
Contents

Let’s Go xiii

1 Getting Started with Python 1
1.1 Algorithms and algorithmic thinking 1

1.1.1 Algorithmic thinking 1
1.1.2 States 2
1.1.3 What does a = a + 1mean? 3
1.1.4 Symbolic versus numerical 3

1.2 Launch Python 4
1.2.1 IPython console 6
1.2.2 Error messages 10
1.2.3 Sources of help 10
1.2.4 Good practice: Keep a log 11

1.3 Python modules 11
1.3.1 import 12
1.3.2 from ... import 12
1.3.3 NumPy and PyPlot 13

1.4 Python expressions 14
1.4.1 Numbers 14
1.4.2 Arithmetic operations and predefined functions 14
1.4.3 Good practice: Variable names 15
1.4.4 More about functions 16

2 Organizing Data 19
2.1 Objects and their methods 19
2.2 Lists, tuples, and arrays 21

2.2.1 Creating a list or tuple 21
2.2.2 NumPy arrays 21
2.2.3 Filling an array with values 23
2.2.4 Concatenation of arrays 24
2.2.5 Accessing array elements 25
2.2.6 Arrays and assignments 26
2.2.7 Slicing 27
2.2.8 Flattening an array 28

vii

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

viii

2.2.9 Reshaping an array 28
2.2.10 T2 Lists and arrays as indices 29

2.3 Strings 29
2.3.1 Raw strings 31
2.3.2 Formatting strings with the format()method 31
2.3.3 T2 Formatting strings with % 32

3 Structure and Control 35
3.1 Loops 35

3.1.1 for loops 35
3.1.2 while loops 37
3.1.3 Very long loops 37
3.1.4 Infinite loops 37

3.2 Array operations 38
3.2.1 Vectorizing math 38
3.2.2 Matrix math 40
3.2.3 Reducing an array 41

3.3 Scripts 42
3.3.1 The Editor 42
3.3.2 T2 Other editors 42
3.3.3 First steps to debugging 43
3.3.4 Good practice: Commenting 45
3.3.5 Good practice: Using named parameters 47
3.3.6 Good practice: Units 48

3.4 Contingent behavior: Branching 49
3.4.1 The if statement 50
3.4.2 Testing equality of floats 51

3.5 Nesting 52

4 Data In, Results Out 53
4.1 Importing data 53

4.1.1 Obtaining data 54
4.1.2 Bringing data into Python 54

4.2 Exporting data 57
4.2.1 Scripts 57
4.2.2 Data files 58

4.3 Visualizing data 60
4.3.1 The plot command and its relatives 60
4.3.2 Log axes 63
4.3.3 Manipulate and embellish 63
4.3.4 Replacing curves 65
4.3.5 T2 More about figures and their axes 65
4.3.6 T2 Error bars 66

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

ix

4.3.7 3D graphs 66
4.3.8 Multiple plots 67
4.3.9 Subplots 68
4.3.10 Saving figures 69
4.3.11 T2 Using figures in other applications 70

5 First Computer Lab 71
5.1 HIV example 71

5.1.1 Explore the model 71
5.1.2 Fit experimental data 72

5.2 Bacterial example 73
5.2.1 Explore the model 73
5.2.2 Fit experimental data 73

6 Random Number Generation and Numerical Methods 75
6.1 Writing your own functions 75

6.1.1 Defining functions in Python 76
6.1.2 Updating functions 78
6.1.3 Arguments, keywords, and defaults 78
6.1.4 Return values 79
6.1.5 Functional programming 80

6.2 Random numbers and simulation 81
6.2.1 Simulating coin flips 82
6.2.2 Generating trajectories 82

6.3 Histograms and bar graphs 83
6.3.1 Creating histograms 83
6.3.2 Finer control 85

6.4 Contour plots, surface plots, and heat maps 86
6.4.1 Generating a grid of points 86
6.4.2 Contour plots 86
6.4.3 Surface plots 87
6.4.4 Heat maps 88

6.5 Numerical solution of nonlinear equations 89
6.5.1 General real functions 89
6.5.2 Complex roots of polynomials 90

6.6 Solving systems of linear equations 91
6.7 Numerical integration 92

6.7.1 Integrating a predefined function 92
6.7.2 Integrating your own function 93
6.7.3 Oscillatory integrands 94
6.7.4 T2 Parameter dependence 94

6.8 Numerical solution of differential equations 95
6.8.1 Reformulating the problem 95

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

x

6.8.2 Solving an ODE 96
6.8.3 T2 Parameter dependence 97
6.8.4 Other ODE solvers 98

6.9 Vector fields and streamlines 100
6.9.1 Vector fields 100
6.9.2 Streamlines 101

7 Second Computer Lab 103
7.1 Generating and plotting trajectories 103
7.2 Plotting the displacement distribution 104
7.3 Rare events 105

7.3.1 The Poisson distribution 105
7.3.2 Waiting times 106

8 Images and Animation 109
8.1 Image processing 109

8.1.1 Images as NumPy arrays 109
8.1.2 Saving and displaying images 110
8.1.3 Manipulating images 110

8.2 Displaying data as an image 111
8.3 Animation 113

8.3.1 Creating animations 113
8.3.2 Saving animations 114

HTML movies 115
T2 Using an encoder 117

8.3.3 Conclusion 117

9 Third Computer Lab 119
9.1 Convolution 119

9.1.1 Python tools for image processing 120
9.1.2 Averaging 121
9.1.3 Smoothing with a Gaussian 121

9.2 Denoising an image 122
9.3 Emphasizing features 122
9.4 T2 Image files and arrays 123

10 Advanced Techniques 125
10.1 Dictionaries and generators 125

10.1.1 Dictionaries 126
10.1.2 Special function arguments 128
10.1.3 List comprehensions and generators 129

10.2 Tools for data science 133
10.2.1 Series and data frames with pandas 133

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

xi

10.2.2 Machine learning with scikit-learn 135
10.2.3 Next steps 138

10.3 Symbolic computing 138
10.3.1 Wolfram Alpha 139
10.3.2 The SymPy library 141
10.3.3 Other alternatives 144
10.3.4 First passage revisited 144

10.4 Writing your own classes 148
10.4.1 A random walk class 148
10.4.2 When to use classes 155

Get Going 157

A Installing Python 159
A.1 Install Python and Spyder 159

A.1.1 Graphical installation 160
A.1.2 Command line installation 161

A.2 Setting up Spyder 162
A.2.1 Working directory 162
A.2.2 Interactive graphics 163
A.2.3 Script template 163
A.2.4 Restart 164

A.3 Keeping up to date 164
A.4 Installing FFmpeg 164
A.5 Installing ImageMagick 164

B Command Line Tools 166
B.1 The command line 166

B.1.1 Navigating your file system 167
B.1.2 Creating, renaming, moving, and removing files 169
B.1.3 Creating and removing directories 169
B.1.4 Python and Conda 170

B.2 Text editors 171
B.3 Version control 172

B.3.1 How Git works 172
B.3.2 Installing and using Git 174
B.3.3 Tracking changes and synchronizing repositories 177
B.3.4 Summary of useful workflows 179
B.3.5 Troubleshooting 181

B.4 Conclusion 182

C Jupyter Notebooks 183
C.1 Getting started 183

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

xii

C.1.1 Launch Jupyter Notebooks 183
C.1.2 Open a notebook 184
C.1.3 Multiple notebooks 184
C.1.4 Quitting Jupyter 185
C.1.5 T2 Setting the default directory 185

C.2 Cells 186
C.2.1 Code cells 186
C.2.2 Graphics 187
C.2.3 Markdown cells 187
C.2.4 Edit mode and command mode 187

C.3 Sharing 188
C.4 More details 188
C.5 Pros and cons 188

D Errors and Error Messages 190
D.1 Python errors in general 190
D.2 Some common errors 191

E Python 2 versus Python 3 194
E.1 Division 194
E.2 Print command 195
E.3 User input 195
E.4 More assistance 196

F Under the Hood 197
F.1 Assignment statements 197
F.2 Memory management 199
F.3 Functions 199
F.4 Scope 200

F.4.1 Name collisions 202
F.4.2 Variables passed as arguments 203

F.5 Summary 203

G Answers to “Your Turn” Questions 205

Acknowledgments 213

Recommended Reading 215

Index 217

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

C H A P T E R 1

Getting Started with Python

The Analytical Engine weaves algebraical patterns,
just as the Jacquard loom weaves flowers and leaves.

—Ada, Countess of Lovelace, 1815–1853

1.1 ALGORITHMS AND ALGORITHMIC THINKING

The goal of this tutorial is to get you started in computational science using the computer language
Python. Python is open-source software. You can download, install, and use it anywhere. Many good
introductions exist, and more are written every year. This one is distinguished mainly by the fact that it
focuses on skills useful for solving problems in physical modeling.

Modeling a physical system can be a complicated task. Let’s take a look at howwe can use the powerful
processors inside your computer to help.

1.1.1 Algorithmic thinking

Suppose that you need to instruct a friend how to back your car out of your driveway. Your friend has
never driven a car, but it’s an emergency, and your only communication channel is a phone conversation
before the operation begins.

You need to break the required task down into small, explicit steps that your friend understands
and can execute in sequence. For example, you might provide your friend with the following set of
instructions:

1 Put the key in the ignition.
2 Turn the key until the car starts, then let go.
3 Push the button on the shift lever and move it to "Reverse."
4 ...

Unfortunately, for many cars this “code” won’t work, even if your friend understands each instruction: It
contains a bug. Before step 3, many cars require that the driver

Press down the left pedal.

Also, the shifter may be marked R instead of Reverse. It is difficult at first to get used to the high degree
of precision required when composing instructions like these.

Because you are giving the instructions in advance (your friend has no mobile phone), it’s also wise to
allow for contingencies:

If a crunching sound is heard, press down on the left pedal ...

1

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

2 Chapter 1 Getting Started with Python

Breaking the steps of a long operation down into small, explicit substeps and anticipating contingencies
are the beginning of algorithmic thinking.

If your friend has had a lot of experience watching people drive cars, then the instructions above may
suffice. But a friend fromMars—or a robot—would need much more detail. For example, the first two
steps may need to be expanded to something like
Grab the wide end of the key.
Insert the pointed end of the key into the slot on the lower right side

of the steering column.
Rotate the key about its long axis in the clockwise direction

(when viewed from the wide end toward the pointed end).
...

These two sets of instructions illustrate the difference between low-level and high-level languages for
communicating with a computer. A low-level computer program is similar to the second set of explicit
instructions, written in a language that a machine can understand.1 A high-level system understands
many common tasks, and therefore can be programmed in a more condensed style, like the first set
of instructions above. Python is a high-level language. It includes commands for common operations
in mathematical calculations, processing text, and manipulating files. In addition, Python can access
many standard libraries, which are collections of programs that perform advanced functions such as data
visualization and image processing.

Python also comes with a command line interpreter—a program that executes Python commands
as you type them. Thus, with Python, you can save instructions in a file and run them later, or you can
type commands and execute them immediately. In contrast, many other programming languages used in
scientific computing, like C++ or fortran, require you to compile your programs before you can execute
them. A separate program called a compiler translates your code into a low-level language. You then run
the resulting compiled program to execute (carry out) your algorithm. With Python, it is comparatively
easy to quickly write, run, and debug programs. (It still takes patience and practice, though.)

A command line interpreter combined with standard libraries and programs you write yourself
provides a convenient and powerful scientific computing platform.

1.1.2 States

You have probably studied multistep mathematical proofs, perhaps long ago in a geometry class. The goal
is to verify a proposition through a chain of steps that use given information and a formal system. Thus,
each statement’s truth, although not evident in isolation, is supposed to be straightforward in light of the
preceding statements. The reader’s “state” (list of propositions known to be true) changes while reading
through the proof. At the end, that list includes the desired result.

An algorithm has a different goal. It is a chain of instructions, each of which describes a simple
operation, that accomplishes a complex task. The chain may involve a lot of repetition, so you won’t want
to supervise the execution of every step. Instead, you specify all the steps in advance, then stand back
while your electronic assistant performs them rapidly. There may also be contingencies that cannot be
known in advance. (If a crunching sound is heard, ...)

In an algorithm, the computer has a state that is constantly being modified. For example, it has many
memory cells, whose contents may change during the course of an operation. Your goal might be to

1 Machine code and assembly language are low-level programming languages.

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

1.1 Algorithms and algorithmic thinking 3

arrange for one or more of these cells to contain the result of some complex calculation once the algorithm
has finished running. You may also want a particular graphical image to appear.

1.1.3 What does a = a + 1 mean?

To get a computer to execute your algorithm, you must first express it in a programming language. The
commands used in computer programming can be confusing at first, especially when they contradict
standard mathematical usage. For example, many programming languages (including Python) accept
statements such as these:

1 a = 100
2 a = a + 1

In mathematics, this makes no sense. The second line is an assertion that is always false; equivalently, it
is an equation with no solution. To Python, however, “=” is not a test of equality, but an instruction to be
executed. These lines have roughly the following meaning:2

1. Assign the name a (a variable) to an integer object with the value 100.
2. Extract the value of the object named a. Calculate the sum of that value and 1. Assign the name a to

the result, and discard whatever was previously stored under the name a.
In other words, the equals sign instructs Python to change its state. In contrast, mathematical notation
uses the equals sign to create a proposition, which may be true or false. Note, too, that Python treats
the left and right sides of the command x=y differently, whereas in math the equals sign is symmetric.
For example, Python will give an error message if you say something like b+1=a; the left side of an
assignment must be a name that can be assigned to the result of evaluating the right side.

We do often wish to check whether a variable has a particular value. To avoid ambiguity between
assignment and testing for equality, Python uses a double equals sign for the latter:

1 a = 1
2 a == 0
3 b = (a == 1)

This code again creates a variable a and assigns it to a numerical value. Then it compares this numerical
value with 0. Finally, it creates a second variable b, and assigns it a logical value (True or False) after
performing another comparison. That value can be used in contingent code, as we’ll see later.

Do not use = (assignment) when == (test for equality) is required.

This is a common mistake for beginning programmers. You can get mysterious results if you make this
error, because both = and == are legitimate Python syntax. In any particular situation, however, only one
of them is what you want.

1.1.4 Symbolic versus numerical

In math, it’s perfectly reasonable to start a derivation with “Let 𝑏 = 𝑎2 − 𝑎,” even if the reader doesn’t yet
know the value of 𝑎. This statement defines 𝑏 in terms of 𝑎, whatever the value of 𝑎 may be.

2 T2 Appendix F gives more precise information about the handling of assignment statements.

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

4 Chapter 1 Getting Started with Python

If you launch Python and immediately give the equivalent statement, b=a**2-a, the result is an error
message.3 Every time you hit <Return/Enter>, Python tries to compute values for every assignment
statement. If the variable a has not been assigned a value yet, evaluation fails, and Python complains.
Other computer math packages can accept such input, keep track of the symbolic relationship, and
evaluate it later, but basic Python does not.4

In math, it’s also understood that a definition like “Let 𝑏 = 𝑎2 −𝑎” will persist unchanged throughout
the discussion. If we say, “In the case 𝑎 = 1, . . . ” then the reader knows that 𝑏 equals zero; if later we
say, “In the case 𝑎 = 2, . . . ” then we need not reiterate the definition of 𝑏 for the reader to know that this
symbol now represents the value 22 − 2 = 2.

In contrast, a numerical system like Python forgets any relation between b and a after executing the
assignment b=a**2-a. All that it remembers is the value now assigned to b. If we later change the value
of a, the value of b will not change.5

Changing symbolic relationships in the middle of a proof is generally not a good idea. However, in
Python, if we say b=a**2-a, nothing stops us from later saying b=2**a. The second assignment updates
Python’s state by discarding the value calculated in the first assignment statement and replacing it with
the newly computed value.

1.2 LAUNCH PYTHON

Rather than reading about what happens when you type some command, try out the commands for
yourself. Appendix A describes how to install and launch Python. From now on, you should have Python
running as you read: Try every snippet of code and observe what Python does in response. For example,
this tutorial won’t show you much graphics or output. You must generate these yourself as you work
through the examples.

Reading this tutorial won’t teach you Python. You can teach yourself Python
by working through all the examples and exercises here, and then using what
you’ve learned on your own problems.

Set yourself little challenges and test them out. (“What would happen if . . . ?” “How could I accom-
plish. . . ?”) Python is not some expensive piece of lab apparatus that could break or explode if you type
something wrong! Just try things. This strategy is not only more fun than passively accumulating facts—it
is also far more effective.

Before you start typing, we would like to to explain a few conventions we use in this book. The most
important is this:

Python code consists entirely of plain text.

All fonts, typefaces, and coloring in the code samples of this tutorial were added for readability. These are
not things you need to worry about while entering code. Similarly, the line numbers shown on the left of
code samples are there to allow us to refer to particular lines. Don’t type them. Spyder will assign and

3 The notation ** denotes exponentiation. See Section 1.4.2.
4 The SymPy library makes symbolic calculations possible in Python. See Section 10.3.2.
5 In math, the statement 𝑏 = 𝑎2 −𝑎 essentially defines 𝑏 as a function of 𝑎. We can certainly do that in Python by defining a function
that returns the value of 𝑎2 − 𝑎 and assigning that function the name b (see Section 6.1), but this is not what “=” does.

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

1.2 Launch Python 5

show line numbers when you work in the Editor, and Python will use them to tell you where it thinks
you have made errors. They are not part of the code. Note also that most blank spaces are optional, except
when used for indentation. We use extra blank spaces to improve readability, but these are not required.

This tutorial uses the following color and font scheme when displaying code:
∙ Built-in functions and reserved words are displayed in boldface green type:
print("Hello, world!"). You do not need to import these functions.

∙ Python errors and runtime exceptions are displayed in boldface red type: SyntaxError.
∙ Functions and other objects fromNumPy and PyPlot are displayed in boldface black type:np.sqrt(2),
or plt.plot(x,y). We will assume that you import NumPy and PyPlot at the beginning of each
session and program you write.6

∙ Functions imported from other libraries are displayed in blue boldface type:
from scipy.special import factorial .

∙ Strings are displayed in red type: print("Hello, world!") .
∙ Comments are displayed in oblique blue type: # This is a comment.
∙ Keywords in function arguments are displayed in oblique black type:
np.loadtxt('data.csv', delimiter=','). Keywords are not arbitrary; they must be spelled
exactly as shown.

∙ Buttons you can click with a mouse are displayed in small capitals within a rectangle:
▷⊴ �◁Run . Some

buttons in Spyder have icons rather than text, but hovering the mouse pointer over the button will
display the text shown in this tutorial.

∙ Keystrokes are displayed within angled brackets: <Return> or <Ctrl-C>.
∙ Most other text is displayed in normal type.

Regarding keystrokes, our notation may not look exactly like what you see on your keyboard, so we
summarize our conventions in the table below. All keys that appear in a single unit should be pressed
together. For example, <Ctrl-C>means press and hold the “control” key on your keyboard, and while
holding it press the “c” key (you may also see this abbreviated as ˆC). Our conventions follow the macOS
keyboard layout. If you are using Windows or Linux, substitute <Ctrl> for <Cmd>. We’ll abbreviate
<Return/Enter> as simply <Return>.

Key Example Function

enter or return <Return> end line or run command
control <Ctrl-C> interrupt current Python command
command <Cmd-V> paste from the clipboard
option or alt <Alt-Shift-R> restart Spyder

Now that you know what to type (plain text) and how to type it, all you need is Python! A complete
Python programming environment has many components. See Table 1.1 for a brief description of the
ones that we’ll be discussing. Be aware that we use “Python” loosely in this guide. In addition to the
language itself, Python may refer to a Python interpreter, which is a computer application that accepts
commands and performs the steps described in a program. Python may also refer to the language together
with common libraries.

6 See Section 1.3 (page 11).

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

6 Chapter 1 Getting Started with Python

Python A computer programming language. A way to describe algorithms to a computer.
IPython A Python interpreter: A computer application that provides a convenient, interactive mode

for executing Python commands and programs.
Spyder An integrateddevelopment environment (IDE): A computer application that includes IPython,

a tool to inspect variables, a text editor for writing and debugging programs, and more.
Jupyter A notebook-style interface for Python.
NumPy A standard library that provides numerical arrays and mathematical functions.
PyPlot A standard library that provides visualization tools.
SciPy A standard library that provides scientific computing tools.
Anaconda A distribution: A single download that includes all of the above and provides access to many

additional libraries for special purposes. It also includes a package manager that helps you
to keep everything up to date.

Table 1.1: Elements of the Python environment described in this tutorial.

Most of the code that follows will run with any Python distribution. However, since we cannot provide
instructions for every available version of Python and every integrated development environment (IDE),
we have chosen the following particular setup:
∙ The Anaconda distribution of Python 3, available at anaconda.com.
Many scientists instead use an earlier version of Python (such as version 2.7). Appendix E discusses the
minor changes needed to adapt the codes in this tutorial for earlier versions.

∙ The Spyder IDE, which comes with Anaconda or can be obtained at www.spyder-ide.org. Any
programming task can be accomplished with a different IDE—or with no IDE at all. Other IDEs
are available, such as IDLE, which comes with every distribution of Python. Browser-based Jupyter
notebooks and JupyterLab are another option.7

The choice of distribution is a matter of personal preference. We chose Anaconda because it is simple to
install, update, and maintain, and it is free. You may find a different distribution is better suited to your
needs. For example, you can install Python from source (python.org) and manage your packages with
pip, but this tutorial will assume you are using Anaconda and the conda package manager.

1.2.1 IPython console

To keep our discussion focused on Python rather than on details of various platforms, we will assume
that you are using Spyder as you work through this guide. This is not required! If you prefer to start
with a simpler interface, you can open the Qt Console app from the Anaconda Navigator and start
typing commands. If you prefer a notebook interface, you can follow along in a Jupyter Notebook. (See
Appendix C.) If you prefer working from the command line, you can start IPython from a terminal.
(See Appendix B.) At some point, though, you will need an IPython interpreter and a text editor. Spyder
includes both of these, plus some other useful features, in an interface that will be familiar to users of
matlab. There are many ways to use Python, and you can use any of them as you work through this
tutorial. If you are new to Python, Spyder is a good choice.

Open Spyder now. Upon launch, Spyder opens a window that includes several panes. See Figure 1.1.
There is an Editor pane on the left for editing program files (scripts). There are two panes on the right.

7 If you prefer the notebook interface, see Appendix C to get started. Many code samples are available in notebook format via this
book’s blog.

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

1.2 Launch Python 7

Figure 1.1: The Spyder display. Red circles have been added to emphasize (from top to bottom) the
�
�

�
�R u n

button, Preferences (wrench icon), a variable in the Variable Explorer, the tab that brings the Variable Explorer
to the front in its pane, the

�
�

�
�S t o p ,
�
�

�
�R e s e t , and

�
�

�
�OPTIONS buttons, the IPython command prompt, and

the IPython console tab. Two scripts are open in the Editor; untitled0.py has been brought to the front by
clicking its tab at the top of the Editor pane. Two warnings appear at far left.

The top-right pane may contain Help, Variable Explorer, Plots, and File Explorer tabs. If necessary, click
on the Variable Explorer’s tab to bring it to the front. The bottom-right pane should include a tab called
“IPython console”; if necessary, click it now.8 It provides the command line interpreter that allows you to
execute Python commands interactively as you type them.

If your window layout gets disorganized, do not worry. It is easy to adjust. The standard format for
Spyder is a single window, divided into the three panes just described. Each pane can have multiple tabs.
If you have unwanted windows, close them individually by clicking on their

�
�

�
�+C l o s e buttons. You can

also use the menu View>Panes to select panes you want to be visible and deactivate those you do not
want. View>Window layouts>Spyder Default Layout will restore the standard layout.

Click in the IPython console. Now, things you type will show up after the command prompt. By default,
this will be something like

In[1]:

Try typing simple commands like “2+2” and hitting <Return> after each line. Python responds imme-
diately after each <Return>, attempting to perform whatever command you entered.9

Click on the Variable Explorer tab. Each time you enter a command and hit <Return>, the contents

8 If no IPython console tab is present, you can open one from the menu at the top of the screen:
Consoles>New console.
9 This tutorial uses the word “command” to mean any Python statement that can be executed by an interpreter. Assignments like
a=1, function calls like plt.plot(x,y), and special instructions like %reset are commands.

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

8 Chapter 1 Getting Started with Python

of this pane will reflect any changes in Python’s state: Initially empty, it will display a list of your variables
and a summary of their values.10 When a variable contains many values (for example, an array), you can
double-click its entry in this list to open a spreadsheet that contains all the values of the array. You can
copy from this spreadsheet and paste into other applications.

At any time, you can reset Python’s state by quitting and relaunching it, or by executing the command

%reset

Because you are about to delete almost everything that has been created in this session, you will be asked
to confirm this irreversible operation.11 Press <y> then <Return> to proceed. (Commands that begin
with a % symbol aremagic commands: commands specific to the IPython interpreter. They may not
work in a more basic Python interpreter, or in scripts that you write. To learn more about these, type
%magic at the IPython command prompt.)

Example: Use the %reset command, then try the following commands at the prompt. Type each line
exactly as shown, then press <Return>. Explain everything you see happen:

q
q == 2
q = 2
q
q == 2
q == 3

Solution: Python complains about the first two lines: Initially, the symbol q is not associated with any
object. It has no value, and so expressions involving it cannot be evaluated. Altering Python’s state in the
third line above changes this situation, so the last three lines do not generate errors.

Example: Now clear Python’s state again. Try the following at the prompt, and explain everything that
happens. (It may be useful to refer to Section 1.1.4.)

a = 1
a
b = a**2 - a
b
a = 2
print(a)
print(b)
b = a**2 - a
a, b
print(a, b)

Solution: The results from the first four lines should be clear: We assign values to the variables a and b.
In the fifth line, we change the value of a, but because Python remembers only the value of b and not its
relation to a, b’s value is unchanged until we update it explicitly in the eighth line.

10 Some variables will not appear. You can control which variables are excluded through the
▷⊴ �◁OPTIONS menu, in the upper-right

corner of the Variable Explorer pane.
11 If IPython does not seem to respond to %reset, try scrolling the IPython console up manually to see the confirm query.

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

1.2 Launch Python 9

When entering code at the command prompt, you may run into a confusing situation where Python
seems unresponsive and displays “...:” instead of executing commands.

If a command contains an unmatched (, [, or {, then Python continues reading
more lines, searching for the corresponding),], or }.

Look for an unmatched bracket. If you find one, type the closing bracket and press <Return>. If you
cannot figure out how tomatch up your brackets, or if there is some other problem, you can force execution
with <Shift + Return> or abort the command by pressing <Esc>.12

The examples above illustrate an important point: An assignment statement does not display the
value that it assigns to a variable. To see the value assigned to a variable in an IPython session, use the
print() command or type the variable name on a line by itself.13

The last two lines of the example above illustrate how to see the values of multiple objects at once.
Notice that the output is not exactly the same.

You can end a command by starting a new line. Or, if you wish, you can end a command with a
semicolon (;) and then add another command on the same line.

It is also possible to make multiple assignments with a single = command. This is an alternative to
using semicolons. Both of the following lines assign the same values to their respective variables:

a = 1; b = 2; c = 3
x, y, z = 1, 2, 3

Either side of the second command may be enclosed in parentheses without affecting the result.
The preceding paragraph demonstrates ways to save space and reduce typing with Python. Sometimes

this is convenient, but it’s best not to make too much use of this ability. You should instead try to make
themeaning of your code as clear as possible. Human readability is worth a few extra seconds of typing or
a few extra lines in a program.

In some situations, you may wish to use a very long command that doesn’t fit on one line. For such
cases, you can end a line with a backslash (\). Python will then continue reading the next line as part of
the same command. Try this:

q = 1 + \
2
print(q)

A single command can even stretch over multiple lines:

xv\
a\
l\
= 1 + \

5 2

This will create a variable xval and assign it the value 3.
To write clear code, use backslashes and semicolons sparingly.

12 <Esc> cancels the current command in Spyder. In another IDE or interpreter, you may need to use <Ctrl-C> to interrupt and
<Alt+Return> to force execution.
13 In scripts that you write, Python will evaluate an expression without showing anything on the screen; if you want output, you
must give an explicit print() command. Scripts will be discussed in Section 3.3.

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

10 Chapter 1 Getting Started with Python

1.2.2 Error messages

You should have encountered some error messages by now. When Python detects an error, it tells you
where it encountered the error, provides a fragment of the code surrounding the statement that caused
the problem, and tells you which general kind of error it detected among the many types it recognizes.
For example, Python responds with a NameError whenever you try to evaluate an undefined variable.
(Recall the Example on page 8.) See Appendix D for a description of common Python errors and some
hints for interpreting the resulting messages.

Donald Knuth, a well-known computer scientist, once wrote, “Error messages can be terrifying when
you aren’t prepared for them; but they can be fun when you have the right attitude. Just remember that
you really haven’t hurt the computer’s feelings, and that nobody will hold the errors against you.” We
encourage you to adopt this attitude.
∙ Don’t be afraid to make errors. It’s very hard to break anything.
∙ Read the error messages. They tell you what kind of error you made—not just that you made an error.
∙ Inspect the code that produces an error. You can learn from your mistakes.
This approach to errors will make you a better coder right away, and it will help you “debug” more
complicated programs later.14

1.2.3 Sources of help

The definitive documentation on Python is available online at www.python.org/doc . However, in many
cases you’ll find the answers you need more quickly by other means, such as asking a friend, searching
the web, or visiting stackoverflow.com .

Suppose that you wish to evaluate the square root of 2. You type 2**0.5 and hit <Return>. That
does the job, but Python is displaying 16 digits after the decimal point, and you only want 3. You think
there’s probably a function called round in Python, but you are not sure how to use it or how it works.
You can get help directly from Python by typing help(round) at the command prompt. You’ll see that
this is indeed the function you were looking for:

round(2**0.5, 3)

gives the desired result.
In Spyder, there are additional ways to get help. Type round at the command prompt, but do not hit

<Return>. Instead hit <Cmd-I> or <Ctrl-I> (for “Information”). The information that was displayed
in the IPython console when you issued the help command now shows up in the Help tab, and in a
format that is easier to navigate and read, especially for long entries. You can also use the Help tab without
entering anything at the command prompt: Try entering pow in the “Object” field at the top of the pane.
The Help tab provides information about an alternative to ** for raising a number to a power.

In IPython, you can also follow or precede the name of any Python object, including function and vari-
able names, by a questionmark to obtain help: round? or ?round provides almost the same information
as help(round) and is easier to type.

When you type help(...), Python will print out the information it has about the expression in
parentheses if it recognizes the name. Unfortunately, Python is not as friendly if you don’t know the name
of the command you need. Perhaps you think there ought to be a way to take the square root of a number

14 See Section 3.3.3 (page 43).

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

1.3 Python modules 11

without using the power notation. After all, it is a pretty basic operation. Type help(sqrt) to see what
happens when Python does not recognize the name you request.

To find out what commands are currently available to you, you can use Python’s dir() command.
This is short for “directory,” and it returns a list of all the modules, functions, and variable names that
have been created or imported during the current session (or since the last %reset command). Ask
Python for help on dir to learn more. Nothing in the output of dir() looks like a square root, but
there is an item called _ _builtins_ _. This is the collection of all the functions and other objects
that Python recognizes when it first starts up. It is Python’s “last resort” when hunting for a function or
variable.15 To see the list of built-in functions, type

dir(_ _builtins_ _)

There is no sqrt function or anything like it. In fact, none of the standard mathematical functions, such
as sin, cos, or exp show up!

Python cannot help you any further at this point. You now have to turn to outside resources. Good
options include books about Python, search engines, friends who know more about Python than you do,
and so on.

In the beginning, a lot of your coding time will be spent using a search engine to
get help.

The sqrt function we seek belongs to a library. Later we will discuss how to access libraries of useful
functions that are not automatically available with Python.

Your
Turn

1A
Before proceeding, try a web search for
how to take square roots in python

1.2.4 Good practice: Keep a log

As you work through this tutorial, you will hit many small roadblocks—and some large ones. How do
you evaluate a modified Bessel function? What do you do if you want a subscript in a graph axis label?
The list is endless. Every time you resolve such a puzzle (or a friend helps you),make a note of how you
did it in a notebook or in a dedicated file somewhere on your computer. Later, looking through that log
will be much easier than scanning through all the code you wrote months ago (and less irritating than
asking your friend over and over).

1.3 PYTHON MODULES

We discovered that Python does not have a built-in sqrt function. Even your calculator has that! What
good is Python? Think for a moment about how, exactly, your calculator knows how to find square roots.
At some point in the past, someone came up with an algorithm for computing the square root of a number
and stored it in the permanent memory of your calculator. Someone had to create a program to calculate
square roots.

15 Appendix F explains how Python searches for variables and other objects.

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

12 Chapter 1 Getting Started with Python

Python is a programming language. A Python interpreter understands a basic set of commands that
can be combined to perform complex tasks. Python also has a large community of developers who have
created entire libraries of useful functions. To gain access to these, however, you need to import them
into your working environment.

Use import to access functions that do not come standard with Python.

1.3.1 import

At the command prompt, type

import numpy

and hit <Return>. You now have access to many useful functions. You have imported the NumPy
module, a collection of tools for numerical calculation using Python: “Numerical Python.” (Do not
capitalize its name in your code.)

To see what has been gained, type dir(numpy). Youwill find nearly 600 new options at your disposal,
and one of them is the sqrt function you originally sought. You can search for the function within NumPy
by using the command numpy.lookfor('sqrt') (This will often return more than you need, but
the first few lines can be quite helpful.) Now that you have imported NumPy, try

sqrt(2)

What’s going on? You just imported a square root function, but Python tells you that sqrt is not defined!
Try instead

numpy.sqrt(2)

The sqrt function you want “belongs” to the numpymodule you imported. Even after importing,
you still have to tell Python where to find it before you can use it.

After you have imported a module, call its functions by giving the module name,
a period, and then the name of the desired function.

1.3.2 from ... import

There is another way to import functions. For example, you may wish access to all of the functions in
NumPy without having to type the “numpy.” prefix before them. Try this:

from numpy import *
sqrt(2)

This is convenient, but it can lead to trouble when you want to use two different modules simulta-
neously. There is a module called math that also has a sqrt function. If you import all of the func-
tions from math and numpy, which one gets called when you type sqrt(2)? (This is important
when you are working with arrays of numbers.) To keep things straight, it is usually best to avoid the
“from module import *” command. Instead, import a module and explicitly call numpy.sqrt or
math.sqrt as appropriate. However, there is a middle ground. You can give a module any nickname
you want. Try this:

import numpy as np
np.sqrt(2)

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

1.3 Python modules 13

Now we can save typing and avoid confusion when functions from different modules have the same
name.

There may be times when you only want a specific function, not a whole library of functions. You can
ask for specific functions by name:

from numpy import sqrt, exp
sqrt(2)
exp(3)

We now have just two functions from the NumPy module, which can be accessed without the “numpy.”
prefix. Notice the similarity with the “from numpy import *” command. The asterisk is a “wildcard”
that tells the import command to grab everything.

One more useful variant of importing allows you to give the function you import a custom nickname:

from numpy.random import random as rand
rand()

We now have a random number generator with the convenient nickname rand.
This example also illustrates amodulewithin amodule:numpy contains themodulenumpy.random,

which in turn contains the function numpy.random.random . When we typed import numpy , we
imported many such subsidiary modules. Instead, we can import just one function by using from and
providing a precise specification of the function we want, where to find it, and what to call it.

1.3.3 NumPy and PyPlot

The two modules we will use most often are called NumPy and PyPlot. NumPy provides the numerical
tools we need to generate and analyze data, and PyPlot provides the tools we need to visualize data. PyPlot
is a subset of the much larger Matplotlib library. From now on, we will assume that you have issued the
following commands:

import numpy as np
import matplotlib.pyplot as plt

This can also be accomplished with the single command

import numpy as np, matplotlib.pyplot as plt

You should execute these commands at the start of every session. You should also add these lines at the
beginning of any scripts that you write. You will also need to reimport both modules each time you use
the %reset command.

Give the %reset command, then try importing these modules now. Explore some of the functions
available from NumPy and PyPlot. You can get information about any of them by using help() or any
of the procedures described in Section 1.2.3. You will probably find the NumPy help files considerably
more informative than those for the built-in Python functions. They often include examples that you can
try at the command prompt.

Now that we have these collections of tools at our disposal, let’s see what we can do with them.

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

14 Chapter 1 Getting Started with Python

1.4 PYTHON EXPRESSIONS

The Python language has a syntax—a set of rules for constructing expressions and statements. In this
section, we will look at some simple expressions to get an idea of how to communicate with Python. The
basic building blocks of expressions are literals, variable names, operators, and functions.

1.4.1 Numbers

You can enter explicit numerical values (numeric literals) in various ways:
∙ 123 and 1.23mean what you might expect. When entering a large number, however, don’t separate
groups of digits by commas. (Don’t type 1,000,000 if you mean a million.)

∙ 2.3e5 is convenient shorthand for 2.3 ⋅ 105.
∙ 2+3j represents the complex number 2 + 3

√
−1. (Engineers may find the name j for

√
−1 familiar;

mathematicians and physicists will have to adjust to Python’s convention.)
Python stores numbers internally in several different formats. However, it will usually convert from one
type to another when necessary. Beginners generally don’t need to think about this. Just be aware that
Python sometimes requires an integer. Even if a value has no fractional part, Python may not interpret
it as an integer (for example, a=1.0). If you need to force a value to be an integer (for example, when
indicating an entry in a list), you can use the functions int or round.

1.4.2 Arithmetic operations and predefined functions

Python includes basic arithmetic operators, for example, +, -, * (multiplication), / (division), and **
(exponentiation).

Python uses two asterisks, **, to denote raising a number to a power.

For example, a**2 means “a squared.” (The notation a^2 is used by some other math software but
means something quite different to Python.)

Unlike standard mathematics notation, you must include multiplication signs. Try typing

(2)(3)
a = 2; a(3)
3a
3 a

Each command produces an error message. None, however, generates a message like, “You forgot a

’*’!” Python used its evaluation rules, and these expressions didn’t make sense. Python doesn’t know
what you were trying to express, so it can’t tell you exactly what is wrong. Study these error messages;
you’ll probably see them again. See Appendix D for a description of these and other common errors.

Arithmetic operations have the usual precedence (ordering).

You can use parentheses to override operator precedence.

Unlike math textbooks, Python recognizes only parentheses (round brackets) for ordering operations.
Square and curly brackets are reserved for other purposes. We have already seen that parentheses can

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

1.4 Python expressions 15

also have another meaning (enclosing the arguments of a function). Yet another meaning will appear
later: specifying a tuple. Python uses context to figure out which meaning to use.

For example, if you want to use the number 1

2𝜋
, you might type 1/2*np.pi. (Basic Python does not

know the value of 𝜋, but NumPy does.) Try it. What goes wrong, and why? You can fix the expression
by inserting parentheses. Later we’ll meet other kinds of operators such as comparisons and logical
operations. They, too, have a precedence ordering, which you may not wish to memorize. Instead, use
parentheses liberally to specify precisely what you mean.

To get used to Python arithmetic operations, figure out what famous math problem these lines solve,
and check that Python got it right:

a, b, c = 1, -1, -2
(-b + np.sqrt(b**2 - 4*a*c))/(2*a)

Recall that np.sqrt is the name of a function that Python does not recognize when it launches, but that
becomes available once we import the NumPy module. When Python encounters the expression in the
second line, it does the following:
1. Evaluate the argument of the np.sqrt function—that is, everything inside the pair of parenthe-

ses that follows the function name—by substituting values for variables and evaluating arithmetic
operations. (The argument may itself contain functions.)

2. Interrupt evaluation of the expression and execute a piece of code named np.sqrt, handing that
code the result found in step 1.

3. Substitute the value returned by np.sqrt into the expression.
4. Finish evaluating the expression as usual.

How do you know what functions are available for you? See Section 1.2.3 above: Type dir(np) and
dir(_ _builtins_ _) at the IPython console prompt.

A few symbols in Python and NumPy are predefined. These do not require any arguments or paren-
theses. Try np.pi (the constant 𝜋), np.e (the base of natural logarithms e), and 1j (the constant

√
−1).

NumPy also provides the standard trig functions, but be alert when using them:

The trig functions np.sin, np.cos, and np.tan all treat their arguments
as angles expressed in radians.

1.4.3 Good practice: Variable names

Note that Python offers you no protection against accidentally changing the value of a symbol: If
you say np.pi=22/7, then until you change it or reset Python, np.pi will have that value. It is
even possible to create a variable whose name supplants a built-in function, for example, round=3.16

This illustrates another good reason for using the “import numpy as np” command instead of the
“from numpy import *” command: You are quite unlikely to use the “np.” prefix and name your
own variables np.pi or np.e. Those variables retain their standard values no matter how you define pi
and e.

When your code gets long, you may inadvertently reuse variable names. If you assign a variable with a
generic name like x in the beginning, you may later choose the same name for some completely different

16 This can be undone by deleting your version of round: Type del(round). Python will revert to its built-in definition.

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

16 Chapter 1 Getting Started with Python

purpose. Later still, you will want the original x, having forgotten about the new one. Python will have
overwritten the value you wanted, and puzzling behavior will ensue. You have a name collision.

It’s good practice to use longer, more meaningful names for variables. They take longer to type, but
they help avoid name collisions and make your code easier to read. Perhaps the first variable you were
planning to call x could instead be called index, because it indexes a list. Perhaps the second variable
you were planning to call x could logically be called total. Later, when you ask for index, there will
be no problem.

Keep in mind, however, that “meaningful” in this context implies “meaningful to a human reader.”
Python itself pays no attention to the meaning of your variable names; for example, naming a variable
filename will not tell Python how to use that variable.

Variable names are case sensitive, and most predefined names are lowercase. Thus, you can avoid
some name collisions by including capital letters in variable or function names you define.

Blank spaces and periods are not allowed in variable names. Some coders use capitalization in the
middle of variable names (“camel case”) to denote word boundaries—for example, whichItem. Others
use the underscore (“snake case”) instead, as in which_item. Variable names may also contain digits
(myCount2), but they must start with a letter.17

Some variable names are forbidden. Python won’t let you name variables if, for, lambda, or a
handful of other reservedwords. You can find themwith aweb search forpython reserved words.

1.4.4 More about functions

You may be accustomed to thinking of a function, for example, square root, as a machine that takes one
number as input (its argument) and returns another number (its result) as output. Some Python functions
do have this character, but Python has a much broader notion of function. Here are some illustrations.
(Some involve functions that we have not seen yet.)
∙ A function may take a single argument, multiple arguments separated by commas, or none at all.
∙ A function may allow a variable number of arguments, and behave differently depending on how many
you supply. For example, we will see functions that allow you to specify options by using keyword
arguments. Each function’s help text will describe the allowed ways of using it.

∙ A functionmay also returnmore than one value. The number of values returned can even vary depending
on the arguments you supply. You can capture the returned values by using a special kind of assignment
statement.18

∙ A function may change your computer’s state in ways other than by returning a result. For example,
plt.savefig saves a plot to a file on your computer’s hard drive. Other possible side effects include
writing text into the IPython console: print('hello').
If you use a function name without parentheses, you are referring to the function instead of evaluating

it. In mathematics, 𝑓 is a function; 𝑓(2) is the value of the function when its argument is 2. Type np.sqrt
with no parentheses at the IPython command line to see how Python handles function names.

When evaluating a function, always include parentheses—even if there are no
arguments.

17 Strictly speaking, a name may also begin with the underscore character, but normally such names are reserved for Python’s
internal use.
18 Section 6.1.4 (page 79) discusses the values returned by functions in more detail. T2 More precisely, a Python function always
returns a single object. However, that object may be a tuple that contains several items.

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

1.4 Python expressions 17

If a function accepts two or more arguments, how does it know which is which? In mathematical
notation, the order of arguments conveys this information. For example, if we define 𝑓(𝑥, 𝑦) = 𝑥 e−𝑦,
then later 𝑓(2, 6)means 2 ⋅ e−6: The first given value (2) gets substituted for the first named variable in
the definition (𝑥), and so on. This positional argument scheme is also the standard one used by Python.
But when a function accepts many arguments, relying on order can be annoying and prone to error. For
this reason, Python has an alternative approach called keyword arguments. For example,

f(y=6, x=2)

instructs Python to execute a function named f, initializing a variable named y with the value 6 and
another named x with the value 2. You need not adhere to any particular order in giving keyword
arguments. (However, keyword arguments must follow all positional arguments and you must use their
correct names, which you can learn from the function’s documentation.) Many functions will let you
omit specifying values for some or all of their keyword arguments; if you omit them, the function supplies
default values. Keyword arguments will be discussed further in Section 6.1.3.

You now know enough Python to do simple calculations. Try the examples from this chapter and play
around on your own. In the next chapter, we will explore how to write simple programs in Python.

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Index

Bold references indicate the main or defining instance of a key term.

ˆ (not used for exponentiation), 14
', see quote
∖, see backslash
\\(enter backslash in a string), see

backslash
:, see colon
=, see equals sign
==, see equals sign
>=, 50
<=, 50
#, see commenting
#%%, see commenting
-, see hyphen
!= (not equal), 50
(), see parentheses
{}, see brackets, curly
[], see brackets, square
%, see percent sign
.. (command line), 168
+, see plus sign
+=, 46
""", see commenting
;, see semicolon
// (integer division), see arithmetic

operators
*, see star
*=, 46
**
exponentiation, 14
function argument, 129

~ (Boolean operation), 40
~ (command line), 168
, see underscore

+C l o s e , 7
OPTIONS , 7, 38
R e s e t , 7
R u n , 5, 7, 42, 43, 47, 78
S t o p , 7, 37, 38

A
a, 155
abs, 29, 51, 76, 79, 190–193, 201, 202
add_subplot, 152
algorithm, 2
align, 84, 85

all, 51
alpha, 62, 71, 72
Anaconda, 6, 141, 159–161, 164
Navigator, 160
Prompt, 166–168, 174

and, 40, 50
and (Boolean operator), 50, see also

star
angles, 15
animation, 113–117
frame, 113, 114

animation, 113
any, 51
append, 149
arange, 23, 24, 27–29
arctan, 193
args, 95, 98, 128, 129, 150
argument, of a function, 15, 16, 17,

76, 79, see also keyword
arguments

double starred, 129
starred, 129

arithmetic operators, 14, see also
plus, star

integer division (//), 194
remainder (%), 33, 37

array, 23, 25, 28, 40, 41, 56, 80, 92,
123, 134, 149, 153, 210

array, NumPy, 6, 8, 12, 20–29
concatenation, 24–25
creation from list, 23
data attributes and methods, 22
flattening, 28
indexing, 25–26, see also index
multidimensional, 22, 27, 39
reduction, 38
reshaping, 28–29
shape, 22
slicing, see slicing
transpose, 101
view, 28, 198

assert, 44, 61, 193, 195
AssertionError, 44, 193
astype, 124
attribute, 63

data, see data of an object
method, seemethods

AttributeError, 192
autoindent, 171
axes
current, see current axes
equal scaling, 62, 103
log-log, 63, 104
object, see object
semilog, 63, 104

axes, 62, 69, 113, 116
Axes3D, 66, 67, 85–88, 101, 114,

152, 208
axis, 62, 100–103, 110, 112, 149,

158, 207
azim, 67

B
back end, graphics, 60, 61, 63, 67,

163
Qt, see Qt

backslash, 30
double (to enter backslash in a

string), 30, 31, 64
escape character in strings, 30, 59
in raw strings, 55
line continuation, 9

bar, 84, 85
bar3d, 85, 86
base, 85
Bernoulli trial, 139
beta function, 139
betainc, 139
bin, 83
edges, 208
width, 208

binding, 19
bins, 83, 85, 136, 137, 150, 152, 154,

155
bit depth, 109
Bitbucket, 172, 173, 175, 180
bitmap (image file format), 70, 109
bool data type, 52, 209
Boolean
expression, 50

217

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

218 Index

operator, 50
value, 29, 50, 82

boundary, 121
boundary value, 143, 146
Wolfram Alpha, 140

brackets
curly, 32, 36
dictionary specification, 127

round, see parentheses
square, see also list

comprehension
indexing, see index
list specification, 21

branches, 176
branching, 49
break, 49, 50, 158
broadcasting, 40
bug, 1
theory, 44
builtins , 11, 15, 201

C
calculus (SymPy), 142
camel case, 16
canvas, 69
Cauchy distribution, 139
ccount, 87
cd (command line), 167
cell
Jupyter, 183
Spyder Editor, 47
subplot, 68

changeset, 173–174
chisquare, 154
choice, 151, 153
circle, see graphs
cla, 65
clabel, 87
class, 148
class, 149, 151, 153, 154
close, 56, 59, 61, 68, 113, 116
cmap, 87, 88, 110, 158
coef_, 136, 211
coefficient of determination, 137
coin flips, 82
colon, 36, 76
class definition, 149
for loop, 35
function definition, 76
if, elif, else, 50
in string formatting specification,

32
key-value pair, 127
plot line specifier, 62
slicing, 27
while loop, 37

color, 62, 67

color, 64, 84, 101
colorbar, 88
colorbar, 88, 111
colormaps, 121
colors, 87
comma
as delimiter, 56, 58
in list or tuple specification, 19, 21
separated values file, see .csv file
to separate arguments, 16

command, 7
command line, 166–170, see also

specific commands
command line interpreter, see

IPython console
command prompt, see IPython

console
commenting, 45–47
comments, 55
complex number, see number
concatenation, see string and plus
Conda, 170
console, see IPython console
constructor, 149
contour, 86–88
contourf, 101
control structures, 35
convolution, 119–120, 139
convolve, 120, 121, 123, 124
convolve2d, 121
copy, 81, 198
copying lists and arrays, 198
cos
credible interval, 139
crunching sound, 2
cstride, 87
.csv files, 53, 135
<Ctrl-C>, 9
cumsum, 83, 113, 126, 149, 207, 208
current axes, 61, 63
current figure, 61
curve fitting, 72

D
dashed line, see graphs
.dat files, 53
data
fields, 63, 197
in a class, 149

of an object, 20, 20–22, 61–64, 66,
110

structures, 19
DataFrame, 133–135, 209, 210
DataFrame object (pandas),

134–135
debugging, 43–45
def, 76, 79, 81, 89–91, 93–96, 98, 99,

114, 115, 126, 139, 149, 151,
153–155, 200–202, 207–209

default_rng, 82, 113, 126, 131,
149, 207

Define once, and reuse often, 48, 55,
61, 75, 155

del, 15, 199
delimiter, 5, 55, 56, 58
density, 102
derivative (SymPy), 142
describe, 134, 135
det, 92
df, 154
dict, 127, 129, 130, 210
dictionary, 58, 126–129
to create DataFrame, 134

diff, 106
differential equation, ordinary, see

equations, solving
dir, 11, 12, 15, 19, 20, 89, 92, 201
directory, 42, 54, 78, 116, 160, 161,

192
working, 54, 54, 55, 57, 58, 70, 72,

73, 78, 109, 121, 122, 162
global, 78

distribution, 6
divide, 191
division
integer (//), 194
Python 2 vs Python 3, 194

division, 194
docstring, 47, 76, 78
Don’t duplicate, 48, 75
dot, see graphs
dot, 40, 41, 80, 92, 153, 205
dot product, 40
dotted line, see graphs
double-starred expression, 129
draw, 67
dropna, 136, 137
dtype, 110, 158

E
%edit, 55, 171
Editor, 5–7, 36, 42–43, 49, 54, 55, 78,

163
eig, 92
eigh, 92
elev, 67
elif, 35, 49–51
else, 35, 49–51, 79, 126, 192
encapsulation, 156
encoder, video, 115, 117
enumerate, 132, 133, 153–155
enumeration, 132
.eps files, 69, 70, 109
Equality (SymPy), 143

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Index 219

equals sign
assignment, 3
double (relation), 3, 50

equations, solving
linear, 91–92
nonlinear, 89–91
ordinary differential (ODE),

95–97, 101–102
SymPy, 143
Wolfram Alpha, 140

polynomial, 90
error, see also exceptions
messages, 10, 190–193
runtime, 43
syntax, 43

error bars, see graphs
errorbar, 66
escape character, 30
except, 191
exceptions, 5, 43, 76, 190–193, 201
handling, 191

exp, 13
expm, 92
exponential, 154
exponentiation, 4
exporting, see saving
eye, 22, 151

F
factorial, 39
factorial, 5, 39, 106, 140, 205
False, 3, 20, 29, 37, 40, 44, 50–52,

82, 83, 126, 135
family, 64
fargs, 114
features, 136
FFmpeg, 117, 164
Fick’s law, 146
field
data, 192, 193, 197
lines (electric and magnetic), 101

figsize, 112, 116
figure, 66, 68, 69, 87, 88, 97, 103,

113, 116, 120, 121, 132, 137,
152, 206–208, 211

figure window, 60, 61, 68, 103, 110
current, 65
saving, 69–70

File Explorer, 7
file output, 58–59
text, 59

fill, 81
fillvalue, 121
filter, 119
Gaussian, 121, 123
Laplace, 123
Laplace of Gaussian, 123

square, 121
fit, 136–138, 211
flatten, 28
flattening, see array, NumPy
float data type, see number
float, 19, 30, 49, 56, 203
fmt, 66
folder, see directory
font, 64
fontsize, 64, 87, 206
for, 16, 35–39, 44, 49, 50
for loop, see loop and list

comprehension
fork, 175
format, 31, 32, 35–37, 44, 46, 49,

59, 61, 65, 116, 126, 127,
132–134, 144, 150, 197, 198,
202, 210, 211

formatting strings, 32–33
frame, video, see animation
frames, 114
fsolve, 89–91
full_output, 90
FuncAnimation, 113, 114
function
argument passing, 200
nickname, 13
returned value, 76
scope, see scope
updating, 78
user defined, 75–81

functional programming, 80–81
fussy hygiene, 49
future , 194–196

G
gamma, 140
garbage collection, 199
gca, 63–65, 68, 206
gcf, 68, 69, 110
geeks, 122
generator, 131
get_lines, 64, 65, 116
get_supported_filetypes,

69
get_xticks, 63, 64
get_yticks, 64
getitem , 26

.gif files, 70
GIMP, 119
Git, 172–182
add, 176, 177
branch, 176
checkout, 177, 178, 181
clone, 175
commit, 177
config, 175

init, 175
log, 181
merge, 178
pull, 178
push, 177, 178
reset, 181
revert, 182
status, 176, 177

GitHub, 172–178, 180
gradient, 100, 101
graphs, 84
2D, 60
3D, 66–67
viewpoint, 67

axis labels, 64
colorbars, 88
contour, 86–87
error bars, 66
font choice, see font
heat map, 88
histogram, see histogram
legend, 31
line color, see color
line styles, 62, 64
log axes, 63
options, 61–65
scatter plot, 62, 104
surface, 87–88
in SymPy, 144
title, 31, 64
updating, 114
vector field, 100–101

H
hard coding, 47
hash sign, see commenting
head, 134, 135
heat map, 86
Heisenbug, 19
help, 10, 11, 13, 23
Help tab, 7, 10
hidden files, 166
high-level language, 2
hist, 68, 69, 83–85, 104, 106, 134,

135, 150, 152, 154, 155, 208,
210

histogram, 83
higher-dimensional, 85
with specified bin edges, 85

histogram, 84, 136, 137, 208
histogram_bin_edges, 84
hstack, 25
html_movie.py, 115
hyphen
in file name, 60
plot line specifier, 62

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

220 Index

I
i (imaginary number), see j
id, 198
IDE, see integrated development

environment
if, 16, 35, 37, 49–52, 76, 79, 91, 126,

158, 192
if statement, 50
imag, 20, 91
image
color, 109
display, subtlety with coordinates,

111–112
export, 110
import, 109

ImageMagick, 117
immutable object, see object
import, 5, 12, 13, 15
ImportError, 192
importing
code, 12
data, 53–57
pandas, 135

importlib, 78, 152
impulse response, 120
imread, 109, 121, 124
imsave, 109, 110
imshow, 109–112, 120, 122, 123, 158
indentation, 35–36, 47
index, 26
array, list, tuple, 25
Boolean list as, 29
integer list as, 29
negative, 26, 27
string, 25

index, 135
IndexError, 193
indexing, 86
inf, 44, 51, 94, 191, 209
infinite loop, 37
inheritance, 151, 151, 152, 155
init , 149

initial conditions, see boundary
value

Inkscape, 70
input statement, Python 2 vs

Python 3, 195
input, 49, 50, 194–196
instance of a class, 136, 150, 150, 156
int data type, see number
int, 14, 19, 30
integrate, 92, 93, 95, 97–99, 208,

209
integrated development

environment, 6, 159, 161, 191
integration, 92–94
analytic

SymPy, 142
Wolfram Alpha, 139–140

integration_direction, 102
intercept_, 136
interpolation, 158
interpreter, 5, 6
interrupt, 9
inv, 92
ioff, 60
ion, 60
IPython, 6, 8, 10, 36
console, 2, 6–10, 12, 13, 15, 16

is, 198
is_integer, 20
isclose, 52, 91
item-by-item evaluation, 39–41, 82
items, 127
iterable, 80, 132

J
j (imaginary number), 15
j (special syntax for complex

literals), 14
.jpg or .jpeg files, 69, 70, 109
Jupyter, 6, 159, 162, 167, 168, 170,

183–189

K
Keras, 138
kernel, 186
key (dictionary), 127
key-value pair, 126
KeyboardInterrupt, 37, 38
KeyError, 128
keys, 127, 133, 153–155
keyword arguments, 5, 17, 55, 62, 64,

78–79, 83, 87, 88, 90, 94, 98
default values, 78

kind, 134, 135, 210
kwargs, 128, 129

L
label, 64, 99, 129, 133, 137, 138,

206, 211
lambda, 16
LATEX, 31, 141, 147, 174, 187, 188, 215
lattice
triangular or honeycomb, 152

legend, 64
legend, 64, 65, 99, 133, 137, 138,

206, 210, 211
len, 61, 81, 193, 200
limit, 94
limits (SymPy), 142
linalg, 91, 92
line numbers, 5

line object, see object
LinearRegression, 136, 138,

210
linestyle, 62, 64
linewidth, 64, 97, 102, 114, 129,

206
linewidths, 87
linspace, 24, 58, 60
list, 19, 21, 25, 40, 52, 80
comprehension, 130–131
indexing, 25–26
slicing, see slicing

list data type, see list
literal, 19, 20
float, 19
list, 19, 21
numeric, 14, 19
string, 19, 30, 31
tuple, 21

load, 58
loadmat, 57
loadtxt, 5, 55–58, 121, 133
log, 44, 51, 137, 138, 210, 211
logical indexing, 29
loglog, 63, 206
logspace, 63, 85
lookfor, 12
loop
for, 35–36
nested, 52
while, 35, 37

low-level language, 2
ls (command line), 167
ls, 62
lw, 113, 114, 116

M
machine learning, 136
magic commands, 8, 54, 55, 187
Maple, 144
Markdown, 174, 183–189
marker, 62, 72
for errorbar, 66

markerfacecolor, 62
markersize, 62, 114
math, 12, 39, 44
Mathematica, 144
matlab, 6, 36, 53, 57, 99, 215
Matplotlib, 13, 42, 60
matrix, 22, 25
operations, 22, 40, 92

max, 21, 41, 84, 123, 137, 154, 208,
210

mean, 22, 41, 104, 110, 134, 210
mean-square displacement, 104
meshgrid, 86, 100, 101, 111, 112,

123, 208

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Index 221

method, 99
method of images, 147
methods, 20, 19–21, 63, 197
mew, 211
mfc, 211
min, 41, 137, 208
Miniconda, 159
minlength, 102
mkdir (command line), 167
mode, 120, 123
modularity, 203
module, 12, 77
nickname, 12, 43
user defined, 78

modulo operator, see arithmetic
operators, remainder

movies, see animation
mpl_toolkits, 66, 87, 152, 208
mplot3d, 66, 87, 152, 208
ms, 113, 114
mutable object, see objects
mv (command line), 167

N
∖n (new line), 59
name, 19
collision, 16, 202, 203

NameError, 10, 43, 193, 201
namespace, 200, 203
built-in, 201
enclosing, 201
global, 201
local, 200, 201

nan, 44, 51, 126, 134, 135
ndenumerate, 133
ndi (nickname), see ndimage
ndimage, 124
ndindex, 133
nesting, 52
next, 131
nickname, seemodule and function
None, 52, 76, 79
nonzero, 106, 126
normal, 154
not, 40, 50
not (Boolean operator), 50, see also ~
np (nickname), see NumPy
.npy file, 58
.npz file, 58
num, 85
number
complex, 14
floating-point (float), 19, 203
conversion from, to string, 31
conversion to, from string, 30

integer (int), 19
conversion from, to string, 31

conversion to, from string, 30
unsigned integer (uint8), 110,

124, 209
numerical error, 90, 92
NumPy, 5, 6, 12, 13, 15, 16, see also

individual function names
array, see array

O
object, 19–21, 63
Axes, 63, 65
DataFrame, 134–135
figure, 65
immutable, 20, 21
line, 64, 65
list, see list
mutable, 20, 200
Series, 133–134
tuple, 21

object, 132
object-oriented programming, 148
ODE, see equations
odeint, 95–99
ones, 22, 23, 25, 28, 120, 154, 200
open, 55, 56, 59
optimize, 89
or, 40, 50
or (Boolean operator), 50, see also

plus sign
origin, 111, 112
overflow, 106
overwriting an array, 81

P
package, 159
package manager, 6, 117
pandas, 133–135, 209, 210
pandas, 53, 133, 134, 210
panes in Spyder window, 6
parameter
actual, 77
as used in this book, 46
formal, 76
in numerical integral, 94
in ODE, 97

parentheses (round brackets)
function argument, see argument

of function
to override operator precedence,

14
tuple specification, see tuple

pareto, 155
pass by address, 200
pass by reference, 200
pass by value, 200
path, 55, 70, 78, 168

pcolormesh, 88, 111, 112
pd (nickname), see pandas
.pdf files, 69, 70
percent sign
in header template, 163
in string formatting specification,

32
magic commands, 8
remainder, see arithmetic

operators
pi, 15, 32, 66, 67, 80, 93, 128, 132,

153, 209
pip, 6
pivot, 100
pixel, 109
plot, see also graphs
window, see figure window

plot, 5, 7, 60–69, 72, 78, 93, 97, 99,
103, 104, 113, 114, 116, 128,
129, 133–135, 137, 138, 143,
150, 152, 153, 155, 206–208,
210, 211

plot_surface, 87, 88, 121, 122,
208

plt (nickname), see PyPlot
plus sign
Boolean operation, 40
concatenation, 30, 40

.png files, 69, 70
Poisson distribution, 105, 106
Poisson process, 106
poly1d, 91
pop, 20
positional argument scheme, 17
pow, 10, 59
power, 186
power series (SymPy), 143
predict, 137, 138, 211
Preferences menu, 54, 57, 162, 163
print statement, Python 2 vs

Python 3, 195
print, 5, 8, 9
probability density function, 92, 134,

139, 145
prod, 41
projection, 152
prompt, see IPython console
property of an object, see data of an

object
pull, see Git
push, see Git
%pwd, 55
pwd (command line), 167
pyflakes, 43
pylint, 43
PyPlot, 5–7, 13, 16, see also

individual function names

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

222 Index

Q
Qt, 60
quad, 92–95, 97, 98, 140, 208, 209
quiver, 100, 101
quiver3d, 101
quote
double, 30
left, single (grave accent), 30
right, single (apostrophe), 30
triple, see commenting

R
𝑅2 value, 137
raise, 190
random, 13, 68, 69, 82, 83, 111, 113,

123, 126, 131–133, 149, 154,
207

random walk, 82–83, 103, 104, 113
range, 24, 36, 37
raster (image file format), 70, 109
ravel, 28, 198
raw string, 31
rcount, 87
rcParams, 70
read_csv, 135
reducing an array, see array
reload, 78, 150, 152, 153, 155
repository, 172, 173–178, 181
request, 55, 56
reserved words, 5, 16
%reset, 8, 11, 13, 15, 42
reshape, 28, 29, 41, 136, 137, 198,

210
return, 76, 77
reverse, 20
RGB color scheme, 109
RGBA color scheme, 109
rm (command line), 167
rmdir (command line), 167
root directory, 168
roots
of equation, see solving equations
of a polynomial, 89

roots, 90, 91
round, 10, 14, 15
rstride, 87
Rubber Duck Debugging, 44
%run, 42, 54, 78, 171
Runge–Kutta method, 99
RuntimeWarning, 44, 191

S
Sage, 144
save, 58, 117
savefig, 16, 69, 116
savemat, 57

savetxt, 58
savez, 58
saving
data and code, 57–60
pandas, 135

figures, 69–70
scalar quantity, 22
scale, 100, 101
scatter, 104
scatter plot, see graphs
scikit-learn, see sklearn
SciPy, 5, 6, 39
.io, 53, 57
.ndimage, 124
.special, 5, 39, 106, 139, 140,

205
scope of variables, 200–203
score, 137, 138, 211
scripts, 6, 9, 42–47
seaborn, 138
semicolon, 9
semilogx, 63
semilogy, 63, 206
Series, 133–135
Series object (pandas), 133–134
set_cmap, 87, 88, 101, 110
set_data, 61, 65, 114, 116
set_data_3d, 114
set_facecolor, 110
set_label, 64
set_title, 64, 112, 133, 152–155,

206
set_xlabel, 63, 64, 206
set_xticklabels, 64
set_ylabel, 64, 206
set_yticklabels, 64
set_zlabel, 67
setitem , 26

setp, 64
shading, 88
shape, 22, 40, 61, 110, 149
sharex, 103, 133, 207
sharey, 103, 133, 207, 210
shot noise, 106
show, 187
side effect, 16, 81, 114, 203
signal, 120, 121, 124
sim (nickname), see

scipy.ndimage
sin, 15
singularity of a function, 90
size, 22, 27, 64, 67, 93, 126, 149,

151, 153–155, 158, 208
sizeof , 131

skiprows, 55
sklearn, 133, 135–138, 210
slash, double (integer division), see

arithmetic operators
slicing, 27–29, 198
snake case, 16
snapshot (Git), 173
solid line, see graphs
solve_ivp, 98, 99
sort, 81
split, 56
Spyder, 4, 6, 7, 9, 10, 20, 36, 38, 42,

43, 47, 54, 55, 57, 69, 159–164,
170

sqrt, 5
sqrtm, 92
staging, 177
star
Boolean operation, 40
command line, see wildcard
function argument, see starred

expression
starred expression, 129
start_points, 102
std, 22, 41
StopIteration, 131
str data type, see string
str, 31, 32, 43
streamlines, 101–102
streamplot, 101, 102
stress fibers, 122
stride, 27
surface plot, 87

string, 19, 25, 29–33, 80, 193
accessing individual characters,

25
conversion from, to numeric, 30
conversion to, from numeric, 31
join (concatenate), 30
literal, 30
raw, 31, 55
variable, 29

subplot, 68, 69, 103
subplots, 69, 103, 112, 121, 133,

150, 152–155, 207
sum, 22, 41, 82, 149, 154
sum, analytic
SymPy, 142
Wolfram Alpha, 140

super, 151, 153, 154
suptitle, 68, 69, 112
surface plots, see graphs
svd, 92
.svg files, 70, 109
swapcase, 20
symbolic mathematics, 138, 141
SymPy, 4, 141–144
syntax, 14
SyntaxError, 5, 190–192, 195

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

Index 223

T
T, 101, 153
∖t (tab), 59
t_eval, 99
tail, 135
tan, 15
targets, 136
TensorFlow, 138
text editor, 171–172
tick marks, 63, 64, 66, 110, 114
.tif or .tiff image files, 69, 70,

109, 121
tight_layout, 68
tilde, see ~
title, 64, 69, 206
to_csv, 135
training data, 136
transpose, see array
transpose, 112, 149, 151, 158
True, 3, 20
try, 191
.tsv files, 53
tuple, 16, 21, 22, 25, 52, 77, 80, 83
slicing, see slicing

.txt files, 53
type, 29, 30, 131
TypeError, 30, 76, 190, 193

U
uint8 (data type), see number
underscore, 16, 60, 84, 136, 150
as temporary variable, 80

units, 48–49
units, 100

unpacking, 80
urllib, 55–57
urlopen, 55–57

V
value
default (keyword), 78
dictionary, 127
of an object, 3, 4, 8, 9, 15–17, see

also data of an object, 20,
199–204

in a graph title, 31
returned by a function, 16, 77,

79–80
values, 127
variable, 3, 3, 19
names, 16

Variable Explorer, 7, 20, 22, 43, 56,
72, 110, 201

vector, 25
column, 22, 23
field, see graphs
graphics, 70, 109
row, 22

vectorizing math, 29, 38–40
Boolean, 40

version control, 172–182
view of an array, see array
view_init, 67
viewpoint, 67
viral load, 71
vmax, 123
vmin, 123
vstack, 25, 41

W
waiting times, 106–107
weight, 64
while, 35, 37, 46, 47, 49–52, 76, 158,

195
while loop, see loop
whitespace, 46, 47, 53
width, 84, 85
wildcard, 13, 116, 168, 169, 179
window
figure (or plot), see figure window
Spyder, 6

Wolfram Alpha, 139–140
write, 59

X
xerr, 66
Xfig, 70
xlabel, 64, 65
xlim, 62, 103, 113, 116
xmax, 62
xmin, 62

Y
yerr, 66
ylabel, 64, 65
ylim, 62, 113, 116

Z
ZeroDivisionError, 190, 191
zeros, see equations
zeros, 21, 22, 25, 26

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.

