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INTRODUCTION

 Every summer,  after 11 months of work in a laboratory buried 
deep in the bowels of the Smithsonian’s National Museum of 
Natu ral History in Washington, DC, I have the chance to do 
what  every paleobiologist dreams of  doing when they decide to 
become a paleobiologist: fieldwork. The opportunity to find 
fossils of organisms that lived tens or even hundreds of millions 
of years ago casts a spell that is both potent and universal, as 
such fossils provide a road map to the origins and evolution of 
life on our planet. When we stare at a fossil,  whether it is a billion- 
year- old stromatolite cemented into a Montana cliff or a Tyran-
nosaurus rex toe bone from the hills of Wyoming, we pause and 
reflect. Perhaps we think of our own very fleeting lifespan— not 
of our individual life but that of our species. Or perhaps we are 
drawn to the near infinite number of events that  were required 
for the evolutionary pro cesses that gave rise to the fossil. We 
may won der how the organism died and how the fossil,  whether 
made of stone, encased in amber, or mummified by desiccation, 
could have possibly survived  these millions of years.

It was a specimen from the Kishenehn Formation in north-
western Montana, the fossil of a mosquito, that led me to ask a 
very diff er ent question. This was no ordinary mosquito. It was 
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the beautifully preserved fossil of a blood- engorged mosquito— 
the first ever found. We have all watched as a mosquito pushes 
its proboscis though our skin, searches for a tiny blood vessel, 
and begins to transfer blood into its abdomen. If we are patient, 
we see the abdomen of the insect expand and darken. If we are 
quick, we see with what  little force the blood- engorged mos-
quito can be smashed into unrecognizable fragments, a smear 
of blood spread over our skin. The chances that a blood- 
engorged mosquito, blown up like a taut balloon, would sur-
vive, intact, through the long and complex fossilization pro cess 
are next to nothing. Examining this impossible specimen 
through my hand lens, I thought of Michael Crichton’s Jurassic 
Park. Could  there be DNA pre sent? Perhaps even dinosaur 
DNA? No, of course not. The rocks  were too young. But might 
some trace of blood, some ancient biomolecule that was once 
an integral part of the insect, have been preserved? Answering 
this question would lead to two unexpected events. First, when 
my colleagues and I published a paper that described the pres-
ervation of 46- million- year- old remnants of hemoglobin in the 
abdomen of the fossil, and I was interviewed by National Public 
Radio, the fossil became fleetingly famous—at least as famous 
as a fossil insect can be in our dinosaur- centric world. Second, 
I became engrossed in the rapidly growing science of ancient 
biomolecules— the study of DNA, protein, pigments, and 
other organic material that has been preserved across millions 
of years. This fascination led me to write this book, so I could 
share some of the field’s awe- inspiring discoveries and explain 
how this focus on ancient biomolecules is completely changing 
the game of paleobiology.

For hundreds of years, paleobiologists have relied on a single 
tool with which to study, classify, and understand fossil organ-
isms: comparative anatomy. It is a power ful and surprisingly 
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discriminating instrument. The molars of modern  humans 
and Neandertals can be easily distinguished. Muscles, tendons, and 
ligaments leave  behind “scars” where they attached to bones, 
which can be used, for example, to establish ages of individuals 
of the same species. Through a histological examination of di-
nosaur bones, scientists have even been able to determine that 
a dinosaur was not only female but pregnant. In the past, 
phylogeny— through which we seek to understand the evolu-
tionary relationships of one organism to another— has been 
based solely on the morphology of the fossilized remnants of 
extinct animals.

Now, though, we can peer into the past by examining several 
diff er ent kinds of ancient biomolecules. We have ancient DNA. 
And not just degraded fragments of DNA but entire ancient 
genomes: the very source of evolution. Access to ancient genes 
has already allowed us to study evolution at the molecular level; 
the oldest sample to date, nearly 1.8 million years old, has been 
used to trace the early Pleistocene evolution of rhinoceroses. 
Ancient DNA has also allowed scientists to synthesize ancient 
proteins and show that their function differed from their mod-
ern counter parts.

We also have ancient proteins, which are even older than an-
cient DNA. While most scientists agree that the oldest ancient 
protein sequences to date are about 3.8 million years old,  there 
are data that suggest that sequenceable proteins can be isolated 
from the bones of T. rex and even older dinosaurs, some over a 
hundred million years old.  These sequences of ancient proteins 
help us document, albeit indirectly, mutations that occur in 
DNA. They also augment classical morphology- based classifi-
cation of long- extinct animals and plants.

But what about ancient biomolecules from  really deep time? 
While we may never have DNA or even protein sequences from 
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300- million- year- old mollusks, corals, or crinoids, scientists 
have documented an amazing array of other kinds of ancient 
molecules: cellulose from plants, chitin from the exoskeletons 
of arthropods, and pigments as beautifully colored as  those pro-
duced by organisms that live  today. Our ability to identify an-
cient pigments, for example, has allowed us to reconstruct the 
color patterns of organisms such as feathered dinosaurs.  These 
latter ancient biomolecules do not contain ge ne tic information, 
but they still shed light on a wide range of questions about ancient 
functions and be hav iors: If a 500- million- year- old organism 
produced a brilliant red pigment, does that mean that they—or 
perhaps their predators— could see and react to that pigment? 
When did color vision evolve? Was the evolution of skin and 
feather pigmentation involved in the evolution of sexual display 
and courting be hav ior?

In our examination of ancient biomolecules, we  will travel 
back to the very origins of life, as well as to some of the most 
in ter est ing places on Earth. We  will travel to Yoho National 
Park in Canada, where we  will examine the iconic organisms of 
the Burgess Shale; to the amber mines of the Dominican Re-
public, where we  will find a very diff er ent environment than 
that depicted in Jurassic Park; and to Clarkia, Idaho, where we 
 will split 15- million- year- old shale to expose leaves whose 
greenish color foretells the presence of the photosynthetic pig-
ment chlorophyll. We  will accompany scientists as they collect 
 these fossils and follow them in the lab as they extract and char-
acterize ancient biomolecules from fossils from deep time.

We  will begin our journey by spending a bit of time with my 
blood- engorged mosquito, as a means of introducing the methods 
and materials involved in this new frontier of science. Then, in 
chapter 2, we  will see just how far back in time ancient biomole-
cules are able to take us. The rest of the book is broadly or ga nized 
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by the diff er ent ancient biomolecules: in chapters 3 to 5, we  will 
discuss ancient pigments, which help us understand the colors 
of ancient life, as well as the evolution of color vision. In chap-
ter 6, we  will turn our attention to ancient biometals. While you 
might not think of metals as biomolecules, they have shown wide 
application to the study of ancient life; chapters 7 and 8 tackle 
one of the most illuminating types of ancient biomolecules, pro-
teins, which shed light on a wide range of topics— including 
evolutionary, behavioral, and physiological aspects of life in the 
past. The degree to which they extend into deep time also provides 
one of the more controversial topics in the field of paleobiology. 
 After discussing proteins, we turn to perhaps the holy grail of 
ancient biomolecules: ancient DNA. Our ability to document 
changes in DNA through deep time has uncovered the ge ne tic 
history of the evolution of many species, including, as we  will 
discuss in detail, that of our own. Our discussion so far has pri-
marily concerned the animal kingdom, but in chapter 11, we look 
at what we can learn about early plant life. We  will learn of the 
amazing diversity of ancient plant biomolecules and about 
the field of chemotaxonomy to which that diversity has given 
rise. We  will conclude our journey by turning our gaze from the 
past to the  future: what new discoveries  will the science of an-
cient biomolecules reveal?  Will ancient genomes allow us to 
produce  viable embryos and clone long-extinct animals?  Will 
we be able to make proteins that existed billions of years ago? 
While I cannot, of course, provide a definitive answer to  these 
questions, one  thing is certain: by the time you finish this book, 
you  will never think of a fossil in the same old way again.
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