia was born then and not in 
quarantine seclusion.

In mathematics, it is accurate enough to say that Newton “invented 
calculus” during the plague years. But he was off to a good start already 
before then, including the discovery of the binomial series. In optics, 
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Newton himself said that the plague caused a two-year interruption in 
his experiments on color that he had started while still at Cambridge 
[6, p. 31]. Perhaps this is another example of pure mathematics being 
favored in isolation at the expense of other subjects that are more de-
pendent on books and tools.

Home isolation also affords time for extensive hand calculations: a 
self-reliant mode of mathematics that can be pursued without library and 
laboratory. Newton did not miss this opportunity during his isolation. 
As he later recalled, “[before leaving Cambridge] I found the method of 
Infinite series. And in summer 1665 being forced from Cambridge by 
the Plague I computed ye area of ye Hyperbola . . . to two & fifty figures 
by the same method” [14, p. 98]. Newton’s notebook containing this 
tedious calculation of the area under a hyperbola to 52 decimals can be 
viewed at the Cambridge University Library website [8].
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