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Introduction

Imagine a virtual human, not made of flesh and bone but one made
of bits and bytes, and not just any human, but a virtual version of
you, accurate at every scale, from the way your heart beats down to
the letters of your DNA code.

—Virtual Humans movie premiere, Science Museum, London

Within the walls of a nineteenth-century chapel on the outskirts of
Barcelona, a heart starts to contract. This is not a real heart but a
virtual copy of one that still pounds inside a patient’s chest. With its
billions of equations, and 100 million patches of simulated cells, the
digital twin pumps at a leisurely rate of around one beat per hour as
it tests treatments, from drugs to implants.

Though it was deconsecrated many decades ago, the Chapel Torre
Girona is still adorned with a cross above its entrance. You can sense
a higher power and purpose inside its romantic architecture. There,
as sunlight streams through its stained-glass windows, you are con-
fronted by an enormous glass-and-steel room, within which stand
three ranks of black cabinets dotted with green lights.

This is MareNostrum (the Roman name for the Mediterranean
Sea), a supercomputer on the campus of the Polytechnic University of
Catalonia that is used by Peter Coveney along with colleagues across
Europe to simulate electrical, chemical, and mechanical processes
within the human body. These simulations look just like the real
thing, whether a fluttering heart or a lung expanding into the chest.
Much more important, however, is that these virtual organs behave
like the real thing.

To show the dazzling range and potential of virtual human re-
search, we used MareNostrum to create a movie, with the help of
simulations run on other supercomputers, notably SuperMUC-NG
in Germany (the suffix MUC refers to the code of nearby Munich
Airport). Working with an international team, we wanted our Virtual
Humans movie to showcase where these diverse efforts to create a
body in silico could take medicine.
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FIGURE 1. Still from the Virtual Humans movie. (CompBioMed and Barcelona Supercomputing
Centre)

In September 2017, we held the premiere in the cavernous IMAX
Cinema of the Science Museum in London with Fernando Cucchietti
and Guillermo Marin, our colleagues from the Barcelona Supercom-
puting Centre. Even though we had worked for many months on the
movie, gazing up at a pounding virtual heart the size of four double-
decker buses still left us a little breathless.

SuperMUC-NG and MareNostrum 4 are among a few hundred or so
great computational machines dotted around the world that are being
harnessed to model the cosmos, understand the patterns of nature
and meet the major challenges facing our society, such as studying
how the Earth will cope with climate change, developing low-carbon
energy sources and modelling the spread of virtual pandemics.

Just as great medieval cathedrals were raised by architects, masons,
geometers and bishops to give humankind a glimpse of the infinite,
supercomputers are the cathedrals of the information age, where
novel worlds of endless variety, even entire universes, can be simu-
lated within these great engines oflogic, algorithms and information.

You can also re-create the inner worlds of the human body, and
not just any body, or an average body, but a particular person, from
their tissues and organs down to the molecular machines at work
within their cells, their component proteins along with their DNA.

For general queries, contact info@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

INTRODUCTION 3

FIGURE 2. The MareNostrum supercomputer. (Wikimedia Commons: Gemmaribasmaspoch.
CC-BY-SA-4.0)

The eventual aim of this endeavour is to capture life’s rhythms, pat-
terns and disorders in a computer, not just of any life or an average
life, but of one particular body and one particular life—yours.*

At the premiere, we were joined by colleagues who had devel-
oped virtual hearts, arteries and veins along with the skeleton and
its musculature. On that great IMAX screen in the Science Museum,
the packed audience glimpsed a future when drugs can be designed
to suit an individual patient, when we can visualise the shimmering
movements of a mutated protein in the body, track the turbulent
flow of drug particles deep into the lungs, study the surges of blood
cells through the brain, and simulate the stresses and strains that
play on weakened bones.

Rise of Digital Twins

In engineering, virtual copies are known as digital twins. The concept
is usually attributed to a paper by John Vickers and Michael Grieves
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at the University of Michigan in 20022 which talked of a “Mirrored
Spaces Model.” NASA coined the term digital twin in 2010,® and ap-
plied this way of thinking to spacecraft.* However, the origins of this
approach can be glimpsed much earlier. Many cite the Apollo moon
programme as one notable example, when simulators on the ground
were used as analogue twins of spacecraft. This approach was fa-
mously employed in 1970 to help return three astronauts safely to
Earth in the aftermath of an explosion 200,000 miles out in space
on board the ill-fated Apollo 13 mission.®

Today, digital twins are well established. Many industrial pro-
cesses and machines are too complex for one brain to grasp, so ex-
perimenting with their digital twins makes their behaviour easier to
explore and understand.® Lessons learned this way are transforming
the future of manufacturing and, by accelerating automation, alter-
ing the future of work. Digital copies of machines, even entire facto-
ries, are helping to anticipate hurdles, perfect designs and prevent
mistakes before they occur.

Digital twins are used to optimise supply chains and store lay-
outs; General Electric used a twin to boost efficiency at an alumin-
ium smelter in India; a twin of the route of a proposed railway line
in north west England—in the form of 18 billion data points har-
vested by drones—was created to help manage this vast transport
project; a “factory of the future” in Australia honed a virtual copy of
a robotic workstation before building the real thing; engineers use
digital twins to estimate the lifetime of a jet engine and how to main-
tain it efficiently. Digital twins have been used to help create wind
turbines, oil rigs, cars, jet engines, aircraft, spacecraft and more
besides. Some believe that digital twin cities hold the key to future
urban planning.

Digital twins are emerging in medicine too, thanks to the data
revolution in biology. One of the legions of people sifting through
health data is Leroy Hood of the Institute for Systems Biology, Seattle.
Among the most influential of today’s biotechnologists, Hood has
worked at the leading edge of medicine, engineering and genetics
for decades, dating back to the first human genome programme
meeting in 1985. In 2015, he launched a venture that gathered a
plethora of data on 5000 patients for five years. All their data were
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stored in what Hood calls “personal health clouds.”* Analysis of a
patient’s cloud can reveal telltale signals of what Hood calls “pre-
pre-disease” that doctors could use to anticipate problems, then
intervene to maintain their health.

Hood talks of “scientific wellness,” which “leverages personal,
dense, dynamic data clouds to quantify and define wellness and
identify deviations from well states toward disease.” A living em-
bodiment of his approach, the 82-year-old was on sprightly form
(“I plan never to retire”) when we talked to him about his vision of
a “P4” future, where treatments are predictive, preventive, person-
alised, and participatory. Simulations of the body will help usher in
that future by making sense of what patterns in a patient’s data hold
in store for them.

In reality, of course, we make do with incomplete understanding
and incomplete data. But, as advances in weather forecasting have
shown, these shortcomings can be overcome to make useful pre-
dictions. We have come a long way since 1922 when, in his remark-
able book Weather Prediction by Numerical Process, the British mathe-
matician Lewis Fry Richardson (1881-1953) outlined the idea of a
fantastic forecast factory, where thousands of human “computers,”
using slide rules and calculators, are coordinated by a “conductor.”
Richardson mused on whether “some day in the dim future it will
be possible to advance the computations faster than the weather
advances.” But even he went on to admit that his forecast factory
was only a dream.

A century later, his extraordinary vision has become a reality. Su-
percomputers can make predictions a few days into the future with
reasonable accuracy by constantly updating sophisticated computer
models with data from orbiting satellites, buoys, aircraft, ships and
weather stations.

A typical forecasting model relies on a system of equations to
simulate whether it is going to rain or shine. There is an equation for
momentum, density, and temperature in each of water’s three phases
(vapour, liquid and solid), and potentially for other chemical variables
too, such as the ozone that absorbs harmful ultraviolet radiation. In

* Leroy Hood, interview with Peter Coveney and Roger Highfield, August 12, 2021.
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Chapter Two, we spell out why these nonlinear differential equations,
notably partial differential equations, rule the climate system. In all,
it takes billions of equations to model the planet down to a resolution
of, currently, around 60 kilometres.* Overall, the model has to take
account of ever-changing thermodynamic, radiative and chemical
processes working on scales from hundreds of metres to thousands
of kilometres, and from seconds to weeks.” That represents a tour
de force of simulation, one that some claim already approaches the
complexity required to model the human brain.

Thanks to the torrent of biomedical data available today, along
with ever more powerful theory and computation, we believe sim-
ulations will revolutionise biology just as much as they have trans-
formed meteorology. The American meteorologist Cleveland Abbe
(1838-1916) once declared how progress in his field depended on
“the consecration of the physicist and mathematician to this sci-
ence.”® To echo his 1895 vision of forecasting, we look forward to
the day when it is not enough to know someone is unwell—we want
to be able to understand if they will fall sick and why, so that we can
make them better and for longer.

Optimism about the potential of digital twins in medicine is bol-
stered by our current ability to forecast weather, which would amaze
Abbe. We take the daily forecasts for granted, but this feat of pre-
diction is truly extraordinary. Markus Covert of Stanford University,
who has developed virtual cells, remarked that “prediction of storms
such as Hurricane Sandy ten days in advance of landfall—with the
corresponding evacuation of hundreds of residents, saving both
lives and property—could arguably be ranked as among the great
technical triumphs in human history.”®

When it comes to climate forecasts, plans are under way to create
a “digital twin” of Earth that would simulate the atmosphere, ocean,
ice, and land down to a resolution of one kilometre, providing fore-
casts of the risks of floods, droughts, and fires, along with the swirl-
ing ocean eddies that shift heat and carbon around the planet. This
European model, Destination Earth, will fold in other data, such as
energy use, traffic patterns and human movements (traced by mobile

* Tim Palmer, email to Peter Coveney, June 2, 2021.
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phones), to reveal how climate change will affect society—and how
society could alter the trajectory of climate change in what some
already call the Anthropocene, a geological epoch where human
activity is having a significant impact on our planet.*°

The details of creating a digital twin of our own planet Earth are
staggering. Take clouds, as one example. They are made of water,
which is also the main ingredient of the human body (around 68%?%).
Unlike us, however, clouds seem simple—great plumes of water drop-
lets or ice crystals floating in the sky. Their formation is critical to
our ability to predict weather, important for our understanding of
the effects of global heating and central to controversial schemes to
curb climate change through geoengineering.*?

From cumulus tufts with beguiling shapes to great sheets of grey,
clouds are a beautiful example of how complexity can result from
simplicity, as droplets of water are borne on air currents of con-
vection. As these droplets condense inside clouds, a little heat is
released, making the clouds buoyant. At great heights, where tem-
peratures fall well below freezing, the droplets turn into ice crystals,
giving the resulting cirrus clouds a wispy, feathery look.

Within a cloud, processes at the smallest scales govern the forma-
tion of droplets. But, though microscopic, these features and interac-
tions have large-scale, macroscopic, effects. The smaller and more
numerous the droplets, the more that light is scattered. At the scale
of micrometres, turbulence accelerates cloud formation and triggers
rain showers.*® Large-scale air motions can create vast cloud systems
that can span a continent. By reflecting light into space, clouds can
cool the Earth’s surface, which is why some believe they should be
nurtured to help curb runaway global warming.**

Essentially all the laws that underpin cloud formation are known,
so we should be able to represent how they evolve in terms of known
mathematical equations. The hope is to achieve the same for vir-
tual humans, even down to the last water molecule. This may sound
fantastical, but optimism that mathematics can describe the warm,
complex, dynamic world of the body dates back centuries. The En-
glish physician William Harvey (1578-1657) relied on calculations
in his demonstration of the circulation of the blood,** while in 1865
the French physiologist Claude Bernard (1813-1878) stated that
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“the application of mathematics to natural phenomena is the aim
of all science.”*®

Our ability to create a virtual copy of a person depends on describ-
ing the body with the language of mathematics. Although a work in
progress, equations written using calculus, which express rates of
change, can already depict complex processes uncovered by molec-
ular biologists, cell biologists and many others in the biosciences.
These mathematical expressions—ordinary and partial differential
equations—can describe at every instant how blood pressure varies
depending on where you make a measurement in the body or track
an electrical impulse as it speeds along a neuron in the brain, or how
quickly a virus steals into a person’s airway.

To put these equations to work, all that is needed to start calcu-
lating are the boundary conditions for the problem at hand. This
could mean the state of a neuron or an infected cell at a given time
or at various time intervals, their rates of change at various instants
or the upper and lower limits of a given quantity. These conditions
tether the mathematics to reality so we can make forecasts about the
body, or “healthcasts,” by analogy with the weather.

But while we accept that the laws of nature are universal, in one crit-
ical and practical sense the life sciences—by which we mean biology
and medicine—are quite different from the physical sciences—physics
and chemistry—that we use to describe clouds. They are more empir-
ical, more dependent on making measurements and doing experi-
ments and, until now, less dependent on theoretical understanding.

Theory, that is, the mathematical representation of the laws of na-
ture, plays a relatively diminished role in medicine and biology. Even
the Darwin-Wallace theory of evolution, regarded by some as the great-
est scientific theory of all, does not admit a mathematical description.
This might sound shocking, but the reality is that, while basic predic-
tions about the patterns of inheritance have been made since Gregor
Mendel studied peas in the nineteenth century, the course of evolution
is not possible to predict in any quantitative manner.?’

Some influential figures are only too aware of this shortcoming.
Paul Nurse, director of the Francis Crick Institute in London and
former assistant editor of the Journal of Theoretical Biology, told us how
he was weary of reading papers that use clever technology to make
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measurements that come to “barely any significant conclusions.”*
In an opinion article for the journal Nature, he cited Sydney Brenner
(1927-2019), his old friend and fellow Nobelist: “We are drowning
in a sea of data and starving for knowledge.”*® He complained to us
that the importance of theory and the principles of life are relatively
neglected in favour of cramming facts, knowledge and information.
Biology “does have ideas, so why aren’t we talking about them?”

Yet biology, like the rest of science, is undoubtedly governed by
the laws of nature. To be sure, there are no-go areas for moral and
ethical reasons based on human arguments, but there is absolutely
every reason to believe that we should be able to understand a par-
ticular scientific aspect of how an organism works and capture that
insight in the form of mathematics. To create Virtual You, we need
to go beyond the current use of theory in making post hoc rational-
isations in biology, after studies are carried out, to using theory to
guide experiments and make predictions.

Uniting Science

Science is balkanised. The notion of dividing academic inquirers
into tribes dates back to ancient Greece with Socrates (c. 469-399
BCE), his student Plato (c. 428—-347 BCE) and, in turn, Plato’s student
Aristotle (384—322 BCE).* Within a few decades, however, Timon of
Philius (c. 320-230 BCE) moaned about the squabbling of “bookish
cloisterlings” at the Museum of Alexandria. By the sixteenth century,
Francis Bacon (1561-1626) and other philosophers were mourning
the splintering of human knowledge.

By the mid-nineteenth century, the disciplinary boundaries of
the modern university had taken root, each with its own customs,
language, funding streams, establishments and practices. In Virtual
You, we intend to show that today’s research is more than a baggy
collection of fragmented efforts—it is a grand and complementary
mosaic of data, models, mechanisms and technology. The big picture
of how the human body works is beginning to heave into view.

* Paul Nurse, interview with Peter Coveney and Roger Highfield, September 25, 2021.
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Just as there is no privileged point of view of the human body, so
each perspective from each discipline is equally important. Each
is complementary and, if united and consistent, remarkable new
insights can emerge. If we look, for example, at the great molecular
biology revolution that dates from the 1950s, when physicists and
chemists tackled biology, and biologists used techniques developed
by physicists, we can see that this vital atomic view of proteins, en-
zymes and other molecules of living things perfectly complements
existing insights into heredity and evolution, marking a powerful
unification of knowledge known as consilience.

The simple idea at the heart of this book is that the convergence
of many branches of science—patient data, theory, algorithms, Al and
powerful computers—is taking medicine in a new direction, one that
is quantitative and predictive. We will show how mathematics can
capture an extraordinary range of processes at work in living things,
weigh up developments in computer hardware and software and
then show how the human body can be portrayed in silico, holding
up a digital mirror to reflect our possible futures.

This is a story that builds on multidisciplinary ideas we set out in
our earlier books, The Arrow of Time?® and Frontiers of Complexity.?* In
the first, we discussed how to reconcile a deep problem at the heart
of science: that time is represented in different ways by different
theories and at different length scales, ranging from the microscopic
to the macroscopic. In the latter, we showed how complexity in math-
ematics, physics, biology, chemistry and even the social sciences is
transforming not only the way we think about the universe, but also
the very assumptions that underlie conventional science, and how
computers are essential if we are to explore and understand this com-
plexity. Nowhere is this more relevant than in the efforts to create the
virtual human. In Virtual You, we draw these threads together within
a broad tapestry of research, both historical and contemporary.

Virtual You

This is the first account of the global enterprise to create a virtual
human aimed at the general reader. Hundreds of millions of dollars
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have been spent in the past two decades on the effort that has been
organised through initiatives such as the International Physiome
Project,?? America’s Cancer Patient Digital Twin,? the European Vir-
tual Physiological Human,?* the Human Brain Project?® and another
Europe-wide effort led by University College L.ondon to which we both
contribute, Computational Biomedicine, or CompBioMed for short.

All are united by a single objective. As one workshop held in Tokyo
declared: “The time is now ripe to initiate a grand challenge project
to create over the next 30 years a comprehensive, molecules-based,
multi-scale, computational model of the human (‘the virtual human’),
capable of simulating and predicting, with a reasonable degree of
accuracy, the consequences of most of the perturbations that are
relevant to healthcare.”?¢ That virtual vision was unveiled more than
a decade ago—in February 2008—and its future is fast approaching.

In the following pages, we will take you on a fantastic voyage
through the body, its organ systems, cells and tissues along with the
deformable protein machines that run them. We hope to convince
you that, in coming decades, virtual twins of cells, organs, and pop-
ulations of virtual humans will increasingly shape healthcare. This
organising principle for twenty-first-century medicine will enable
doctors for the first time to look forward to—and predict—what is in
store for you, including the effects of proposed therapies. This marks
a stark contrast with today’s approach where doctors, in effect, look
back at what happened to similar (though nonidentical) patients in
similar (though nonidentical) circumstances.

In the long term, virtual cells, organs and humans—along with
populations of virtual humans—will help to evolve the current gen-
eration of one-size-fits-all medicine into truly personalised medi-
cine. Your digital twin will help you understand what forms of diet,
exercise and lifestyle will offer you the healthiest future. Ultimately,
the rise of these digital twins could pave the way for methods to en-
hance your body and your future. As we discuss in our concluding
chapter, virtual humans will hold up a mirror to reflect on the very
best that you can be.

The following four chapters focus on the fundamental steps that
are required to create a digital twin: harvest diverse data about the
body (Chapter One); craft theory to make sense of all these data
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(Chapter Two) and use mathematics to understand the fundamental
limits of simulations; harness computers to put the spark of life into
mathematical understanding of the human body (Chapter Three);
blend the insights of natural and artificial intelligence to interpret
data and to shape our understanding (Chapter Four).

In Chapters Five to Eight, we show the consequences of taking
these steps and begin to build a digital twin, from virtual infections
(Chapter Five) to cells, organs, metabolism and bodies. Along the
way, in Chapter Six, we encounter the fifth step necessary for the
creation of Virtual You. Can we stitch together different mathematical
models of different physical processes that operate across different
domains of space and time within the body? We can, and the ability
to customise a virtual heart to match that of a patient marks one
extraordinary example (Chapter Seven), along with modelling the
body and its organ systems (Chapter Eight). In Chapter Nine, we
discuss “Virtual You 2.0,” when the next generation of computers
will overcome shortcomings of the current generation of “classical”
digital computers.

In our last chapter, we examine the many opportunities, along with
ethical and moral issues, that virtual humans will present. Digital
twins will challenge what we mean by simple terms such as “healthy.”
Are you really healthy if your digital twin predicts that—without a
treatment or a change in lifestyle—you will not live out your potential
life span? You may feel “well,” but are you really well if simulations
suggest that you are destined to spend a decade longer in a care home
than necessary? If a virtual human can become the substrate for
human thought, how will we come to regard our digital copy? Finally,
in an appendix, we examine a provocative question raised by using
computers to simulate the world: Is it possible to re-create the fun-
damental physics of the cosmos from simple algorithms?

So, to the first of our foundational chapters. This poses the most
basic question of all. If we are to create digital twins, how well do we
have to know ourselves? To create Virtual You, we need to understand
how much data and what kinds are sufficient for a digital twin to be
animated by a computer.

As Aristotle once remarked, knowing yourself is the beginning
of all wisdom.
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FIGURE 3. Virtual anatomical twin. One of the detailed high-resolution anatomical models
created from magnetic resonance image data of volunteers. (IT’IS Foundation)

For general queries, contact info@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

Index

A page number in italics refers to a figure.

Abbe, Cleveland, 6

ablation: for cardiac arrhythmias, 177,
181-82; for gastric dysrhythmias,
204

acetaminophen overdose, 201

action potentials: cardiac, 77-79, 79, 137,
Hodgkin-Huxley model of, 45-47, 76;
memristors and, 222-23; SpiNNaker
supercomputer and, 223-24

active learning, 160

adaptive mesh refinement (AMR), 165, 233

Aerts, Hannelore, 210

affordances, 51

agent-based models, 160, 161, 162

aging, 92, 195, 248, 250, 252

Aguado-Sierra, Jazmin, 138

Al (artificial intelligence): biases in our
system and, 105; Big Al, 94, 96,112-14,
166; in cancer diagnosis, 99; in cancer
drug development, 113; consumer uses
of, 242; digital twins and, 214, 215;
efficient chip design and, 82; fusion
technologies and, 86; goal of general
Al, 114; in Mycoplasma modelling, 147;
nonalgorithmic thinking and, 50, 51;
protein folding problem and, 104-5.
See also machine learning

air pollution, and respiratory modelling,
199-200, 201

Al winter, 96

“alchemical” calculations, 132, 133-34

Alder, Berni, 74-75

algorithms: carefully selected for deep
learning, 106; categorised by execution
time, 90-91; classical compared to
quantum advantage, 235; computability
theory and, 47; consciousness and, 214;
genetic, 109, 160; Hilbert’s programme
and, 47-49; origin of the word, 47;

situational reasoning and, 50-51;
thinking beyond the reach of, 50

Allen, Paul, 151

AlphaFold, 100-105, 103, 106

alternative splicing, 29

Alya Red, 174,174-75

Alzheimer’s disease, 29, 211, 247, 248

analogue computers: Antikythera as, 71,
217; finding solutions not digitally
computable, 50; Jiuzhang quantum
computer, 235, 237, 237, 238; making a
comeback, 218; in Manhattan Project, 72;
metamaterials and, 218-21, 220; neu-
romorphic, 225-26; optical, 219, 220,
221; replaced by 1970s, 217; to solve
digital pathologies, 66; with synthetic
neurons, 222-23; for Virtual You, 238-39

analogue processing, in deep neural net-
work, 110-11

anatomy, history of, 19-22

Anfinsen, Christian, 32

Anthropocene, 7

Antikythera, 70-71, 71,217

antimicrobial resistance, 112, 133-34,
154,247

aortic valve stenosis, 179

Apollo moon programme, 4, 80

ARCHER and ARCHER2, 131

Aristotle, 37

arrhythmias, cardiac: ablation for, 177,
181-82; atrial fibrillation, 177, 181-82;
cardiologists’ data on, 173; customised
virtual hearts and, 177; defibrillator
implanted for, 182; drug-related,
137,138-39, 175, 182; predicting
electrocardiograms in, 174; sick sinus
syndrome, 159; spiral waves in,
162; tachycardia, 178; ventricular,
177

For general queries, contact info@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

306 INDEX

arrhythmias, digestive, 203-4

arteriovenous fistula (AVF), 186

artificial neurons, 222-23, 224-25, 226

artificial synapses, 224-25, 226

Aspuru-Guzik, Alan, 230-31

asthma, 198, 199, 201

ATOM Al-driven cancer platform, 113

ATP (adenosine triphosphate), in cardiac
model, 170-71

ATP synthase, 26

atrial fibrillation, 177, 181-82

attention-based neural network, 102

attractor, 58-59; strange, 58, 59, 84

Auckland Bioengineering Institute, 190-91,
192-95,196-97, 198, 201-2, 2034,
210-11

Aurora, 81, 82, 85

Autin, Ludo, 152

autoimmunity, 128-29

autonomic nervous system, 192-94

Babbage, Charles, 71, 72, 217

backpropagation, 97

Bacon, Francis, 9, 39, 40, 69-70, 96, 105, 117

bacterium, virtual, 146—54. See also E. coli;
Mycoplasma genitalium

Balasubramanian, Shankar, 23-24

Barrow, John, 48

basal ganglia circuits, 91

Bayes, Thomas, 118

Bayesian methods, 118, 122,128

Bayley, Hagan, 24

bell curve, 107, 107-8

Belousov-Zhabotinsky reaction, 142, 142,
162

Benioff, Paul, 229

Berloff, Natalia, 221

Bernard, Claude, 7-8

Bernoulli, Jacob, 60-61

Bernoulli map, 60-63, 64

Besier, Thor, 197

biases: in artificial intelligence, 105; in
digital twins, 251-52

bicycle, autonomous, 226

Biden, Joe, 113

bidomain model, 170

Big Al 94, 96, 112-14, 166; defined, 96

Big Data: machine learning and, 105;
magnitude of, 95; making sense of,

244; for medicine and biology, 32-33,
111; theory and, 67

bits, 229

“black swans” in data, 106, 108

Blinov, Michael, 156, 157

blood clots, 186, 199, 210

blood pressure, 184, 186, 193, 208. See also
hypertension

Blue Waters, 131

Blumberg, Baruch, 120

Boghosian, Bruce, 60, 61, 62

Bohr, Niels, 228, 255

Boltzmann, Ludwig, 16, 56, 60, 166

Boltzmann machine, 109

Boolean algebra: lac operon as logic gate in,
158; in Stanford Mycoplasma model, 148

Borges, Jorge Luis, 14, 38, 109

Born, Max, 227-28

boson sampling, 235, 237

Boyett, Mark, 172

Boys, S. Francis, 129

Brahe, Tycho, 40

brain, 206-12; blood supply to, 210,210-11;
difference from digital computer, 206,
212, 217; epilepsy and, 206, 208-9;
Framework to integrate data on, 211;
gut microbiome and, 204; imagery of
tissue samples from, 92, 206-7; sense
of smell and, 211-12; simulating con-
nectivity in, 91-92, 206—-7; stroke and,
181, 196, 210, 211; transcranial elec-
tromagnetic stimulation of, 208. See also
Human Brain Project, of EU

brain cells, studied with VCell, 156

brain injury, 211

BrainScaleS, 224-26, 225

brain tumours, 209-10

Braithwaite, Richard, 69

breast cancer, 99, 132-33, 135, 136

breathing, simulation of, 199, 200, 200-201

Brenner, Sydney, 9, 19, 116, 145,147,151

bromodomain, 131-32

Brout, Robert, 37

Burrowes, Kelly, 198

butterfly effect, 56, 58, 66, 108

cadavers, frozen and digitized, 190-91; of
Yoon-sun, 184-86, 185, 190
calcium currents, 79

For general queries, contact info@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

calculus, 42-43, 43, 264; photonic calculus,
221

cancer: Al used in diagnosis of, 99; brain
tumor surgery, 209-10; breast cancer,
99, 132-33, 135, 136; drug development
for, 113, 130, 131-33, 134-36; exascale
initiatives on, 92—-93; immunotherapy
for, 160; metastatic, 134, 159, 161, 196;
molecular dynamics simulations of, 122;
multiscale, multiphysics modelling of,
165-66; pathogenesis of, 134-35; Physi-
Cell model and, 160, 161, 162; T cells
and, 128-29; of unknown primary, 99

Cantor, Georg, 52

Captur, Gaby, 176

cardiovascular system, 168, 184; blood
supply to brain and, 210-11; first
closed-loop model of, 187. See also cir-
culatory system models; heart twins

Carrel, Alexis, 168

Cartesius, 131

cave art, 240-41

cell cycle, 149,151, 153

cells: agent-based models of, 160, 161, 162;
cardiac myocyte model, 214; chemical
processes in, 116-19; of eukaryotes,
154-55; experiments on simulations
of, 146, 159; imaging methods for,
155; number in human body, 26, 140;
organelles of, 140, 143, 154-55; 3D
models of, 152-53, 153; VCell model,
155-57. See also bacterium, virtual;
heart cell models; neurons

cellular automata, 261, 261-64

cerebral autoregulation, 211

chaotic dynamical systems: analogue
module of supercomputer and, 238;
attractors of, 58, 59, 84; Bernoulli map,
60-63, 64; in biology, 63-64; in drug
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246; hugely outnumbered by proteins,
29

genetic algorithms, 109, 160

genetic code, 25-26

genome: limited impact on medicine,
246-47; noncoding regions of, 28;
unknomics, 28

genome-wide association studies (GWAS), 29

Gershenfeld, Neil, 232

Getz, Michael, 162

Ghaffarizadeh, Ahmadreza, 160, 161

Gibbs, J. Willard, 57

Gibson, Dan, 150

glial cells, 207,211

global warming, 7

Godel, Kurt, 48, 51, 213, 217

Goodsell, David, 152

Gorard, Jonathan, 264-65

Gosling, Ray, 40

For general queries, contact info@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

government policies, tested in virtual
populations, 253

Gowans, James, 126

graph theory: Jiuzhang quantum com-
puter and, 237; Wolfram’s model of
universe and, 263-64, 265

Grieves, Michael, 3—-4

Guldberg, Cato, 118

Gustafson, John, 53-54

gut microbiome, 204

gut models, 203-4

Guyton, Arthur, 184

Guyton model, 184, 192

Haemophilus influenzae, 148

half precision floating-point numbers, 53,
63,107

Hameroff, Stuart, 213-14

Hamilton, Bill, 37-38

hangovers, 33

Hardy, G. H., 66, 67,141, 142

Harvey, William, 7, 186, 189

HARVEY fluid dynamics code, 186

Hassabis, Demis, 98, 103—-4

Hawking, Stephen, 41

Haydon, Denis, 24

healthcasts, 249-51, 252

Heaney, Seamus, 43

heart: autonomic nervous system and, 193,
194; kidneys and, 184; of the poet
Shelley, 187. See also arrhythmias,
cardiac; cardiovascular system; ion
channels, cardiac

heart cell models: extended to whole organ,
162, 173; gene mutations in, 159;
history of, 169-73; imaging of tissue
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deep physical (PNNs), 110-11, 221;
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111. See also deep learning neural
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nonlinear dynamical systems: analogue
module of supercomputer and, 238;
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250; lacking in evolutionary theory,
66—-67; from multiscale, multiphysics
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230, 231, 232, 234; measurement in,
227-28, 230,232, 233-34, 235; in
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RAS proteins, 122, 165

rate parameters: for cellular processes,
117-19; for HIV simulations, 122,
124-25; for T cell chemical reactions,
127

rationalism, 40

rational numbers, 51, 52. See also floating-
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