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CHAPTER 1

Why Quantum Field Theory?

Quantum theory began with quanta of the electromagnetic field, with Planck’s
blackbody spectrum and with Einstein’s concept of a photon of energy E= �ω in
the photoelectric effect. The latter process is driven by a photon in the initial state
that is absorbed and does not appear in the final state. However, the standard cur-
riculum of quantummechanics initially bypasses this topic and instead emphasizes
wavefunctions and quantum properties of massive particles at low energies, such
as those typical of atomic physics. In these cases, the particle number is conserved.
To provide a proper quantum treatment of the emission and absorption of the elec-
tromagnetic quanta, one needs Quantum Field Theory. We need to transition from
thinking about wavefunctions to discussing fields. As we will see, this allows the
numbers and identities of the particles to change in reactions, which has wide appli-
cability. In fact, this is a unifying concept. Not only does the electromagnetic field
behave like a particle in certain settings, but also the entities thatwe think of as parti-
cles, such as electrons, can behave like waves in diffraction experiments. Moreover,
all types of particles can be created and destroyed, as in the reaction e+e− → 2γ
with e− being the electron, e+ the positron, and γ being the photon. To describe
such processes, we need Quantum Field Theory.

Another indication of the need for Quantum Field Theory arose in attempts to
marry quantummechanics and the Theory of Special Relativity. Schrödinger’s first
attempts to write a differential equationwhose solutions would describe de Broglie’s
matter waves were based on applying the identification E↔ i�∂t , p↔ −i�∇ to the
relativistic energy-momentum relation E2 =m2 c4 + p2 c2 for a particle of mass m
(an effort that would eventually lead to the Klein-Gordon equation). This con-
struction, however, led to complications (negative probability densities as well as
negative energy states), and Schrödinger went ahead with the more modest(!) goal
of writing a nonrelativistic equation for the hydrogen atom. Nonrelativistic quan-
tum mechanics was thus born as a plan B, because Schrödinger noticed that its
relativistic counterpart was leading to mathematical and physical inconsistencies.
Indeed, it took another couple of decades or so to realize that a consistent treatment
of relativistic quantum mechanics requires a quantum theory of fields and to for-
malize this theory. Along the way, people had to deal with the subtleties that we will
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2 Chapter 1. Why Quantum Field Theory?

discuss later in this book. These involved abandoning the concept of wavefunction
in favor of a field operator acting on a Hilbert space of states.

1.1 A successful framework

QuantumField Theory has been successful inmaking predictions throughout all
branches of quantum physics. While the framework of this theory was developed
to describe electrons and photons, it finds applications in the theory of elementary
particles, in macroscopic systems of condensed matter physics, and in the Early
Universe. Today, it is impossible to list all the successful applications of the quan-
tum theory of fields. Based on the highly arbitrary choices of the authors, these
include:

• one of the most iconic predictions of Quantum Field Theory: the existence
of antimatter, which emerged from the formulation of Dirac’s equation.
Dirac was motivated by the need of making sense of the relativistic relation
E2 =m2 c4 + p2 c2 without incurring the presence of negative norm states.
Amajor experimental fact (the prediction of a new form ofmatter, antimat-
ter, four years before the discovery of the positron) stemmed from a strictly
mathematical requirement.With that same equation, Dirac also postdicted
the ratio (in appropriate units approximately equal to 2) between the mag-
netic moment of the electron and its spin (the so-called gyromagnetic ratio
or g-factor of the electron), which was not justified by any existing theory
at that time.

• the exquisite agreement of the value of the electron’s g-factor as predicted by
QuantumField Theorywith itsmeasured value is one of the quantitiesmost
preciselymeasured in physics, where the quantity (g − 2)/2 ismeasured1 to
be 0.0115965218073(28) in very close agreement with the theoretical value
0.0115965218161(23) when using the most precise direct measurement of
the fine structure constant. The corrections to the Dirac value g = 2 come
from loop diagrams, which we will discuss starting in chapter 5.

• the prediction of the Lamb shift—the energy difference between the 2S1/2
and 2P1/2 energy levels of hydrogen. The levels are degenerate even in
the relativistic Dirac theory. A full treatment required the development of
Quantum Electrodynamics.

• Landau-Ginzburg’s theory of superconductivity, based on Landau’s the-
ory of phase transitions, in which the behavior of macroscopic systems is
described after coarse-graining their microscopic component.

• the running of coupling constants. In physical processes, the values of the
coupling constants depend on the energy or distance scale at which they
are measured. This effect is observed both in particle physics and in con-
densedmatter systems near phase transitions, where the running affects the

1This value, plus reviews of many tests of Quantum Field Theory predictions, can be found in the
Review of Particle Properties, which is maintained and updated regularly by P. A. Zyla et al. for the Parti-
cle Data Group. See also Particle Data Group et al., “Review of Particle Physics,” Progress of Theoretical and
Experimental Physics 2020, no. 8 (August 2020): 083C01.
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1.2 A universal framework 3

value of the critical exponents, that is, the way certain quantities evolve as
we change the temperature of the system near a phase transition.

• the origin of structure in the Early Universe. While on large scales the Uni-
verse is largely uniform, on small scales we see clumping ofmatter as well as
voids. There are strong indications that this is the result of the amplification
of quantum fluctuations in the Early Universe, which can be described by
Quantum Field Theory.

1.2 A universal framework

The point of view that informs this book is that the main reason why we need
Quantum Field Theory is because it is universal. As we will see in chapter 2, any sys-
tem governed by quantummechanics in which we ignore the ultimate microscopic
behavior is controlled, at sufficiently low energies/long wavelengths, by the rules
of Quantum Field Theory. This is true for the description of the sound waves that
propagate in your desk when you hit it. It could even be true for our “elementary”
particles, as our understanding of what is elementary has changed over time. (For
example, the proton and neutron were once considered elementary, but now we
have a more fundamental description in terms of quarks and gluons.) At whatever
scale we are working, Quantum Field Theory can be an appropriate description.

In the end, QuantumField Theory provides an elegant and understandable treat-
ment of all particles. All fields are treated on the same footing. Its rules theory can
handle all types of transitions with powerful techniques. Quantum Field Theory is
conceptually unified and clear once one learns how to think appropriately about the
subject.
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CHAPTER 2

Quanta

To start down the path to Quantum Field Theory, we have to first head back to
1905, when Einstein first postulated that photons carry energy in quanta of �ω,
and uncover the quantum of a field. The same transition from classical physics to
quantum physics that works in ordinary quantum mechanics will also work here.
This leads to the quantization rules for fields and to the concepts of field operators
and particle quanta.

2.1 From classical particle mechanics to classical waves: Phonons

Mathematically, fields are functions of space and time, such as a function φ(t, x).
For us as physicists, this also means that they satisfy wave equations, that they carry
energy, that they ultimately have interactions, etc. Let us start by constructing a field
in a way that also allows us to quantize it.

Consider a one-dimensional array of particles of mass m with coordinates yj(t)
interacting with their neighbors, as in figure 2.1. Near the equilibrium configura-
tion, the potential can be approximated by a harmonic oscillator, that is, by a set
of springs. We will denote by a the rest length of the springs and by k the spring
constant, so that the interaction term between the (j+ 1)-th and the j-th particle is
k
2(yj+1 − yj − a)2. Denoting δyj(t)≡ yj(t)− a j as the deviation of the j-th particle
from its equilibrium position, the system is described by a Lagrangian

L(δyj, δẏj)=
∑

j

[
m
2
δẏ2j − k

2
(δyj+1 − δyj)2

]
. (2.1)

(Wewill assumehere that the string is infinitely long, so thatwe donot have toworry
about boundary conditions.) Physically we know that if the spacing is very small
compared to the wavelength, a� λ, the system will be described by wavelike solu-
tions, like sound waves propagating through a solid. When quantized this becomes
a one-dimensional model for phonons in a solid.

The techniques of Lagrangian mechanics instruct us to define a canonical
momentum
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2.1 From classical particle mechanics to classical waves: Phonons 5

yj

a a a

yjδ

Figure 2.1. The system with many particles that provides our starting point. The

Lagrangian for this system is given in equation (2.1).

δpj ≡ ∂L
∂(δẏj)

=m δẏj (2.2)

and a Hamiltonian

H =
∑

j
δpj δẏj − L(δyj, δẏj)=

∑

j

[
δp2j
2m

+ k
2
(δyj+1 − δyj)2

]
. (2.3)

Now let us look at this over such large distances that the continuum limit is a
good approximation. Mathematically, we obtain this by sending the distance a→ 0
and the number of sites to infinity, so that a× j stays finite. We will thus describe
the position by a continuous variable

x= a j , so that
∑

j
→

∫
dj=

∫ dx
a

. (2.4)

It then makes sense to describe the displacement δyj(t) by a continuous function
φ(t, x)

δyj(t)=
√

1
k a
φ(t, x) . (2.5)

The normalization constant shown does not change the physics in the end,1 but
is chosen to make the intermediate steps look cleaner. To proceed, we note that in
the continuum limit δyj+1(t)− δyj(t)→ a ∂xφ(t, x)/

√
ka. We are now in position

to derive the expression of the field-theoretical Lagrangian. The “potential” term
takes the form

∑

j

k
2
(δyj+1 − δyj)2 →

∫ dx
a

× k
2

×
(

a√
k a
∂φ

∂x

)2
=

∫
dx

1
2

(
∂φ

∂x

)2
, (2.6)

while the kinetic energy term reads

1To verify this statement, one has to work through the steps leading up to the quantized Hamiltonian,
equation (2.18). The equations of motion will be unchanged, and the canonical momentum will have a
compensating change in normalization.
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6 Chapter 2. Quanta

∑

j

m
2
δẏ2j →

∫ dx
a

× m
2

× 1
k a

(
∂φ

∂t

)2
≡

∫
dx

1
2 v2

(
∂φ

∂t

)2
, (2.7)

where we have defined the quantity

v=
√

k
m

a , (2.8)

that has the dimensions of a velocity.
The end result is an action

S=
∫

dt dxL(∂tφ, ∂xφ) =
∫

dt dx

[
1

2 v2

(
∂φ

∂t

)2
− 1

2

(
∂φ

∂x

)2
]

, (2.9)

so that the action is written as the integral over the entire spacetime of a Lagrangian
density L .

We can derive the wave equation either by varying the original Lagrangian and
taking the continuum limit or by directly varying the continuum action. To do the
latter, we define the small variation δφ

φ(t, x)= φ̄(t, x)+ δφ(t, x) , (2.10)

with the variation vanishing at the endpoints and set the first variation of the action
to 0

δS= 0=
∫

dt dx
[
1
v2
∂φ̄

∂t
∂δφ

∂t
− ∂φ̄

∂x
∂δφ

∂x

]

=
∫

dt dx
[
− 1
v2
∂2φ̄

∂t2
+ ∂2φ̄

∂x2

]
δφ(t, x) . (2.11)

The second line is obtained by integrating by parts, with the surface term vanishing
because we required δφ to vanish at the boundaries of the system. By requiring that
the variation of the action vanishes for any δφ(t, x), we get the wave equation

[
1
v2
∂2

∂t2
− ∂2

∂x2

]
φ̄(t, x)= 0 . (2.12)

This is the Euler-Lagrange equation of motion for this field.
The canonical momentum for the field φ can also be constructed in analogy with

the usual coordinate construction

δpj ≡ ∂L
∂(δẏj)

⇒π(t, x)= ∂L
∂φ̇

= 1
v2
∂φ

∂t
. (2.13)
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2.2 From quantum mechanics to Quantum Field Theory 7

For the present calculation, it is useful to display the exact relation

δpj ≡ ∂L
∂(δẏj)

=m δẏj = m√
k a
φ̇= a

√
k a

v2
φ̇= a

√
k aπ(t, x) . (2.14)

This, in particular, tells us that

∑

j
δpj δẏj =

∫ dx
a

× m√
k a
φ̇× 1√

k a
φ̇=

∫
dx

1
v2

(
∂φ

∂t

)2
=

∫
dxπ(t, x) φ̇(t, x) .

(2.15)

The Hamiltonian is then easy to construct either through the continuum limit

H =
∑

j

[
δp2j
2m

+ k
2
(δyj+1 − δyj)2

]
=

∫
dx

[
1

2 v2

(
∂φ

∂t

)2
+ 1

2

(
∂φ

∂x

)2
]
,

(2.16)
or through the field-theoretical Hamiltonian densityH

H =
∫

dxH (2.17)

defined by
H=π φ̇−L , (2.18)

which in this case is equal to

H= v2

2
π2 + 1

2

(
∂φ

∂x

)2
= 1

2 v2

(
∂φ

∂t

)2
+ 1

2

(
∂φ

∂x

)2
. (2.19)

This simply describes the continuum limit of classical mechanics. The result of
which is waves propagating in this system.

2.2 From quantum mechanics to Quantum Field Theory

In taking the continuum limit, we have found that

δyj(t)→ 1√
k a
φ(t, x) , δpj(t)→ a

√
k aπ(t, x) , (2.20)

so that we can quantize the fieldφ starting from the canonical commutation relation

[δyj(t), δpj′(t)]= i� δj,j′ , (2.21)

obtaining

[φ(t, x), π(t, x′)]= 1
a

[δyj(t), δpj′(t)]= i�
δj,j′

a
. (2.22)
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8 Chapter 2. Quanta

The correct continuum identification turns the right-hand side into a Dirac delta
function. In fact, from the continuum limit of the sum,

∑
j →

∫ dx
a , we get

∑

j
δj,j′ = 1→

∫ dx
a
δj,j′ =

∫
dx δ(x− x′)= 1 . (2.23)

The end result is the commutator for field quantization

[φ(t, x),π(t, x′)]= i� δ(x− x′) , (2.24)

which is the starting point of what is referred to as canonical quantization in
Quantum Field Theory.

Like all things quantum, this rule takes some getting used to. It is saying that
the field, which we can visualize classically as a wave propagating in front of us, is
no longer just a function, but is an operator. There are a few things to say about
this. We note that as we progressed in quantummechanics we have become used to
coordinates andmomenta—also things that we have a good picture for classically—
being operators as in equation (2.21). So at this moment, we will take a deep breath
and just wait and see where this leads. In practice, it leads to a final result that is
even easier to come to grips with than the usual quantum-mechanical formalism
is. We will see that the field-operator formalism is really a bookkeeping device for
keeping track of the creation and annihilation of particles.2 That is actually much
easier than the usual statement that position x is an operator. The coordinate x that
appears in the quantum field–theoretical treatment of the system, for instance in
equation (2.24), is not an operator, as it descends from the index j in the discrete
system in equation (2.1). Finally, we should note that in the path integral formalism
(see chapter 8), the fields again are treated as functions, and there is not an operator
in sight. For now, you are counselled to be patient.3

2.3 Creation operators and the Hamiltonian

Now let us figure out how to solve the commutation rule in equation (2.24). To do
this, we need to establish the general solutions to the wave equation. We propose
doing this using the box normalization, in which the system is taken to be finite
but very large, with length L. The exact boundary conditions are not important,
but you can think of periodic boundary conditions for definiteness. What is useful
about this choice is that energy levels are discrete, with a label n running on all the
integers. This avoids having to simultaneously introduce the continuum momenta
notation on top of the other ideas discussed in this section.

2For the reader who is not a native English speaker, a bookkeeper is one who keeps track of financial
transactions. The use in the present context is that the field operators keep track of the physics transitions.

3We are also postponing to section 2.3 the reason that both equations (2.21) and (2.24) are evaluated at
equal times even though the positions are different. Right now we are rushing to reach our goal—quanta.
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2.3 Creation operators and the Hamiltonian 9

The solutions of the wave equation, equation (2.12), take the form

φ(t, x)=N e±i(ωnt−knx) with ωn = |kn|v, kn = 2πn
L

, (2.25)

where N is a arbitrary constant, so that the most general solution will be a
superposition

φ(t, x)=
∑

n
Nn[ân e−i(ωnt−knx)+ â†

n e
+i(ωnt−knx)] , (2.26)

where we have used the fact that φ is a real field. The coefficients ân are now to be
considered operators because φ is an operator.4 The normalization factor Nn will
be determined in equation (2.30).

Because ân and â†
n are now operators, they must obey some commutation rules.

If the different modes are to be orthogonal, we expect operators with different n
values to commute. This leads to a set of rules that up to an overall normalization,
reads

[ân, ân′ ] = 0 , (2.27)

[ân, â†
n′ ] = δn,n′ . (2.28)

The arbitrary overall normalization can be absorbed in the Nn factor in equa-
tion (2.26). This choice in fact does provide a solution to the field commutator rule,
as we can readily see

[φ(t, x),π(t, x′)]=
∑

n,n′
NnNn′

(
−i
ωn′

v2
)

×[âne−i(ωnt−knx)+ â†
ne

+i(ωnt−knx), ân′e−i(ωn′ t−kn′x′)− â†
n′e+i(ωn′ t−kn′x′)]

=
∑

n,n′
NnNn′

(
2i
ωn′

v2
)

[ân, â†
n′ ] ei(knx−kn′x′)

=
∑

n

i�
L
eikn(x−x′)= i� δ(x− x′) , (2.29)

provided that we take the normalization factor to be

Nn =
√

� v2
2ωn L

. (2.30)

The delta function identity

δ(x− x′)=
∑

n

1
L
eikn(x−x′) (2.31)

follows from the completeness of the Fourier series.

4These coefficients are not to be confused with the length a between the mass points.
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10 Chapter 2. Quanta

One could equivalently derive the commutation relation of the ân and â†
n oper-

ators directly from the canonical quantization condition in equation (2.24) and
invert the relations that give φ(t, x) and π(t, x) as a function of ân and â†

n. More
explicitly, we can rewrite equation (2.26) as

φ(t, x)=
∑

n
Nn eiknx [âne−iωnt + â†

−ne+iωnt] , (2.32)

where we have usedω−n =ωn and have assumedNn =N−n. Then, by inverting the
Fourier series we obtain

ân = eiωnt

2Nn

∫ dx
L

e−iknx
[
φ(t, x)+ i v2

π(t, x)
ωn

]
, (2.33)

so that

[ân, â†
n′ ] = ei(ω−ωn′ )t

4Nn Nn′

∫ dx dx′

L2
e−iknx+ikn′x′

[
φ(t, x)+ iv2

π(t, x)
ωn

, φ(t, x′)− iv2
π(t, x′)
ωn′

]

= ei(ω−ωn′ )t

4Nn Nn′

∫ dx dx′

L2
e−iknx+ikn′x′

� v2
[
δ(x− x′)
ωn′

+ δ(x− x′)
ωn

]

= � v2

2N2
n Lωn

δnn′ (2.34)

and, in similar fashion, [ân, ân′ ] = [â†
n, â†

n′ ] = 0. By choosing the normalization in
equation (2.30), we find that each of the ân, â†

n pair of operators satisfy the same
algebra as the creation and annihilation operators of the simple harmonic oscillator.
Indeed we will find that this identification is accurate and will henceforth call â†

n a
creation operator and ân an annihilation operator.

We are now in position to evaluate the Hamiltonian. Because φ has two terms,
ân and â†

n, the Hamiltonian

H =
∫

dx

[
1

2 v2

(
∂φ

∂t

)2
+ 1

2

(
∂φ

∂x

)2
]

=
∫

dx
∑

n,n′
Nn Nn′

×
[−ωn ωn′

2 v2
(
âne−iψn − â†

ne
+iψn

) (
ân′e−iψn′ − â†

n′e+iψn′
)

−kn kn′

2

(
âne−iψn − â†

ne
+iψn

) (
ân′e−iψn′ − â†

ne
+iψn′

)]
(2.35)
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2.4 States filled with quanta 11

will have four pieces, although they come in pairs because H is Hermitian. In the
exponents, we have used the shorthand ψn = (ωnt− knx) to save space.

The integral over x will imply that the momenta are either equal or opposite. By
using ∫

dx eiknx e−ikn′x = L δn,n′ ,
∫

dx eiknx eikn′x = L δn,−n′ , (2.36)

we can write equation (2.35) as a single sum over the momentum variable. Both of
these cases have ωn =ωn′ , and by inserting the normalization factor, we have

H =
∑

n

� v2

2ωn

[
1
2

(
−ω

2
n

v2
+ k2n

)(
e−2iωntân â−n + e+2iωntâ†

n â
†
−n

)

+ 1
2

(
+ω

2
n

v2
+ k2n

)(
ân â†

n + â†
n ân

)]
. (2.37)

At this stage “amiracle occurs” and the ân â−n and ân †â†
−n terms disappear because

ω2
n = k2nv2. If we use the creation operator commutation rule, we obtain

H =H0 +E0 , (2.38)

with

H0 =
∑

n
�ωn â†

n ân (2.39)

and

E0 =
∑

n

1
2
�ωn . (2.40)

Here E0 is the zero-point energy, which we will discuss in section 3.6. It provides a
constant shift in energy that we will ignore for now. The other part of the Hamil-
tonian H0 is quite promising. We see the number operator for each mode â†

n ân
emerging, with an associated energy En = �ωn. Note that it was the field commuta-
tion relation that fixed the normalization and, therefore, required the energy of the
n-th mode to be �ωn.

2.4 States filled with quanta

Once we identify the energy eigenstates of the theory and confirm that â†
n ân acts

like a number operator, wewill have reached our goal. This is easily fulfilled by using
our experience with the simple harmonic oscillator. The states can be constructed

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



12 Chapter 2. Quanta

by defining an “empty” state—the vacuum, which by definition is annihilated by all
the annihilation operators

ân|0〉 = 0 for all n . (2.41)

After this, we can construct new states by acting with the ân and â†
n operators on

the vacuum |0〉. Let us start with the action of a single â†
n operator, and let us define

|n〉 = â†
n |0〉 . (2.42)

This operation produces energy eigenstates, as can be readily verified

H|n〉 =
∑

n′
�ωn′ â†

n′ ân′ (â†
n|0〉) (2.43)

=
∑

n′
�ωn′ â†

n′ ([ân′ , â†
n]+ â†

n ân′)|0〉 (2.44)

=
∑

n′
�ωn′ â†

n′ δn,n′ |0〉 = �ωn|n〉 . (2.45)

This construction gives a state with energy �ωn. We are thus led to interpret |n〉
as a single particle state that contains one quantum of the state with energy �ωn.
Here the word particle is used to mean a quantum carrying energy �ω. We will
see later that we can define additional operators associated to observables such as
momentum, charge, etc., and that the action of a creation operator on the vacuum
gives eigenstates of all these operators, which is exactly as expected for a single par-
ticle state with those quantum numbers. For this reason, from now on, we will use
interchangeably the terms “state |n〉” and “particle in n-th state.”

On a technical point, we have explicitly worked out the action of the commutator
when using the Hamiltonian, which is how the calculation proceeds. However, the
way to think about this calculation is to mentally say “the annihilation operator ân′
annihilates the particle n′.” This can be represented pictorially with a contraction

∑

n′
â†
n′ ân′ |n〉 =

∑

n′
â†
n′ ân′ â†

n|0〉 =
∑

n′
â†
n′ [ân′ , â†

n]|0〉 =
∑

n′
â†
n′δn,n′ |0〉 = |n〉 ,

(2.46)

indicating that the given annihilation operator removes the creation operator. The
calculation is given by the commutator but the result is indicated by the contrac-
tion. To acquire familiarity with contraction, you should work out the slightly more
difficult case with two quanta

H|n1, n2〉 =
∑

n′
�ω′

nâ
†
n′ ân′ |n1, n2〉 +

∑

n′
�ω′

nâ
†
n′ ân′ |n1, n2〉

= (�ω1 + �ω2)|n1, n2〉 . (2.47)
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2.4 States filled with quanta 13

From now on we will just show the contractions and the calculation behind it will
be implied.

This construction allows us to construct all the states with all possible values of
the energy. Because these are bosons, there can bemore than one particle in a given
energy state. For example, the normalized state

|n1, 3 n2, n3〉 = 1√
3! â

†
n3 â

†
n2 â

†
n2 â

†
n2 â

†
n1 |0〉 (2.48)

has energy

H|n1, 3 n2, n3〉 = (�ω1 + 3 �ω2 + �ω3) |n1, 3 n2, n3〉 . (2.49)

We have finally arrived back to 1905 with quanta with the correct energy-frequency
relation.

Our pathway to this point has been somewhat formal, in the sense that we have
used the standard formalism for both classical mechanics and quantum mechan-
ics. We just “turned the crank” and watched what emerged. The end product is
quite intuitive. States are filled with quanta with the correct energy, and each quan-
tum corresponds to a field that solves the wave equation. The operator character of
fields, which seems nonintuitive at the start, is not so scary because it just turns into
a number operator that counts the fields.5 A different pedagogic approach would
be to start with the existence of quanta and work from there to the idea of quan-
tized fields. This is now easy to do—you are invited to read this chapter backward!6
Nevertheless, proceeding the way that we have done reinforces the point that the
idea of “quanta of a field” is not a separate hypothesis from the basic postulates of
quantum mechanics. It follows uniquely from the standard procedures of classical
and quantum physics.

Let us recap what we have done here, because, perhaps without noticing, we have
accomplished something extremely deep. We started from a discrete set of many
particles and took the continuum limit. When quantizing the system in its contin-
uum limit, we came up with a discrete set of states (such as the state |n1, 3 n2, n3〉
discussed in equation (2.48)). Each of these states is associated with what we call
a set of “elementary particles”! Two main points here need to be stressed. The first
point is that these “particles” have nothing to do with the original particles that
make up the string. Actually, a lot of information has been lost by taking the con-
tinuum limit. (We started fromamodelwith three parametersm, a, and k and ended
up with a model with a single parameter v, so information has clearly been lost in
the process.) The “elementary particles” found by quantization have thus very little
to do with the “actual” particles that make up, at a microscopic level, our system.
The second point is that Quantum Field Theory teaches us that we should not think
as much in terms of individual particles as we should think in terms of excitations

5Later we will see that the operator also gives the correct counting factors for transitions due to
interactions.

6Seriously, it is a good exercise to map out how you would explain to a novice the idea of a quantum field
starting from the experimental evidence of quanta with E= �ω.
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14 Chapter 2. Quanta

of a single field. This explains why our Universe contains so many identical elec-
trons, for instance: those electrons are not many different particles, but they are
many different excitations of a single field. This is nearly the same as going from
a description of the sea as a set of many waves to a description where it is a single
body of water carrying a number of waves.

2.5 Connection with normal modes

The example we started with (the Lagrangian in equation (2.1)), was a specific
system, but our analysis is actually valid for all many body systems near equilib-
rium. It is sometimes said that “a quantum field is an infinite number of harmonic
oscillators.” This can be seen from the expression for the Hamiltonian. It is also
perhaps useful to go back to the discrete case and carry out the quantization pro-
cedure before taking the continuum limit. This is a solution via the normal mode
technique.

If we start from the most general Lagrangian describing a system on N degrees
of freedom near equilibrium,

L=
∑

i

[m
2
ẏ2i −V(yi)

]
(2.50)

with a potential

V = 1
2

∑

ij
vij yi yj , (2.51)

where vij is a real, symmetricN ×N matrix, then this system can be solved by using
normalmode techniques. The normal frequenciesωn are the entries of the diagonal,
positive, N ×N matrix	 found by solving

det(m	2 − v)= 0 . (2.52)

The normal coordinates are then found via the modal matrix Ain

yj =
∑

n
Ajn ξn or ξn =

∑

j
(AT)nj yj . (2.53)

This procedure decouples the harmonic oscillators

L=
∑

n

[
1
2
ξ̇ 2n − 1

2
ω2
n ξ

2
n

]
. (2.54)

Each normal mode would then have an independent solution

ξn(t)=N (ane−iωnt + a∗
ne

iωnt) (2.55)

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



2.5 Connection with normal modes 15

and the general solution would be a mixture of normal modes

yj(t)=
∑

n
Ajn ξn(t) . (2.56)

Quantization then takes place independently for each normal mode

pn = ∂L
∂ξ̇n

= ξ̇n with [ξn, pn′ ] = i� δn,n′ . (2.57)

The coefficients in the normal mode expansion now need to become operators.
Choosing

ξn =
√

�

2ωn
(ân e−iωnt + â†

n e
iωnt)

and

pn = −i
√

�ωn
2

(ân e−iωnt − â†
n e

iωnt) (2.58)

and imposing the commutation rules [ân, â†
n′ ] = δn,n′ , this leads to the Hamiltonian

H =
∑

n
�ωn

(
â†
nân + 1

2

)
(2.59)

and states as described in section 2.4.
The lesson of this exercise is that the states are the quanta of the normalmodes. In

field theory, the normal modes are wave solutions Ajn → eiknx with the continuum
identification x= ja. In the continuum limit the number of normal modes becomes
infinite, hence the identification of the field quantization with an infinite number
of normal modes.

Chapter summary: You have done it! You now understand how the usual rules of
quantummechanics lead to quanta of a field.We have found the commutation rules
for fields and have seen how they can be expressed in terms of creation/annihilation
operators and that can lead to an intuitive construction of the states of the system.
Wehave defined the theory starting from the Lagrangian and, by following the rules,
have expressed the related Hamiltonian in terms of the number operator. These are
some of the most important lessons of Quantum Field Theory. There is muchmore
to explore.
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