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DoingViolence to Reality 1
The truth lies directly before us in the reality surrounding us. However,
we cannot use it as it is. An unbroken description of reality would be
simultaneously the truest and most useless thing in the world, and it
would certainly not be science. If we want to make reality and therefore
truth useful to science, we must do violence to reality. We must intro-
duce the distinction, which does not exist in nature, between essential
and inessential. In nature, everything is equally essential. By seeking out
the relationships that seem essential to us, we order the material in a
surveyable way at the same time. Then we are doing science.

—Jakob von Uexküll, Umwelt und Innenwelt der Tiere (1909, p. 227)

The sciences of social behavior are more important than ever. These include the human
social and behavioral sciences as well those branches of biology, physics, and applied

mathematics that deal with social and collective behavior. Many of the most pressing ques-
tions for our time are about how groups behave and adapt, on topics ranging from disease
spread and political polarization to the maintenance of cooperation, collective action, and
the reliability of scientific findings.

A persistent roadblock to a focused attack on these questions is the fact that social sci-
entists are often trained and organized in ways that impede the sorts of interdisciplinary
connections needed to solve them. Researchers studying human behavior are siloed into
many distinct disciplines, each with different methods, theoretical frameworks, and per-
spectives.This limits the sorts of questions researchers tend to ask as well as the approaches
they use to answer those questions. It also means that researchers often lack frameworks
or tools for dealing with complex problems at multiple scales. It would be helpful to have
a bridging framework to facilitate communication between researchers and to encourage
better research questions.

The past few decades have seen the emergence of several amalgamate fields that inte-
grate key insights from across many different disciplines, helping to create new ways to
understand human behavior. These fields include cultural evolution, cognitive science,
network science, and complexity science. The perspectives in this book draw from all of
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Figure 1.1 A murmuration of starlings.

these approaches. I believe that arming social and behavioral scientists with a basic toolkit
of formalized theories and models will allow them to tackle the most important questions
from multiple perspectives, and will provide a language through which richer theories of
social behaviors can be developed and communicated. I also believe that when these amal-
gamate fields have been successful—and they have not always been so—it has often been
because they relied on relatively simple models to illustrate and articulate the lessons that
could be drawn from their core perspectives. In this book, we will learn about many of these
models, as well as the tools needed to create and analyze them.

This book is about doing violence to reality, because that is the main undertaking of sci-
ence. In the course of doing so, reality may become at least temporarily unrecognizable.
This is necessary for twomain reasons. First, because we have to understand simple systems
before we can understand more complex systems. And second, because most of us receive
precious little training in understanding social systems with much precision, particularly
compared with the precision emphasized in the physical and biological sciences. There are
good reasons for that—as Albert Einstein famously quipped, politics is harder than physics.
The gambit of this book is that, despite this difficulty, we can still apply the sort of mathe-
matical and computational tools that are typically used for understanding physical systems
toward an understanding of social systems. Let’s start with an example.

1.1 Flocking Birds and Boids

If you work through the models in this book, you’ll be spending a lot of time in front of
a computer. Hopefully, you also get outside from time to time to take in some fresh air,
move your body, and watch the birds. Sometimes when you watch birds, you see remark-
able things. An astonishing sight in some parts of the world is a murmuration of starlings
(Figure 1.1), in which tens of thousands of birds gather together in midair and move as one
unit. Flocks of birds, schools of fish, and herds of grazing animals all exhibit similar cohesive
collective behavior.

Whatmakes the collective behavior exhibited by the starlings so amazing, other than that
it just looks cool, is that there is no central authority coordinating all the individual birds.
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Separation:
Steer to avoid crowding
local flockmates

Alignment:
Steer toward the average
heading of local flockmates

Cohesion:
Steer to move toward the average
position of local flockmates

Figure 1.2 Rules of the boids model.

Each bird is aware only of its immediate surroundings, responding locally to the birds it
can see, hear, and smell. And yet the collective is more than the sum of its parts—a classic
example of emergent behavior, in which description at the level of the collective is fun-
damentally distinct from the behavior of the collective’s individual constituents. Emergent
behaviors are interesting for reasons beyond their aesthetic appeal. Flocking, schooling, and
swarming are almost certainly adaptive, helping prey animals defend against predators and
effectively forage in large collective units. How do they do it?

Craig Reynolds, a computer scientist working on motion picture graphics in the mid-
1980s (he had been a programmer for the landmark 1982 filmTron), wondered howhe could
build a computer program to simulate realistic-looking flocks, and so he started spending
hours outside watching birds. Trying to code the path of each individual bird seemed nigh
impossible due to the sheer magnitude of a description characterizing the entire flock. Even
if it could be done, edits to change the path of the flock would require starting the coding
process all over again. There had to be a better way.

Reynolds noticed that birds seemed to be able to flock with any number of other birds,
from just a handful to thousands or more.Thus, he reasoned, “the amount of ‘thinking’ that
a bird has to do in order to flock must be largely independent of the number of birds in the
flock.” He considered the possibility that each bird might be using relatively simple heuris-
tics, or “rules of thumb,” in order to stay together with the other birds nearby, and that a
whole flock of birds responding thusly—and only to local information—might lead to the
appearance of a coherent collective. To investigate this idea with greater care, Reynolds cre-
ated a computational model: a simulated world full of artificial creatures he named “boids”
(Reynolds, 1987).

Boids are particles moving in a two- or three-dimensional space. In the simplest versions
of the algorithm, theymovewith constant speed, varying only in their turning angle, though
more complicated versions also exist that account for factors like acceleration. Each boid has
only a limited field of vision so that it can perceive the location and directional heading of
other nearby boids.That is, each boid is aware only of its local surroundings—no individual
boid is aware of the entire flock. Boids use this information to adjust their own directional
headings, using the following three rules (Figure 1.2):

Separation. If there are other boids immediately in front of you, turn away from them
to avoid collisions and crowding.
Alignment. Turn to align with the average heading of nearby boids.
Cohesion. Attempt to stay close to nearby flockmates by steering toward the average
position of nearby boids.
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Figure 1.3 Screenshot from a simulation of the boids model.

These three rules, particularly in combination with realistic environments containing
objects or agents to avoid, produce flocking behavior that is extremely realistic to the eye
(Figure 1.3). Whenever you see a computer-generated flock of birds, school of fish, herd of
stampeding wildebeest, or swarm of killer robots in a film, television show, or video game,
theirmovements are almost certainly dictated by some variant of the boids algorithm.More-
over, scientists interested in the collective behavior of animals, from insects and fish to birds
and human crowds, have employed computational models based on boids to understand
their study systems (e.g., Sumpter, 2006; Couzin, 2009).

Boids is an example of an agent-based model, in which individuals are represented as
computational entities (agents) that can behave and interact locally.More importantly, boids
is an example of amodel, full stop. It allows us to create a simplified representation of reality
and to formally instantiate that representation to observe the consequences of our assump-
tions. In this case, individuals’ bodies and their positions in real space are directly mapped
onto the characteristics of the model agents. In this book, I will make the more general
argument that models are useful for understanding all sorts of social phenomena, including
phenomena for which the mappings are a bit more abstract. At this point, I think it’s useful
to take a little time to talk about what models are.

1.2 What Are Models?

The word “model” means a lot of things. To lay people, the term often refers to a fashion
model. I once forgot this and typed “formal models” into Google’s image search engine,
hoping for images of equations or diagrams, but instead I was rewarded with images of
good-looking men in formal attire. Clarification of how the term is used in this book seems
in order.

For our purposes, a model is an abstract or physical structure that can potentially repre-
sent a real-world phenomenon.1 Consider this question when conducting research: Are you

1This definition is also used by the philosopher Michael Weisberg (Weisberg, 2013).
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Figure 1.4 U.S. Army Corps of Engineers Bay Model.

directly studying the system or phenomenon you’re interested in? Sometimes the answer is
yes. If you want to know the mass of a rock, you can weigh the rock. If you want to know
the structure of a particular cell, you can look at the cell under a microscope. In these cases,
your questions are about the thing you are directly observing. Very often, however, your
questions are really about something else. Your questions might instead relate to things you
can’t directly and systematically observe due to constraints of time, space, budget, or ethics.
Your questions might be about a general class of scenarios, rather than a particular system.
In many cases like these, we use models.

Engineers make physical scale models to assess their designs. In the 1950s and ’60s, the
U.S. Army Corps of Engineers built a two-acre scale model of the San Francisco Bay and
Sacramento-San Joaquin River Delta System (Figure 1.4; the true system is 10,000 times
larger). The model, which involved a massive undertaking, was used to assess the likely
impacts of building dams and rerouting various channels. Assessing this directly would
involve actually building the dams and rerouting the channels, which would be extremely
costly if the consequences of doing so were not well understood. The model helped con-
vince the Army engineers not to build the dams (Weisberg, 2013). When a single failure of
a system can be life-threatening, such models are invaluable.

Biomedical and behavioral scientists use animalmodels tomake general inferences about
genetics, physiology, and development. Scientists whose primary goal is to understand the
Norway rat or the fruit fly surely exist, but they are just as surely in the minority among
researchers studying those animals. Instead, scientists use discoveries about these and other
“model organisms” with the aim of making more general claims about the biology and
behavior of related animals, especially humans.
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Behavioral experiments are almost always models for a larger class of behaviors and sce-
narios. In awidely cited psychology experiment, children are presentedwith amarshmallow,
then told they can have a second marshmallow if they can wait to eat the first one.The chil-
dren are then left alone with the first marshmallow for a length of time to see whether they
succumb to the temptation to eat it. Unless they are employed by the candy industry or just
like tormenting children, very few researchers really care how long children can wait for a
second marshmallow. Instead, researchers have used the “marshmallow test” to model situ-
ations in which issues like willpower and trust come into play (Mischel and Ebbesen, 1970;
Benjamin et al., 2020).

Finally, researchers often build formalmodels.These aremathematical or computational
specifications of a system. Formal models are used widely in the more exact sciences, in
which elements of a model are direct representations of measurable quantities in the world.
Other times, and almost always in the social sciences, models are more abstract, intended to
capture core elements of a theoretical idea without a perfect one-to-one mapping between
measurement and model.

Formal models are special because they contain nothing more or less than what we put
into them. Sometimes, critics of formal modeling say, “Well, you baked your result into the
model, so it had to happen.” They’re not wrong. In fact, this is literally true of every formal
model, because the model analysis is merely a series of computations based on assumptions
specified by the modeler. To put it another way, a formal model is a logical engine that turns
assumptions into conclusions.

It may seem curious that we should want something like this.Why dowe need amodel to
examine our assumptions? If we knowwhat our assumptions are, can’t we just think through
their consequences? In my experience, we very often cannot. Our intuitions about complex
systems are frequently terrible. Good models can show us how our assumptions lead to
unexpected conclusions. Moreover, we don’t always know what our assumptions even are if
we’ve never had to lay them all out. The process of building models often involves a lot of
reflection concerning what we are assuming andwhat wemust assume in order to produce a
coherent explanation. The late physicist and complexity pioneer Murray Gell-Mann rightly
called formal models “prostheses for the imagination.”

1.3 The Parable of the Cubist Chicken

Communicationwith human language is very often imprecise, ambiguous, and indirect. For
most purposes, these can actually be adaptive features of language. Ambiguity, for example,
can serve to convince multiple listeners that they all agree with a speaker’s big idea, which
allows the speaker to vault to prominence, and it may enhance group cohesion by allow-
ing people to cooperate toward what they perceive as a common goal.2 In science, however,
ambiguity is no good. We need to be precise. But in many fields, theories of social phenom-
ena are still articulated in a purely verbal fashion, opening these explanations up to all the
problems of ambiguity. I like to illustrate this problem with a brief anecdote I have come to
call the parable of the Cubist chicken.

One evening long ago, when I was an undergraduate student, a friend and I found our-
selves waiting in the basement of a theater for a third friend, an actor about to finish his

2There is a fascinating literature on the adaptive and strategic uses for ambiguity. See Eisenberg
(1984); Sperber and Wilson (1995); Aragonès and Neeman (2000); Flamson and Bryant (2013);
Smaldino and Turner (2022).
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Figure 1.5 An artist’s interpretation of the Cubist chicken parable. Drawing by Nicky Case.

play rehearsal. There was a large collection of Legos in the room, and we, being of a jaunty
disposition and not entirely sober, amused ourselves by playing with the blocks. My friend
idly constructed an assembly of red, white, black, and yellow blocks and declared, “Look!
It’s a Cubist chicken!” (Precisely what it looked like has also been lost to time, but an artist’s
interpretation is presented in Figure 1.5.) I laughed and heartily agreed that it most def-
initely looked like a Cubist chicken. We were extremely satisfied with ourselves, not only
because it was very silly, but also because if in fact we both understood the design to be a
Cubist chicken, then it surely was one. We had identified something true about our little
masterpiece and had therefore, inadvertently perhaps, created art. This is how liberal arts
students amuse themselves.

Our conversation moved on to other topics, but we continued to occasionally comment
on theCubist chicken. After some time had passed, the rehearsal ended, and our actor friend
entered the room. “Check it out!” we exclaimed. “A Cubist chicken!” Our friend smiled
bemusedly and, with a raised eyebrow, asked us to explain exactly how the seemingly ran-
dom constellation of Legos represented a chicken. “Well,” I said, pointing to various parts
of the assemblage, “here is the head. And here is the body and the legs, and here is the tail.”
If you squinted, I thought with some satisfaction, it sort of looked chicken-ish. But my sat-
isfaction was short-lived. “No!” cried my co-conspirator. “That’s all wrong.The whole thing
is just the head. Here are the eyes, and the beak, and here is the crest,” for my friend had
envisioned our chicken as a rooster. And thus, the illusion of our shared reality was shat-
tered. We thought we had been talking about the same thing. But when more precision was
demanded, we discovered we had not.

As many a late-night dorm room conversation can attest, humans are capable of very
elaborate theories about the nature of reality. The problem is that, as scientists, we need to
clearly communicate our theories so that we can use them to make testable predictions. In
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the social and behavioral sciences, the search for clarity can present a problem for verbal
models and can lead to a depressing recursive avalanche of definitions. For example, many
researchers are interested in preferences. But before we ask about the sorts of things that
influence preferences or are influenced by preferences, we should first ask: What is a prefer-
ence? Perhaps a preference is a tendency to choose certain behaviors over others.This leads
to a new question: What are the available behaviors? Of course, the set of possible behav-
iors depends on the social and environmental context. What are these contexts, and what
determines them?This can go on for a while.

Formal models provide a means of escape from the recursive abyss. By restricting our
discussion to the model system, we can clearly articulate what we are—and, just as impor-
tantly, aren’t—talking about. This generally leaves us with something that, on the surface,
might seem pretty stupid. The statistician George Box famously noted that “all models are
wrong, some are useful.” I would add that not only are all models wrong, they are obviously
wrong.They often appear to be gross oversimplifications that leave out seemingly important
details. However, the apparent stupidity of a model can be a strength. By focusing only on
some key aspects of a real-world system (i.e., those aspects instantiated in themodel), we can
investigate how such a system would work if, in principle, we really could ignore everything
we are ignoring. This only sounds absurd until one recognizes that, in our theorizing about
the nature of reality—both as scientists and as mere humans hopelessly entangled in a com-
plex and confusing world—we ignore things all the time. We can’t function without ignoring
most of the facts of the world. Our selective attention ignores most of the sensory input that
innervates our neurons (consider thewell-known “cocktail party effect,” inwhich you ignore
the jumble of noises in a crowded party until your attention is suddenly drawn to a mention
of your name). This ignorance is fundamentally adaptive; the bounds to our rationality are
severe, and dedication of cognitive resources entails balancing benefits and costs.

By ignoring all but the most relevant information, we are able to impose a modicum
of order upon the world. Modeling helps us avoid some of the problems that arise when
we try to verbally communicate our systems for ordering the world. Each of us has likely
focused our attention on a slightly different notion of the world, highlighting some aspects
and ignoring others. We might use the same words but still talk past one another. Left
unchecked, this sort of ambiguity renders a science of social behavior all but impossible.
Formal models help solve the problem by systematizing our stupidity, and ensuring that, at
the very least, we are all talking about the same thing.

1.4 Decomposition

Most of us are taught a version of science that goes something like this: a scientist observes
the world and constructs a hypothesis.The scientist is presumed to enter the scene as a pas-
sive observer, taking it all in with calm, quiet contemplation. They then form a hypothesis,
which compels them to action. The scientist devises a test, the results of which will help to
confirm or refute the hypothesis. Much of the literature on scientific methodology focuses
on rigor in hypothesis testing—statistical power, multiple comparisons, p-values, Bayesian
something or other, etc.This stuff is all important, but there is also a problem with this view
of science as hypothesis testing, which is that it glosses over the question ofwhere hypotheses
come from in the first place.

A hypothesis is usually a proposal that the parts of a system are organized in some way
and/or that because the parts are organized in a particular way, some phenomena and not
others occur. But what are these parts? If wewant to understand some aspect of a system and
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form hypotheses and theories3 about it, we first have to articulate the parts of the system, a
process I’ll call decomposition after Herbert Simon, who used the term similarly.4 Wemust
answer the following questions: What are the parts of the system we are interested in?What
are their properties?What are the relationships between the parts and their properties?How
do those properties and relationships change? Decomposition consists of usable answers to
these questions.

What is the right decomposition? Dauntingly, there is no one right way to decompose
a system. An economist interested in supply chains might model a local economy as a set
of firms defined by their assets, sectors, and dependencies. The individual humans actu-
ally making the decisions in those firms and consuming their goods and services would
be ignored, as would the weather, the position of the moon, and the migration of but-
terflies. A cognitive scientist interested in the same system might instead focus on the
decisions made by the individual stakeholders, and thus their model would include the per-
ceived costs, benefits, and affordances of those individuals. How you decompose a system
depends on the questions you are trying to answer with your model and on the granularity
required for answers to those questions. The value of a model largely depends on how well
its decomposition usefully answers the questions the modeler is asking.

No idea is theory-free.We parse the world based on categories and schemas—themental
set comprising and organizing our world. We build models to help us understand them. All
models are ultimately unrealistic. But reality cannot be fully captured by our minds, and so
we come up with explanations that work for us, that help us to see the world in ameaningful
and useful way.Models, then, are reflections of howwe parse the world.The key point I want
to make here is that there aremanyways to parse the world, and howwe parse it determines
the questions we are able to ask about it.

As a graduate student in the summer of 2008, I attended a workshop on computational
modeling run by John Miller and Scott Page at the Santa Fe Institute. On the first day, the
attendees were given the following assignment:

People enter and leave an elevator as it travels up and down. Model, using what-
ever techniques you wish, the above scenario. Explicitly state your model and key
assumptions.

We split into small groups of two or three and spent a day working on the project. My group
considered the perspective of an individual rider making the decision to wait for the ele-
vator or take the stairs. The decision calculus was based on the distance required to travel,
the time of day, and the number of people currently in the elevator. The relevant parts were
the individual decision makers (specifically their locations and intended destinations) and
the elevator (specifically its location and occupancy level). We programmed our model and
explored the relationships between building occupancy, distribution of destinations, and the
number of stories in the resulting patterns of elevator usage. When we reconvened with the
otherworkshop attendees to share our results, we discovered awide range of perspectives we
hadn’t considered at all. One that stands out in my memory was a group that modeled opti-
mal ways for agents to arrange themselves within an elevator so that they avoided crowding
while also minimizing the likelihood of being blocked in when the elevator reached their
floor. This was a completely different model, using a completely different decomposition
of the system! In this model, the layout of the elevator itself was a key component, and the

3See also Box 1.1: Hypotheses, Theories, andTheoretical Frameworks.
4This section is strongly influenced by Simon (1963) and Kauffman (1971).The 1960s and ’70s saw

a boom in what is sometimes called systems thinking.
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decision calculi of the individuals, including how their decisions influenced each other, bore
little resemblance to those in our model.

The reason such vastly different model designs could emerge from the same prompt is
that although the elevator scenario is a reasonably well-defined system, the prompt provides
no specific questions to be addressed. This point is worth repeating: it is the question that
determines the relevant parts of the system. When it eventually comes time to build your
own models (which we will discuss in chapter 10), you will need to think carefully about
the parts you will include and the parts you will ignore. What questions does your theory
address? What parts do you need to include to answer those questions? Is your model a sat-
isfying representation of your theory? If not, why not?There are lots of ways to represent any
particular system, and these representations matter. At least some great scientific advances
occur because new decompositions are introduced that allow us to ask better questions or
to explain more empirical phenomena in a coherent framework. Good models also serve
as fuel for analogical reasoning, whereby the parts of the model can be mapped onto the
relevant parts of reality (Brand et al., 2021).

In this book we will examine a number of models. Each decomposes a system in a partic-
ular way and is well suited to answering certain questions and not others. Exploring some
models means excluding others, and there are natural constraints on the questions any set
of models can address. That being said, I have tried to be deliberate in my choice of models.
There is value in having a set of well-known or even (if I may be so bold) canonical models.
If such models are widely known throughout the social sciences, they can help drive theory
forward (by focusing attention on a set of well-understood questions) and also encourage
communication and collaboration (because the model formalisms remove ambiguity and
ensure that researchers are using concepts in similar ways).

BOX 1.1: Hypotheses, Theories, andTheoretical Frameworks

Throughout this book, I will be talking about models and their connections to both
hypotheses and theories, so it is worth clarifying how I will be using these terms. I will
also distinguish between individual theories and overarching theoretical frameworks.
This breakdown draws somewhat from a lovely paper by Muthukrishna and Henrich
(2019), thoughmy definitions differ slightly from theirs.The following definitions are
nonstandard, but I think they make sense in terms of the modeling philosophy used
here.

A hypothesis is a prediction that if a particular set of assumptions aremet, a partic-
ular set of consequences will follow. In practice, this is a prediction that either (1) the
parts of a system are organized in a particular way—in other words, that a particu-
lar decomposition carries explanatory power for some observed phenomena—or that
(2) because the parts of a system are organized in a particular way, certain phenom-
ena and not others will occur. Good hypotheses allow us to exclude and distinguish
between competing theories.

A theory is a set of assumptions upon which hypotheses derived from that theory
must depend. Strong theories allow us to generate clear and falsifiable hypotheses.

A theoretical framework is a broad collection of related theories that all share
a common set of core assumptions. An example of a theoretical framework is Dar-
winian evolution by natural selection, from which many subordinate theories have
been derived.
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1.5 FormalTheory in the Inexact Sciences

From the above discussion, it should be clear that one of the perennial challenges involved in
doing science is pinning down exactlywhat we are talking about.Many people have an intu-
ition that there is something fundamentally different between the “soft” social sciences like
sociology, anthropology, behavioral ecology, or social psychology, and the “hard” sciences
like physics, chemistry, or geology.The philosopher Karl Popper (1963) suggested that a key
feature of what one might call “hard science” involves falsifiability. Popper proposed that
scientific theories should make clear predictions, so that if an empirical result contradicts
the prediction of a theory, the theory has been falsified. An unscientific theory, in contrast,
is not specified clearly enough to delineate whether a result does or does not falsify it. “Soft
science” presumably straddles the line between science and non-science. I’ve always found
the soft-hard distinction somewhat unsatisfying, however, and so I would like to offer up a
slightly different way of characterizing the sciences.

In the decades since Popper, a great deal of commentary has been made on his doctrine
of falsifiability (reviewed in Oreskes, 2019), grappling with the reality that much of what
we regularly call “science” involves neither predictions nor measurements that are precise
enough to determinewhether andwhen falsification has occurred. In order tomake sense of
this, I propose a distinction between exact and inexact sciences, with the understanding that
exactness ismore like a continuous variable than a binary characteristic. In the exact sciences,
theories involve direct mappings between measurable constructs and model predictions—
the terms in their fundamental equations all have universally-accepted units. In classical
physics, for example, theories concern quantities like mass and velocity, charge and voltage.
In other words, the theories are exact specifications of the relationships between quantities
that can be measured with high levels of precision.

The inexact sciences are those in which the mappings between measurements and theo-
ries are imprecise.This creates a challenge for theory in the inexact sciences. Formal theories
of social behavior, which involve mathematical or computational models, are themselves
quantitative and exact, but the model parameters typically won’t align precisely with empir-
ical measures in the way that theories do in the exact sciences. Indeed, the quantities being
measured are usuallymere proxies for the concepts at the heart of theories in the inexact sci-
ences. This imperfect mapping may be why there are more widespread preferences in these
fields for empirical, heuristic, or verbal models rather than formal models.

The social sciences are almost always inexact. Social scientists are interested in theories
about things like communication, cooperation, norms, identity, contentment, and prosper-
ity. You can measure these things, but you will almost always encounter arguments for why
your measurements don’t capture key aspects of the concepts dealt with in your theory.5 In
what units do we measure cooperation or contentment? This inexactness sometimes leads
social scientists to dismiss formal models as failing to adequately capture the phenomena
of interest, over being useless oversimplifications. Models of social phenomena do usually
involve extreme simplification of complex systems—this simplification is exactly the point
of models. If we’re not clear on how our theories work, how can we agree on the value of the
data we collect to address those theories?

Social systems are gonna be modeled, because scientists keep coming up with theories
about those systems that benefit from formalization. As such, it’s important to ensure that

5There are many things that social scientists can determine exactly, such as the identity of the
UK prime minister or the location of the U.S.-Canada border. However, it is much more difficult to
articulate general theories about prime ministers or borders.
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at least some of the people modeling social systems are social scientists, if not by training
then at least by inclination. By this, I mean that while you don’t necessarily need to have a
degree in social science to do social science, you do need to take the questions posed and the
research done by social scientists seriously. There’s a lot of poor modeling of social systems
done by people who can do some cool math or programming but haven’t taken the time to
understand many of the finer aspects of human behavior,6 which is the sea in which social
scientists swim.

Due to the inexactness of the social sciences, the mapping between models and data
is complicated and often more analogical than precise. Because of this, we will mostly
ignore the question of fitting theoretical models to empirical data until the book’s penul-
timate chapter, and instead focus on how to articulate models of social phenomena and
gain intuition about the dynamics that emerge from them.

1.6 Why Model?

Despite the inexactness of the social sciences, formal models of social systems still get you
quite a lot. If you askmost people why scientists buildmodels, they’ll probably respondwith
something about prediction. We want to predict what will happen. Prediction is often valu-
able, and even occasionally achievable. In the inexact social sciences, our predictions will
rarely be precise, and when they are precise, they will rarely be accurate. However, qualita-
tive predictions are still valuable. It can be of great use to know that when some variable X
increases under condition Y , variable Z is likely to increase in turn. Relatedly, researchers
often use statistical models to identify predictive correlations in their data. Such models
are extremely valuable but can also fail catastrophically if the conditions that generated the
associations change. This book focuses on generative or mechanistic models, whereby the
processes that generate particular conditions are modeled explicitly.

Many models do not make even qualitative predictions about the real world. Certainly,
the models we will explore in this book will rarely be useful for making specific predictions
about the future, at least in their unaltered forms. Nevertheless, even non-predictive models
have a lot of value, which I will condense into three categories: precision, tractability, and
insight.7

Precision

There are many,many ways to parse the world. We could not go about our day without cre-
ating simplified descriptions of how the world works in various contexts—what cognitive
scientists call mental models. In this sense, we are all modelers, but only some of us (and
only some of the time) can write our models down. In the social sciences, many theories
are expressed as verbal models: descriptions of the assumptions required to purportedly
explain some phenomenon, written in plain language. Verbal models are very important,
and are often the first step toward articulating a theory that can later support formalization.
Themost successful verbal model—from a scientific point of view—may be Darwin’s theory
of evolution by natural selection, which provides the foundations for explainingmuch of life
as we know it. Darwin’s writings contain nomathematical formalisms, only richly described

6Or even the coarser aspects, for that matter.
7Lengthier explorations of uses for models beyond prediction can be found in Wimsatt (1987),

Bedau (1999), Epstein (2008), Smaldino (2017), and Page (2018).
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ideas. Most verbal models, however, also contain at least some ambiguity. This is because,
as noted earlier, language is inherently ambiguous. Words and phrases often afford multi-
ple interpretations despite our best efforts to be clear. This flexibility can be useful when we
are first developing our ideas because it can delay committing to a particular path before
sufficient clarity is obtained, but ultimately a path must be chosen. In contrast to verbal
models, formal models lend themselves to severely limited, if not wholly unique, interpre-
tation because they describe relationships and processes exactly and unambiguously.8 This
approach can facilitate important theoretical advances. For example, Darwinian natural
selection was for many years presumed to be incompatible with Mendelian genetics until
formal models were developed to illustrate how the two approaches could be reconciled
(Plutynski, 2009).

Formal models require us to articulate exactly what is and is not included in our theory.
That is, the model makes explicit all the assumptions required to generate the consequences
that it implies.This precision creates several benefits. I’ll highlight two. First, formal models
can provide a clear scope: an indication of the constraints required for the theory to apply.
Among other things, this helps us to know when an empirical finding does or does not
affect the validation of a theory. And second, precision aids in communication by avoiding
the ambiguity inherent in verbal models. We sidestep the problem of the Cubist chicken,
because the formalism tells us exactly what the parts are and how they fit together. Relatedly,
models can provide communities of researchers with a common language to talk precisely
about their systems.

Tractability

It is the precision inherent in formal models that makes them tractable. Formal models act
as logical engines that turn assumptions into conclusions. Stating our assumptions precisely
allows us to know what outcomes necessarily follow from those assumptions, which in turn
can help us to identify potential gaps in our explanations.The real world is extremelymessy,
and constraints on time, resources, causality, and ethics all serve to limit what we can learn
about it directly. But by studying models, we can simulate dynamics on time scales that
would be impossible to test empirically, on spatial or organizational scales that would be
impossible to study practically. We can explore counterfactual scenarios that would other-
wise be prohibited either by ethical concerns or by the fact that (as far as we know) we
cannot actually go back in time to see how things might have played out under different
circumstances.

Insight

Studying models can provide insight. To me, this seems like the most obvious benefit of
working withmodels, but it is often overlooked, perhaps because insight is difficult to quan-
tify. Amodel can be a playground to explore the dynamics of complex systemswith different
features. This sort of exploration tends to be cheap—running a simulation is usually much
less costly in terms of both time and resources than collecting sufficient empirical data to
build and test dynamical theories—which means one is free to do a lot of it.

8Some ambiguity may remain about the mapping between model and reality. This is not always
easily resolved, but the model formalism at least lays out constraints that must be met for a mapping
to apply.
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The world is complicated. Learning about models provides us with a cognitive arsenal
for understanding complex systems—and not only those systems we have directly modeled!
When you know that a system in question involves features and constraints similar to those
in models you have seen before, insight into how they operate can follow.

1.7 Some Models of Note

To understand what models can do for us, it will help to describe some of the major insights
from a few example models. Compiling a list of all the interesting and useful models in the
sciences is a fool’s errand. Let it suffice to say that such a list would be vast. Instead, I want
to merely illustrate via a few pointed examples how simple models can be not only useful,
but fundamental to good science. I will briefly describe twowell-known examples ofmodels
that changed our understanding of basic concepts in the physical and biological sciences.
I have chosen these examples from other disciplines to highlight how models contribute in
domains that are more exact than those usually tackled by social scientists. In the section
that follows, I will explore amodel of disease transmission—among themore exact domains
in the social sciences—in greater detail.

1.7.1 Newton’s Model of Gravity

In seventeenth-century Europe, astronomers faced a great challenge. Following the pioneer-
ing work of Copernicus, and building on the meticulously collected data of Tycho Brahe,
Johannes Kepler had not only confirmed that Earth and the other planets revolve around
the Sun, but had also shown definitively that their orbital paths describe ellipses rather than
perfect circles. It was a great mystery why this should be. Enter Isaac Newton.9 Newton was
not the first person to propose that the heavenly bodies might be attracted to one another
with a force that varied with the inverse square of the distance between them, but he was the
first to build a model based on that proposition (Gleick, 2004). His model was startlingly
simple, consisting of only two objects: the Sun and Earth (Figure 1.6). The model ignored
theMoon as well as the five other known solar planets, not tomention all the celestial bodies
that were unknown in Newton’s time.The size and topology of the Sun and Earth were also
ignored; they were modeled as points identified only by their mass, position, and velocity.
Nevertheless, the model’s strength lies in its simplicity. By restricting the analysis to only
two bodies, the resulting planetary orbit was mathematically tractable. Using a simple rule
stating that the force of gravitation was proportional to the product of the objects’ masses
and inversely proportional to the square of the distance between them, Newton was able to
show that the resulting orbits would always take the form of conic sections, including the
elliptical orbits observed by Kepler. And because he could show that the same law explained
themotion of falling objects on Earth, Newton provided the first scientific unification of the
Terrestrial with the Celestial.

Although Newton’s model helps explain a great deal of observed phenomena, there are
nevertheless inconsistencies—observations about planetary orbits that do not align with
what would be predicted by Newtonian gravitation. Newton’s model also simply asserts that
the gravitational force exists and does not provide a mechanism for why it should do so.

9It should be acknowledged that Isaac Newton was a super weird dude. He and Edmund Halley
once dissected a dolphin in a coffee shop and he notoriously shoved a bodkin into his eye socket to
compress his eye’s lens in order to observe its effect on color perception.
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Figure 1.6 Newton’s model of planetary gravitation. Earth has a forward velocity v, which is con-
tinuously altered by the gravitational attraction of the Sun, Fg , resulting in an elliptical orbit. In
reality, the model is even simpler than implied here, because the Sun and Earth are represented as
point masses rather than spheres.

Modern astrophysicists now prefer Einstein’s theory of general relativity, in which masses
create curvature in space-time. Nevertheless, by modeling the consequences of the inverse-
square law of attraction, Newton showed how themotions of the planets could be explained,
and themodel provides exceptionally good approximations of gravitational forces—so good
that NASA’s Moon missions have relied upon them.

1.7.2 The Lotka-Volterra Predator-Prey Model

For many years, fur trapping organizations like the Hudson’s Bay Company in Canada kept
meticulous records on the pelt-producing animals in the regions where they trapped.These
records illustrated that linked predator and prey species, like the Canada lynx and the snow-
shoe hare, tended to have cyclical population levels whose dynamics were tightly correlated
(Figure 1.7). How to explain this? In the early twentieth century, Alfred Lotka and Vito
Volterra, working independently, applied ideas from the chemistry of autocatalytic reac-
tions to generate a simple model of two interrelated populations, which can be instantiated
as a pair of coupled differential equations.

This model specifies two animal species: a prey species with a positive rate of growth
in the absence of predators, and a predator species with a negative growth rate in the
absence of prey. The number of predators negatively influences the number of prey, and
the number of prey animals positively influences the number of predators. The model can
produce correlated oscillations in the two populations that bear a striking resemblance to
data from many predator–prey systems. The model also identifies conditions under which
the two growth rates can instead give rise tomore stable equilibria or yield complete popula-
tion collapse—phenomena that have been empirically observed under conditions consistent
with themodel. Of course, themodel is also extremely simplistic. It assumes perfect mixing,
so the probability of a prey animal encountering a predator is simply the relative frequency
of predators in the population. It ignores seasonality, circadian cycles, migration, density
dependence in the growth rate of the prey species, development, and interactions with other
species.Thus, in cases where these featuresmatter, themodelmay fail to alignwith empirical
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Figure 1.7 Changes in the abundance of the Canada lynx and snowshoe hare, as indicated by the
number of pelts received by the Hudson’s Bay Company.

fact. Nevertheless, the core assumptions of the model yield insights into the emergence of
cyclical dynamics and provide opportunities for extensions and refinements of the model
when additional features cannot be ignored. The model has even been extended to help
understand cycles of war and peace in human societies (Turchin, 2003, 2016). The Lotka-
Volterra model remains one of the core tools for understanding the relationship between
predator and prey populations.

1.8 Equation-Based Models and Agent-Based Models

Both Newton’s model of gravitation and the Lotka-Volterra predator-prey model are typ-
ically expressed as differential equations, which describe mathematically how quantities
change over time. This differs from the boids model of flocking behavior that we discussed
earlier in this chapter, in which each member of a rather large population was explicitly
represented in computer simulation. How do these two modeling approaches relate to one
another?

One can distinguish these approaches as equation-based and agent-based models, as
some authors do (e.g., Smith and Conrey, 2007). Equation-based models involve writing
down, well, equations that specify the key relationships between the parts of a system, such
as the dynamics of how a population changes. In population models, classes of objects or
individuals are treated as aggregates for the sake of tractability. Equation-based models can
provide quite a bit of precision as well as a certain kind of mathematical elegance. Explo-
ration of parameters is generally quite easy, since we can simply plug new numbers into the
equations, and we can often derive the exact conditions under which particular outcomes
will or will not occur. Even when closed-form solutions10 are not possible, equation-based
models can be explored through numerical simulation—a technique that will be used in
several chapters in this book, beginning with chapter 4.

10Having a closed-form solution means that outcome measures can be described as equations
involving known or measurable parameters.
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Equation-based models are limited primarily in their ability to deal with heterogeneity.
For example, we may want to explore the spatial or network structure of a population, or
keep track of how individual differences in traits or behaviors are distributed; such things
are challenging with equations only. In cases where additional complexity is desired and
analytical tractability is not feasible (or is beyond the mathematical ability of the modeler),
computational modeling can provide a useful alternative.

Agent-based models (ABMs) are a particular class of computational models in which
individual agents are simulated as explicit computational entities. Agents often represent
people or other animals, but agents can also represent anything from biological cells to
economic firms to political municipalities. In addition to allowing for greater heterogene-
ity, agent-based models have other attractive features. One is that learning to code ABMs
often represents a lower bar to entry than learning the requisite mathematics for analyz-
ing equation-based models, especially for those with less formal mathematical training. A
related advantage is that ABMs can sometimes provide the sort of intuition for the behavior
of complex systems that typically comes only from direct observation. For those without
strong mathematical training, equations can be opaque or cryptic. Observing the behavior
of agents in a visualized simulation can also help accomplish something that is often dif-
ficult to do with equations: confer understanding upon non-modelers. A point I want to
emphasize is that these are complementary rather than competing approaches.Throughout
this book, whenever possible we will explore both equation-based and agent-based models
for each system we encounter.

In the interest of getting you more deeply into a modeling frame of mind, I am going
to walk through equation- and agent-based versions of a simple epidemiological model of
disease transmission. We will revisit this and related models in greater detail in chapter 4.
Consider the scenario where an infectious disease has broken out and is spreading through
the population.11 We can characterize individuals as either susceptible to the disease (S),
infected (I), or recovered (R) and immune (or, alternatively, removed from the population in
some versions). This is the well-known SIR model, the dynamics of which can be expressed
as three coupled differential equations:

dS
dt

=−βSI

dI
dt

=βSI − γ I

dR
dt

= γ I

If you are unfamiliar with this sort of equation, don’t get scared! Familiarity with differential
equations is not required for any of the exercises in this book, although it is useful knowledge
to have more generally for understanding dynamical systems. I will focus on discrete-time
dynamics throughout this book. At times when discussion of differential equations is par-
ticularly valuable, such information will be relegated to text boxes for the interested reader.
Learning differential equations is useful, but there’s a lot you can still do without them.
Discrete-time versions of the SIRmodel equations can be represented in awaymore familiar
to some social science readers like this:

11This should not be difficult for anyone who lived through 2020 or the few years thereafter.
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S(t+ 1) = S(t)−βS(t)I(t)
I(t+ 1) = I(t)+βS(t)I(t)− γ I(t)
R(t+ 1) =R(t)+ γ I(t)

These equations define how the relative numbers of susceptible, infected, and recovered
individuals change over time, and represent two propositions about disease contagion. First,
that susceptible individuals become infected via contact with infected individuals, at a rate
that is proportional to the expected number of interactions between susceptible and infected
individuals, tempered by the transmissibility of the infection, β . Second, that infected indi-
viduals recover at a constant rate, γ . An implicit assumption is that the rate of interactions12
between individuals in different states is exactly proportional to the frequencies of those
states in the population—that is, that the population iswell-mixed.Thismodel is simple but
powerful. It can be used to estimate the time course of an epidemic, the maximum number
of individuals who will be infected at a given time, and the number of individuals requiring
immunity (such as through vaccination) needed to prevent an outbreak from becoming an
epidemic, thereby providing “herd immunity.” Variations on the model have considered a
number of other factors, including non-contagious periods after exposure, age-structured
populations, non-random assortment, and even simultaneous “behavioral contagions” that
could alter transmission rates.

Beginning in the first months of the COVID-19 pandemic in 2020, before vaccines were
available, authorities urged people to maintain physical distance from one another in order
to “flatten the curve” of the epidemic. Reducing physical contact would decrease the effective
transmission rate of the disease and, critically, reduce the number of individuals infected at
any given time. This can be illustrated by numerically simulating the differential equations
in the SIR model above for different values of β (Figure 1.8). Although articles explaining
this curve-flattening process proliferated, my personal experience was that many people did
not find it intuitive that individual behaviors could translate to reduced transmissibility on
a large scale.

To provide an alternative framing, we can build a simple agent-based model of SIR
dynamics, in which agents are situated on a two-dimensional surface and move around
using a random walk.13 Any time a susceptible individual is sufficiently close to an inf-
ected individual, they become infected with some probability (the transmission rate). An
infected individual then recovers with a probability dictated by the disease’s recovery rate
(Figure 1.9A). Rather than modifying the disease transmission rate directly, as in the
equation-based model, I modified the size of the step taken by agents during their ran-
dom walks, so that they took either large steps (thereby rapidly traversing the space and
interacting with many different individuals) or small steps (thereby staying close to where
they started and interacting with a smaller number of distinct individuals; Figure 1.9B).
This is meant to represent differences in physical distancing. Comparing the dynamics of
the infected populations in these two movement conditions produces a plot that is compa-
rable to that produced with the equation-based model14 but illustrates more directly how a

12Because the parameters β and γ are rates, their values in the discrete-time model are only equiv-
alent to those in the continuous-timemodel in the limit as�t→ 0. Otherwise theymust be calibrated
to the discrete time unit assumed by the modeler.

13A similar model will be explored more extensively in chapter 4.
14I made no attempt to keep the transmission and recovery rates the same between the two

models—my purpose here is to illustrate how both models can produce the same qualitative patterns.
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Figure 1.8 Temporal dynamics of infected individuals in the equation-based SIR model with a
recovery rate of γ = 0.07. This compares populations under either high transmissibility (β = 0.3)
or low transmissibility (β = 0.15).

A B

Figure 1.9 (A) Visualization of a spatial agent-based SIR model. There are 500 agents, which
can be either susceptible (white), infected (red), or recovered (grey). (B) Example random walk
trajectories over 100 steps for agents taking either large (orange) or small (blue) steps.

reduction in social contact flattens the curve (Figure 1.10). It also reveals that “transmissi-
bility” in the equation-based SIRmodel is an aggregate variable that incorporates properties
of both the disease and its hosts.

I want to make it clear that both agent-based models and purely equation-based models
are valuable, and attempts to paint them as competing techniques are misguided.15 Both

15Indeed, the distinction is more heuristic than technical. Equation-based models can be explored
computationally, and even complex agent-based models can, at least in theory, be reduced to a set of
recursive mathematical functions (Epstein, 1999; North, 2014).
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Figure 1.10 Temporal dynamics of infected individuals in the agent-based SIR model. Agents
move using a random walk with either a large (orange) or small (blue) step size.

techniques are part of the modeler’s repertoire, and one method is not inherently superior
to the other. In many cases, it is valuable to combine both analytical equation-based models
and agent-based simulations to provide richer coverage of the model system.

1.9 Fine-Grained and Coarse-Grained Models

Another distinction worth noting is one between fine-grained and coarse-grained models.
Fine-grained means that there are data in the world that can be used to precisely param-
eterize and test the models. Many models in physics are like this; the model parameters
are precisely measurable quantities like mass, pressure, or voltage. In epidemiology, some
agent-based models are calibrated using high-precision data on demographics, geography,
schools, travel matrices, and so forth, with the goal of predicting the time course of an epi-
demic. In neuroscience, biophysical models might exactly predict the dynamics of action
potentials or motor behaviors.

Coarse-grained models focus on broad, qualitative patterns in the data, not on repro-
ducing exact measurements. In the social and behavioral sciences, most models are fairly
coarse-grained (the SIRmodel just described is an example). Measurement in the social sci-
ences is often very difficult. Processes related to cognition, behavior, and social organization
involve interacting parts at many levels of organization and time scale. While the simpler
sciences have focused their study on things that are readily measured like mass andmotion,
the social sciences are concerned with emergent phenomena like emotions, perceptions,
and norms.The utility of these concepts in lay thought and communication is indisputable,
but it is less obvious how they should be measured for scientific study. Even when a concept
is precisely defined, measurement is often made difficult by constraints of time, resources,
or ethics.

Complex systems are by their very nature difficult to model with great precision. This
is partly because they involve many interdependent components that interact in nonlinear
ways. It is also because the mapping between the constructs we are interested in and the
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measurements we are able to make are rarely one-to-one. For this reason, modeling social
behavior usually begins with quite abstract representations of phenomena. Exploring these
models equips us with a toolkit for ever more nuanced approaches to studying complex
social systems.

Coarse-grained models are valuable despite their inability to generate precise quantita-
tive predictions. As far as I’m concerned, the only alternative to using a formal model to
articulate a theory or hypothesis is to use a verbal model, or worse, an unspoken mental
model. In those cases, it is much more difficult to identify implicit assumptions or show
how the explicit assumptions lead to particular consequences, and therefore it is much eas-
ier to enter into the territory of unscientific vagueness. To repeat, everyone is using some
model, but it is hard to know how good that model is without writing it down.Wewill begin
learning how to write down our models in the next chapter.

1.10 The Journey Begins

Our understanding of human mind and behavior is in many ways barely out of the Dark
Ages. We have some theories, and some of them are kind of decent. But we are only at the
beginning of real understanding, andwe often are stymied by norms and inertia and the cap-
ture of our institutions by people who aren’t really interested in understanding anything. I
charge you with doing better. Sometimes working with these models might seem tedious or
difficult. And sometimes it is difficult. But let me offer you this: If you can’t be bothered to
understand how a simple model system works and how its assumptions generate the result-
ing dynamics and population-level patterns, how are you going to be able to understand a
real-world system, which is way more complex and for which there are way more variables
you can’t observe?

In the social sciences, there is a great need for formal theory based on mathematical
and computational models. Yet there is still a paucity of training programs for students
and researchers interested in learning how to build and analyze those models. I designed
this book with the following question in mind: If I were training a collaborator with whom
I could work on models of social behavior, what would I want them to know? The book
is intended to equip social, behavioral, and cognitive scientists with a toolkit for thinking
about and studying complex social systems using mathematical and computational mod-
els. The approach marries two traditions: complex systems-style modeling, which focuses
on mathematical and computational tools for studying emergent phenomena, and a more
theoretically informed approach from work in human behavioral ecology and cultural evo-
lution. Rather than focusing on general prescriptions for modeling, we will work through
a variety of modeling topics in detail, each exemplified by one or more archetypal models.
With some luck, we will thereby build up strong theoretical foundations for understanding
social behavior.
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