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Humans have prob ably studied minds informally for as long as minds have been around. 
 Psychological laboratories, in contrast, only began popping up at universities in the nine-
teenth  century. One of the first psy chol ogy labs was established by a professor at Harvard 

named William James (1842–1910). James used his lab mainly for teaching demonstrations as part of 
the first known psy chol ogy course ever ofered.

William James started of his  career as a  painter but quickly switched over to chemistry, then 
physiology, and fi nally ended up in medical school. Dissatisfied with medicine, he briefly followed in 
the footsteps of Darwin by joining an expedition to the Amazon as a naturalist, where he quickly 
discovered a deep dislike of jungles.  After a period in  Europe, supposedly spent studying the physiol-
ogy of  nervous systems, James ultimately got a position at Harvard as an instructor teaching com-
parative physiology. Soon afterward, the first course in psy chol ogy and its associated laboratory  were 
born.

From Physiologist to Cognitive Psychologist
James started studying medicine mainly  because his  father told him to, and he chose physiology as a 
focus to avoid having to deal with doctors and patients. He became intrigued, however, by the emerg-
ing research experiments relating sensations to neural cir cuits being developed in Germany. James’s 
first course on psy chol ogy was called “The Relations between Physiology and Psy chol ogy,” reflecting 
his early interest in linking brain mechanisms to  mental pro cesses. In fact, the main focus of this 
course was on the new experimental methods that German researchers developed to study “physio-
logical psy chol ogy” and “psychophysics.”

The starting point for psy chol ogy in the United States was thus based on experimental studies of 
sensation, perception, and the relationship between  mental experiences and biological mechanisms. 
James’s interests in psy chol ogy quickly shifted from understanding the mechanisms of mentality to 
identifying fundamental princi ples that described how all minds function. James attempted to ex-
plain  these princi ples in what is widely regarded as the first textbook on psy chol ogy, a lengthy text 
entitled The Princi ples of Psy chol ogy. The first princi ple James identified was, “the phenomena of 
habit in living beings are due to the plasticity of the organic materials of which their bodies are com-
posed” (James, 1890, v.1, p. 105). In other words, James claimed that the  things  people and other ani-
mals do and think on a regular basis are the result of physical changes in their  nervous system that 
have accumulated throughout their lives.  Those changes not only afect how you might walk and talk 
but also how you see the world and understand it.

In the first volume of Princi ples, James lays out how neural plasticity and habits afect conscious-
ness of the self, attention, conceptual thought, the perception of time, learning, and memory. His 
second volume extends  these ideas to explain imagination, spatial perception, production of volun-
tary actions, emotions, and reasoning. In attempting to understand and explain how minds work, 
James quickly identified many of the core pro cesses that are now the focus of cognitive research 
around the world.

Beginnings
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Cognition and Consciousness
Ironically, paternal attempts to lead James  toward a practical life in the field of medicine ultimately led 
him to pursue a  career that by the standards of that time was prob ably even less respectable than a 
 career as a  painter. James’s interest in  mental states quickly expanded into personal explorations of 
spiritualism and transcendent psychedelic states (often pharmaceutically induced). James famously 
rejected the idea that cognition could be understood mechanistically and instead argued that psy-
chol ogy should be the science of  mental states, especially consciously experienced “streams of 
thought.” That is not to say that James disregarded the role of the brain. The second chapter of Princi
ples is an extended discussion of brain function. And, as noted  earlier, James considered  human “hab-
its” to be the direct result of changes to  peoples’ brains. Nevertheless, from the Jamesian perspective, 
neural cir cuits serve mainly as channels that guide the ways in which your conscious states tend to 
flow, they do not determine what you think or the kinds of cognitions that might arise from  those 
states.

As you’ll see in the next several chapters, cognition continues to be central to our understanding 
of minds and be hav ior, forming the core of what distinguishes psy chol ogy as a scientific field. Mod-
ern cognitive research, however, tends to focus less on the experiential ele ments of thought that James 
thought  were critical and more on the collection,  organization, and manipulation of information. It 
has only been in the last  decade that cognitive scientists have begun to give James’s “first princi ple” the 
consideration it deserves. If your everyday activities and thought patterns are the cumulative out-
comes of physical changes in your neural pathways that have been building up since the time you 
 were born, then what does it mean to say that your brain (or mind) is like a biological computer or 
information pro cessor?  Because computers do NOT change their hardware based on how they are 
used. And so far, computers appear to experience nothing. What  really makes something cognitive? 
Are behavioral, neural, or experiential properties critical? Or is storage and manipulation of informa-
tion key? Following the path blazed by James, the next three chapters argue that be hav ior, brains, and 
consciousness are all fundamental components of cognition and to truly understand minds one 
needs to experimentally explore how all three change over time.
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The final tally: Watson with $77,147 and every one  else in the competition, combined, with $45,600. 
So ended humankind’s reign as master of the  television quiz show Jeopardy! (Figure 1.1)

Contestants on Jeopardy! must supply answers, in question form, that match specific clues 
from a wide range of categories, including pop culture, history, and science. To qualify for the show, 
 people have to pass a screening quiz and do well in practice games. Successful contestants have a 
phenomenal ability to rapidly retrieve answers that match the clues.

IBM’s Watson, a system that originally included a room- sized supercomputer, was developed to 
compete on Jeopardy! and win. The more impressive part of Watson’s  performance on Jeopardy!, 
however, was its ability to use spoken sentences to construct appropriate questions to the clues. Some 
of the clues involved puns, allusions, or obscure references, making them challenging for many 
 people, never mind a machine, to answer.

Watson difers from most apps in that it improves over time through a kind of trial- and- error 
learning; it’s not simply following predefined programs. According to its makers and marketers, Wat-
son is the first cognitive computer.

But what does it mean to say that a computer is cognitive? What would a computer have to do to 
qualify as cognitive? In general, the kinds of  things a computer needs to do to be called cognitive are 
the same  things a person might do that other  people would consider cognitive— things like respond-
ing appropriately to spoken sentences, recognizing familiar individuals, making reasonable deci-
sions, solving prob lems in clever ways, remembering  things that  they’ve been told, and so on. In 
short, a cognitive computer should behave somewhat like a  human.

This seems like a straightforward criterion  until you try to decide which specific computer be-
hav iors should be compared to  human be hav iors. Animatronic robots at Disneyland act a lot like 
 humans, but you prob ably  wouldn’t say that they think like  humans. Digital personal assistants like 

The Science of Minds
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Siri can answer your questions and follow your instructions. Does that mean Siri knows, perceives, or 
understands anything about you or what you are trying to achieve? Prob ably not. Did IBM’s Watson 
need to know anything about  people or the world to beat its  human competitors? Or was it simply 
Siri with a bigger library of facts?

Watson shares many of the qualities that are associated with cognition, but not all of them. First, 
the system responded to natu ral sentences and produced answers comparable to  those produced by 
the other contestants. Watson’s be hav ior, therefore, mimicked the be hav ior of the contestants, whom 
every one would agree are thinkers. Second, the sentences Watson produced  were mostly correct re-
sponses. This is what raises Watson above the level of a talking doll. Watson’s sentences are intelligent, 
in that they demonstrate Watson’s ability to solve prob lems by flexibly accessing and conveying facts. 
If you heard Watson competing and  weren’t aware of its digital nature, you’d prob ably be convinced 
that “he” was just as cognitive as any other contestant.

One quality that distinguishes Watson from other Jeopardy! contestants is that Watson  doesn’t 
want to win. Fundamentally, Watson does not understand what winning is all about. Watson cannot 
appreciate the pressure of competition, the uncertainty of other contestants, or the implications of the 
outcome of the contest.

Most  people  don’t have access to the piles of facts that Watson does, but they do know what it’s 
like to watch  people compete and can even imagine what it’s like to be a contestant. This kind of 
awareness is what makes watching game shows entertaining. It’s also what makes knowing that Lin-
coln was president of the United States (a fact) dif er ent from knowing that you have never been the 
president (a personal memory).

 There are some exceptional individuals who are able to recall massive amounts of details about 
past events (LePort et al., 2017), somewhat like Watson. When  people with this ability attend a sport-
ing event, they can answer questions about details of the game years  after the event, including the date 
it happened, what the weather was like, and who made critical plays. This impressive recall ability is 
called highly superior autobiographical memory (HSAM), and it is not  limited to sports— detailed 
memories of many meals, lines from movies, clothes worn, and emotions felt are also available.  People 
with highly superior autobiographical memory describe memory retrieval as reliving a previous mo-
ment in time. You might experience something similar if you think back to some of the most notable 
events of your life.

FIGURE 1.1. Watson. IBM’s 
Watson computer system 
dominated  human champi-
ons on the game show 
Jeopardy! What do the 
superior abilities of machines, 
at least when playing mind 
games, tell us about 
cognition?
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Your ability to remember notable events and the feelings of familiarity that they spark are essen-
tial components of cognition. Watson lacks any ability to do this. Calling Watson cognitive is like 
saying a puppet is funny. Puppets are funny only to the extent that their puppeteers make them look 
and act funny. Puppies, on the other hand, are often funny without the help of handlers.

What makes puppies funny, at least partly, is the way they actively explore the world. But what 
exactly are playful puppies  doing? Are they forming personal memories of playing with your shoe 
that they  will recall the next time they see you? If they  were, how would you be able to tell? If a puppy 
learns to recognize you and seems to have fun playing with you, does this mean that the puppy thinks 
about you? Which is more cognitive: a computerized Jeopardy! champion or a playful puppy? Or 
maybe both are cognition- less?

Cognition, which enables  people to contemplate, converse, question, realize, reflect, remember, 
solve prob lems, think, and understand, seems self- evident yet it’s enigmatic. Lacking cognition, 
 people become  little more than bodies. At its peak, cognition enables geniuses to reshape planets.

This book is about the scientific study of cognition, including how studies are carried out and 
what such studies have revealed.  People have been interested in the nature and capacities of minds 
long before scientists came on the scene, but it has only been in the last  century that researchers have 
begun to pinpoint the mechanisms that make minds tick. As you read this chapter, you  will gain a 
better sense of the types of questions that cognitive psychologists have answered and the types that 
they have yet to answer— questions like, “What would it take to give Watson a mind or to show that 
it has one?”

COGNITION: IT’S WHAT YOU THINK

SNEAK PEEK: Psychologists develop models to better understand how cognition 
works. By looking at how well dif er ent models predict and explain what individuals 
notice, remember, and think, researchers can change the ways that  future genera-
tions think about thinking.

Psy chol ogy is often described as the study of mind and be hav ior— two topics that are dif er ent yet 
undoubtedly linked. The connection between mind and be hav ior is apparent from the way  people 
talk about them. For instance,  people whose be hav ior is abnormal are described as having  mental 
disorders, which implies that their minds  aren’t working right. Similarly, actions that seem foolish or 
pointless often are described as “mindless.” While be hav ior mainly refers to  those  things you do with 
your body—or physical activities that you could rec ord yourself  doing— the concept of mind is trick-
ier to define.

Right now,  you’re reading, and you could rec ord yourself  doing it, so it’s a be hav ior. But while 
 you’re reading, you might also be thinking about other  things, such as what  you’re planning on 
 doing  later. That’s not  going to show up in the video. Also, while you are reading, you might come 
across an unfamiliar acronym like HSAM. Feelings of uncertainty are not  going to show up in the 
video  either.

 These kinds of hidden  mental actions and events prob ably seem just as real to you as reading, 
even if no one  else can verify that  they’re happening. It seems reasonable to say that if physical activi-
ties are what your body does then  mental activities must be what some hidden part of your body 
does.

Mind is what many  people in Western socie ties call that hidden part, and cognition refers to a 
par tic u lar kind of  mental activity, sort of like how “sports” refers to certain kinds of physical activities. 
Just as the prowess of an athlete depends on that athlete’s body, the genius of a thinker depends on that 
thinker’s mind. But since no one has ever seen a mind, it’s difficult to know what properties of it would 
even contribute to genius.
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When athletes perform, they exercise a range of skills— running, hitting, catching, aiming— that 
when combined together might be called competing. When thinkers perform, they similarly engage 
in vari ous  mental skills— perceiving, knowing, understanding, recognizing. This kind of  mental 
 performance is referred to as cognizing.

When you cognize, you are consciously aware of ongoing events, both internal and external. A 
 process is considered to be cognitive when it involves an act of cognizing, just like a sporting event is 
competitive when it involves athletes competing.

Cognizing may seem a lot like thinking. But thinking usually involves some efort to achieve a 
goal (see Chapter 10), while cognizing does not necessarily require any efort. You pretty much just 
have to be awake and taking in your experiences.

 Because  mental activities are unobservable to every one other than the person performing them 
(and sometimes to the person who is cognizing, too), it’s often difficult to know when or how minds 
actually  matter. Is mindless be hav ior ever  really mind- free? How much control do minds have over 
be hav ior, and what is it about minds that enable them to cognize? In attempting to answer such ques-
tions, cognitive psychologists rely heavi ly on models of minds.

Models of Minds
Imagine a kindergartner asks you what a mind is. Assuming you  don’t go with the classic “I  don’t 
know,” you might attempt to explain to the child what a mind is by using vari ous examples. Of course, 
your explanation might lead to a never- ending stream of follow-up questions, but in the best- case 
scenario, you  will manage to come up with answers that satisfy the child’s curiosity.

In answering the question,  you’re providing the child with a conceptual model, or simplified 
description, of how to think about a mind.  People have come up with all kinds of conceptual models 
of minds. One of the most influential of  these is the model pop u lar ized by the French  philosopher 
René Descartes (1596–1650) (Figure 1.2).

In Descartes’s model, your mind (or, as Descartes called it, your soul) is not part of the physi-
cal world, and so it does not follow the same rules as objects in the world, including your body 
(Descartes, 1644/1984; 1662/1972). This division between body and mind maps smoothly onto 
the diference between physical (public) and  mental (private) activities. Moreover, it ofers the 
possibility of  mental immortality, making the model intuitively appealing. From a scientific per-

FIGURE 1.2. Descartes’ model of how minds 
work. Descartes viewed minds as spiritually 
based controllers of bodies. He modeled bodily 
actions as a kind of hydraulics in which external 
events release fluids in the brain that trigger the 
release of other fluids that control muscles. The 
mind influenced  these pro cesses remotely from a 
spiritual world— the eyes react, but the mind sees. 
(Photo 12/Alamy Stock Photo)
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spective, however, Descartes’ model  doesn’t explain much about why minds work the way they 
do nor does it provide many insights into how one might heal a mind that has become “disor-
dered” (Urban, 2018).

Associationist Models
While Descartes focused on the unique capacities of minds, such as their ability to think, other 
 philosophers pointed out that the kinds of thinking performed by minds seemed to depend a lot on 
experience (Locke, 1693). They noted that scholars who grew up in dif er ent countries often used dif-
fer ent languages, writing systems, and explanations for how minds work. Most thoughts, ideas, and 
concepts that you have are a consequence of memories  you’ve formed from past experiences, and 
many of your  mental activities depend on your ability to make connections between current events 
and past experiences.

For example, if most apples  you’ve seen are red, you’ll tend to link the color red to apples. If you 
draw an apple, describe one, or imagine eating one, it  will likely be a red one. Every thing you know 
and understand about apples comes from past encounters  you’ve had with them, including what 
 you’ve read about them. Since apples are not the only  things that are red, this color  will also be linked 
to other objects  you’ve experienced. In associationist models of mind, cumulative experiences 
shape how you think.

One of the more influential associationist models was proposed in the late 1800s by the Ameri-
can psychophi los o pher William James (1842–1910) (Figure 1.3). James proposed that the links be-
tween memories and ideas are literally physical connections in your brain and that  these associative 
connections form gradually, becoming stronger over time. In other words, James thought that the 
 organization of your thoughts directly corresponds to the structural  organization of observable, 
physical connections inside your head (James, 1890; 1962). This associationist model implies that 
most thoughts, ideas, and concepts that you have are a consequence of memories  you’ve formed from 
past experiences

James’s approach carried models of mind from the domain of religion and philosophy into the 
world of science. In princi ple, since physical connections in the brain are observable,  those connec-
tions can be compared with how  people think about  things. Many modern models of minds argue 
that “minds are brains” or that “minds are what brains do,” which seems similar to what James claimed. 
However, James actually ridiculed the idea that minds are brains; instead, he felt that  mental states 

FIGURE 1.3. William James. 
(A) American mind modeler 
and explorer of conscious 
cognition. James was the first 
psychologist to champion 
the idea that  mental con-
tents are a function of 
physical links between brain 
cells that make it pos si ble for 
experiences to guide thought 
pro cesses. (B) In James’ 
associationist model, your 
 mental activities are like a set 
of falling dominos; ongoing 
events knock over the first 
“ mental domino,” which then 
triggers the retrieval of 
associated memories (shown 
 here as connected circles). 
Modern associationist 
models are descendants of 
James’s ideas. (A MS Am 1092 
(1185), Houghton Library, 
Harvard University; B  after 
Hurwitz 2016.)
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followed dif er ent laws from  those that determine physical reactions within brains. He particularly 
emphasized purposeful action, willpower, and consciousness as key features of minds (Marchetti, 
2021).

Modern examples of associationist models appear several times throughout this book— anytime 
you see the word “network,” “connections,” or “learning,” you should immediately think, “ Here comes 
another associationist model.”

Minds as Machines
When Descartes split minds from bodies, he described bodies as biological machines. He argued that 
 humans  were the only creatures with bodies that also  housed a mind; all other animals  were deemed 
mindless machines.

James took the opposite position, claiming that  every organism that could move prob ably had a 
mind, even  going so far as to suggest that the minds of the most capable nonhuman animals  were 
cognitively superior to  those of the least capable  humans.

It was only a  matter of time before someone suggested a third possibility: that minds are 
machines (Putnam, 1960). If you think that this third option seems counterintuitive, you may be sur-
prised to learn that this is the most  popular model among all modern scientists.

The mind- as- machine model is commonly called the computational theory of mind. It pro-
poses that brains are biological computers and that minds are information pro cessing systems (like 
IBM’s Watson) (Figure 1.4). From this perspective, cognition is computation (Minsky, 1986). In the 
terminology of computers, brains are the hardware, cognitive pro cesses and consciousness are the 
software, and together they make up a mind.

The computational theory of mind began gaining steam in the 1960s, about the same time 
that computers started becoming useful tools and neuroscience began to take of as a scientific 
field (Fodor & Pylyshyn, 1988). Part of the appeal of this model was that one could use computers 
to simulate  mental activities, creating the first physical (electronic) models of minds (Oliveira, 
2022).  These simulations included computer programs specifically designed to behave like 
 humans— artificial intelligence (AI)— the forerunners to  today’s chatbots and automated cus-
tomer  services.

FIGURE 1.4. A computational 
model of letter recognition. 
Early computer models 
portrayed perception and 
identification of letters as a 
 process of recognizing  simple 
features followed by recogni-
tion of combinations of  those 
 simple features.
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External Ele ments of Minds
In the last few  decades,  there has been a mini- rebellion against the computational theory of mind, 
based on the idea that how minds operate is tightly linked to the bodies and environments within 
which they function— unlike most computers (Clark & Chal mers, 1998; Menary, 2010).

This newest model of mind, sometimes called the extended mind thesis, proposes that minds 
are not something trapped inside your head; instead, minds encompass any tools that you use to sup-
port your thought pro cesses, including written notes, computers, smartphones, and even your own 
body (Figure 1.5). Have you ever talked to yourself when no one  else was around, sung in the shower, 
or pulled your hair in frustration? The extended mind thesis suggests that such be hav ior is not a sign of 
mild derangement but may actually support or enhance certain  mental pro cesses (Ongaro et al., 2022).

Minds are many- splendored entities: souls, brains, associations, machines, and more. Like an-
cient astronomers, cognitive psychologists are able to explore and describe patterns in the move-
ments of minds without necessarily having a complete grasp of what the patterns mean or even what 
it is that  they’re seeing move.

Cognitive pro cesses are the constellations in  these patterns— scientific mind maps of associated 
phenomena given weighty labels like “attention,” “language,” and “memory.” As you read through this 
text, you may discover new ways of thinking about minds and cognition, expanding not only your 
understanding of what cognition is but also your ability to judge the pros and cons of dif er ent claims 
about how your mind works. An impor tant step  toward both goals is to get a better  handle on why 
cognitive psychologists are obsessed with models.

Why Models  Matter
Models of cognitive processes— all the operations of your mind that enable you to cognize— come in 
two basic flavors: quantitative and qualitative. Quantitative models are based on quantities, represented 
as numbers, and on techniques for combining or comparing  those quantities, like equations. The most 
common quantitative models used by cognitive psychologists are computational models— basically, 
computer simulations of cognitive pro cesses (Farrell & Lewandowsky, 2018). Most other models are 
qualitative, meaning that they focus on describing the qualities of a cognitive  process, usually through 
diagrams and/or stories. Both quantitative and qualitative models are abstractions that try to capture 
some essential ele ments of what cognizing involves and how cognitive pro cesses work (Figure 1.6).
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FIGURE 1.5. Expanding the 
concept of mind. While most 
mind models lodge your 
mind inside your brain, the 
extended mind thesis claims 
that your mind includes 
ele ments of the world 
outside your head, including 
objects you interact with to 
augment your cognitive 
activities and your own 
actions. ( After Lux et al., 2021, 
brain: DNY59, student: Fizkes, 
phone: Prykhodov)
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 Here’s a qualitative model of highly superior autobiographical memory: “ People with highly su-
perior autobiographical memory are more likely to recall details of personal episodes many years 
 after they happened. Most  people store memories of notable events and can recall  those events years 
 later.  People with highly superior autobiographical memory  process memories the same way as 
every one  else but perceive  every day of their life as highly notable. Why?  Because the part of their 
brain that detects cross- day similarities is dysfunctional, such that  every day seems special.”

This qualitative model explains a unique cognitive ability— highly superior autobiographical 
memory—as an extension of the usual memory mechanisms that most  people possess caused by a 
brain disorder. You could potentially create a quantitative model of highly superior autobiographical 
memory that is similar to this qualitative model. The quantitative version might be a computational 
model that includes a special computer subroutine devoted to storing highly notable inputs, which 
has lost the ability to discriminate notable events from everyday events.

Putting Models to the Test
Is the qualitative model of highly superior autobiographical memory described in the previous sec-
tion correct? Prob ably not, but that’s okay  because a model  doesn’t need to be correct to be useful 
(Marr, 1982; Warren, 2012).
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FIGURE 1.6. Modeling variations in autobiographical memory. (A) Behavioral studies show that a subset of 
adults (subjects with highly superior autobiographical memory) can recall details of personal episodes  after a 
 decade. (B) Qualitative models often explain this unique ability as an almost limitless capacity for mentally 
replaying past episodes. (C) A quantitative model of variations in autobiographical memory must specify numeri-
cally what information  people store from their experiences, how each event is represented (in this example as  
an episodic pattern), and how specific episodes from the past are found and reactivated. In this model, verbal 
questions about a past date would trigger an episodic pattern,  after which a memory search would be initiated to 
locate a past episode that best matches that pattern, making recall of additional details pos si ble. (A  after Wang 
et al., 2016; B  bubble: shironosov; square: martin- dm; C  after LePort et al., 2016.)
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A better question might be, does this model allow scientists to accurately predict phenomena 
that they would be unable to predict other wise? For instance, the model predicts that if you could 
watch the brain of a person with highly superior autobiographical memory recalling a random day in 
their life, you might see the same sort of activity that happens when they are recalling a historically 
relevant day. And if you compared brain activity in  people with highly superior autobiographical 
memory to activity in  people with more mundane memory capacities recalling a historical event, 
then the model predicts that their brains should be  doing basically the same  thing.

 These predictions are testable. If it turns out that the predictions are accurate, then you under-
stand more about how memory works than you did before. If they are inaccurate, you may still have 
learned something from the experiment that you  didn’t know, which could help you to develop a 
more useful model.

Refining models is a never- ending  process in cognitive psy chol ogy (and in most other sciences). 
Even the best models  can’t predict and explain every thing. In some cases, the models that perform 
best are so complicated that they are not much easier to understand than the cognitive  process they 
 were built to explain. In other cases,  there may be two or more models using dif er ent explanations of 
what’s happening that seem to work equally well. The models of cognition presented in this textbook 
include some of the latest and greatest, as well as some older models that have proven to be particu-
larly useful. You should think of  these models as formalized hypotheses— testable explanations for a 
phenomenon— rather than as facts to memorize. The models provide ways of thinking about cogni-
tion that have proven useful to  those scientists that have thought the most about cognitive pro cesses, 
and they can give you a head start in your quest to know more about how minds work (O’Reilly, 
2006; O’Reilly et al., 2010).

Confusingly, models of cognition are often called theories, and dif er ent researchers have used 
the two terms in ambiguous ways. For the purposes of this book, you can think of theories of cogni-
tion as impressive models or sets of models that are meant to explain how cognition works.

 Human Mind, Animal Mind: Comparisons across Species
When psychologists talk about “the mind,” they usually have one par tic u lar class of minds in mind: 
 those of adult  humans. While Descartes argued that  these  were the only kinds of minds  there are, 
other scientists, including Charles Darwin (1809–1882), begged to difer (Darwin, 1871). It would be 
ridicu lous to argue that only adult  humans have physical bodies (including brains), so the fact that 
 people find it reasonable to argue that  humans are the only organisms with minds reveals a concep-
tual divide between how  people think about physical acts of the body versus  mental acts of the mind. 
This divide also relates to the per sis tent feeling  people have that  humans  aren’t  really animals. Even 
scientists who confidently claim that  human brains generate minds often hesitate to claim that other 
animals’ brains can do the same.

Margaret Washburn (1871–1939) was a pioneering psychologist who argued that lots of ani-
mals other than  humans have minds (Figure 1.7); she was also the first  woman to get a Ph.D. in 
psy chol ogy and the first  woman psychologist to be elected into the National Acad emy of Sciences, 
one of the highest honors any scientist can receive. In the early 1900s, she published a classic text-
book called The Animal Mind, which cata logued experimental and physiological evidence that she 
felt supported her (and Darwin’s) claims that minds  were less rare in nature than  people assumed 
(Washburn, 1926).

You may be wondering what sort of evidence Washburn used to try and convince other scien-
tists that nonhuman animals have minds. Some evidence was based on physiological comparisons 
showing few major structural diferences across vertebrate brains. Most of the evidence, however, 
revealed how similarly nonhuman animals and  humans behaved when faced with vari ous cognitive 
tasks (Andrews, 2020).
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Self- Reflection versus Experimental Observation
Interestingly, Washburn’s doctoral training focused on introspective approaches (described  later in 
this Chapter) that require reporting on one’s own  mental activity. This was once the dominant ap-
proach to studying cognition, which makes some sense given that the only thinking you can directly 
observe is your own. Even then,  there is no guarantee that your impressions are accurate (Boring, 
1953; Danziger, 1980).

If animals other than  humans think about their experiences, we  don’t yet have a way to detect it. 
However, by using the same tests that researchers use to examine  peoples’ perceptions, it’s pos si ble to 
show that many other animals respond to sensory diferences in ways that are comparable to  humans 
(Stebbins, 1970) (Chapter 4 describes several such perceptual studies).

Given  these similarities, you would have about as much evidence for claiming that nonhuman 
animals can perceive sensory diferences as for claiming that  humans do. You might think that the fact 
that  people can tell you, “I’m perceiving a diference,” provides stronger evidence that  they’re con-
sciously aware of a diference, but you ultimately have no way of verifying this. You could prob ably 
train a parrot to say something similar while performing the same kind of task.

Reasoning versus Instinct
Of course, being able to tell  things apart is not a particularly impressive cognitive act compared to 
something like figuring out that the earth is orbiting the sun. For many, acts of reasoning are what 
make cognition in  humans radically dif er ent from  mental activity in other animals (Penn & Povi-
nelli, 2007).

The kind of rational thought that  people engage in when solving prob lems or making decisions 
(see Chapter 10) definitely goes beyond merely perceiving what the world is like. But  whether ratio-
nal thinking involves cognitive pro cesses that are unique to  humans is still up for debate (Beran et al., 
2016; Laland & Seed, 2021).

For a long time, researchers thought that  humans  were the only animals that could solve prob-
lems by constructing and using tools, but now  there is evidence that many other animals do this 
(Goodall, 1964; Shaw, 2021). Scientists also assumed that nonhuman animals  were driven by in-
stincts while  human be hav ior was more rational (as suggested by Descartes). However, observa-
tions of dolphin, bonobo (a type of ape), and even ant be hav ior (Figure 1.8) have revealed creativ-
ity and insight in performing actions and solving prob lems (Olmstead & Kuhlmeier, 2015) (see 
Chapter 9).

(A) (B)

FIGURE 1.7. Margaret 
Washburn. (A) Champion of 
experimental studies of 
animal minds and mega- 
pioneer. (B) She explored 
many cognitive pro cesses in 
vari ous species, including 
visual perception in fish. (A 
The Drs. Nicholas and Dorothy 
Cummings Center for the 
History of Psy chol ogy, The 
University of Akron)
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Realistically, how frequently do you reason in any given 
week? When you decide what to have for lunch, do you do it by 
considering all the potential consequences? Or do you think, 
“What do I want for lunch?” Or maybe you just look at a list of 
options and choose one that looks good. Just  because it’s pos si ble 
for  humans to logically consider the outcomes of multiple actions 
before choosing one,  doesn’t mean they normally do it.

Memory- based action se lection can account for many of 
your daily “choices,” like what you do first when you wake up, 
when you go to a store, or what time you go to bed.  These “nor-
mal  things that  people do,” are learned actions that depend on 
memory abilities rather than on instincts or reasoning. Chap-
ters 5, 7, and 8  will reveal the many ways that memories afect be-
hav ior and cognition in all animals, including  humans.

Language and Thought
The one feature of  human cognition that is most often noted as 
being the diference that makes  humans dif er ent from other ani-
mals is language (Adler, 1967; Chomsky, 1959). As far as anyone 
can tell, no animals other than  humans naturally use language.

Many nonhuman animals communicate using sounds and other signals (see Chapter  12), but 
none seem to communicate using symbols in the way that  humans do (Fitch, 2020). The use of sym-
bols is heavi ly emphasized in educational contexts, so it’s not surprising that thinking and cognition 
would be closely linked to language. This does not imply, however, that one needs language to cognize. 
It simply means that at least part of  human cognizing typically involves associating arbitrary symbols 
with perceived events, especially if one wants to demonstrate a certain level of intelligence to  others.

That being said,  there are many cognitive skills that do seem to benefit from the capacity to pro-
duce and comprehend language, and much of the evidence that  people perceive, know, and under-
stand what is happening comes from their use of language (Gentner & Goldin- Meadow, 2003). So, 
it’s not too surprising that ideas about language and thinking are tightly linked. This is perhaps most 
clear in standardized tests of individual diferences in cognition, which depend heavi ly on a person’s 
ability to answer questions. The following section considers what such tests have revealed about the 
relationship between intelligence and cognitive abilities.

FIGURE 1.8. Ant de soleil. Ants show sophisticated abilities 
to socially coordinate their actions, creating complex 
structures customized to solve specific foraging and 
navigation prob lems that they encounter. Is their ability to do 
this innate? And if so, then why does it take  people years of 
specialized training to perform similar feats? (frank60 via 
Shutterstock)

SIGHT BITES

Conceptual models of minds describe cognitive pro cesses in terms of 
associations, computations, and more, providing a way for cognitive 
psychologists to test the usefulness of dif er ent proposals.
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INTELLIGENCE: KNOWING HOW TO THINK

SNEAK PEEK: Individual diferences in cognitive abilities separate the duds from the 
brainiacs. More than just brains and cognitive capacities determine how  people per-
form on intelligence tests, however. What are the  factors that make some minds 
excel and  others fail?

The idea that  humans possess cognitive abilities that are superior to  those of all other animals has a 
long history rooted in religious beliefs. However, even  humans vary greatly in their abilities to solve 
prob lems, gain new knowledge, and critically evaluate information (Worrell et al., 2019).

Cognitive psychologists historically have given less attention to individual diferences in cogni-
tive ability than to identifying general princi ples that apply to cognitive pro cesses in most  people. 
Sometimes, though, it is the exceptional mind that provides the clue that sheds light on typical cogni-
tive pro cesses.

For instance, studies of mnemonists ( people with exceptional memorization abilities) have clari-
fied the impor tant roles skill learning and imagery can play in memory retrieval (Luria, 1968), and 
research with chess champions has revealed just how closely their exceptional problem- solving abili-
ties apply to chess (Charness et al., 2005). Interviews with famous scientists and artists can potentially 
reveal aspects of their thought pro cesses that difer from the norm, and studies of individuals with 
exceptional abilities (like  people with highly superior autobiographical memory or amnesia) can 
lead to new ways of thinking about cognitive pro cessing (Lubinksi & Benbow, 2021; Simonton, 
2009).

Geniuses, whose ideas and accomplishments seem to exceed  those of all their peers, are particu-
larly intriguing  because they highlight how  little is known about the  factors that contribute to lower 
or higher levels of intellectual ability, not to mention what levels of cognition are even pos si ble.

Geniuses: Domestic and Wild
The defining quality of a genius is that other  people judge that individual to be exceptional to an ex-
treme degree (Figure 1.9). This quality can vary depending on who the judges are and when they 
make their decision.

Genius is often viewed as the high end of a continuum of smartness that begins with idiocy. 
 People who  aren’t geniuses often assume that geniuses are born with hyper- capable brains that give 
them special abilities, like a seven- foot basketball player who benefits from their height advantage.

 People who have been called geniuses, however, often attribute their successes to qualities that 
tend to be associated with  mental disorders, such as extreme perseverance and disinterest in typical 
social activities and norms. Yet,  people who persevere and  don’t attract public attention are unlikely 
to be classified as geniuses, regardless of their cognitive capacities. Since not all  people with unique 
brain power are recognized by the public at large, the qualities that are often possessed by geniuses 
may actually be more widespread than they seem.

Nature versus Nurture versus Computational Power
The origins of individual diferences in cognitive capacities have been hotly debated for centuries— 
this is a key ele ment of the nature versus nurture debate regarding  whether ge ne tics or experience 
more strongly determines how individuals act and what they can achieve (Plomin & von Stumm, 
2018; Sternberg, 2020).

In the field of cognitive psy chol ogy, the question of  whether DNA or practice makes perfect has 
been studied most extensively using strategic games like chess in which  there are quantifiable difer-
ences in  performance that can be compared to the amount and quality of a player’s training (Howard, 

FIGURE 1.9. Origins of 
intelligence. Exceptional 
minds are often assumed to 
come from exceptional 
brains. Why might  measures 
of brain structure be less 
reliable indicators of above- 
average cognitive abilities 
than behavioral tests?
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2009). One  thing that studies of chess players make clear is that the best players in the world usually 
 aren’t also Nobel laureates, math wizards, musical savants, or world- class poker players— their bril-
liance is often  limited to selecting winning chess strategies. If good genes are what enable grandmas-
ters to excel at chess, then the relevant genes are not genes for “smartness.”

As in sports, exceptional cognizing requires exceptional specialization. Training experiences 
play a key role in how highly a chess player is likely to be ranked (Ericsson et al., 2009); starting inten-
sive training at a young age can make a big diference. But chess experts with thousands of hours 
more practice are still often defeated by youn ger, less experienced players—an outcome which seems 
to point  toward talent (nature) winning the day (Blanch, 2020) (Figure 1.10).

And then  there are current artificially intelligent chess engines (chess- playing software), the best 
of which are so proficient that they have never lost a match to any  human. Their only competition 
now is other computer programs. Like Watson, artificially intelligent chess programs mimic the be-
hav ior of  human chess experts and are essentially computational models of chess- related problem- 
solving. Several  factors determine how good a chess program is, including its pro cessing power, its 
database of chess positions, and the rules it uses to sort through pos si ble moves. Could similar  factors 
determine your cognitive capacities?

Potential Differences
A notable feature of top- ten chess experts is that they are almost always males of  European or Asian 
descent. Only one  woman has ever competed in a world chess championship, and it is rare that more 
than one  woman is in the top 100 players.

The skewed distribution of chess champions cuts to the heart of  whether nature versus nurture is 
determining cognitive abilities. Are  there no  women at the top  because of ge ne tic diferences (na-
ture)? Or is this a cultural artifact related to social norms in the countries where chess is most  popular 
(nurture)?

 Women are about five inches shorter than men, based on worldwide averages, a diference that is 
mostly coming from the nature side of the equation. Could chess- playing ability be like height? Or, 
maybe, it’s like strength, which also difers between men and  women, but depends much more on 
experience? So far, no male- specific chess genes have been identified and debate rages on about what 
specific cognitive abilities grandmasters have that give them an edge.

The prob lem is that, unlike height and strength, the cognitive pro cesses that contribute to chess- 
playing finesse are invisible, making any side- by- side comparisons dicey. This is true not just for chess 
players but for all behaving organisms. The hidden nature of  mental actions makes it tricky to know 
what is varying cognitively between individuals, much less how capacities and potential are varying.

It may be hard to say for sure what it is about an individual that makes them cognitively excep-
tional, but it is undeniable that some thinkers stand out (Sternberg, 2018). In the earliest studies of 
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FIGURE 1.10. Practice in chess  doesn’t always make perfect. 
Chess competitors who started out performing better in 
tournaments and who ultimately became grandmasters 
benefitted more from practice than other chess experts, 
suggesting that their initial talents strongly determined  
their ultimate chess rating, a numerical indicator of their 
 performance in tournaments. ( After Howard, 2009.)



16 Chapter 1  |  The Science of Minds

problem- solving by chimpanzees, it was one chimpanzee in par tic u lar, named Sultan, that consis-
tently led the pack in discovering the steps required to reach high- hanging fruit (Köhler, 1925). It was 
one parrot, named Alex, that convinced researchers that they had been underestimating the cogni-
tive capacities of birds (Pepperberg, 2013). And it was one dog, named Chaser, that showed that dogs 
can learn thousands of spoken words (Pilley & Reid, 2011).

Like  human geniuses, it is difficult to know how exceptional such animal stars truly are. One  thing 
 these unique cases do tell us is that even the most sophisticated cognitive abilities can vary consider-
ably across individuals, and even within an individual, as they develop. Identifying ways to  measure 
variations in  mental pro cesses has been a key challenge throughout the history of cognitive research.

 Measuring Intelligence
At the core of all  measures of cognitive competence, or intelligence, are tests. The tests vary in terms 
of  whether they probe what an individual knows versus what that individual can figure out, but they 
all serve the same goal of ranking an individual’s  performance relative to that of other test takers 
(Spearman, 1904; Horn, 1968).

The basic idea is that tests convert unobservable  mental abilities into observable be hav ior. Most 
current tests of intelligence assess a broad range of verbal, perceptual, reasoning, and memory abili-
ties (Figure  1.11). The results of multiple tests  aren’t always consistent, however, making it hard to 
know which  mental abilities determine a person’s score on dif er ent tests. Much of the debate about 
intelligence tests revolves around their validity— are the highest scorers  really the most cognitively 
competent (Haier, 2016)?

Verbal comprehension
Com: Comprehension
Voc: Vocabulary
Inf: Information
Sim: Similarities
Perceptual organization
PcA: Picture arrangement
Mat: Matrix reasoning
Blo: Block design
Pic: Picture completion

Working memory
Art: Arithmetic
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Let: Letter number
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FIGURE 1.11. A quantitative model of intelligence. Intelligence tests use the accuracy of 
answers to vari ous questions to compare individuals’  performance. This makes it pos si ble to 
assess not only how well a person performs in dif er ent areas but also how overall 
 performance relates to specific strengths and weaknesses. Analyses of  people’s  performance 
on intelligence tests have revealed that a person’s ability to succeed on certain tasks is most 
predictive of their  performance on related tasks. For example, your vocabulary size does a 
good job of predicting your ability to comprehend language (indicated  here by a thick gray 
line). In contrast, vocabulary size is not a  great predictor of your ability to arrange pictures (PcA) 
into a meaningful story (indicated by a thin gray line). ( After Van Der Maas et al., 2017.)
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Potential Biases
One of the main complaints about intelligence tests is that they can be culturally biased. A culturally 
biased test assumes that all test- takers have similar background knowledge and experiences so that 
test- takers are unlikely to be confused by the questions. This would not be the case, however, if the 
test includes questions that cover unfamiliar topics, or questions that are written in an unfamiliar 
language.

The concern is that intelligence tests may unfairly rank individuals based on  factors other than 
their  actual intellectual abilities, especially in cases where entire racial, ethnic, socioeconomic, or gen-
der groups show lower- than- average scores (Reynolds et  al., 2021). Systematic diferences in test 
scores also are seen across generations, with average scores continuously increasing over time (called 
the Flynn efect; Flynn, 2000).

Such changes are consistent with the idea that systematic diferences in experience or environ-
mental conditions may afect  people’s scores on intelligence tests. For example, increases in health or 
educational support may improve cognitive  performance, and cultural emphasis on par tic u lar cogni-
tive skills like reading and mathematical skills can also afect  performance.

Another common critique is that intelligence tests  don’t  really reveal what an individual’s  future 
potential is. For instance, one long- term study of  children classified as geniuses found that although 
many of them achieved success  later in life, most lived relatively unexceptional lives (Terman, 1940). 
Also, some  children who did not make the cut to be included in the study ended up becoming Nobel 
laureates, suggesting that  performance on intelligence tests was not a  great predictor of who would 
accomplish the most intellectually.

On the other hand,  measures of intelligence are currently some of the best predictors of  later 
success in college and in job  performance (Deary et al., 2010), suggesting that intelligence tests do 
capture some diferences in cognitive ability that can afect  future  performance.

Correlates of Intelligence
Interest in  measuring intelligence was originally driven by practical prob lems related to sorting stu-
dents and soldiers (Wasserman, 2018). Specifically, the goal was to weed out the  people who  were 
unlikely to get much out of school or training in complex military skills before efort was put into 
trying to teach them.

From this perspective, intelligence tests provide clues about the kinds of cognitive skills a person 
is likely to be able to learn. If intelligence  were like height, then it would be relatively  simple to predict 
what levels a person might reach in their lifetime. But unlike height, most cognitive abilities of adults 
depend on learned skills: language use, writing, reading, decision- making, and problem- solving.

The ease with which a person learns such sophisticated skills depends on even more basic per-
ceptual and memory abilities, most notably working memory (Baddeley, 2012), which relates to the 
capacity to store, temporarily maintain, and manipulate recent thoughts in mind (see Chapter  8) 
(Figure  1.12), like when a server remembers what each customer ordered once the food is ready. 
 Measures of working memory are highly correlated with  measures of intelligence— people with ex-
ceptional working memory capacity are often highly intelligent (Conway et al., 2003).

Why working memory and intelligence are so closely linked remains mysterious. But the fact 
that one’s capacity to remember the recent past is in some way connected to their overall cognitive 
competence suggests that understanding more about how working memory works could be impor-
tant to understanding why diferences in cognitive capacity arise. Recent studies suggest that the link 
may have less to do with retention and more to do with attention (Draheim et al., 2022). Specifically, 
your capacity to control where your attention is directed during  performance of both working mem-
ory tasks and intelligence tests may afect how you perform on both.
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FIGURE 1.12. A qualitative 
model of working memory. 
Working memory refers to the 
ways in which you can keep 
certain ideas or images in 
mind for a short period of 
time and manipulate them  
to perform cognitive tasks or 
control attention. A person’s 
capacity to do this is predic-
tive of how well they  will 
perform on intelligence tests.

WEIRD, TRUE, FREAKY
Working Memory Wizard
Tests of intelligence typically consist of a series of specially 
designed prob lems of varying dificulty. In general, the more 
questions a person can answer correctly in such tests, the 
higher the person’s intelligence score  will be.  Measures of 
working memory capacity, in contrast, focus on how long a 
person can keep information in mind before it fades away. 
As mentioned previously, working memory  measures are 
surprisingly good at predicting the results of intelligence 
tests (Conway et al., 2003). Some researchers have pointed 
to the relationship between working memory and intelli-
gence as evidence that working memory is impor tant for 
performing many cognitive tasks and that lower working 
memory capacity makes such tasks more dificult.

At the same time that American psychologists  were 
gathering evidence linking working memory to intelligence 
scores, a unique research study in Japan called the Ai Proj-
ect was developing new computerized techniques for test-
ing cognition in chimpanzees. One of the tasks chimpan-
zees  were trained to perform involved remembering where 
the numbers one through nine appeared on a screen. They 

 were tasked with touching the places on the screen where 
each number appeared in sequential order  after the num-
bers  were covered with squares ( Inoue & Matsuzawa, 2007).

All chimpanzees  were able to learn this task, but one 
chimpanzee in par tic u lar, named Ayumu, was way better 
than the other chimpanzees (see figure). Ayumu consis-
tently remembered about 80% of number positions, even 
when the screen only displayed the numbers for 200 milli-
seconds. For comparison, college students identified about 
20% of numbers when tested on the same working mem-
ory task.

Could it be that some chimpanzees have working 
memory capacities exceeding  those of  humans? Might 
working memory in chimpanzees also be correlated with 
intelligence, and if so, would that make Ayumu a chimp 
genius? The researchers studying Ayumu suggested an-
other possibility: that Ayumu used eidetic imagery to per-
form the task.

Eidetic imagery, more commonly referred to as photo-
graphic memory, involves mentally retaining a detailed 
image of a perceived event for relatively long periods. It has 
been reported in some young  children (Giray et al., 1976).

Another possibility, however, is that extensive training 
on a working memory task can dramatically increase an in-
dividual’s working memory capacity. In fact, two undergrad-
uate students at the University of California, Santa Cruz, 
who practiced the same number memory task,  were able 
to remember more than 90% of the numbers  after exten-
sive training (Cook & Wilson, 2010).

The students did not report using eidetic imagery, so it 
seems that Ayumu  didn’t need a photographic memory to 
achieve his amazing memory abilities. Even so, his abilities 
highlight the fact that scientists are just beginning to dis-
cover the extent to which basic cognitive capacities can vary 
across genet ically similar individuals.

Ayumu uses a touch screen to select numbers in order and 
can do so even when the numbers are rapidly covered. (BBC)
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BE HAV IOR: ACTIVITIES, ABILITIES, AND THEIR ORIGINS

SNEAK PEEK: The main evidence of cognitive pro cesses comes from what individu-
als do, both in the lab and in the wild. Evolutionary forces provide the building blocks 
that experience shapes to construct knowledge and cognitive abilities.

When you think about why  people you know or encounter behave the way they do, you might point 
to their character, personality, or general intelligence. You might also blame a person’s bad be hav ior 
on clueless parenting or peer pressure. When it comes to explaining your own be hav ior, however, 
 you’re more likely to provide reasons why your actions made sense given the circumstances, even if 
 those reasons suggest  there was no reason, like “I panicked.”

This kind of postgame analy sis, both of other  peoples’ actions and your own, depends on your 
ability to put yourself in someone  else’s shoes—to evaluate what cognitive and noncognitive pro-
cesses are controlling the actions. Thinking about why your friend refuses to pet dogs, or about why 
you might notice this, or even about how dogs view such non- petters, involves a peculiar kind of 
cognitive  process called metacognition (Beran et  al., 2012; Dunlosky & Metcalfe, 2009) (see 
Chapter 8).

When you are contemplating cognition (like now), you are thinking about the origins of actions 
and thoughts. This  process is key to understanding cognition and how it relates to  mental and physi-
cal activity. In par tic u lar, identifying which actions and thoughts are driven more by innate mecha-
nisms (nature) versus specific experiences (nurture) is fundamental to developing an accurate pic-
ture of how dif er ent cognitive pro cesses work.

Innate versus Learned Abilities
Debates about how much of  human cognition is innate versus acquired through experience have 
been around for a long time. At one extreme, nativists claim that experiences are  shaped by the in-
nate properties of the  human mind and brain, which efectively determine what percepts and 
thoughts are like. On the other side, empiricists have argued that pretty much every thing that 
 humans perceive and know comes from experience.

Researchers studying the be hav ior of our furry and feathered friends have similarly argued  either 
that most animals’ actions are efectively pre- programmed reactions to environmental conditions (as 

SIGHT BITES

Individuals vary greatly in their cognitive abilities. The origins of individual 
diferences in  mental capacities continue to be debated.
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Intelligence  measures provide clues about the kinds of cognitive tasks a 
person is likely to be able to perform well.
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Intelligence tests map  mental  performance onto observable be hav ior, but 
variations in scores can be driven by  factors other than cognitive abilities.
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suggested by Descartes), or that they are more often habits  shaped by an individual’s 
specific experiences (Pavlov, 1927; Thorndike, 1932, 1949; Watson, 1924) (see Chap-
ter 7 for a complete discussion). The modern take on this debate is that genes and 
the environment interact to determine cognitive mechanisms and behavioral ten-
dencies (Carey & Gelman, 1991). But  there is still no agreement on how specifically 
biological mechanisms relate to  things like emotional responses, thoughts, con-
sciousness, or intelligence (Berent, 2021; Carruthers, 2005), which is why it is not yet 
pos si ble to tell a baby genius from a baby serial killer.

Talents versus Skills
Consider William James’s paradoxical quotation above about memory abilities. James thought that a 
person’s ability to store memories was determined by his or her ability to reor ga nize connections be-
tween neurons. He considered this ability to be a built-in feature of brains—so, innate. At the same 
time, he recognized that an individual’s ability to remember  things could definitely improve over 
time, which is why a server who has worked at a restaurant a long time is less likely to forget  people’s 
 orders than a server who has been working for only a few weeks.

A person might be born with faster, better, stronger mechanisms for storing memories— they 
could be mnemonically talented. However, without sufficient training, they might still perform worse 
in memory tests than someone with less impressive memory- storing capacities.

So, which do you think is the case for  people with highly superior autobiographical memory or 
for Jeopardy! champions? Do they possess unique brain qualities for storing memories? Or have they 
acquired exceptional skills for storing memories of personal episodes or facts? What about birds that 
retrieve thousands of seeds during the winter that they buried months  earlier? In all of  these cases, 
observations of be hav ior alone cannot definitively reveal  whether innate or acquired cognitive 
mechanisms are the source of exceptional memory abilities.

One way to tease apart which aspects of cognition are “built-in” is by exploring which behavioral 
abilities can be  shaped through selective breeding (Tryon, 1940). For instance, years of selective 
breeding has led to dog breeds that are better able to assist  humans in the herding of sheep than 
 others. Recent attempts to breed tame foxes revealed that tamer foxes showed greater capacity to in-
terpret  human gestures (Hare et  al., 2005) (see Chapter  11). Brain imaging showed that selective 
breeding for tameness caused several brain regions that are known to contribute to cognitive capacity 
to enlarge (Hecht et al. 2021) (Figure 1.13).

When it comes to  human cognition, however, assessing the innateness of cognitive abilities re-
quires a bit more finesse than simply putting potential lovers together in cages.

“No amount of culture would seem capable 
of modifying a man’s GENERAL retentive-
ness . . .  All improvement of memory consists 
then, in the improvement of one’s habitual 
methods of recording facts.”
— James, 1890, p 667

FIGURE 1.13. Shaping cognition across generations. Selective breeding of silver foxes based on their tameness quickly leads 
to a host of changes to their brains (A) and be hav ior (B). Not only do they become less aggressive, but they also show in-
creased vocal communication and an enhanced ability to interpret  human intentions. (A from Hecht et al., 2021,  
J Neurosci © 2021 by the Society for Neuroscience [CC- BY-4.0], B ressormat via Shutterstock)
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Cognitive Scaffolding
Language abilities are the star of the nativist versus empiricist debate  because they are clearly acquired 
through experience but are only naturally learned by  humans (Chater & Christiansen, 2018). This 
has led some to argue that  there must be some innate feature of  human brains that makes language 
learning pos si ble (Chomsky, 1975; Pinker, 1994) (see Chapters 2 and 12).

The social environments within which  humans develop are unique among animals. It takes a 
comparatively long time for  children to develop into self- sufficient adults, which provides extensive 
opportunities for  children to learn from  others (Bruner, 1965; Pozuelos et al., 2019). Psychologists like 
Lev Vygotsky (1896–1934) argued that human- specific cultural scafolding, basically social support 
and traditions, guides language development. Guidance from peers and parents has  shaped your self- 
directed speech, ultimately determining the kinds of thoughts that direct your actions and reasoning 
(Vygotsky & Cole, 1978). In this scenario, learned language abilities may fundamentally alter your 
 mental activities.

The idea that your environment and learning experiences can profoundly shape how you think 
is a focal feature of the extended mind thesis described  earlier. Recall that this model of mind claims 
that many of your daily cognitive pro cesses depend on tools like smartphones, textbooks, or your 
own body to function.

Like James’s views on memory capacity, advocates of the extended mind thesis would argue that 
your general mentality is innate,  because your mind is an extension of the properties of your body, 
but that you can still pro gress up the cognitive ladder by acquiring new cognitive tools and learning 
how to use them— which is why  you’re reading this book!

Evolutionary Constraints on Activities
When empiricists claim that  people’s cognitive acts are a consequence of their experiences, they are 
adopting a version of the computational theory of mind discussed  earlier. For an empiricist, learning 
new cognitive skills, like the ability to add or to speak in sentences, is like installing a new app, while 
performing  these skills is like  running the app.

From this perspective, just like not all apps run on all computers, not all cognitive pro cesses  will 
happen in all brains. The abilities of  people with highly superior autobiographical memory imply that 
they are engaging memory “apps” that difer in some way from  those available to most  people. Similarly, 
the ability of  humans to recall past episodes in their lives seems to difer from the kinds of memories sea 
turtles use to guide them to their birthplaces years  later (Allen & Fortin, 2013; Tulving, 2002).

Experiences afect physical and  mental actions by creating memories that determine what an 
individual can do or know. The sorts of memories resulting from specific experiences can vary con-
siderably depending on the age and species of the individual. When it comes to cognition, it’s impor-
tant to remember that similar labels  don’t always imply similar cognitive pro cesses. For example, 
 there are many shades of memory, a topic covered more fully in Chapter 8.

Continuity in Cognition
Dif er ent species behave diferently, but the systems that enable them to behave are generally quite 
similar. Many animals’ activities cluster into categories that are recognizable across species, including 
actions related to foraging, mating, navigating, communicating, exploring, socializing, sleeping, 
 etcetera (Shettleworth, 2010).

 People have long debated about what cognitive pro cesses dif er ent species share and about 
which kinds of be hav ior require the most or least cognition (de Waal, 2010; Premack, 2007). Charles 
Darwin was the first to argue on scientific grounds that  there should be continuity between the 
 mental abilities of  humans and other animals (Darwin, 1871). Darwin’s “ mental continuity” hypothe-
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sis suggests that any  mental  process that occurs in  humans is likely to be pre sent in some other ani-
mals  either to a greater or lesser degree.

This does not mean that the  mental actions of nonhumans are the same as  those of  humans. Just 
as  there are many ways that animals use their bodies to move around in the world,  there could be 
many ways that they mentally control and experience such movements.

Observing how birds, bees, and bats fly ultimately made it pos si ble for  humans to understand 
the mechanisms of flight. Darwin thought that by studying  mental pro cesses in other animals, we 
might similarly gain new ways of understanding how all minds work (Angell, 1909) (Figure 1.14).

Biological Predispositions
A major reason why animals have such varied ways of traveling is that they have become specialists at 
moving in their specific natu ral environments (Alexander, 2003). Evolutionary psychologists argue 
that the same forces have  shaped cognitive pro cesses (Bolhuis et al., 2011; Cosmides & Tooby, 1997; 
Workman & Reader, 2021). For example, animals that often navigate in the dark might depend on 
specialized perceptual pro cesses that enable them to recognize objects from their echoes, and ani-
mals that rely heavi ly on social coordination might develop specialized systems for communicating 
(like language).

You’ll hopefully recognize that this view is a kind of nativism. The basic idea is that if  there is 
some cognitive  process that naturally comes easily to you, then it’s prob ably  because evolutionary 
forces have adapted the way that  human cognition works to make that  process more efective and 
efficient. In other words,  those pro cesses are adaptations— evolved solutions to prob lems.

So, if  humans find learning language easy, and other animals  don’t, then it must be, according to 
evolutionary psychologists,  because  humans evolved some specialized language pro cessing abilities. 
If some kinds of birds are  really good at remembering where  they’ve hidden seeds months ago, then it 
must be  because they evolved some specialized memory abilities (Branch et al., 2022), and so on. 
From this perspective, it is impor tant to consider the conditions within which cognitive pro cesses 
evolved when attempting to understand why they work the way they do.

Social Cognition
When considering the evolutionary origins of cognition,  there are piles of prob lems that seem 
likely to be major  drivers of cognitive adaptations (Fuchs, 2017).  They’re basically the same kinds 
of prob lems  you’ve likely encountered in your daily life— deciding where to go and when, finding 
your way  there and back, navigating social encounters with  others, maintaining your health and 
appearance, and so on.  These kinds of prob lems may not seem to require any kind of Watson- like 
intelligence to solve, but their prevalence means that the prob lems can strongly afect how organ-
isms evolve.

FIGURE 1.14. Beluga 
bubblebatics. Beluga in aquaria 
sometimes learn to make and 
manipulate  bubble rings, 
transforming them in creative 
ways. Once one beluga figures out 
how to do this,  others soon pick 
up the trick. What might such 
creativity tell us about beluga 
minds? (Allen Creative I Steve 
Allen/Alamy Stock Photo)
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Prob lems related to social interactions, in par tic u lar, have at-
tracted lots of scientific attention, not only  because of their impor-
tance in daily life but also  because many of the most mysterious 
cognitive pro cesses (language use, imitation, musicality) are 
closely tied to such interactions (De Jaeger et  al., 2010; Micheal 
et al., 2016).

Social cognition research focuses on  these kinds of cognitive 
pro cesses, which are often viewed as the most sophisticated and 
specialized components of cognition (Figure  1.15). Chapters  11 
and 12 delve into  whether the kinds of cognitive pro cesses that 
make social interactions pos si ble are  really so special, or  whether 
they depend on the same basic mechanisms as other less social 
actions.

Motivation
Natu ral history may explain your innate tendencies to behave in 
certain ways, but if someone asked you to explain why you made 
a specific decision, like why you chose to take a certain class, you 
are prob ably more likely to mention  factors such as your interest 
in the topic or your desire to sleep late rather than your parents’ 
genes. The ongoing internal states that lead you to act in certain ways,  either physically or mentally, 
are collectively referred to as motivation.  These sorts of drives may seem separate from the kinds of 
pro cesses you might typically think of as being cognitive, but they can strongly afect how you think, 
especially when you are trying to make decisions (Braem & Egner, 2018; Westbrook et al., 2020; Yee 
& Braver, 2018) (discussed further in Chapter 3).

For instance, many of the biases that can derail rational thought relate to motivational  factors 
(Botvinick & Braver, 2015) (see Chapter 10). For example,  people working together in committees 
notoriously make poor decisions, in part  because individuals feel pressure to find solutions by a spe-
cific deadline and  because of social drives to not be the odd person out. Motivational  factors also can 
lead  people to behave in ways that are irrational and even against their own beliefs, as in the infamous 
Milgram experiment in which participants showed a surprising willingness to electrocute random 
 people for no reason other than that they  were told to do so.

Cognitive Control
Closely related to the motivation to do  things is volition, a cognitive  process that enables you to con-
sciously choose when and how to act (Haggard, 2019). Most cognitive acts, including recalling, decid-
ing, problem- solving, and thinking, appear to be controlled in ways that imply the existence of a 
controller (Hammond, 1972; Miller, 2000). In cognitive psy chol ogy, pro cesses that provide cognitive 
control are sometimes called executive functions (Posner et al., 2004).

Some  people (like Descartes) would argue that it’s motivation and volition in par tic u lar that dif-
ferentiate  people from machines like Watson. Volition is a tricky topic, however. Plenty of man- made 
control systems can perform sophisticated actions, such as flying a plane.  Those systems do not need 
volition to choose or decide actions in the way that  people seem to; autopi lots do not “go with their 
guts.” Modern discussions of cognitive control have shifted from using terms like voluntary (depen-
dent on volition) and involuntary ( independent of volition) to describing pro cesses as  either explicit 
or implicit to avoid messy questions about the nature of volition and where it comes from (Braver, 
2012; Munakata et al., 2012).

Many psychological disorders involve degraded cognitive control. For instance,  people sufering 
from major depression often have prob lems with initiating goal- directed actions and with shifting 

FIGURE 1.15. Social learning. Many complex skills that 
adults learn are taught or coached by experts who have 
previously learned them. Does this kind of learning through 
guidance require any specialized cognitive abilities, or would 
some kind of generic problem- solving  process be good 
enough? (Tyler Olson via Shutterstock)
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attention away from negative thoughts (Dotson et al., 2020; Grahek et al., 2019). Findings from cogni-
tive psy chol ogy not only can provide insights into why certain emotional states interfere with 
cognitive control but also can guide the development of interventions to overcome such limitations 
(Figure 1.16).

Information Seeking
The motivational force most closely tied to cognition and cognitive psy chol ogy research is curiosity. 
As soon as toddlers get a  handle on communicating, the questions begin to fly.

Such acts of information seeking are another sign of metacognition in that they reveal that tod-
dlers are, in some sense, aware of their ignorance. Exploratory actions provoked by novel objects, 
situations, or prob lems provide the clearest evidence of internal states that lead explorers to behave in 
the ways they do (Sobel & Kushnir, 2013).

Much of the learning that drives cognitive development is thought to come from curiosity— 
ignorance may be bliss, but it’s still rewarding to be in the know (Hacques et al., 2021; Köster et al., 
2020). Curiosity also drives your attention, which determines what you perceive (see Chapter 4), and 
ultimately what you know. If  you’re curious about how cognition works, you  will be more likely to buy 
and read a book about cognition, more likely to not zone out while reading it, and more likely to be 
able to recall specific theories and experiments described in the book.

Curiosity can also lead to creativity (see Chapter 9) as you attempt to invent or discover new so-
lutions to prob lems or new ways of experiencing the world. Curiosity lies at the heart of all scientific 
eforts to understand be hav ior and  mental pro cesses (Chu & Schulz, 2019; Gruber & Fandakova, 
2021). If  you’re curious about exactly how scientists have attempted to understand  these pro cesses, 
then read on!
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(B)FIGURE 1.16. Cognitive 
pathways to recovery.  
(A) Qualitative models 
describing how mechanisms 
of cognitive control like 
attentional control are related 
to physiological  measures like 
EEG (see Chapter 2) can be 
used to develop new 
techniques for diagnosing 
psychological disorders, as 
well as for evaluating novel 
therapeutic interventions 
such as neurofeedback (B) 
that is coordinated with 
cognitive training. Knowing 
what pro cesses to redirect 
and when provides power ful 
tools for treating disorders 
that are more precise, 
dynamic, and customizable 
than current approaches.  
(B © 2023 Neuroelectrics.  
All rights reserved.)
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Cognition is  shaped by evolutionary, environmental, and experiential 
forces— nature plus nurture—as are the behavioral markers of cognitive 
pro cesses.
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Many cognitive acts, including recalling, deciding, problem- solving, and 
thinking imply voluntary control of cognition by a motivated controller.

Experiences afect physical and  mental actions by creating memories that 
determine what an individual can do or know.
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SCIENTIFIC APPROACHES TO UNDERSTANDING COGNITION

SNEAK PEEK: Researchers seek to understand the nature of cognition by observing 
actions in vari ous contexts and by conducting experiments to test the predictions of 
models.

 People have studied minds and be hav ior for millennia. However, most early eforts relied on intu-
ition, reflection, and reasoning rather than on the systematic collection of objective  measurements, 
and so would not be considered scientific.

 There are two main ways that scientists attempt to understand mechanisms of be hav ior and cog-
nition: (1) through detailed observations and (2) through behavioral experiments. At first, psycho-
logical studies of minds emphasized observations over experiments, but in the last  century, experi-
mental approaches have taken over, especially in studies of cognition. The following sections cover a 
brief history of mind research, describing the basic methods that have led to modern ideas about 
what cognition is and how it works.

Ethology: Observing Natu ral Cognition
The starting point for what psychologists understand about cognition is folk psy chol ogy, also known 
as common sense or what your grand mother could have told you. It’s a mix of authority, personal ex-
periences, and second hand reports that provides the foundation for scientific studies of cognition 
(Stich & Ravenscroft, 1994).

Darwin’s early claims about the continuity of cognition across species relied heavi ly on folk psy-
chol ogy— his own observations of animal be hav ior as well as anecdotal stories that  were passed on to 
him. Anecdotal evidence generally comes from unplanned observations of surprising or unique situ-
ations. For example, if you saw a squirrel in a park opening a soda can with its teeth, that would be 
anecdotal evidence that squirrels can solve the prob lem of how to open cans.

If you ever people- watch in an airport, you might also learn something about how cognition 
operates (or  doesn’t) in natu ral contexts (Kingstone, 2020). Such observations would only be consid-
ered scientifically relevant if you collected detailed  measurements of actions that could potentially 
answer a specific question (Eibl- Eibesfeldt, 1979), such as, “Are  people with less hair more likely to 
misplace their carry-on luggage?” Typically, that question would  either confirm or refute a belief or 
suspicion you have about how and why  people behave the way they do, such as “Older  people have a 
shorter memory span.”

Ethology is a scientific approach to studying be hav ior that involves systematically cata loguing 
the actions of individuals or groups in naturalistic contexts (Dhein, 2021; Tinbergen, 1972).  You’ve 
prob ably heard about Konrad Lorenz (1903–1989), the  European scientist who studied the natu ral 
tendency of certain birds to become attached to individuals they see soon  after hatching (called 
imprinting) (Figure 1.17). Lorenz was an early ethologist who collected observations of animal be-
hav ior in many dif er ent contexts to try and better understand why they behave the way they do 
(Lorenz, 1978).

Ethologists tend to focus on studying natu ral actions performed by their subjects, such as  those 
associated with mating, feeding, or social communication (Goodall, 1964). Observations of animals 
using tools (Seed & Byrne, 2010) and performing innovative actions (Arbilly & Laland, 2017) have 
increased researchers’ interest in understanding how learning and experience contribute to an indi-
vidual’s ability to solve complex prob lems.

An advantage of the ethological approach is that, like evolutionary psy chol ogy, it considers how 
organisms behave in their natu ral environments, and attempts to relate be hav ior to the natu ral con-
texts within which the be hav ior evolved (Roth & Jornet, 2013; Sebanz et al., 2008).
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A limitation of this approach, however, is that ethologists are often at the mercy of their subjects 
with re spect to what they can potentially study. For instance, if you attempt to conduct an ethological 
study of turtles in ponds, you might not observe much other than that they sometimes sit on logs and 
stick their heads above the surface when swimming. Such observations may reveal  little about any 
cognitive pro cesses that contribute to their actions.

 People Watching
Ethology might seem less useful for understanding cognition in  people, since if you want to know 
why a person is behaving in a specific way, you could just ask them. But  there are many actions that 
 people perform without noticing why or how  they’re acting. Plus,  people’s explanations for their ac-
tions may not be accurate.

Modern techniques for recording  human be hav ior often use the same methods developed by 
ethologists. One method is studying how  people’s eyes move (called eye- tracking) as they read, look 
at a picture, or watch a movie (Hessels & Hooge, 2019; Lewis & Krupenye, 2022). This method can 
provide impor tant insights into what features  people focus on as they interpret visual scenes or recog-
nize words (Just & Carpenter, 1976; Merkley & Ansari, 2010) (see Chapter 4).

 Measuring movements, including  those made while a person speaks or gestures, can reveal in-
teractions between cognitive pro cesses that contribute to the planning and execution of actions 
(Cienki, 2022; Özçalişkan & Goldin- Meadow, 2005). And technologies with the capacity to track 
changes within a person’s body/brain as they perform dif er ent physical and  mental actions (see 
Chapter 2) can identify hidden physical mechanisms of cognitive pro cessing (Banich & Compton, 
2018; Ea gleman & Downar, 2015; Gazzaniga, 2009).

Careful scientific observation of the dynamics of natu ral be hav ior, including cognitive acts and 
the intricacies of functioning brains, provides an impor tant supplement to the more casual observa-
tions that ground common sense interpretations of how minds work.

FIGURE 1.17. An ethological approach to understanding be hav ior. (A) Konrad Lorenz, shown  here practicing his 
observational techniques, imprinted geese on himself to gain a better understanding of how the memories of 
young animals can shape their be hav ior  toward specific individuals throughout their lives. (B)  Later, more con-
trolled experiments revealed the conditions necessary for imprinting to occur, like movement of a nearby object.  
(A dpa picture alliance/Alamy Stock Photo, B  after Cardoso & Sabbatini, 2001.)
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Behaviorism: Experimental Studies of Learning 
and  Performance
Around the same time that Lorenz was swimming in  European ponds with geese to try and under-
stand what makes them tick, psychologists in the United States  were stuffing other birds (pigeons) in 
boxes in an efort to reveal the secrets of how learning works (Skinner, 1938).

Unlike the ethologists, who emphasized the innate tendencies of dif er ent species that had 
evolved over millions of years, behaviorists  were more interested in the efects of the recent past on 
changes in an individual’s be hav ior—in other words, the role of nurture and specifically learning on 
be hav ior (Hull, 1943; Thorndike, 1932; Watson, 1924).

American behaviorists such as B. F. Skinner (1904–1990) emphasized the role of learning in be-
havioral change. Like ethologists, behaviorists  were keenly interested in observing animal be hav ior. 
But unlike ethologists, behaviorists felt that more could be learned from looking at how animals be-
haved when placed in highly controlled scenarios than from simply watching how they behave in 
their daily lives (Skinner, 1953).

By controlling conditions in laboratory experiments, behaviorists gained insights into the  factors 
that most strongly motivated animals to change their be hav ior and discovered new ways to reveal 
what animals other than  humans perceive about the world. Behaviorists also discovered that many of 
the “rules of learning” operate in the same way for dif er ent species, presenting the possibility that one 
could reveal new facts about  human learning by conducting experiments with nonhuman animals.

Looking at Learning
Behaviorist research is often associated with training rats to repeatedly press a lever for food. It may 
seem odd that psychologists would spend thousands of hours teaching rats to work vending ma-
chines in the hopes of understanding  human be hav ior. However, behaviorists  adopted a common 
scientific tactic of trying to understand a complex phenomenon by breaking it down into its most 
basic ele ments (an approach known as reductionism). By exploring which variables could lead to 
basic behavioral changes— increases or decreases in a  simple action— behaviorists wanted to identify 
princi ples of be hav ior that would be likely to apply to most animals (including  humans) and to many 
dif er ent kinds of actions.

Behaviorists considered the specific animals and tasks used in experiments to be less critical 
than how precisely experimental variables  were controlled and  measured. This way of thinking 
stemmed from an understanding that any set of princi ples should apply to all species and tasks. Psy-
chologists conducted experiments mainly with small animals performing  simple tasks  because  these 
methods  were practical and worked well.

The rise of the modern field of cognitive psy chol ogy began, in part, as a response to limitations 
in the behaviorists’ approach to studying complex  human actions such as having a conversation 
(Chomsky, 1959), or thinking about pos si ble solutions to prob lems (Miller, 2003). In shifting to ex-
periments on  humans, cognitive psychologists gradually turned from exploring how individuals 
learn  toward  measuring how they perform when faced with vari ous tasks (Neisser, 1967).

The distinction between learning versus  performance is an impor tant one for behaviorists, 
 because how an individual behaves only reveals an incomplete picture of what they have learned. For 
instance, someone observing your be hav ior while you are reading this book would gain  little insight 
into what you are learning from reading it  because what you are learning is hidden from observers.

Behaviorists call this latent learning  because the evidence that any learning occurred has yet to 
show up in your  performance. An American behaviorist named Edward Tolman (1886–1959) cham-
pioned the idea that latent learning was happening all the time and that hidden memories played a 
major role in guiding be hav ior (Figure 1.18). Tolman developed several ingenious tasks to show that 
rats  running through mazes knew more about the spatial layout of the mazes than researchers could 
guess just from watching them run (Tolman, 1925, 1932).
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Cognitive Psy chol ogy: Drawing Inferences 
about  Mental Pro cesses
Like behaviorists, cognitive psychologists rely heavi ly on controlled behavioral experiments in their 
attempts to understand be hav ior (Gigirenzer, 1991; Glenberg, 2013). But rather than  measuring how 
animals’ be hav ior changes when they are rewarded or punished, cognitive psychologists focus more 
on  measuring how  people perform in tasks carefully designed to engage specific cognitive pro cesses 
(Glaser, 1981; Roediger, 1980).

While ethologists and behaviorists difered in emphasizing  either innate reactions (nature) or 
learned be hav ior (nurture), both groups agreed that the key to understanding the mechanisms of be-
hav ior was to carefully  measure the actions of animals in dif er ent contexts. They also agreed that at-
tempting to  measure unobservable events that  were happening inside an individual’s head or mind 
was scientifically a waste of time. It’s perhaps not surprising then that  there has historically been some 
tension between ethologists, behaviorists, and cognitive psychologists (Lehrman, 1953; Mackenzie, 
1977; Watrin & Darwich, 2012).

The earliest psychological laboratories often focused on experimental studies of cognitive pro-
cesses like perception and memory. Many consider the German professor Wilhelm Wundt’s (1832–
1920) studies of attention and perception to represent the birth of experimental psy chol ogy as an aca-
demic field (Wundt sounds like “Voont”). Wundt trained researchers to make objective reports on 
their inner experiences while performing tightly controlled experimental tasks (Wundt, 1912), a kind 
of self- report he called introspection (the same approach Margaret Washburn used for her disserta-
tion research).

 People are sometimes described as introspective when they actively contemplate why  things are 
the way they are or how they feel about ongoing events. Wundt’s introspection difers, however, from 
just thinking about what it feels like to perform a cognitive task like reading or remembering. Wundt 
would prob ably argue that his trained observers  were making judgments more like  those that profes-
sional chefs make when judging entries at a cooking contest. In comparison, he might view your un-
trained observations of your own  mental states as more comparable to  those of a six- year- old describ-
ing a hamburger she ate at a fast- food restaurant.

Introspection  hasn’t been widely used in the last  century as an experimental method for studying 
cognitive pro cesses. This is partly  because it’s difficult to establish  whether such observations are reli-

FIGURE 1.18. Amazing rats. Edward Tolman (A) explored what rats know about mazes (B) they are familiar with. He argued that 
rats gradually learn about the spatial layout of mazes in much the same way that  humans do. (A from Berkely News. © 2023 
UC Regents. All rights reserved; B James A Isbell via Shutterstock)
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able or valid, and partly  because it’s hard to train observers to improve their reports when you  don’t 
know what  they’re observing (Gonzalez- Castillo et al., 2021).

Using introspection as a method for studying  mental pro cesses in nonhumans is even more 
problematic. This may explain why scientists who focused on studying animals historically consid-
ered attempts to understand animal be hav ior by studying  mental pro cesses to be a lost cause.

Self- reports remain part of some cognitive studies, however, such as when participants are 
instructed to “think aloud” as they solve a prob lem (Ericsson & Fox, 2011; van Someren et al., 1994), 
or to say  whether  they’re certain they recently experienced an item in a memory test (Tulving, 
1985).

Experimental Methods
Modern cognitive psychologists continue to use a subset of the experimental methods initially pio-
neered by Wundt, including  measuring how long it takes  people to respond to perceived and recog-
nized events (Wenger & Townsend, 2000). Now, however, researchers focus more on analyzing pat-
terns of  performance that groups of participants consistently produce to try and figure out what’s 
happening inside  people’s heads.

Developmental psychologist Jean Piaget (1896–1980), for example, constructed a variety of dif-
fer ent tasks that could be presented to  children to reveal how their responses to  these tasks changed 
as they got older (Figure 1.19). Based on the specific kinds of errors that  children made at certain ages, 
Piaget concluded that  children pass through multiple developmental stages in which they cognize in 
specific ways (Piaget, 1952).

Piaget argued that just as infants first learn to crawl, then to walk, and fi nally to run, they also first 
learn to recognize objects and act on them, then to talk about  those objects and actions, and fi nally to 
think about them. The key advantage of Piaget’s approach over more introspective and observational 
methods is that researchers can quantitatively  measure the reliability with which  children make such 
errors (Baillargeon et al., 2011; Gelam & Gallistel, 1978).

You can still question, of course,  whether the  children made errors for the reasons that Piaget 
claimed they did (Spelke & Newport, 1998; Wynn, 1992). A behaviorist might argue that Piaget’s ex-
planations are no better than a fairy tale, since no one can ever  really know what is  going on inside a 
child’s head. Perhaps Piaget would have countered that a potentially inaccurate hypothesis about how 
a child’s understanding of the world guides his or her actions is preferable to the behaviorist assump-
tion that it’s impossible to know anything about what  children understand.
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FIGURE 1.19. Cognition 
revealed by  children’s errors. 
(A) Jean Piaget developed 
tasks to explore how  children 
understand the world.  
(B) Young  children often draw 
odd shapes when asked to 
copy a triangle. This suggests 
that they may think of 
triangles as something like 
squares with extra pointy 
parts. (A Bill Anderson/Science 
Photo Library)
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The goal of cognitive research is not just to understand how cognition works, but to get a better 
 handle on the kinds of approaches that are most likely to lead to such an understanding. Making 
pro gress in cognitive psy chol ogy is not about collecting more observations, but about collecting the 
kinds of observations that reveal where our current thinking has gone wrong (Neisser, 1967; 
Shepard, 1968).

Some of the experimental methods used in cognitive research that you’ll learn about in this book 
may seem a bit ridicu lous given the complexity of the pro cesses being investigated. Can cognitive 
psychologists  really understand how language works by having undergraduates press a button as fast 
as they can whenever a word is presented?

Other brain- based methods like magnetoencephalography (see Chapter 2) may seem so science- 
fictional that it’s hard to even grasp what it is that cognitive psychologists are observing. Regardless of 
which methods are used, their value comes not from how fancy they are, but from what questions 
they can help cognitive psychologists answer.

 Every method has its strengths and weaknesses, as does  every approach to scientifically studying 
minds and be hav ior (Figure 1.20). In considering what current evidence reveals about cognition, it’s 
impor tant to always keep in mind that the case is not yet closed— there are many cognitive mysteries 
yet to be solved.

Current Practices of Cognitive Psychologists
In the early days of scientific research,  there  were few guidelines about how researchers should con-
duct studies of cognitive pro cesses. Self- studies  were common.

In the 1600s, Isaac Newton (1643–1727) investigated color vision by shoving a long sewing nee-
dle into his eye socket, which he reported caused him to see colored circles (Newton, 1972). Her-
mann Ebbinghaus (1850–1909) spent several years memorizing lists of nonsense words in the late 
1800s so that he could  later test his ability to recall and relearn the lists (Ebbinghaus, 1885/1964).

Modern cognitive psychologists rarely go to such extremes in exploring cognitive pro cesses. 
More typically, they recruit a bunch of undergraduates (usually students in psy chol ogy courses) and 

Introspection

Brain–Experience Connections

Skeptical Self-Re�ection

Comparative Cognition

Ethological Observations

Latent Learning

Constructing Minds

FIGURE 1.20. Where cognitive psy chol ogy came from. The 
history of cognitive research is a history of scientific methods and 
dif er ent ways of thinking about  mental pro cesses. Each new 
approach, from Descartes’ skeptical self- reflection to Piaget’s 
developmental construction of minds, yielded insights and raised 
intriguing questions. What are the biggest diferences between 
 these early approaches to understanding why  people act and 
think the way they do? (Konrad B,ik/Alamy Stock Photo)
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