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Introduction

Imagine a virtual human, not made of flesh and bone but one made 
of bits and bytes, and not just any human, but a virtual version of 
you, accurate at every scale, from the way your heart beats down to 
the letters of your DNA code.

— Virtual Humans movie premiere, Science Museum, London

Within the walls of a nineteenth- century chapel on the outskirts of 
Barcelona, a heart starts to contract. This is not a real heart but a 
virtual copy of one that still pounds inside a patient’s chest. With its 
billions of equations, and 100 million patches of simulated cells, the 
digital twin pumps at a leisurely rate of around one beat per hour as 
it tests treatments, from drugs to implants.

Though it was deconsecrated many decades ago, the Chapel Torre 
Girona is still adorned with a cross above its entrance. You can sense 
a higher power and purpose inside its romantic architecture. There, 
as sunlight streams through its stained- glass windows, you are con-
fronted by an enormous glass- and- steel room, within which stand 
three ranks of black cabinets dotted with green lights.

This is MareNostrum (the Roman name for the Mediterranean 
Sea), a supercomputer on the campus of the Polytechnic University of 
Catalonia that is used by Peter Coveney along with colleagues across 
Europe to simulate electrical, chemical, and mechanical processes 
within the human body. These simulations look just like the real 
thing, whether a fluttering heart or a lung expanding into the chest. 
Much more important, however, is that these virtual organs behave 
like the real thing.

To show the dazzling range and potential of virtual human re-
search, we used MareNostrum to create a movie, with the help of 
simulations run on other supercomputers, notably SuperMUC- NG 
in Germany (the suffix MUC refers to the code of nearby Munich 
Airport). Working with an international team, we wanted our Virtual 
Humans movie to showcase where these diverse efforts to create a 
body in silico could take medicine.
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In September 2017, we held the premiere in the cavernous IMAX 
Cinema of the Science Museum in London with Fernando Cucchietti 
and Guillermo Marin, our colleagues from the Barcelona Supercom-
puting Centre. Even though we had worked for many months on the 
movie, gazing up at a pounding virtual heart the size of four double- 
decker buses still left us a little breathless.

SuperMUC- NG and MareNostrum 4 are among a few hundred or so 
great computational machines dotted around the world that are being 
harnessed to model the cosmos, understand the patterns of nature 
and meet the major challenges facing our society, such as studying 
how the Earth will cope with climate change, developing low- carbon 
energy sources and modelling the spread of virtual pandemics.

Just as great medieval cathedrals were raised by architects, masons, 
geometers and bishops to give humankind a glimpse of the infinite, 
supercomputers are the cathedrals of the information age, where 
novel worlds of endless variety, even entire universes, can be simu-
lated within these great engines of logic, algorithms and information.

You can also re- create the inner worlds of the human body, and 
not just any body, or an average body, but a particular person, from 
their tissues and organs down to the molecular machines at work 
within their cells, their component proteins along with their DNA. 

FIGURE 1. Still from the Virtual Humans movie. (compBioMed and Barcelona Supercomputing 
centre)
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The eventual aim of this endeavour is to capture life’s rhythms, pat-
terns and disorders in a computer, not just of any life or an average 
life, but of one particular body and one particular life— yours.1

At the premiere, we were joined by colleagues who had devel-
oped virtual hearts, arteries and veins along with the skeleton and 
its musculature. On that great IMAX screen in the Science Museum, 
the packed audience glimpsed a future when drugs can be designed 
to suit an individual patient, when we can visualise the shimmering 
movements of a mutated protein in the body, track the turbulent 
flow of drug particles deep into the lungs, study the surges of blood 
cells through the brain, and simulate the stresses and strains that 
play on weakened bones.

Rise of Digital Twins

In engineering, virtual copies are known as digital twins. The concept 
is usually attributed to a paper by John Vickers and Michael Grieves 

FIGURE 2. the Marenostrum supercomputer. (wikimedia commons: Gemmaribasmaspoch. 
cc- BY- SA- 4.0)
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at the University of Michigan in 2002,2 which talked of a “Mirrored 
Spaces Model.” NASA coined the term digital twin in 2010,3 and ap-
plied this way of thinking to spacecraft.4 However, the origins of this 
approach can be glimpsed much earlier. Many cite the Apollo moon 
programme as one notable example, when simulators on the ground 
were used as analogue twins of spacecraft. This approach was fa-
mously employed in 1970 to help return three astronauts safely to 
Earth in the aftermath of an explosion 200,000 miles out in space 
on board the ill- fated Apollo 13 mission.5

Today, digital twins are well established. Many industrial pro-
cesses and machines are too complex for one brain to grasp, so ex-
perimenting with their digital twins makes their behaviour easier to 
explore and understand.6 Lessons learned this way are transforming 
the future of manufacturing and, by accelerating automation, alter-
ing the future of work. Digital copies of machines, even entire facto-
ries, are helping to anticipate hurdles, perfect designs and prevent 
mistakes before they occur.

Digital twins are used to optimise supply chains and store lay-
outs; General Electric used a twin to boost efficiency at an alumin-
ium smelter in India; a twin of the route of a proposed railway line 
in north west England— in the form of 18 billion data points har-
vested by drones— was created to help manage this vast transport 
project; a “factory of the future” in Australia honed a virtual copy of 
a robotic workstation before building the real thing; engineers use 
digital twins to estimate the lifetime of a jet engine and how to main-
tain it efficiently. Digital twins have been used to help create wind 
turbines, oil rigs, cars, jet engines, aircraft, spacecraft and more 
besides. Some believe that digital twin cities hold the key to future  
urban planning.

Digital twins are emerging in medicine too, thanks to the data 
revolution in biology. One of the legions of people sifting through 
health data is Leroy Hood of the Institute for Systems Biology, Seattle. 
Among the most influential of today’s biotechnologists, Hood has 
worked at the leading edge of medicine, engineering and genetics 
for decades, dating back to the first human genome programme 
meeting in 1985. In 2015, he launched a venture that gathered a 
plethora of data on 5000 patients for five years. All their data were 
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stored in what Hood calls “personal health clouds.”* Analysis of a 
patient’s cloud can reveal telltale signals of what Hood calls “pre- 
pre- disease” that doctors could use to anticipate problems, then 
intervene to maintain their health.

Hood talks of “scientific wellness,” which “leverages personal, 
dense, dynamic data clouds to quantify and define wellness and 
identify deviations from well states toward disease.” A living em-
bodiment of his approach, the 82- year- old was on sprightly form 
(“I plan never to retire”) when we talked to him about his vision of 
a “P4” future, where treatments are predictive, preventive, person-
alised, and participatory. Simulations of the body will help usher in 
that future by making sense of what patterns in a patient’s data hold 
in store for them.

In reality, of course, we make do with incomplete understanding 
and incomplete data. But, as advances in weather forecasting have 
shown, these shortcomings can be overcome to make useful pre-
dictions. We have come a long way since 1922 when, in his remark-
able book Weather Prediction by Numerical Process, the British mathe-
matician Lewis Fry Richardson (1881– 1953) outlined the idea of a 
fantastic forecast factory, where thousands of human “computers,” 
using slide rules and calculators, are coordinated by a “conductor.” 
Richardson mused on whether “some day in the dim future it will 
be possible to advance the computations faster than the weather 
advances.” But even he went on to admit that his forecast factory 
was only a dream.

A century later, his extraordinary vision has become a reality. Su-
percomputers can make predictions a few days into the future with 
reasonable accuracy by constantly updating sophisticated computer 
models with data from orbiting satellites, buoys, aircraft, ships and 
weather stations.

A typical forecasting model relies on a system of equations to 
simulate whether it is going to rain or shine. There is an equation for 
momentum, density, and temperature in each of water’s three phases 
(vapour, liquid and solid), and potentially for other chemical variables 
too, such as the ozone that absorbs harmful ultraviolet radiation. In 

* Leroy Hood, interview with Peter Coveney and Roger Highfield, August 12, 2021.



6  IntroductIon

Chapter Two, we spell out why these nonlinear differential equations, 
notably partial differential equations, rule the climate system. In all, 
it takes billions of equations to model the planet down to a resolution 
of, currently, around 60 kilometres.* Overall, the model has to take 
account of ever- changing thermodynamic, radiative and chemical 
processes working on scales from hundreds of metres to thousands 
of kilometres, and from seconds to weeks.7 That represents a tour 
de force of simulation, one that some claim already approaches the 
complexity required to model the human brain.

Thanks to the torrent of biomedical data available today, along 
with ever more powerful theory and computation, we believe sim-
ulations will revolutionise biology just as much as they have trans-
formed meteorology. The American meteorologist Cleveland Abbe 
(1838– 1916) once declared how progress in his field depended on 
“the consecration of the physicist and mathematician to this sci-
ence.”8 To echo his 1895 vision of forecasting, we look forward to 
the day when it is not enough to know someone is unwell— we want 
to be able to understand if they will fall sick and why, so that we can 
make them better and for longer.

Optimism about the potential of digital twins in medicine is bol-
stered by our current ability to forecast weather, which would amaze 
Abbe. We take the daily forecasts for granted, but this feat of pre-
diction is truly extraordinary. Markus Covert of Stanford University, 
who has developed virtual cells, remarked that “prediction of storms 
such as Hurricane Sandy ten days in advance of landfall— with the 
corresponding evacuation of hundreds of residents, saving both 
lives and property— could arguably be ranked as among the great 
technical triumphs in human history.”9

When it comes to climate forecasts, plans are under way to create 
a “digital twin” of Earth that would simulate the atmosphere, ocean, 
ice, and land down to a resolution of one kilometre, providing fore-
casts of the risks of floods, droughts, and fires, along with the swirl-
ing ocean eddies that shift heat and carbon around the planet. This 
European model, Destination Earth, will fold in other data, such as 
energy use, traffic patterns and human movements (traced by mobile 

* Tim Palmer, email to Peter Coveney, June 2, 2021.
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phones), to reveal how climate change will affect society— and how 
society could alter the trajectory of climate change in what some 
already call the Anthropocene, a geological epoch where human 
activity is having a significant impact on our planet.10

The details of creating a digital twin of our own planet Earth are 
staggering. Take clouds, as one example. They are made of water, 
which is also the main ingredient of the human body (around 68%11). 
Unlike us, however, clouds seem simple— great plumes of water drop-
lets or ice crystals floating in the sky. Their formation is critical to 
our ability to predict weather, important for our understanding of 
the effects of global heating and central to controversial schemes to 
curb climate change through geoengineering.12

From cumulus tufts with beguiling shapes to great sheets of grey, 
clouds are a beautiful example of how complexity can result from 
simplicity, as droplets of water are borne on air currents of con-
vection. As these droplets condense inside clouds, a little heat is 
released, making the clouds buoyant. At great heights, where tem-
peratures fall well below freezing, the droplets turn into ice crystals, 
giving the resulting cirrus clouds a wispy, feathery look.

Within a cloud, processes at the smallest scales govern the forma-
tion of droplets. But, though microscopic, these features and interac-
tions have large- scale, macroscopic, effects. The smaller and more 
numerous the droplets, the more that light is scattered. At the scale 
of micrometres, turbulence accelerates cloud formation and triggers 
rain showers.13 Large- scale air motions can create vast cloud systems 
that can span a continent. By reflecting light into space, clouds can 
cool the Earth’s surface, which is why some believe they should be 
nurtured to help curb runaway global warming.14

Essentially all the laws that underpin cloud formation are known, 
so we should be able to represent how they evolve in terms of known 
mathematical equations. The hope is to achieve the same for vir-
tual humans, even down to the last water molecule. This may sound 
fantastical, but optimism that mathematics can describe the warm, 
complex, dynamic world of the body dates back centuries. The En-
glish physician William Harvey (1578– 1657) relied on calculations 
in his demonstration of the circulation of the blood,15 while in 1865 
the French physiologist Claude Bernard (1813– 1878) stated that 
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“the application of mathematics to natural phenomena is the aim 
of all science.”16

Our ability to create a virtual copy of a person depends on describ-
ing the body with the language of mathematics. Although a work in 
progress, equations written using calculus, which express rates of 
change, can already depict complex processes uncovered by molec-
ular biologists, cell biologists and many others in the biosciences. 
These mathematical expressions— ordinary and partial differential 
equations— can describe at every instant how blood pressure varies 
depending on where you make a measurement in the body or track 
an electrical impulse as it speeds along a neuron in the brain, or how 
quickly a virus steals into a person’s airway.

To put these equations to work, all that is needed to start calcu-
lating are the boundary conditions for the problem at hand. This 
could mean the state of a neuron or an infected cell at a given time 
or at various time intervals, their rates of change at various instants 
or the upper and lower limits of a given quantity. These conditions 
tether the mathematics to reality so we can make forecasts about the 
body, or “healthcasts,” by analogy with the weather.

But while we accept that the laws of nature are universal, in one crit-
ical and practical sense the life sciences— by which we mean biology 
and medicine— are quite different from the physical sciences— physics 
and chemistry— that we use to describe clouds. They are more empir-
ical, more dependent on making measurements and doing experi-
ments and, until now, less dependent on theoretical understanding.

Theory, that is, the mathematical representation of the laws of na-
ture, plays a relatively diminished role in medicine and biology. Even 
the Darwin- Wallace theory of evolution, regarded by some as the great-
est scientific theory of all, does not admit a mathematical description. 
This might sound shocking, but the reality is that, while basic predic-
tions about the patterns of inheritance have been made since Gregor 
Mendel studied peas in the nineteenth century, the course of evolution 
is not possible to predict in any quantitative manner.17

Some influential figures are only too aware of this shortcoming. 
Paul Nurse, director of the Francis Crick Institute in London and 
former assistant editor of the Journal of Theoretical Biology, told us how 
he was weary of reading papers that use clever technology to make 
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measurements that come to “barely any significant conclusions.”* 
In an opinion article for the journal Nature, he cited Sydney Brenner 
(1927– 2019), his old friend and fellow Nobelist: “We are drowning 
in a sea of data and starving for knowledge.”18 He complained to us 
that the importance of theory and the principles of life are relatively 
neglected in favour of cramming facts, knowledge and information. 
Biology “does have ideas, so why aren’t we talking about them?”

Yet biology, like the rest of science, is undoubtedly governed by 
the laws of nature. To be sure, there are no- go areas for moral and 
ethical reasons based on human arguments, but there is absolutely 
every reason to believe that we should be able to understand a par-
ticular scientific aspect of how an organism works and capture that 
insight in the form of mathematics. To create Virtual You, we need 
to go beyond the current use of theory in making post hoc rational-
isations in biology, after studies are carried out, to using theory to 
guide experiments and make predictions.

Uniting Science

Science is balkanised. The notion of dividing academic inquirers 
into tribes dates back to ancient Greece with Socrates (c. 469– 399 
BCE), his student Plato (c. 428– 347 BCE) and, in turn, Plato’s student 
Aristotle (384– 322 BCE).19 Within a few decades, however, Timon of 
Philius (c. 320– 230 BCE) moaned about the squabbling of “bookish 
cloisterlings” at the Museum of Alexandria. By the sixteenth century, 
Francis Bacon (1561– 1626) and other philosophers were mourning 
the splintering of human knowledge.

By the mid- nineteenth century, the disciplinary boundaries of 
the modern university had taken root, each with its own customs, 
language, funding streams, establishments and practices. In Virtual 
You, we intend to show that today’s research is more than a baggy 
collection of fragmented efforts— it is a grand and complementary 
mosaic of data, models, mechanisms and technology. The big picture 
of how the human body works is beginning to heave into view.

* Paul Nurse, interview with Peter Coveney and Roger Highfield, September 25, 2021.
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Just as there is no privileged point of view of the human body, so 
each perspective from each discipline is equally important. Each 
is complementary and, if united and consistent, remarkable new 
insights can emerge. If we look, for example, at the great molecular 
biology revolution that dates from the 1950s, when physicists and 
chemists tackled biology, and biologists used techniques developed 
by physicists, we can see that this vital atomic view of proteins, en-
zymes and other molecules of living things perfectly complements 
existing insights into heredity and evolution, marking a powerful 
unification of knowledge known as consilience.

The simple idea at the heart of this book is that the convergence 
of many branches of science— patient data, theory, algorithms, AI and 
powerful computers— is taking medicine in a new direction, one that 
is quantitative and predictive. We will show how mathematics can 
capture an extraordinary range of processes at work in living things, 
weigh up developments in computer hardware and software and 
then show how the human body can be portrayed in silico, holding 
up a digital mirror to reflect our possible futures.

This is a story that builds on multidisciplinary ideas we set out in 
our earlier books, The Arrow of Time20 and Frontiers of Complexity.21 In 
the first, we discussed how to reconcile a deep problem at the heart 
of science: that time is represented in different ways by different 
theories and at different length scales, ranging from the microscopic 
to the macroscopic. In the latter, we showed how complexity in math-
ematics, physics, biology, chemistry and even the social sciences is 
transforming not only the way we think about the universe, but also 
the very assumptions that underlie conventional science, and how 
computers are essential if we are to explore and understand this com-
plexity. Nowhere is this more relevant than in the efforts to create the 
virtual human. In Virtual You, we draw these threads together within 
a broad tapestry of research, both historical and contemporary.

Virtual You

This is the first account of the global enterprise to create a virtual 
human aimed at the general reader. Hundreds of millions of dollars 
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have been spent in the past two decades on the effort that has been 
organised through initiatives such as the International Physiome 
Project,22 America’s Cancer Patient Digital Twin,23 the European Vir-
tual Physiological Human,24 the Human Brain Project25 and another 
Europe- wide effort led by University College London to which we both 
contribute, Computational Biomedicine, or CompBioMed for short.

All are united by a single objective. As one workshop held in Tokyo 
declared: “The time is now ripe to initiate a grand challenge project 
to create over the next 30 years a comprehensive, molecules- based, 
multi- scale, computational model of the human (‘the virtual human’), 
capable of simulating and predicting, with a reasonable degree of 
accuracy, the consequences of most of the perturbations that are 
relevant to healthcare.”26 That virtual vision was unveiled more than 
a decade ago— in February 2008— and its future is fast approaching.

In the following pages, we will take you on a fantastic voyage 
through the body, its organ systems, cells and tissues along with the 
deformable protein machines that run them. We hope to convince 
you that, in coming decades, virtual twins of cells, organs, and pop-
ulations of virtual humans will increasingly shape healthcare. This 
organising principle for twenty- first- century medicine will enable 
doctors for the first time to look forward to— and predict— what is in 
store for you, including the effects of proposed therapies. This marks 
a stark contrast with today’s approach where doctors, in effect, look 
back at what happened to similar (though nonidentical) patients in 
similar (though nonidentical) circumstances.

In the long term, virtual cells, organs and humans— along with 
populations of virtual humans— will help to evolve the current gen-
eration of one- size- fits- all medicine into truly personalised medi-
cine. Your digital twin will help you understand what forms of diet, 
exercise and lifestyle will offer you the healthiest future. Ultimately, 
the rise of these digital twins could pave the way for methods to en-
hance your body and your future. As we discuss in our concluding 
chapter, virtual humans will hold up a mirror to reflect on the very 
best that you can be.

The following four chapters focus on the fundamental steps that 
are required to create a digital twin: harvest diverse data about the 
body (Chapter One); craft theory to make sense of all these data 
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(Chapter Two) and use mathematics to understand the fundamental 
limits of simulations; harness computers to put the spark of life into 
mathematical understanding of the human body (Chapter Three); 
blend the insights of natural and artificial intelligence to interpret 
data and to shape our understanding (Chapter Four).

In Chapters Five to Eight, we show the consequences of taking 
these steps and begin to build a digital twin, from virtual infections 
(Chapter Five) to cells, organs, metabolism and bodies. Along the 
way, in Chapter Six, we encounter the fifth step necessary for the 
creation of Virtual You. Can we stitch together different mathematical 
models of different physical processes that operate across different 
domains of space and time within the body? We can, and the ability 
to customise a virtual heart to match that of a patient marks one 
extraordinary example (Chapter Seven), along with modelling the 
body and its organ systems (Chapter Eight). In Chapter Nine, we 
discuss “Virtual You 2.0,” when the next generation of computers 
will overcome shortcomings of the current generation of “classical” 
digital computers.

In our last chapter, we examine the many opportunities, along with 
ethical and moral issues, that virtual humans will present. Digital 
twins will challenge what we mean by simple terms such as “healthy.” 
Are you really healthy if your digital twin predicts that— without a 
treatment or a change in lifestyle— you will not live out your potential 
life span? You may feel “well,” but are you really well if simulations 
suggest that you are destined to spend a decade longer in a care home 
than necessary? If a virtual human can become the substrate for 
human thought, how will we come to regard our digital copy? Finally, 
in an appendix, we examine a provocative question raised by using 
computers to simulate the world: Is it possible to re- create the fun-
damental physics of the cosmos from simple algorithms?

So, to the first of our foundational chapters. This poses the most 
basic question of all. If we are to create digital twins, how well do we 
have to know ourselves? To create Virtual You, we need to understand 
how much data and what kinds are sufficient for a digital twin to be 
animated by a computer.

As Aristotle once remarked, knowing yourself is the beginning 
of all wisdom.



FIGURE 3. Virtual anatomical twin. one of the detailed high- resolution anatomical models 
created from magnetic resonance image data of volunteers. (It’IS Foundation)
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