Contents

Foreword by Venki Ramakrishnan ix

Introduction 1

1 The Measure of You 14

2 Beyond Bacon’s Ants, Spiders and Bees 39

3 From Analogue to Digital You 69

4 Big AI 95

5 A Simulating Life 115

6 The Virtual Cell 141

7 How to Create a Human Heart 163

8 The Virtual Body 189

9 Virtual You 2.0 217

10 From Healthcasts to Posthuman Futures 240

Acknowledgments 257

Appendix: Towards a Virtual Cosmos 261

Glossary 267

References 279

Index 305
Introduction

Imagine a virtual human, not made of flesh and bone but one made of bits and bytes, and not just any human, but a virtual version of you, accurate at every scale, from the way your heart beats down to the letters of your DNA code.

—Virtual Humans movie premiere, Science Museum, London

Within the walls of a nineteenth-century chapel on the outskirts of Barcelona, a heart starts to contract. This is not a real heart but a virtual copy of one that still pounds inside a patient’s chest. With its billions of equations, and 100 million patches of simulated cells, the digital twin pumps at a leisurely rate of around one beat per hour as it tests treatments, from drugs to implants.

Though it was deconsecrated many decades ago, the Chapel Torre Girona is still adorned with a cross above its entrance. You can sense a higher power and purpose inside its romantic architecture. There, as sunlight streams through its stained-glass windows, you are confronted by an enormous glass-and-steel room, within which stand three ranks of black cabinets dotted with green lights.

This is MareNostrum (the Roman name for the Mediterranean Sea), a supercomputer on the campus of the Polytechnic University of Catalonia that is used by Peter Coveney along with colleagues across Europe to simulate electrical, chemical, and mechanical processes within the human body. These simulations look just like the real thing, whether a fluttering heart or a lung expanding into the chest. Much more important, however, is that these virtual organs behave like the real thing.

To show the dazzling range and potential of virtual human research, we used MareNostrum to create a movie, with the help of simulations run on other supercomputers, notably SuperMUC-NG in Germany (the suffix MUC refers to the code of nearby Munich Airport). Working with an international team, we wanted our Virtual Humans movie to showcase where these diverse efforts to create a body in silico could take medicine.
In September 2017, we held the premiere in the cavernous IMAX Cinema of the Science Museum in London with Fernando Cucchietti and Guillermo Marin, our colleagues from the Barcelona Supercomputing Centre. Even though we had worked for many months on the movie, gazing up at a pounding virtual heart the size of four double-decker buses still left us a little breathless.

SuperMUC-NG and MareNostrum 4 are among a few hundred or so great computational machines dotted around the world that are being harnessed to model the cosmos, understand the patterns of nature and meet the major challenges facing our society, such as studying how the Earth will cope with climate change, developing low-carbon energy sources and modelling the spread of virtual pandemics.

Just as great medieval cathedrals were raised by architects, masons, geometers and bishops to give humankind a glimpse of the infinite, supercomputers are the cathedrals of the information age, where novel worlds of endless variety, even entire universes, can be simulated within these great engines of logic, algorithms and information.

You can also re-create the inner worlds of the human body, and not just any body, or an average body, but a particular person, from their tissues and organs down to the molecular machines at work within their cells, their component proteins along with their DNA.
The eventual aim of this endeavour is to capture life’s rhythms, patterns and disorders in a computer, not just of any life or an average life, but of one particular body and one particular life—yours.¹

At the premiere, we were joined by colleagues who had developed virtual hearts, arteries and veins along with the skeleton and its musculature. On that great IMAX screen in the Science Museum, the packed audience glimpsed a future when drugs can be designed to suit an individual patient, when we can visualise the shimmering movements of a mutated protein in the body, track the turbulent flow of drug particles deep into the lungs, study the surges of blood cells through the brain, and simulate the stresses and strains that play on weakened bones.

Rise of Digital Twins

In engineering, virtual copies are known as digital twins. The concept is usually attributed to a paper by John Vickers and Michael Grieves.
at the University of Michigan in 2002,\(^2\) which talked of a “Mirrored Spaces Model.” NASA coined the term *digital twin* in 2010,\(^3\) and applied this way of thinking to spacecraft.\(^4\) However, the origins of this approach can be glimpsed much earlier. Many cite the Apollo moon programme as one notable example, when simulators on the ground were used as analogue twins of spacecraft. This approach was famously employed in 1970 to help return three astronauts safely to Earth in the aftermath of an explosion 200,000 miles out in space on board the ill-fated Apollo 13 mission.\(^5\)

Today, digital twins are well established. Many industrial processes and machines are too complex for one brain to grasp, so experimenting with their digital twins makes their behaviour easier to explore and understand.\(^6\) Lessons learned this way are transforming the future of manufacturing and, by accelerating automation, altering the future of work. Digital copies of machines, even entire factories, are helping to anticipate hurdles, perfect designs and prevent mistakes before they occur.

Digital twins are used to optimise supply chains and store layouts; General Electric used a twin to boost efficiency at an aluminium smelter in India; a twin of the route of a proposed railway line in north west England—in the form of 18 billion data points harvested by drones—was created to help manage this vast transport project; a “factory of the future” in Australia honed a virtual copy of a robotic workstation before building the real thing; engineers use digital twins to estimate the lifetime of a jet engine and how to maintain it efficiently. Digital twins have been used to help create wind turbines, oil rigs, cars, jet engines, aircraft, spacecraft and more besides. Some believe that digital twin cities hold the key to future urban planning.

Digital twins are emerging in medicine too, thanks to the data revolution in biology. One of the legions of people sifting through health data is Leroy Hood of the Institute for Systems Biology, Seattle. Among the most influential of today’s biotechnologists, Hood has worked at the leading edge of medicine, engineering and genetics for decades, dating back to the first human genome programme meeting in 1985. In 2015, he launched a venture that gathered a plethora of data on 5000 patients for five years. All their data were
stored in what Hood calls “personal health clouds.”* Analysis of a patient’s cloud can reveal telltale signals of what Hood calls “pre-pre-disease” that doctors could use to anticipate problems, then intervene to maintain their health.

Hood talks of “scientific wellness,” which “leverages personal, dense, dynamic data clouds to quantify and define wellness and identify deviations from well states toward disease.” A living embodiment of his approach, the 82-year-old was on sprightly form (“I plan never to retire”) when we talked to him about his vision of a “P4” future, where treatments are predictive, preventive, personalised, and participatory. Simulations of the body will help usher in that future by making sense of what patterns in a patient’s data hold in store for them.

In reality, of course, we make do with incomplete understanding and incomplete data. But, as advances in weather forecasting have shown, these shortcomings can be overcome to make useful predictions. We have come a long way since 1922 when, in his remarkable book *Weather Prediction by Numerical Process*, the British mathematician Lewis Fry Richardson (1881–1953) outlined the idea of a fantastic forecast factory, where thousands of human “computers,” using slide rules and calculators, are coordinated by a “conductor.” Richardson mused on whether “some day in the dim future it will be possible to advance the computations faster than the weather advances.” But even he went on to admit that his forecast factory was only a dream.

A century later, his extraordinary vision has become a reality. Supercomputers can make predictions a few days into the future with reasonable accuracy by constantly updating sophisticated computer models with data from orbiting satellites, buoys, aircraft, ships and weather stations.

A typical forecasting model relies on a system of equations to simulate whether it is going to rain or shine. There is an equation for momentum, density, and temperature in each of water’s three phases (vapour, liquid and solid), and potentially for other chemical variables too, such as the ozone that absorbs harmful ultraviolet radiation. In

* Leroy Hood, interview with Peter Coveney and Roger Highfield, August 12, 2021.
Chapter Two, we spell out why these nonlinear differential equations, notably partial differential equations, rule the climate system. In all, it takes billions of equations to model the planet down to a resolution of, currently, around 60 kilometres. Overall, the model has to take account of ever-changing thermodynamic, radiative and chemical processes working on scales from hundreds of metres to thousands of kilometres, and from seconds to weeks. That represents a tour de force of simulation, one that some claim already approaches the complexity required to model the human brain.

Thanks to the torrent of biomedical data available today, along with ever more powerful theory and computation, we believe simulations will revolutionise biology just as much as they have transformed meteorology. The American meteorologist Cleveland Abbe (1838–1916) once declared how progress in his field depended on “the consecration of the physicist and mathematician to this science.” To echo his 1895 vision of forecasting, we look forward to the day when it is not enough to know someone is unwell—we want to be able to understand if they will fall sick and why, so that we can make them better and for longer.

Optimism about the potential of digital twins in medicine is bolstered by our current ability to forecast weather, which would amaze Abbe. We take the daily forecasts for granted, but this feat of prediction is truly extraordinary. Markus Covert of Stanford University, who has developed virtual cells, remarked that “prediction of storms such as Hurricane Sandy ten days in advance of landfall—with the corresponding evacuation of hundreds of residents, saving both lives and property—could arguably be ranked as among the great technical triumphs in human history.”

When it comes to climate forecasts, plans are under way to create a “digital twin” of Earth that would simulate the atmosphere, ocean, ice, and land down to a resolution of one kilometre, providing forecasts of the risks of floods, droughts, and fires, along with the swirling ocean eddies that shift heat and carbon around the planet. This European model, Destination Earth, will fold in other data, such as energy use, traffic patterns and human movements (traced by mobile

* Tim Palmer, email to Peter Coveney, June 2, 2021.
phones), to reveal how climate change will affect society—and how society could alter the trajectory of climate change in what some already call the Anthropocene, a geological epoch where human activity is having a significant impact on our planet.¹⁰

The details of creating a digital twin of our own planet Earth are staggering. Take clouds, as one example. They are made of water, which is also the main ingredient of the human body (around 68%¹¹). Unlike us, however, clouds seem simple—great plumes of water droplets or ice crystals floating in the sky. Their formation is critical to our ability to predict weather, important for our understanding of the effects of global heating and central to controversial schemes to curb climate change through geoengineering.¹²

From cumulus tufts with beguiling shapes to great sheets of grey, clouds are a beautiful example of how complexity can result from simplicity, as droplets of water are borne on air currents of convection. As these droplets condense inside clouds, a little heat is released, making the clouds buoyant. At great heights, where temperatures fall well below freezing, the droplets turn into ice crystals, giving the resulting cirrus clouds a wispy, feathery look.

Within a cloud, processes at the smallest scales govern the formation of droplets. But, though microscopic, these features and interactions have large-scale, macroscopic, effects. The smaller and more numerous the droplets, the more that light is scattered. At the scale of micrometres, turbulence accelerates cloud formation and triggers rain showers.¹³ Large-scale air motions can create vast cloud systems that can span a continent. By reflecting light into space, clouds can cool the Earth’s surface, which is why some believe they should be nurtured to help curb runaway global warming.¹⁴

Essentially all the laws that underpin cloud formation are known, so we should be able to represent how they evolve in terms of known mathematical equations. The hope is to achieve the same for virtual humans, even down to the last water molecule. This may sound fantastical, but optimism that mathematics can describe the warm, complex, dynamic world of the body dates back centuries. The English physician William Harvey (1578–1657) relied on calculations in his demonstration of the circulation of the blood,¹⁵ while in 1865 the French physiologist Claude Bernard (1813–1878) stated that
I

“the application of mathematics to natural phenomena is the aim of all science.”16

Our ability to create a virtual copy of a person depends on describing the body with the language of mathematics. Although a work in progress, equations written using calculus, which express rates of change, can already depict complex processes uncovered by molecular biologists, cell biologists and many others in the biosciences. These mathematical expressions—ordinary and partial differential equations—can describe at every instant how blood pressure varies depending on where you make a measurement in the body or track an electrical impulse as it speeds along a neuron in the brain, or how quickly a virus steals into a person’s airway.

To put these equations to work, all that is needed to start calculating are the boundary conditions for the problem at hand. This could mean the state of a neuron or an infected cell at a given time or at various time intervals, their rates of change at various instants or the upper and lower limits of a given quantity. These conditions tether the mathematics to reality so we can make forecasts about the body, or “healthcasts,” by analogy with the weather.

But while we accept that the laws of nature are universal, in one critical and practical sense the life sciences—by which we mean biology and medicine—are quite different from the physical sciences—physics and chemistry—that we use to describe clouds. They are more empirical, more dependent on making measurements and doing experiments and, until now, less dependent on theoretical understanding.

Theory, that is, the mathematical representation of the laws of nature, plays a relatively diminished role in medicine and biology. Even the Darwin-Wallace theory of evolution, regarded by some as the greatest scientific theory of all, does not admit a mathematical description. This might sound shocking, but the reality is that, while basic predictions about the patterns of inheritance have been made since Gregor Mendel studied peas in the nineteenth century, the course of evolution is not possible to predict in any quantitative manner.17

Some influential figures are only too aware of this shortcoming. Paul Nurse, director of the Francis Crick Institute in London and former assistant editor of the *Journal of Theoretical Biology*, told us how he was weary of reading papers that use clever technology to make
measurements that come to “barely any significant conclusions.”* In an opinion article for the journal Nature, he cited Sydney Brenner (1927–2019), his old friend and fellow Nobelist: “We are drowning in a sea of data and starving for knowledge.” He complained to us that the importance of theory and the principles of life are relatively neglected in favour of cramming facts, knowledge and information. Biology “does have ideas, so why aren’t we talking about them?”

Yet biology, like the rest of science, is undoubtedly governed by the laws of nature. To be sure, there are no-go areas for moral and ethical reasons based on human arguments, but there is absolutely every reason to believe that we should be able to understand a particular scientific aspect of how an organism works and capture that insight in the form of mathematics. To create Virtual You, we need to go beyond the current use of theory in making post hoc rationalisations in biology, after studies are carried out, to using theory to guide experiments and make predictions.

Uniting Science

Science is balkanised. The notion of dividing academic inquirers into tribes dates back to ancient Greece with Socrates (c. 469–399 BCE), his student Plato (c. 428–347 BCE) and, in turn, Plato’s student Aristotle (384–322 BCE).* Within a few decades, however, Timon of Phlius (c. 320–230 BCE) moaned about the squabbling of “bookish cloisterlings” at the Museum of Alexandria. By the sixteenth century, Francis Bacon (1561–1626) and other philosophers were mourning the splintering of human knowledge.

By the mid-nineteenth century, the disciplinary boundaries of the modern university had taken root, each with its own customs, language, funding streams, establishments and practices. In *Virtual You*, we intend to show that today’s research is more than a baggy collection of fragmented efforts—it is a grand and complementary mosaic of data, models, mechanisms and technology. The big picture of how the human body works is beginning to heave into view.

* Paul Nurse, interview with Peter Coveney and Roger Highfield, September 25, 2021.
Just as there is no privileged point of view of the human body, so each perspective from each discipline is equally important. Each is complementary and, if united and consistent, remarkable new insights can emerge. If we look, for example, at the great molecular biology revolution that dates from the 1950s, when physicists and chemists tackled biology, and biologists used techniques developed by physicists, we can see that this vital atomic view of proteins, enzymes and other molecules of living things perfectly complements existing insights into heredity and evolution, marking a powerful unification of knowledge known as consilience.

The simple idea at the heart of this book is that the convergence of many branches of science—patient data, theory, algorithms, AI and powerful computers—is taking medicine in a new direction, one that is quantitative and predictive. We will show how mathematics can capture an extraordinary range of processes at work in living things, weigh up developments in computer hardware and software and then show how the human body can be portrayed in silico, holding up a digital mirror to reflect our possible futures.

This is a story that builds on multidisciplinary ideas we set out in our earlier books, *The Arrow of Time* and *Frontiers of Complexity*. In the first, we discussed how to reconcile a deep problem at the heart of science: that time is represented in different ways by different theories and at different length scales, ranging from the microscopic to the macroscopic. In the latter, we showed how complexity in mathematics, physics, biology, chemistry and even the social sciences is transforming not only the way we think about the universe, but also the very assumptions that underlie conventional science, and how computers are essential if we are to explore and understand this complexity. Nowhere is this more relevant than in the efforts to create the virtual human. In *Virtual You*, we draw these threads together within a broad tapestry of research, both historical and contemporary.

Virtual You

This is the first account of the global enterprise to create a virtual human aimed at the general reader. Hundreds of millions of dollars
have been spent in the past two decades on the effort that has been organised through initiatives such as the International Physiome Project, America’s Cancer Patient Digital Twin, the European Virtual Physiological Human, the Human Brain Project and another Europe-wide effort led by University College London to which we both contribute, Computational Biomedicine, or CompBioMed for short.

All are united by a single objective. As one workshop held in Tokyo declared: “The time is now ripe to initiate a grand challenge project to create over the next 30 years a comprehensive, molecules-based, multi-scale, computational model of the human (‘the virtual human’), capable of simulating and predicting, with a reasonable degree of accuracy, the consequences of most of the perturbations that are relevant to healthcare.” That virtual vision was unveiled more than a decade ago—in February 2008—and its future is fast approaching.

In the following pages, we will take you on a fantastic voyage through the body, its organ systems, cells and tissues along with the deformable protein machines that run them. We hope to convince you that, in coming decades, virtual twins of cells, organs, and populations of virtual humans will increasingly shape healthcare. This organising principle for twenty-first-century medicine will enable doctors for the first time to look forward to—and predict—what is in store for you, including the effects of proposed therapies. This marks a stark contrast with today’s approach where doctors, in effect, look back at what happened to similar (though nonidentical) patients in similar (though nonidentical) circumstances.

In the long term, virtual cells, organs and humans—along with populations of virtual humans—will help to evolve the current generation of one-size-fits-all medicine into truly personalised medicine. Your digital twin will help you understand what forms of diet, exercise and lifestyle will offer you the healthiest future. Ultimately, the rise of these digital twins could pave the way for methods to enhance your body and your future. As we discuss in our concluding chapter, virtual humans will hold up a mirror to reflect on the very best that you can be.

The following four chapters focus on the fundamental steps that are required to create a digital twin: harvest diverse data about the body (Chapter One); craft theory to make sense of all these data
(Chapter Two) and use mathematics to understand the fundamental limits of simulations; harness computers to put the spark of life into mathematical understanding of the human body (Chapter Three); blend the insights of natural and artificial intelligence to interpret data and to shape our understanding (Chapter Four).

In Chapters Five to Eight, we show the consequences of taking these steps and begin to build a digital twin, from virtual infections (Chapter Five) to cells, organs, metabolism and bodies. Along the way, in Chapter Six, we encounter the fifth step necessary for the creation of Virtual You. Can we stitch together different mathematical models of different physical processes that operate across different domains of space and time within the body? We can, and the ability to customise a virtual heart to match that of a patient marks one extraordinary example (Chapter Seven), along with modelling the body and its organ systems (Chapter Eight). In Chapter Nine, we discuss “Virtual You 2.0,” when the next generation of computers will overcome shortcomings of the current generation of “classical” digital computers.

In our last chapter, we examine the many opportunities, along with ethical and moral issues, that virtual humans will present. Digital twins will challenge what we mean by simple terms such as “healthy.” Are you really healthy if your digital twin predicts that—without a treatment or a change in lifestyle—you will not live out your potential life span? You may feel “well,” but are you really well if simulations suggest that you are destined to spend a decade longer in a care home than necessary? If a virtual human can become the substrate for human thought, how will we come to regard our digital copy? Finally, in an appendix, we examine a provocative question raised by using computers to simulate the world: Is it possible to re-create the fundamental physics of the cosmos from simple algorithms?

So, to the first of our foundational chapters. This poses the most basic question of all. If we are to create digital twins, how well do we have to know ourselves? To create Virtual You, we need to understand how much data and what kinds are sufficient for a digital twin to be animated by a computer.

As Aristotle once remarked, knowing yourself is the beginning of all wisdom.
FIGURE 3. Virtual anatomical twin. One of the detailed high-resolution anatomical models created from magnetic resonance image data of volunteers. (IT’IS Foundation)
Index

A page number in *italics* refers to a figure.

Abbe, Cleveland, 6
ablation: for cardiac arrhythmias, 177, 181–82; for gastric dysrhythmias, 204
acetaminophen overdose, 201
action potentials: cardiac, 77–79, 79, 137; Hodgkin-Huxley model of, 45–47, 76; memristors and, 222–23; SpiNNaker supercomputer and, 223–24
active learning, 160
adaptive mesh refinement (AMR), 165, 233
Aerts, Hannelore, 210
affordances, 51
agent-based models, 160, 161
aging, 92, 195, 248, 250, 252
Aguado-Sierra, Jazmin, 138
AI (artificial intelligence): biases in our system and, 105; Big AI, 94, 96, 112–14, 166; in cancer diagnosis, 99; in cancer drug development, 113; consumer uses of, 242; digital twins and, 214, 215; efficient chip design and, 82; fusion technologies and, 86; goal of general AI, 114; in *Mycoplasma* modelling, 147; nonalgorithmic thinking and, 50, 51; protein folding problem and, 104–5.
See also machine learning
air pollution, and respiratory modelling, 199–200, 201
AI winter, 96
“alchemical” calculations, 132, 133–34
Alder, Berni, 74–75
algorithms: carefully selected for deep learning, 106; categorised by execution time, 90–91; classical compared to quantum advantage, 235; computability theory and, 47; consciousness and, 214; genetic, 109, 160; Hilbert’s programme and, 47–49; origin of the word, 47; situational reasoning and, 50–51; thinking beyond the reach of, 50
Allen, Paul, 151
AlphaFold, 100–105, 103, 106
alternative splicing, 29
Alya Red, 174, 174–75
Alzheimer’s disease, 29, 211, 247, 248
analogue computers: Antikythera as, 71, 217; finding solutions not digitally computable, 50; Jiuzhang quantum computer, 235, 237, 237, 238; making a comeback, 218; in Manhattan Project, 72; metamaterials and, 218–21, 220; neuromorphic, 225–26; optical, 219, 220, 221; replaced by 1970s, 217; to solve digital pathologies, 66; with synthetic neurons, 222–23; for Virtual You, 238–39
analogue processing, in deep neural network, 110–11
anatomy, history of, 19–22
Anfinsen, Christian, 32
Anthropocene, 7
Antikythera, 70–71, 71, 217
antimicrobial resistance, 112, 133–34, 154, 247
aortic valve stenosis, 179
Apollo moon programme, 4, 80
ARCHER and ARCHER2, 131
Aristotle, 37
arrhythmias, cardiac: ablation for, 177, 181–82; atrial fibrillation, 177, 181–82; cardiologists’ data on, 173; customised virtual hearts and, 177; defibrillator implanted for, 182; drug-related, 137, 138–39, 175, 182; predicting electrocardiograms in, 174; sick sinus syndrome, 159; spiral waves in, 162; tachycardia, 178; ventricular, 177
Index

arrhythmias, digestive, 203–4
arteriovenous fistula (AVF), 186
artificial neurons, 222–23, 224–25, 226
artificial synapses, 224–25, 226
Aspuru-Guzik, Alán, 230–31
asthma, 198, 199, 201
ATOM AI-driven cancer platform, 113
ATP (adenosine triphosphate), in cardiac model, 170–71
ATP synthase, 26
atrial fibrillation, 177, 181–82
attention-based neural network, 102
attractor, 58–59; strange, 58, 59, 84
Auckland Bioengineering Institute, 190–91, 192–95, 196–97, 198, 201–2, 203–4, 210–11
Aurora, 81, 82, 85
Autin, Ludo, 152
autoimmunity, 128–29
autonomic nervous system, 192–94

Babbage, Charles, 71, 72, 217
backpropagation, 97
Bacon, Francis, 9, 39, 40, 69–70, 96, 105, 117
to virtual, 146–54. See also E. coli
Mycobasultramian, Shankar, 23–24
Barrow, John, 48
basal ganglia circuits, 91
Bayes, Thomas, 118
Bayesian methods, 118, 122, 128
Bayley, Hagan, 24
bell curve, 107, 107–8
Belousov-Zhabotinsk reaction, 142, 142, 162
Benioff, Paul, 229
Berloff, Natalia, 221
Bernard, Claude, 7–8
Bernoulli, Jacob, 60–61
Bernoulli map, 60–63, 64
Besier, Thor, 197
biases: in artificial intelligence, 105; in digital twins, 251–52
bicycle, autonomous, 226
Biden, Joe, 113
bidomain model, 170
Big AI, 94, 96, 112–14, 166; defined, 96
Big Data: machine learning and, 105; magnitude of, 95; making sense of, 244; for medicine and biology, 32–33, 111; theory and, 67
bits, 229
“black swans” in data, 106, 108
Blinov, Michael, 156, 157
blood clots, 186, 199, 210
blood pressure, 184, 186, 193, 208. See also hypertension
Blue Waters, 131
Blumberg, Baruch, 120
Boghosian, Bruce, 60, 61, 62
Bohr, Niels, 228, 255
Boltzmann, Ludwig, 16, 56, 60, 166
Boltzmann machine, 109
Boolean algebra: lac operon as logic gate in, 158; in Stanford Mycoplasma model, 148
Borges, Jorge Luis, 14, 38, 109
Born, Max, 227–28
boson sampling, 235, 237
Boyett, Mark, 172
Boys, S. Francis, 129
Brahe, Tycho, 40
brain, 206–12; blood supply to, 210, 210–11; difference from digital computer, 206, 212, 217; epilepsy and, 206, 208–9; Framework to integrate data on, 211; gut microbiome and, 204; imagery of tissue samples from, 92, 206–7; sense of smell and, 211–12; simulating connectivity in, 91–92, 206–7; stroke and, 181, 196, 210, 211; transcranial electromagnetic stimulation of, 208. See also Human Brain Project, of EU
brain cells, studied with VCell, 156
brain injury, 211
BrainScaleS, 224–26, 225
brain tumours, 209–10
Braithwaite, Richard, 69
breast cancer, 99, 132–33, 135, 136
breathing, simulation of, 199, 200, 200–201
Brenner, Sydney, 9, 19, 116, 145, 147, 151
bromodomain, 131–32
Brout, Robert, 37
Burrowes, Kelly, 198
butterfly effect, 56, 58, 66, 108
cadavers, frozen and digitized, 190–91; of Yoon-sun, 184–86, 185, 190
calcium currents, 79
INDEX

calculus, 42–43, 43, 264; photonic calculus, 221

Cantor, Georg, 52

Captur, Gaby, 176

cardiovascular system, 168, 184; blood supply to brain and, 210–11; first closed-loop model of, 187. See also circulatory system models; heart twins

Carrel, Alexis, 168

Cartesius, 131

cave art, 240–41

cell cycle, 149, 151, 153

cells: agent-based models of, 160, 161, 162; cardiac myocyte model, 214; chemical processes in, 116–19; of eukaryotes, 154–55; experiments on simulations of, 146, 159; imaging methods for, 155; number in human body, 26, 140; organelles of, 140, 143, 154–55; 3D models of, 152–53, 153; VCell model, 155–57. See also bacterium, virtual; heart cell models; neurons

cellular automata, 261, 261–64

cerebral autoregulation, 211

chaotic dynamical systems: analogue module of supercomputer and, 238; attractors of, 58, 59, 84; Bernoulli map, 60–63, 64; in biology, 63–64; in drug binding to target, 130–31, 136; ensembles and, 56–58, 62, 65–66; ergodicity and, 65; flaws in machine learning and, 106–7. See also deterministic chaos; edge of chaos; turbulence

chaperone proteins, 32, 124

Cheng, Leo, 203

chloroquine, and COVID-19, 138–39

chromosomes, 25–26, 28

Chua, Leon, 221–22, 223

Chuang, Isaac, 232

Church, Alonzo, 48, 213

Church-Turing thesis, 49

CiPA (comprehensive in vitro proarrhythmia assay), 137, 138

Circle of Willis, 210

circulatory system models, 184–86, 185; cellular automata and, 262–63; computer architecture and, 185–86; exascale computing and, 216; Guyton regulation model, 184, 192; including heart, 184, 187; liver circulation and, 202

Clancy, Colleen E., 139

Clark, Alfred, 119

Clarke, Kieran, 170

climate change, 7, 110

clinical trials, based on modelling, 180

cloaking by metamaterials, 218–19

cloud formation, 7

code, and reproducibility, 87–88

coherence time, 232–33

Cole, Kenneth, 22, 76

Collins, Francis, 246

complexity, 7–10, 17–18; Baruch Blumberg and, 120; big data and, 32–33; DNA and, 25; multiscale modelling and, 164; normal distribution and, 108; optimisation and, 109; Virtual You and, 215–16. See also emergent properties

cosmology: exascale machines and, 85; simulations of, 261; Wolfram’s discrete worldview and, 264–66
cotranslational folding, 32
Covert, Markus, 6, 147–48, 150, 151–54
COVID-19: AI diagnosis from chest scans, 100; biological age and, 248; cardiotoxicity of potential drugs for, 138–39; code sharing and, 88; data sharing and, 36; drug resistance in, 134; drugs used to treat, 247; flawed machine learning models, 99–100; physics-informed neural network and, 114; politics of health policy and, 253; uncertainty in CovidSim, 88–90; vaccines for, 247. See also SARS-CoV-2
CovidSim, 88–90
cranial nerves, 193
Crick, Francis, 37–38, 41, 145, 147, 151, 152
cryo-electron microscopy: of protein structures, 100, 104; of viruses, 120, 121
CT scans, and heart models, 174, 180
Cucchietti, Fernando, 2
curated training data, 99, 100, 105
curse of dimensionality, 89, 109
curve fitting, 102, 105, 109–10
Cvitanović, Predrag, 59
Dalchau, Neil, 124, 125
dark energy, 266
dark matter, 261, 266
data, 32–36; “black swans” in, 106, 108; broad range available, 190; commercialisation and, 35–36; curated for training, 99, 100, 105; experimental brain sources of, 208; FAIR principles (findable, accessible, interoperable, reproducible), 36; floating-point numbers and, 54–55, 55; in Hood’s personal health clouds, 4–5; integrity of, 35–36; of large medical databases, 214; on neuroscience from many sources, 211; principles ensuring trust in, 251–52; statistical distribution of, 107–8; structured and unstructured, 33–34; theory to make sense of, 36–38. See also Big Data
Davies, Paul, 229
Davy, Humphry, 187
decision problem, 48
decoherence, 232, 233
dee learning neural networks, 97, 97–98;
AlphaFold as, 102; failures of, 105; to make sense of healthcare data, 93–94; proliferating parameters in, 105–6. See also machine learning
deep physical neural networks (PNNs), 110–11, 221
deep reinforcement learning, 86
dementia: in Alzheimer’s disease, 29, 211, 247, 248; blood flow and water transport in brain and, 192; brain injury and, 211
dendrites, 207
dendritic cells, 160
Dennard scaling, 81, 82
Descartes, René, 264
deterministic chaos, 18; in Lorenz’s convection model, 55–56; Poincaré’s discovery of, 44. See also chaotic dynamical systems
Deutsch, David, 229, 233
diabetes, 29, 128, 194, 203
Diesmann, Markus, 91
differential equations, 8, 42–45. See also ordinary differential equations; partial differential equations; stochastic differential equations
diffusion: logic modules of cell and, 158; in Turing’s pattern model, 143–44; in VCell, 155, 156
DiFrancesco, Dario, 79
digital computers: difference from brain, 206, 212, 217; noncomputable numbers and, 52; rise of, 217–18
digital pathologies, 60–63; denial of, 64; efforts to deal with, 63–66
digital twins: achieving reliability and robustness, 88; cancer treatment and, 92–93; data integrity and, 35; depending on mathematics, 7–8; discrimination enabled by, 252; of Earth for climate forecasts, 6–7; emerging in medicine, 4–5, 6, 10–12, 243–44; established concept of, 3–4; as lifelong, personalised clone, 250; multiple versions for a person, 250, 251; possibilities offered by, 242; “precision medicine” compared to, 248; regulators turning to, 180, 189–90; responsibility for our
own future and, 255. See also heart
twins; Virtual You
distributed computing, on home PCs, 85
DNA: as digital information storage device,
158; double helix structure of, 41,
145; mitochondrial, 154; as potential
storage medium, 35; variants in disease,
28, 29
DNA sequencing: of human genome,
246–47; methods for, 23–25, 24; of
Mycoplasma genitalium, 146
Doorly, Denis, 200–201
double precision floating-
point numb
ers, 53, 54, 62, 63
double slit experiment, 227, 227
Dougherty, Ed, 40
downward causation, 17
drug binding to target, 119, 130, 130–32, 136
drug development, 129–31; Big AI in, 112,
113–14; bile flow impairment in, 203;
blending classical and quantum phys-
ics, 166; for cancer, 113, 130, 131–33,
134–36; cardiotoxicity and, 136–39;
ensemble simulations in, 131–32;
experiments on cell models and, 159;
quantum computing for, 231; for sep-
sis, 129–30, 245, 247; 3D images used in, 52; 3D
protein structures and, 104–5
Dushek, Omer, 126–29
dynamical systems: attractors of, 58, 58–59,
84. See also chaotic dynamical systems
Eagle, 131
Earth system model, 86
Eccleston, Ruth, 124
echocardiography, 176
E. coli: data on enzymes of, 150; early re-
search on, 145–46; lac operon of, 158;
simulation of, 151–52; simulation of
colonies, 153–54
Eddington, Arthur, 40
edge of chaos, 222, 223
Einstein, Albert, 20, 37, 40, 49, 115, 140,
159, 163
electrocardiograms: drug-related arrhyth-
rias and, 139; whole organ simulations
and, 174, 178
electroceuticals, 193–94
electronic structure calculations, 229–30,
231, 238
electrophysiology: in Alya Red heart model,
174; in digestion, 203–4; early research
on, 22; in heart cell models, 170, 173;
in heart twins, 182; in VCell, 156. See also Hodgkin-Huxley model
Elliott, Tim, 124, 126
emergent properties, 16–18; agent-based
models and, 160; cardiac oscillations
as, 77, 78–79, 173; information flow
and, 159; Navier-Stokes equations and,
262, 263; of synthetic bacterial cell,
151; theories and, 37, 38; of whole
human, 115–16. See also complexity
empiricism, 40
energy efficiency: of analogue pro-
cessors, 238; of hybrid quantum-
classical
machines, 238; memristors and, 222,
223; of PNNs (deep physical neural
networks), 111; of quantum computers,
234
Energy Exascale Earth System model, 86
Engheta, Nader, 219, 221
Englert, François, 37
ENIAC, 73, 80, 219
ensemble averages, 57, 58, 74
ensembles of digital twins, 250
ensembles of neural networks, 108
ensembles of simulations, 56–58; for
Bernoulli map, 60, 62; in biological
sciences, 66–67; for chaotic systems,
56–58, 62, 65–66; drug binding to tar-
get and, 131, 136; ergodicity and, 65;
limitations of digital computers and,
217; for testing CovidSim, 89–90; in
weather forecasting, 57, 57
entanglement, 230, 231, 232, 234
Entscheidungsproblem, 48
enzymatic reactions: experimentally
measured parameters for, 117; quan-
tum computing and, 231
epigenetics, 28, 246
epilepsy, 206, 208–9
equations, 41
ergodicity, 64–65; spurious correlations
and, 111–12
eukaryotes, cells of, 154–55
Everett, Hugh, III, 228–29
evolutionary theory, 8, 66–67
exaflop speed, 85
exascale computers, 80–86; hybrid quantum-classical machines, 238; simulations using, 83–84, 91–94, 216; for Virtual You, 238, 244. See also supercomputers
exons, 29
experiments: in drug discovery, 104–5; growing gut bacteria, 204; guided by reason, 40; mathematical structures backed by, 67; Morowitz’s ambition for virtual cell and, 146; theories to make sense of, 9, 36–37, 67; validation of computer simulations and, 88
exponent, 52–53
exponent, 53
Fenton, Flavio, 182
Fetter, Ellen, 56
Feynman, Richard, 69, 84, 229, 232
Fick’s law of diffusion, 143
finite element method: in heart simulations, 169; in predicting bone fracture, 195
fixed point attractor, 58
floating-point numbers, 52–54, 53; Bernoulli map and, 60–63; simulations limited by, 54–55, 55. See also digital pathologies
flops, 53; of exascale machines, 81
fluid dynamics: in Alya Red heart model, 174; of bile, 202–3; blending molecular and continuum models of, 166–67; in circulatory system models, 186; in HemeLB, 184–85, 216, 262; hybrid physics-based and data-driven modelling in, 112; in nuclear weapons, 72, 73, 74; physics-informed neural networks (PINNs) and, 114; Wolfram’s lattice description of, 262–63, 265. See also Navier-Stokes equations; turbulence
fluid highway, discovered in 2018, 191
Folding@home, 85
Fowler, Philip, 133–34
fractal geometry, 59
Frankenstein (Shelley), 45, 187
Frankenstein data sets, 100
Franklin, Rosalind, 40
Frontera, 131
Frontier, 85, 206, 285
Furber, Steve, 223–24
fusion power, 86
Game of Life, 261, 262
games, winning with AI, 98, 100
GANs (generative adversarial networks), 98–99, 214
Gates, Bill, 105
Gauss, Carl Friedrich, 107
Gaussian statistics, 107, 107–8
gender bias, 105
gene expression: in different cell types, 26, 28; drug interaction with cancer cells and, 113; in E. coli model, 152; in Mycoplasma cell cycle, 149; regulatory elements of DNA and, 28; in simulated E. coli colony, 153–54; turning data into protein, 30–31
general relativity, Wolfram’s approach to, 264, 265
genes: functions depending on all 20,000, 246; hugely outnumbered by proteins, 29
genetic algorithms, 109, 160
genetic code, 25–26
genome: limited impact on medicine, 246–47; noncoding regions of, 28; unknomics, 28
genome-wide association studies (GWAS), 29
Gershenfeld, Neil, 232
Getz, Michael, 162
Ghaffarizadeh, Ahmadreza, 160, 161
Gibbs, J. Willard, 57
Gibson, Dan, 150
glial cells, 207, 211
global warming, 7
Gödel, Kurt, 48, 51, 213, 217
Goodsell, David, 152
Gorard, Jonathan, 264–65
Gosling, Ray, 40
government policies, tested in virtual populations, 253
Gowans, James, 126
graph theory: Jiuzhang quantum computer and, 237; Wolfram's model of universe and, 263–64, 265
Grieves, Michael, 3–4
Guldberg, Cato, 118
Gustafson, John, 53–54
gut microbiome, 204
gut models, 203–4
Guyton, Arthur, 184
Guyton model, 184, 192

Haemophilus influenzae, 148
half precision floating-point numbers, 53, 63, 107
Hameroff, Stuart, 213–14
Hamilton, Bill, 37–38
hangovers, 33
Hardy, G. H., 66, 67, 141, 142
Harvey, William, 7, 186, 189
HARVEY fluid dynamics code, 186
Hassabis, Demis, 98, 103–4
Hawking, Stephen, 41
Haydon, Denis, 24
healthcasts, 249–51, 252
Heaney, Seamus, 43

heart: autonomic nervous system and, 193, 194; kidneys and, 184; of the poet Shelley, 187. See also arrhythmias, cardiac; cardiovascular system; ion channels, cardiac
heart cell models: extended to whole organ, 162, 173; gene mutations in, 159; history of, 169–73; imaging of tissue layers and, 171; incorporating patient data, 169; more than 100 used today, 80; of Noble, 76–80, 79, 136, 137, 162, 170–72, 190
heart cells: electrical activity of, 76–80, 79, 168; muscle contractions of, 168–69; prolonged QT interval and, 137, 139
heart failure: in Alya Red model, 175; atrial fibrillation and, 177; multiscale models of, 178, 181; neural circuitry and, 194; pacemaker and, 176; ventricular model and, 162
HeartFlow Analysis, 180

heart imaging: with CT, 174, 180; in customising heart models, 173; with echocardiography, 176; of layers to build 3D digital version, 171; whole organ simulations and, 174. See also MRI (magnetic resonance imaging) data
heart twins, 173–77, 179; commercial simulation software and, 183; customised for a patient, 173, 175, 176–77, 178; four lanes of activity on, 173; hyperbole about, 183; limited by computer power, 182; in Living Heart Project, 174; medical devices and, 176, 176, 179, 180; multiscale modelling and, 162, 167–69, 174, 174–75, 178; patient data for use with, 172–73, 176–77, 183; predictions based on, 215; remodelling in, 173, 177. See also precision cardiology
heart valves: aortic valve stenosis, 179; testing of artificial valves, 180
Heisenberg uncertainty principle, 227
HemeLB, 184–85, 216, 262
Higgs, Peter, 37
Higgs boson, 37, 85
Hilbert, David, 47–49
Hilbert space, 229–30, 234
Hilgemann, Don, 79
Hillis, Danny, 170
Himeno, Yukiko, 205
Hinton, Geoffrey, 97
hip implants, 196, 197
Hippocrates, 240
Hisada, Toshiaki, 174
HIV (human immunodeficiency virus):
 animal origin of, 120, 121; protease inhibitors for, 132
 HIV simulations, 121–26; chemical reaction network in, 122–23; compared with experiment, 123, 125–26; drug binding to target and, 130, 132; Gag protein in, 125–26; MHC presentation of peptides and, 124–25; from molecules to epidemiology, 132; ordinary differential equations in, 122–23, 124, 125; rate parameters in, 122, 124–25
Hladky, Steve, 24
Ho, Harvey, 201
Hodgkin, Alan, 22
Hodgkin-Huxley model, 45–47, 70; analytical solutions to, 171–72; human heart simulations and, 169; memristors and, 222; Noble’s heart cell studies and, 76, 77, 78

homeostasis, 164

Hood, Leroy, 27, 245, 247–48

Hooke, Robert, 20–21, 21

Houzeaux, Guillaume, 174–75

Human Brain Project, of EU, 11, 207–9, 223–26

Human Genome Project, 247

Hunter, Peter, 79, 171–72, 177, 190, 191, 192, 194–95, 211, 246

Hutchinson, Clyde, 148, 151

Hutter, Otto, 76, 78

Huxley, Andrew, 22. See also Hodgkin-Huxley model

Huxley, Thomas Henry, 189

hydroxychloroquine, and COVID-19, 138–39

hypertension, 184, 186, 194, 211

imaging: of the body, 21–22; of cells, 155; patient-specific radiation doses in, 190. See also heart imaging; MRI (magnetic resonance imaging) data

immune system: agent-based models and, 160–62; attacking cancers, 160, 161, 162; attempted virtual versions of, 159; map of, 159; peptides from invaders and, 123–26; SARS-CoV-2 infection and, 162; sepsis and, 160. See also T cells

immunological synapse, 127

immunotherapy for cancer, 160

Indiveri, Giacomo, 226

inflammation, 162, 193, 194, 249

information: in biology, 157–59; quantum computers and, 229–30

integral equations, 219, 220

interoperability, 215

introns, 28, 29

ion channels: as memristors, 222; in nanopore sequencing method, 24, 24; of nerve cells, 46–47; in patch clamp method, 22, 23

ion channels, cardiac, 77–78, 80; in heart twin, 173; hERG potassium channel, 139; mathematical models of, 137

irrational numbers, 51–52, 64

ischaemia, 170

JCVI-syn3A, 151

Jha, Shantenu, 113

Jirsa, Viktor, 208, 209

Jiuzhang quantum computer, 235, 237, 237, 238

Jumper, John, 101, 102

Karniadakis, George, 114

Karplus, Martin, 166

Kauffman, Stuart, 50–51

Kepler, Johannes, 40

kidneys: AVF (arteriovenous fistula) for dialysis and, 186; blood pressure and, 184; studied with VCell, 156

Klenerman, David, 23–24

Kloewer, Milan, 62, 63

knee implants, 197

Kogge, Peter, 81

Kolmogorov scale, 84

Kranzlmüller, Dieter, 135

Kubinec, Mark, 232

Kuhl, Ellen, 114

Kumar, Suhas, 221, 222

lac operon, 158

Lamata, Pablo, 178

Langmuir, Irving, 119

Large Hadron Collider (LHC), 85

lattice Boltzmann method. See HemeLB

law of mass action, 118–19; HIV simulation and, 125; in Turing’s theory of development, 143

laws of nature: artificial intelligence and, 96; machine learning constrained by, 195; theories and, 8–9, 37; Turing’s patterns and, 144

Leduc, Stéphane, 141

left bundle branch block, 177

LeGrice, Ian, 172

Leibniz, Gottfried Wilhelm, 42, 264

Levinthal, Cyrus, 32

Levitt, Michael, 166

Levy, Sam, 27

Liesegang, Raphael, 141

linear differential equations, 43

linear optimisation, in Mycoplasma model, 148
liver modelling, 201–3
Living Heart Project, 174, 180, 181
Lloyd, Seth, 229, 232
load balancing, 167, 185
Loew, Les, 155–57
Loiselle, Denis, 170
Longhorn, 131
Lorenz, Edward, 54–56, 59, 84
Lorenz 96, 63
Lorenz attractor, 58, 58–59
Love, Peter, 230–31, 233–34
Lovelace, Ada, 95
Lu, Chao-Yang, 235
lung models, 197–201
Luthert, Philip, 253
Luthey-Schulten, Zaida (Zan), 151
Lyapunov time, 44, 107

machine learning: biases in data and, 251–52; boson sampling adapted for, 237; brain network models and, 209; challenge of using real-world data in, 100; with chaotic systems, 106–7; control of simulated cancer cells and, 160, 162; correlations and, 126, 165–66; curated training data in, 99, 100, 105; digital twins’ advantage over, 248; energy demand of, 110–11; as glorified curve fitting, 105; gut microbiome and, 204; half precision numbers in, 53; hints of creativity by, 98–99; local minimum on error landscape and, 108–10, 110; making sense of big data, 244; in multiscale cancer initiative, 165–66; multiscale modelling integrated with, 114; origin of, 96; of parameters in predicting arrhythmia, 139; parameters of personalised models and, 215; physics-informed, 112–14, 166; predictions and, 106; quantum mechanical, 231; in surrogate modelling, 99, 195. See also AI (artificial intelligence); deep learning neural networks; deep physical neural networks (PNNs); neural networks
Macklin, Paul, 160, 162
mammography, 190
Mandebrot, Benoit, 59
Manhattan Project, 71–74
MANIAC, 73
Manin, Yuri, 229
mantissa, 52, 53
Marchant, Jo, 240
MareNostrum supercomputer, 1, 3, 174
Marin, Guillermo, 2
Marinazzo, Daniele, 210
Maritan, Martina, 152
Martone, Maryann, 211
Marzo, Alberto, 195
mathematics: assisted by machine learning, 99; in biology compared to physical sciences, 66–67; describing the body with, 7–9, 10, 38; limits of computer simulations and, 47–49; reality and, 41, 213; theories in form of, 37, 41. See also theory in medicine and biology
Maxwell, James Clerk, 49–50
Maynard Smith, John, 37–38
McClintock, Barbara, 37–38
McCoy, Matthew, 92
McCulloch, Andrew, 172
McCulloch, Warren, 96
McCullough, Jon, 184
McIntosh, Randy, 208
Mead, Carver, 221, 226
mechanistic modelling. See physics-based simulations
Medawar, Peter, 119
medical devices: heart twins and, 176, 176, 179, 180; orthopaedic, 196; posthuman future and, 254; virtual cohorts of patient hearts and, 183
medicine of twenty-first century, 245–49
memristors, 221–23, 226
messenger RNA, 30, 31
metabolism, virtual, 204–6
metabolomics, 33, 206
metamaterials, 218–221, 220
Metropolis, Nick, 73, 74, 118
MHC (major histocompatibility complex), 124–25
Michaelis-Menten equation, 117
microbiome, 204, 206
mitochondria, 154–55
ModellBricks, 157
molecular dynamics simulations, 70; classical, 74–75, 75, 166–67; computer speed and, 83, 85; customised supercomputer needed for, 122; drug binding to target and, 131, 132; machine learning and, 107; Navier-Stokes equations combined with, 167; non-Gaussian statistics in, 108; of peptide binding to T cell receptors, 127
Monte Carlo method, 73–74; cellular parameters and, 118; drug binding to target and, 131, 132; in T cell simulations, 128
Moore's law, 81, 82
Morowitz, Harold, 145–46, 147
MRI (magnetic resonance imaging) data: atrial fibrillation and, 177; in heart attack patients, 182; heart models and, 173, 174, 176, 178; high-resolution anatomical models and, 13, 34; virtual population models and, 93
Müller, Viktor, 122
multidisciplinary ideas, 9–10
multiscale and multiphysics modelling, 164–67; with Alya series software, 175; of cancer, 165–66; of cells, 140; discrete lattice models and, 263; of drug-related arrhythmias, 139; of hearts, 162, 167–69, 174, 174–75, 178; of human body, 164; of liver lobule, 201; load imbalance in, 167; machine learning integrated with, 114; with quantum physics included, 166–67; supercomputer architectures and, 216; surrogate modelling in, 167, 195; of Virtual You, 189
multiverse, 229, 233
MuMIMI (massively parallel multiscale machine-learned modelling infrastructure), 165
Murphy, James, 57–58
Murray, James, 144
muscle fatigue, model of, 205
Mycoplasma, Morowitz’s work on, 145–46
Mycoplasma genitalium: 525 genes of, 148, 149, 150; metabolic interactions in, 146–47; models of, 146–50; synthetic cell with chromosome of, 150; 3D visualisation of, 152–53, 153
Mycoplasma pneumoniae, 148, 154
Navier, Claude-Louis, 45
Navier-Stokes equations, 45; emergent properties and, 262, 263; explosive shock waves and, 72; Lorenz’s chaotic system and, 55–56; in multiscale modelling, 167. See also fluid dynamics
Neher, Erwin, 22
nervous system, 192–94. See also brain; spinal neuronal circuitry
neural networks, 96–97, 97; attention-based, 102; consciousness and, 214; deep physical (PINNs), 110–11, 221; ensembles of, 108; physics-informed (PINNs), 114; requiring trial and error, 111. See also deep learning neural networks; machine learning
neuromorphic computing, 221–26
neurons: artificial, 222–23, 224–25, 226; blood supply to brain and, 211; microtubules in, 213–14; in 3D structure of brain sample, 207
Neuroscience Information Framework, 211
Newton, Isaac, 41, 42, 264
Niederer, Steven, 172–73, 182–83
Nielsen, Paul, 172
Nievergelt, Jürg, 83
Nissley, Dwight, 122
NMR (nuclear magnetic resonance spectroscopy), 101, 104
Noble, Denis: Connection Machine and, 170, 172, 185; heart cell models, 76–80, 79, 136, 137, 162, 170–73, 190; levels of description and, 159
Noisy Intermediate Scale Quantum (NISQ) computers, 233
non-algorithmic processes. See noncomputable processes
noncomputable numbers, 52
noncomputable processes: consciousness as, 50, 213; in physics, 49–50
nonhierarchical coupled fluid models, 167
nonlinear differential equations, 43–44; climate system and, 6
nonlinear dynamical systems: analogue module of supercomputer and, 238; Hodgkin-Huxley equations and, 222; human complexity and, 215–16
nonlinearity: abundance of, 18, 44, 109; curve fitting and, 109–10; deep neural
networks and, 97; deterministic chaos and, 18; difficulty of prediction and, 106; in multiscale, multiphysics modelling, 164; non-Gaussian statistics and, 108; in Turing’s model of patterns, 143
“normal,” meaning of, 252, 254
normal distribution, 107, 107–8
NP-hard problems, 90–91
nuclear weapons: fluid dynamics and, 72, 73, 74; simulating the effects of, 86
nucleotide bases, 26
Nurse, Paul, 8–9, 16, 37–38, 157–59
object-oriented programming, in Mycoplasma model, 147
Olson, Art, 152
operons, 154, 158
optical computers, 219, 220, 221
optimisation: linear, in Mycoplasma model, 148; on smooth landscape, 108–10, 110
ordinary differential equations, 44; in the biosciences, 8; cellular processes and, 117; in current medical applications, 244; in customised heart twins, 178; in E. coli model, 151–52; feedback by nervous system and, 194; in heart cell model, 138, 173; and coupled to PDEs, 162; in HIV simulations, 122–23, 124, 125; in Hodgkin-Huxley, 46; insufficient for Virtual You, 215; in Lorenz simulations, 55; in multicompartmental VCell models, 154–55; Mycoplasma models and, 146, 147, 148; in T cell models, 127. See also differential equations
organ and organ systems, 162, 191–95, 193, 215
osteoporosis, 195, 243
outliers in data, 106, 108
overfitting: in machine learning, 106. See also curve fitting
pacemaker, cardiac. See sinoatrial node
pacemaker, gastric, 203–4
pacemaker implant, 173, 176, 178, 180, 183, 194, 254; Micra model of, 176, 176
Palmer, Tim, 57–58, 62
Palsson, Bernhard, 205
Pan, Jian-Wei, 235
pancreatic cells, 156
parallel-in-time methods, 83–84
parallel processing, 81–82, 83–84, 91–92
parameters: in E. coli model, 151–52; of personalised models, 215. See also rate parameters
parareal algorithm, 84
Parkinson’s disease, 91
partial differential equations, 44–45; in the biosciences, 8; climate system and, 6; explosive shock waves and, 72; in heart simulations, 169–70; in high-fidelity digital twins, 244; in liver lobule model, 201; to model mitochondria, 155; to model organs and organ systems, 192, 194–95; to model whole human heart, 162, 173; patterns of living things and, 142–43, 145; in VCell, 156; wave equation as, 49–50. See also differential equations
patch clamp, 22, 23
patents, 36
patterns in cells, 142–45, 156
Pendry, John, 218
Penrose, Roger, 50, 212–14, 233, 235
periodic attractor, 59
personal data, 14–19, 34, 247, 252
personalised medicine, 11, 245–50; in cancer treatment, 135–36; digital twins and, 245–50; drug development for, 129, 132; genetic code and, 25
personalised models, 215; of brain, 208–10; of heart, 178–83; of lungs, 198–99
petascale computers, 80, 81, 82, 84
phase transitions, 74–75, 75
phenotypes, 27–28
photonic chip, 219, 221
photonic quantum computers, 238
PhysiCell, 160, 161, 162
physics, noncomputable processes in, 49–50
physics-based simulations: Big AI and, 96, 112; in high-fidelity digital twins, 244. See also multiscale and multiphysics modelling
physics-informed neural networks (PINNs), 114
Physiome Project, 11, 171, 190
PINNs (physics-informed neural networks), 114
Pitts, Walter, 96
Plank, Gernot, 174, 178, 183, 187
PNNs (deep physical neural networks), 110–11, 221
Poincaré, Henri, 44, 65, 99, 163
populations, virtual, 254, 255
posits, 54
Post, Emil, 48–49
posthuman future, 254
potassium channel, cardiac, 139
Pour-El, Marian, 49–50
power consumption: in Aurora supercomputer, 82; by machine learning, 106, 110; by photon-based quantum computers, 237; slashed by analogue computing, 218, 219; by SpiNNaker (spiking neural network architecture) supercomputer, 223; by supercomputers, 82
precision cardiology, 178–83. See also heart twins
precision medicine: in cancer treatment, 135; genomics-based, 246; limitation of, 248; sepsis and, 160
predictions: actionable, 88; chaotic systems and, 44; digital twins used for, 250; lacking in evolutionary theory, 66–67; from multiscale, multiphysics models, 189; of Mycoplasma model, 150; personalised heart models and, 182; as probabilities, 90; as test of theories, 37, 67; uncertain in Covid-Sim, 88–90; unreliability of machine learning for, 106
predictive, quantitative biology, 36
predictive medicine, 244, 245–46, 249
probe-based confocal laser endomicroscopy, 191
Project K, 145, 151, 152
Prometheus, 131
protein folding problem, 29–32, 100–105
proteins: binding to candidate drugs, 112; created by ribosomes, 30–32; genetic code and, 26, 28; many from a single gene, 29; in metabolic model, 205; three-dimensional shape of, 29–32, 100–105, 101
protein universe, 104
proteome, AlphaFold predictions of, 102–3
proteomics, 33
 Purkinje fibres, 79
Pythagoras, 37
quantum advantage, 234–38
qubits, 228, 229, 230, 232–33, 234, 238
racism, 105, 252
radiation doses, patient-specific, 190
radio telescope, world’s biggest, 85
Ralli, Alexis, 233
Ramakrishnan, Venki, ix, 30
Ramanujan, Srinivasa, 66
Randles, Amanda, 186
random circuit sampling problem, 234–35
RAS proteins, 122, 165
rate parameters: for cellular processes, 117–19; for HIV simulations, 122, 124–25; for T cell chemical reactions, 127
rationalism, 40
rational numbers, 51, 52. See also floating-point numbers
Razavi, Reza, 178
reaction-diffusion equations, 143–44
reality: analogue processing and, 218; mathematics and, 41, 213; Wolfram’s model of universe and, 264
receptors, cellular, 119
Recon3D, 205
refractive index: of metamaterials, 218, 219; negative, 218n
regulators: orthopaedic devices and, 196; turning to digital twins, 180, 189–90
reproducibility issues, 35, 36, 87–88; with COVID-19 models, 88, 100; with personalised models, 215
Reynolds number, 84
rheumatoid arthritis, 194
ribosomes, 30–32, 31
Richards, Graham, 129
Richards, Ian, 49–50
Richardson, Lewis Fry, 5
Ritter, Petra, 208
RNA, 26, 30, 31
Rodriguez, Blanca, 137–38, 173
Röntgen, Wilhelm, 21–22
RoseTTAFold, 104
rounding errors, 55, 60, 61–62, 63; butterfly effect and, 65; machine learning and, 107; stochastic rounding and, 64
Rudy, Yoram, 138, 173, 174
Ruelle, David, 59
Russell, Bertrand, 67
Sadiq, Kashif, 122
Sagar, Mark, 191
Sakmann, Bert, 22
Samuel, Arthur L., 96
Sanger, Fred, 23, 26
Sanghvi, Jayodita, 149–50
sarcomeres, 168–69, 181
SARS-CoV-2: cryo-electron microscopy of, 121; drugs to inhibit protease of, 113–14; model of immune responses to, 162; origin in animals, 120; unpredictable mutants of, 120. See also COVID-19
Sauer, Tim, 63
Scafell Pike, 131
Schemmel, Johannes, 224–26
Schrödinger, Erwin, 228
Schrödinger’s cat, 228, 229
scientific method, 19, 39–41, 96
sea-level rise, 86
Segal, Eran, 247
sepsis, 160
Serrano, Luis, 154
Shahriyari, Leili, 92
Shelley, Mary, 45, 187
Shi, Leping, 226
shooting method, 84
Shor, Peter, 229
Shuler, Michael, 146
sick sinus syndrome, 159
signal transduction, cellular, 119
sign bit, 52–53, 53
significand, 52–53
simulated annealing, 109
simulation science, origins of, 71–75
single precision floating-point numbers, 53, 54; Bernoulli map and, 60–63; Lorenz 96 and, 63; machine learning and, 107; stochastic rounding and, 64
sinoatrial node, 159, 168, 172
skeleton. See musculoskeletal models
Sloot, Peter, 16, 132
Smalll, Bruce, 172
small intestine and stomach, models of, 203–4
smartphones: cardiac dynamics simulations on, 182; in diagnosis, 245; gathering patient data, 33–34
smell, sense of, 211–12, 214
Smith, Ham, 27
Smith, Nic, 172
Solodkin, Ana, 210
Solovyova, Olga, 178
Solvay, Ernest, 163
Solvay Conferences, 163–64
spinal neuronal circuitry, 207–8
SpiNNaker (spiking neural network architecture), 223–24, 224
Square Kilometre Array (SKA), 85
squid giant axon, 22, 45, 76
Stahlberg, Eric, 92, 113
statistical mechanics, 56, 166
Steen, S. W. P., 212
Steitz, Fred, 122
stents: for brain aneurysms, 184, 186; coronary, 179, 180
Stevens, Rick, 82, 113–14
stochastic differential equations, 117, 151–52. See also differential equations
stochastic rounding, 64
Stokes, George Gabriel, 45
stomach and small intestine, models of, 203–4
strange (chaotic) attractors, 58, 59; turbulence and, 84
Streitz, Fred, 122

For general queries, contact webmaster@press.princeton.edu
stroke, 181, 196, 210, 211
structured data, 33, 34
sudden cardiac death, 177
Summit, 131
supercomputers, 80–84; codes for, 83;
cosmological simulations and, 261; in
drug development, 131; heterogeneous
architectures of, 216; neuromorphic,
223–24, 224; next generation of, 238;
power consumption by, 82. See also
exascale computers
SuperMUC-NG, 1–2, 131
Suresh, Vinod, 192
surrogate models, 99, 167, 195
Sycamore quantum computer, 234–35, 236, 237
synapses, 207; artificial, 224–25, 226;
imagery of tissue samples and, 92
synthetic cells, 150, 151
synthetic neurons. See artificial neurons
tachycardia, prediction of, 178
Takahashi, Koichi, 147
Takens, Floris, 59
Tawhai, Merryn, 198–99
T cells: agent-based models, 160; cancer
and, 128–29; dendritic cells and,
160; foreign antigens and, 124–25,
127; nerves in spleen and, 193–94;
ODE models showing activation of,
127–28; in SARS-CoV-2 infection, 162;
viral peptides and, 125; virtual T cells,
126–29
type in medicine and biology: compared
to physical sciences, ix, 6, 8, 112;
diagnosis and, 248–49; Francis Bacon,
40–41; information flow and, 158–59;
laws of nature and, 8–9, 37; to make
sense of data, 36–38; to make sense
of experiments, 9, 36–37, 67; need
for more of, 38, 66–68, 246. See also
mathematics
Thiele, Ines, 205–6
Thomas, Randall, 184
Thompson, D’Arcy, 143
Thompson, Silvanus, 42
thumb, in primates, 197
Tianjic chip, 226
tissues, models of, 162, 214–15
Titan, 131
Tomita, Masaru, 146
Torvalds, Linus, 183
Townsend-Nicholson, Andrea, 34
transcranial electromagnetic stimulation
(TMS), 208
transfer RNA, 30, 31
travelling salesman problem, 91
Trayanova, Natalia, 182
trust in simulations, 87–90; CovidSim
pandemic simulations and, 88–90;
government policies and, 253; per-
sonalised models and, 215
trust in use of data, 251–52
Tsien, Dick, 79
turbulence: in breathing, 198; in cloud
formation, 7; on hexagonal lattice, 263;
machine learning and, 106–7; non-
Gaussian statistics in, 108; parallel-in-
time method and, 84; periodic orbits
of, 59
Turing, Alan: on limits of computation,
48–49, 51, 213, 229; on pattern for-
mation, 143–45, 156
Ulam, Stanislaw, 44, 73–74, 118, 261
uncertainty quantification, 88, 89
UNIVAC, 74
unstable periodic orbits, 59, 61, 62
unstructured data, 33–34
unum (universal number) format, 54
urban planning, application of exascale
machines to, 86
vacines: for COVID-19, 247; for hepatitis
B, 120; opposition to, 87
vagus nerve, 193
Vázquez, Mariano, 138, 174–75, 200–201
variational quantum eigensolver (VQE),
238
Vaughan-Jones, Richard, 170
VCell, 155–57
Venter, Craig, 27, 146, 147–48, 150, 245,
246, 247
ventricular arrhythmias, 177
ventricular cell model, 79
ventricular model, 162
Vesalius, Andreas, 20, 20, 189
Viceconti, Marco, 195
Vickers, John, 3–4
Vigmond, Edward, 182, 187
viral peptides, 123, 124, 125
viral quasi-species reconstruction problem, 223
Virtual Brain, The, 206–12, 209
virtual human, global enterprise to create, 10–12
Virtual Humans (film), 1–3, 2, 174, 195, 200–201, 242
Virtual You: analogue processors in, 238–39; ancient quest for, 240–42; enhancement and, 254; experimental treatments on, 254; five steps in creation of, 11–12, 189, 243, 244; hybrid quantum-classical machines and, 238–39; limitations of current models and, 215–16; long path to, 244; multiple versions of, 250–51, 251; new issues prompted by, 251–55; quantum computing and, 229–31; representation of the world and, 242–43; trust in, 87–88; twenty-first century medicine and, 245–49; ultimate aim of, 3, 39. See also digital twins
virus simulations, 119–21. See also HIV simulations
voltage clamp, 22, 76
von Heijne, Gunnar, 32
von Neumann, John, 73, 102, 261
von Neumann bottleneck, 83
Vorobyov, Igor, 139
VVUQ (validation, verification, uncertainty quantification), 88
Waage, Peter, 118
Wainwright, Thomas, 74–75
Wakefield, Andrew, 87
Waldmann, Herman, 126
wall clock time, 76
Wan, Shunzhou, 60
Wang, Hongyan, 60, 61
Wang, Ziwen, 221, 222
Warshel, Arieh, 166
Watson, James, 40–41, 145
wave equation, noncomputable solutions to, 49–50
wave function, 227–28; collapse of, 213, 228, 233–34, 237; quantum computer and, 230
weather forecasting, 5–7, 74, 154, 165, 175; ensembles in, 57, 57–58; nuclear war simulation and, 86
Weinberg, Wilhelm, 67
Wild, Jim, 199
Willcox, Karen E., 88
will.i.am, 105
Williams, Michael, 233
Williams, Stan, 221–23
Winslow, Rai, 170, 171, 172
Wolfram, Stephen, 262–64
Workman, Paul, 104–5
X-ray diffraction, 22; of DNA, 40–41; of proteins, 100, 101, 104, 106; of ribosome, 30; of viruses, 120
X-rays, 14, 17, 21–22, 25, 40, 49, 100
Yonath, Ada, 30
Yoon-sun, 184–86, 185, 190
yottascale computers, 81
Zerial, Marino, 202–3
zettrascale computers, 81, 216
Zhang, Henggui, 159
Zhang, Pan, 235
Zhao, Jichao, 177