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CHAPTER 1

Introduction: Electromagnetic Theory
without Myths

The full development of the theory of electromagnetism in the nineteenth century
stands as one of the greatest achievements in the history of physics. The theory of
electromagnetism as formulated by Maxwell is a mathematically consistent theory that
provides an excellent description of an extremely wide range of physical phenom-
ena. Of course, Maxwell’s electromagnetism is a classical theory that cannot properly
describe phenomena in which the quantum properties of the electromagnetic field play
an important role, but the quantum field theory of the electromagnetic field is built
upon the foundation of the classical theory.

Maxwell’s equations relate the electric andmagnetic fields,E andB, to each other and
to the charge density, ρ, and the current density, J . That is, ρ(x) is the electric charge
per unit volume at x, and for any unit vector n̂ at x, J(x) · n̂ gives the flux of charge per
unit area through an area element perpendicular to n̂. Maxwell’s equations in SI units1
are as follows:

∇ ·E= ρ

ε0
, (1.1)

∇ ×B− 1
c2
∂E
∂t

=μ0 J , (1.2)

∇ ·B= 0, (1.3)

∇ ×E+ ∂B
∂t

= 0. (1.4)

Here ρ and J must satisfy the charge-current conservation equation

∂ρ

∂t
+ ∇ · J = 0, (1.5)

1As discussed in the preface, SI units have the unfortunate feature that the three constants ε0 ≈ 8.85×
10−12 F/m (the vacuum permittivity), μ0 ≈ 1.26× 10−6 H/m (the vacuum permeability), and c≈ 3.00×
108 m/s (the speed of light) appearing in the equations of electromagnetism are not independent but satisfy
ε0μ0c2 = 1. Consequently, the appearance of formulas in SI units can be changed in nontrivial-looking ways
by using this identity.
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since otherwise, no solutions to eqs. (1.1) and (1.2) exist. Apart from this restriction,
ρ(t, x) and J(t, x) can be specified arbitrarily.

Maxwell’s equations have survived without modification for more than one and a
half centuries (i.e., the equations I have written above are equivalent to those given by
Maxwell). However, our understanding of electromagnetism at a fundamental level has
progressed greatly since the time of Maxwell. Despite this fact, many outdated ways of
thinking about electromagnetism remain prevalent. This is strongly reinforced by the
quasi-historical way in which electromagnetism is usually taught, even at the gradu-
ate level: One normally starts with Coulomb’s law in electrostatics, with point charges
taken as “fundamental.” This motivates the introduction of an electric field E satisfy-
ing eq. (1.1) as well as ∇ ×E= 0 (i.e., eq. (1.4) with ∂B/∂t= 0). Energy is assigned to
the electrostatic interaction via an analysis of the mechanical work done when moving
point charges quasi-statically. Similarly, in magnetostatics, one normally starts with the
Biot-Savart law for the force between current elements. This motivates the introduction
of a magnetic field B satisfying eq. (1.2) with ∂E/∂t= 0 as well as eq. (1.3). The dynam-
ical terms in E and B are then introduced to get the full Maxwell equations in the form
given above. A scalar potential, φ, and vector potential, A, satisfying

E=−∇φ− ∂A
∂t

, (1.6)

B=∇ ×A, (1.7)

also are introduced at some stage as a convenient way of solving the Maxwell equations
(1.3) and (1.4).

This manner in which the theory of electromagnetism is presented encourages a
number of unhealthy ways of thinking about the theory, which I have referred to as
“myths” in the title of this chapter. The most pernicious of these myths are the follow-
ing: (i) The field strengths,E andB, are taken to be fundamental, whereas the potentials,
φ and A, are viewed as quantities that are introduced merely as a convenience. (ii) The
energy, momentum, and stress properties of the electromagnetic field are considered to
be properties derived or guessed from interactions with charged matter and conserva-
tion laws rather than properties of the electromagnetic field having a fundamental status
comparable to that of Maxwell’s equations themselves. For example, in this regard, it is
often stated that the momentum density of the electromagnetic field is ambiguous up
to the addition of the curl of a vector field, since it is not uniquely determined by energy
conservation. (iii) Electromagnetic fields are considered to be produced by chargedmat-
ter (as opposed to the fact that electromagnetic fields interact with charged matter).
(iv) Point charges are taken to be a fundamental description of charged matter, despite
blatant mathematical inconsistencies associated with them, such as infinite self-energy.

In the following sections, I do my best to debunk these myths. There is, of course,
a serious pedagogical problem with my doing this, since to fully follow all of the
discussion in this chapter, readers will need to have a considerable knowledge of elec-
tromagnetic theory. While it would be reasonable to hope that readers will have a
considerable knowledge of electromagnetic theory by the time they have gotten to the
endof this book, it is not reasonable to assume such knowledge at the beginning. Indeed,
many of the points discussed here will be properly explained in detail only in the last
two chapters of this book. It is not necessary that the reader follow all details of the
discussion in this chapter—since everything said in this chapter will be elucidated in
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the remainder of the book—but it is important that the reader gain a sense of the
viewpoint on classical electromagnetism that I take. I feel that it is highly preferable
to begin this book in this way rather than to get started on the wrong foot by taking
the usual quasi-historical path. In the succeeding chapters, I develop the subject in a
largely conventional way—starting with electrostatics and magnetostatics before mov-
ing to full electrodynamics—but the viewpoint taken will always be fully compatible
with the discussion in this chapter.

Before discussing the above myths, I wish to make some comments about the rela-
tionship of classical electrodynamics to special relativity. Maxwell’s equations are not
compatible with the spacetime structure of pre-relativity physics unless one has a “pre-
ferred rest frame.” This, by itself, was not troubling in the nineteenth century, since
it was believed that there was a mechanical medium—the “luminiferous aether”—
through which electromagnetic fields propagated. Such an aether would naturally
provide a preferred rest frame. However, the lack of evidence in the Michelson-Morley
experiment for a preferred rest frame as well as other problems with the theory of the
aether resulted in severe difficulties that were ultimately resolved by the theory of spe-
cial relativity. In the theory of special relativity, the Newtonian time function t (defining
an “absolute notion” of simultaneity) and the metric of space are replaced by a single
quantity: the metric of spacetime. Classical electrodynamics is fully compatible with
the spacetime structure of special relativity, without the need for an aether.

The structure of classical electrodynamics is considerably simpler when formulated
within the framework of special relativity. I wait until chapter 8 to give a proper dis-
cussion of the formulation of electromagnetism within special relativity, but I wish to
make a few remarks here, so that the reader can get some flavor of what this formulation
looks like without waiting until near the end of this book. In special relativity, the scalar
potential, φ, and vector potential, A, are seen to be the time and space components of
a single “4-(dual-)vector potential”

Aμ= (−φ/c,A). (1.8)

The electric and magnetic fields are seen to arise from a single field strength tensor

Fμν = ∂Aν
∂xμ

− ∂Aμ
∂xν

, (1.9)

with xμ= (x0 = ct, x1, x2, x3). Since Fμν = −Fνμ, it has 6 independent components. For
an observer at rest in these coordinates, the electric field corresponds to the 3 time-space
components of Fμν

Ei = cFi0, i= 1, 2, 3, (1.10)

whereas the magnetic field corresponds to the 3 independent space-space components
of Fμν ,

Bi = Fjk, i= 1, 2, 3, (1.11)

where (i, j, k) is a cyclic permutation of (1, 2, 3). In particular, since observers whomove
relative to each other define different “time directions” in spacetime, what would be
claimed by one observer to be a “pure electric field” will be seen by another observer
to be a combination of electric and magnetic fields. The “invariant description” of the
field strengths is given by Fμν . Maxwell’s equations can then be written in terms of Fμν ,
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the spacetime metric, and the charge-current 4-vector:

Jμ= (cρ, J). (1.12)

Although the special relativistic formulation of classical electrodynamics has the
major advantage of simplicity, it has themajor disadvantage of unfamiliarity.Most read-
ers are unlikely to be familiar with the distinction between, for example, vectors and
dual vectors, and the role played by the spacetime metric in the equations of physics.
While these concepts are not inordinately difficult to explain—and I explain them in
chapter 8—it would be too much of a distraction to do so before presenting the theory
of electromagnetism. Therefore, I defer the discussion of special relativity until chap-
ter 8 and, with the exception of a few side comments, I do not use special relativistic
notation for classical electrodynamics until that point. However, it is important that
the reader be aware of the fact that classical electrodynamics is compatible with the
spacetime structure of special relativity even if we use a notation that does not make it
manifestly so.

1.1 The Fundamental Electromagnetic Variables Are the Potentials,
Not the Field Strengths

The electromagnetic field is a fundamental constituent of nature. Its existence does
not need to be justified or explained any more (or less) than the existence of, say, elec-
trons needs to be justified or explained. The electromagnetic field is a “gauge field,” the
same basic type of field that also describes theW and Z bosons and gluons. Indeed, the
electromagnetic field together with theW and Z fields comprise a unified “electroweak
gauge field” that describes both the electromagnetic and weak interactions. However,
for the (“low-energy”) phenomena of interest in this book, the electromagnetic field
effectively decouples from its electroweak partners and can be considered on its own.

I defer giving a mathematically complete discussion of electromagnetism as a gauge
field until chapter 9. What is necessary for the reader to be aware of now is that the
fundamental description of the electromagnetic field is given in terms of the poten-
tials φ and A, not the field strengths E and B. As explained below, there are situations
where the potentials contain more information than can be obtained from the field
strengths. However, φ and A do not uniquely describe the electromagnetic field: the
potentials φ′,A′ and φ,A are considered to be physically equivalent (i.e., they represent
the same electromagnetic field) if they differ by a gauge transformation, that is, if for
some function χ(t, x), we have2

φ′ =φ− ∂χ

∂t
, A′ =A+ ∇χ . (1.13)

In other words, an electromagnetic field is an equivalence class of potentials φ,A under
the transformation eq. (1.13).

It is easily verified that the field strengths, E andB, defined by eqs. (1.6) and (1.7), are
gauge invariant. Furthermore, it is not difficult to show that in any simply connected3

2In special relativistic notation, a gauge transformation can be expressed more simply as Aμ →Aμ +
∂χ/∂xμ.

3A simply connected region is one in which every closed loop can be continuously deformed to a point.
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spacetime region, if φ1,A1 and φ2,A2 give rise to the same field strengths E and B,
then φ1,A1 and φ2,A2 can differ at most by a gauge transformation. Thus, in any sim-
ply connected region, E and B contain all of the information contained in φ and A.
Since all physically measurable quantities must be gauge invariant, it is very convenient
in many circumstances to work with E and B rather than φ and A. In many contexts,
electromagnetic phenomena can be fully described in terms of E and B.

However, as we shall see in chapter 9, the coupling of the electromagnetic field to fun-
damental charged matter (namely, charged fields) can be described only in terms of the
potentials, not the field strengths. Furthermore, there are physically relevant situations
where E and B do not contain all of the information about the electromagnetic field.
As an example, consider the region outside an infinite solenoid. Suppose that inside
the solenoid, there is a nonvanishing, uniformmagnetic field, but outside the solenoid,
we have E=B= 0. Since the region outside the solenoid is not simply connected, the
fact that E and B vanish in that region does not imply that the potentials are gauge
equivalent to zero there. Indeed, eq. (1.7) implies, via Stokes’s theorem, that whenB �= 0
inside the solenoid, we have

∮
A · dl �= 0 for any loop outside the solenoid that encloses

it. (Note that
∮
A · dl is gauge invariant, i.e., its value does not change under eq. (1.13).)

A quantum mechanical charged particle that stays entirely outside the solenoid will be
affected by this vector potential, as it will produce a relative phase shift in the parts of the
wave function that go around the solenoid in different directions, producing a physically
measurable shift in the resulting interference pattern. This phenomenon, known as the
Aharonov-Bohm effect, is sometimes attributed to the weirdness of quantum mechan-
ics. However, the effect has nothing to do with quantum mechanics—the same effect
would occur for a classical charged field. And there is nothing weird about the effect,
once one recognizes that the electromagnetic field is represented, at a fundamental level,
by the potentials φ,A (modulo gauge), not the field strengths E,B.

Thus, while for many purposes, it is convenient to introduce and work with the field
strengths E and B, it is important to recognize that the fundamental description of
the electromagnetic field is given by the potentials φ and A. The Maxwell equations
(1.3) and (1.4) should be viewed as consequences of the definitions of E and B given by
eqs. (1.6) and (1.7).

1.2 Electromagnetic Energy, Momentum, and Stress Are an Integral
Part of the Theory

The electromagnetic field, like all other forms ofmatter, has energy, momentum, and
stress properties. These properties, like Maxwell’s equations (1.1)–(1.4), are an integral
part of the theory.

As discussed much more fully in chapter 9, classical electrodynamics can be viewed
as arising from the Lagrangian density

L= 1
2

(

ε0|E|2 − 1
μ0

|B|2
)

−φρ+A · J . (1.14)

Here, as discussed in section 1.1, the dynamical variables are φ and A, and the Euler-
Lagrange equations are obtained by varying L with respect to these variables; E and B
are viewed as the functions of φ and A defined by eqs.(1.6) and (1.7). In eq. (1.14), the
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charge density ρ and current density J are treated as externally prescribed, nondynam-
ical quantities.4 The Euler-Lagrange equations arising from the variation of eq. (1.14)
with respect to φ and A are precisely Maxwell’s equations (1.1)–(1.2). The additional
Maxwell equations (1.3)–(1.4) follow from the definitions (1.6) and (1.7) of E and B,
respectively. The fact that the Lagrangian must be viewed as a function of φ and A—
and the terms representing the coupling of the electromagnetic field to charged matter
cannot even be written down in terms of E and B—is further manifestation of the fact
that the fundamental dynamical variables in electomagnetism are φ and A.

The energy, momentum, and stress properties of the electromagnetic field are deter-
mined by its coupling to gravity. The coupling to gravity is obtained by generalizing the
Lagrangian (1.14) for the spacetime of special relativity to curved spacetime. This can
be done in a very simple and natural way, which is unique if one does not allow deriva-
tives of the metric to appear in theMaxwell Lagrangian. The stress-energy-momentum
tensor of the electromagnetic field is then obtained by functional differentiation of the
Lagrangian with respect to the spacetime metric, since this is what appears as a source
term for gravity in Einstein’s equation of general relativity. I briefly indicate how this
works in section 9.1. The only point I wish to make here is that, just as the Lagrangian
(1.14) gives rise to Maxwell’s equations, its natural generalization to curved spacetime
gives rise to the following formulas for the energy density E , momentum density P ,
and stress tensor�ij of the electromagnetic field:

E = 1
2

(

ε0|E|2 + 1
μ0

|B|2
)

, (1.15)

P = ε0E×B, (1.16)

�ij = ε0EiEj + 1
μ0

BiBj − 1
2
δij

(

ε0|E|2 + 1
μ0

|B|2
)

. (1.17)

These formulas should be viewed as having fundamental status in the theory of
electromagnetism, comparable to that of Maxwell’s equations.

In principle, the validity of eqs. (1.15)–(1.17) could be tested by observing the
gravitational effects of electromagnetic fields. Electromagnetic fields make nontrivial
contributions to the mass-energy of ordinary matter—certainly large enough to pro-
duce observable gravitational effects for macroscopic bodies. However, there is no way
to observe these effects separately from the gravitational effects of the nonelectromag-
netic constituents of matter. Thus, it would be necessary to observe the gravitational
effects of free electromagnetic fields if one wishes to test eqs. (1.15)–(1.17). The gravita-
tional effects of free electromagnetic fields are far too small to bemeasured in laboratory
experiments. However, in the early universe, the thermally distributed electromagnetic
radiation that presently constitutes the cosmic microwave background made a dom-
inant contribution to the energy density and pressure in the universe, both of which
affect the expansion of the universe. The expansion history of the universe is observed to
be in accord with the electromagnetic energy density and pressure of thermal radiation
obtained from the above formulas.

4Of course, the chargedmatter should really have its own dynamical degrees of freedom, and there should
be additional terms in the Lagrangian involving the fields representing the charged matter. The coupling
terms between the charged matter and electromagnetic field should then be represented in terms of φ,A,
and the dynamical fields describing the charged matter. This will be seen explicitly in chapter 9.
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There are important conservation laws associated with eqs. (1.15)–(1.17). In spe-
cial relativity, the “flow of mass” (momentum) and “flow of energy” represent the same
quantity apart from a factor of c2, so

S ≡ c2P = c2ε0E×B= 1
μ0

E×B (1.18)

represents the flux of energy per unit volume of the electromagnetic field. A computa-
tion using Maxwell’s equations yields (see section 5.1 for details)

∂E
∂t

+ ∇ ·S = −J ·E, (1.19)

∂Pi
∂t

−
3∑

j=1
∂j�ij = − [ρEi + (J ×B)i]. (1.20)

In the absence of charges and currents (i.e., when ρ= J = 0), the right sides of
eqs. (1.19) and (1.20) vanish. In this case, eqs. (1.19) and (1.20) have the interpreta-
tion of expressing local conservation of energy and momentum of the electromagnetic
field. To see this more explicitly, note that in a small volume δV about x, the quan-
tity δV∇ ·S represents the net flux of energy out of δV . By eq. (1.19), this is equal
to −δV∂E/∂t when ρ= J = 0, thus expressing local conservation of energy. Global
energy conservation for the electromagnetic field is obtained by integrating eq. (1.19)
over all of space, assuming that E and B vanish sufficiently rapidly near infinity. In that
case, the integral over all of space of ∇ ·S vanishes by Gauss’s theorem (see chapter 2),
and we obtain

d
dt

∫
E d3x= 0, (1.21)

provided that ρ= J = 0. Similarly, when ρ= J = 0, eq. (1.20) expresses local conser-
vation of momentum, and integration of eq. (1.20) over all of space yields the global
momentum conservation law

d
dt

∫
P d3x= 0. (1.22)

When ρ and J are nonvanishing, the right sides of eqs. (1.19) and (1.20) are, in gen-
eral, nonvanishing, and electromagnetic energy and momentum are not conserved by
themselves. This is because electromagnetic energy and momentum can be exchanged
with the energy and momentum of the charged matter. For the total (electromag-
netic and matter) energy to be locally conserved, the electromagnetic field must be
transferring energy to the matter at the rate

∂Ematter
∂t

= J ·E. (1.23)

Similarly, for total momentum to be conserved, the electromagnetic fieldmust be trans-
ferring momentum to the matter at the rate given by minus the right side of eq. (1.20);
that is, it must be exerting a force per unit volume, f , on the matter, given by

f = ρE+ J ×B. (1.24)
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In standard treatments of electromagnetism, the order of the arguments presented
above is reversed, giving rise to some serious difficulties. Instead of starting with the
eqs. (1.15)–(1.17) for energy density, momentum density, and stress, and then deriv-
ing the Lorentz force, eq. (1.24), standard treatments start with the Lorentz force—or
rather, the Coulomb’s law version of this expression for static point charges in elec-
trostatics. The “work done” in quasi-statically bringing charges together from infinity
is then calculated and is associated with the energy contained in the electromagnetic
field. This argument eventually leads to the correct formula ε02

∫ |E|2d3x for the energy
of the electromagnetic field in electrostatics. However, this argument works in electro-
statics because it is possible tomove a charged body in an electric field in such away that
its rest mass (i.e., internal energy) does not change. Although this may seem obvious,
the corresponding result does not hold in magnetostatics, because energy is required to
maintain the currents in a body. This is true for permanent magnets as well as current
loops. The rest mass of a magnetic dipole will change as it moves in a nonuniformmag-
netic field, as we shall see explicitly in section 4.3 and again in section 10.3.2. As I show
in section 4.3, the electromagnetic interaction energy of amagnetic dipoleµ in an exter-
nal magnetic field Bext can be derived straightforwardly from eq. (1.15) and yields the
value +µ ·Bext. However, many references give the incorrect formula −µ ·Bext based
on arguments using “work done,” failing to take into account the change in rest mass.

The formulas (1.15) for the electromagnetic energy density and (1.16) for the elec-
tromagnetic momentum densityP are justified in many standard treatments by taking
eq. (1.23) as a starting point. It is then natural to interpret eq. (1.19) (which is derived
directly from Maxwell’s equations) as representing local energy conservation. One
thereby can identify E and S ≡ c2P with electromagnetic energy density and energy
flux, respectively. However, this argument has the serious drawback thatP appears in
eq. (1.19) only in the form ∇ ·P . This leads many authors to suggest that P is unde-
fined up to the addition of the curl of a vector field. This is not correct; formulas forP
that differ by a curl of a vector field will have different gravitational consequences, so if
one has two formulas forP that differ by a curl, at most one of them can be valid.

In summary, rather than attempt to derive eqs. (1.15)–(1.17) from Maxwell’s equa-
tions by assuming that eq. (1.23) and eq. (1.24) hold, it is much healthier to view for-
mulas (1.15)–(1.17) as an integral part of the specification of the theory, with eq. (1.23)
and eq. (1.24) then following as consequences. The conservation laws (1.19) and (1.20)
provide important consistency relations between Maxwell’s equations and eqs. (1.15)–
(1.17), but they do not enable one to derive eqs. (1.15)–(1.17) fromMaxwell’s equations.
Equations (1.15)–(1.17) should be viewed as fundamental aspects of electromagnetic
theory, with a status similar to that of Maxwell’s equations.

1.3 Electromagnetic Fields Should Not Be Viewed as Being
Produced by Charged Matter

Maxwell’s equations (1.1)–(1.4) together with eqs. (1.23) and (1.24) describe the
interaction of the electromagnetic field with matter. The electromagnetic field does not,
in any sense, play a subordinate role in this interaction. The electromagnetic field has
its own independent dynamical degrees of freedom, and these should be thought of as
being on an equal footing with the dynamical degrees of freedom of the chargedmatter.
The electromagnetic field should not be thought of as being produced by charges and
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currents—despite the fact that ρ and J are commonly referred to as “source terms” in
Maxwell’s equations (and I use this terminology in this book).

The independent dynamical degrees of freedom of the electromagnetic field are
characterized by the initial value formulation of Maxwell’s equations, which is dis-
cussed in section 5.4. The theorem at the end of that section states the follow-
ing: Specify ρ(t, x) and J(t, x) on spacetime, subject to the conservation equation
(1.5). Let E0(x) and B0(x) be arbitrary vector fields on space such that ∇ ·E0 =
ρ(t= 0, x)/ε0, and ∇ ·B0 = 0. Then there exists a unique solution (E(t, x),B(t, x))
to Maxwell’s equations (1.1)–(1.4) such that E(t= 0, x)=E0(x), and B(t= 0, x)=
B0(x). Thus, there are as many solutions to Maxwell’s equations with a specified ρ
and J as there are vector fields (E0(x),B0(x)) satisfying the above conditions on
their divergence. The fact that this initial data for the electromagnetic field can be
freely specified shows that the electromagnetic field has its own independent dynam-
ical degrees of freedom. Solutions to Maxwell’s equations are not determined by
ρ and J .

The dynamical degrees of freedom of the electromagnetic field are not visible in
electrostatics and magnetostatics, since no time-independent solutions of Maxwell’s
equations with ρ= J = 0 go to zero at infinity. Thus, if one specifies time-independent
sources, ∂ρ/∂t= ∂ J/∂t= 0, then solutions to Maxwell’s equations for E and B with
∂E/∂t= ∂B/∂t= 0 and with E and B going to zero at infinity are uniquely determined
by ρ and J . Consequently, one can uniquely associate a stationary electric field Ewith a
stationary charge distribution ρ, and one can uniquely associate a stationary magnetic
fieldBwith a stationary current distribution J . Therefore, it is possible to view the elec-
tric field in electrostatics as being “produced” by charges, and it is possible to view the
magnetic field in magnetostatics as being “produced” by currents. In electrostatics, one
can even get away with saying—as is frequently done—that charges exert forces on one
another. This, of course, is not the case: The electromagnetic force (1.24) on a charged
body is exerted by the electromagnetic field that is present at the location of the body,
not by other, distant charges.

In electrodynamics, one is frequently interested in considering situations in which
there is “no incoming electromagnetic radiation.” As discussed in depth in section 5.2,
solutions with no incoming radiation are given by the retardedGreen’s function applied
toρ and J , and these solutions are uniquely determined byρ and J . Again, thismakes it
possible to take the view that, in the absence of incoming radiation, the electromagnetic
fields are “produced” by the charges and currents. However, while the “no incoming
radiation” condition is a useful idealization applicable to many problems, it should not
be taken seriously as an initial condition for our universe. Although we certainly do not
know the precise initial conditions at the “big bang,” we do know that matter in the very
early universe was an extremely hot and dense plasma. In such a hot and dense plasma,
the electromagnetic field “produces” charges (e.g., electron-positron pairs) to much the
same degree as charges “produce” electromagnetic fields. It certainly does not make any
sense to think of the charges as coming first and then producing the electromagnetic
fields.

Thus, although there are circumstances where one could take the view that elec-
tromagnetic fields are produced by charges, it is far healthier to think of the electro-
magnetic field and charged matter as independent entities that interact via Maxwell’s
equations and eqs. (1.23) and (1.24). Indeed, the view that electromagnetic fields are
produced by charges is particularly untenable in quantum field theory, since it is
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essential for the understanding of such phenomena as the vacuum fluctuations of the
electromagnetic field that the electromagnetic field have its own dynamical degrees of
freedom, independently of the existence of charged matter.

1.4 At a Fundamental Level, Classical Charged Matter Must Be
Viewed as Continuous Rather Than Point-Like

Maxwell’s equations (1.1)–(1.4) were formulated above using a continuum notion
of charge density ρ and current density J ; that is, ρ and J were taken to be smooth
functions of (t, x). These equations have a mathematically well-posed initial value for-
mulation, as already mentioned in section 1.3 and as discussed in depth in section 5.4.
However, in a complete theory, one must also specify the form of the charged matter
and its equations of motion. As discussed further in chapter 9, at a fundamental level,
charged matter is believed to consist of charged (quantum) fields. However, one can
also consider “phenomenological models” of chargedmatter, such as a charged fluid. In
any case, the equations of motion of the charged matter together with Maxwell’s equa-
tions comprise a coupled system that must be solved simultaneously—since themotion
of the charged matter depends on the electromagnetic field, but the dynamical evolu-
tion of the electromagnetic field depends on the charges and currents of the matter. It
is essential that the coupled Maxwell–charged-matter system have a well-posed initial
value formulation, so that there is no difficulty, in principle, in obtaining solutions to
the coupled system for given initial conditions.

However, at least 90% of what is normally treated in electromagnetism courses
does not consider the full, coupled Maxwell–matter system but instead considers the
following two idealized problems:

• Type I. For a given externally specified ρ and J , find the corresponding elec-
tromagnetic fields (i.e., the unique stationary solution in electrostatics and
magnetostatics and/or the retarded solution in electrodynamics).

• Type II. Find themotion of a charged body for given externally specified fieldsE
andB (i.e., neglecting the self-fields associated with the presence of the charged
body).

For these idealized problems, it is very useful to introduce the notion of a point charge.
By a “point charge of charge q” moving on the worldline X(t) (with |dX/dt|< c for

all t) is meant the charge-current

ρ(t, x)= qδ(x−X(t)) , J(t, x)= q
dX
dt
(t)δ(x−X(t)), (1.25)

where δ denotes the 3-dimensional Dirac delta function. This may be thought of as a
limit of a charge distribution that at each t becomes more and more concentrated at
the point X(t). This limit does not define a function, but it has a well-defined mean-
ing as a distribution.5 The charge-current eq. (1.25) satisfies eq. (1.5) in a well-defined,
distributional sense.

5A distribution is a linear map from “test functions” (i.e., smooth functions that are nonvanishing only in
a bounded region) into numbers that depends continuously on the test function in an appropriate sense. The
Dirac delta function is simply the evaluation map on test functions; that is, δ(x−X)maps the test function
f into the number f (X).
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It can be seen from Gauss’s law that for solutions to eq. (1.1) with ρ given by
eq. (1.25), the electric field Emust diverge near the charge as 1/|x−X|2. Consequently,
by eq. (1.15), the electromagnetic energy density diverges as 1/|x−X|4, which is not
integrable. Thus, the total electromagnetic energy of a point charge is infinite, and so
point charges cannot be considered to be physical objects in classical electrodynamics.
Nevertheless, they can be introduced in the context of problems of type I or type II
above.

In problems of type I, sinceMaxwell’s equations are linear inE andB, these equations
make perfectly goodmathematical sense when ρ and J (and hence, E and B) are distri-
butions rather than functions. It is extremely useful to consider solutions to Maxwell’s
equations with a point charge-current, eq. (1.25). Such solutions are of direct interest
for describing situations where the charge-current is highly localized, and more gen-
eral solutions can be obtained by “superposition” (again using the linearity of Maxwell’s
equations).

For problems of type II, it would be quite complicated to analyze the motion of an
extended charged body described by a causal dynamics compatible with special relativ-
ity, since the different electromagnetic forces on the different parts of the body would
induce internal oscillations. Onemight therefore be tempted to take a limit of vanishing
size of the body, wherein the complications due to internal dynamics should become
negligible. However, such a limit at fixed q leads one back to the problem of infinite self-
energy and also would require infinite mechanical stresses to keep the body from flying
apart. Nevertheless, we will see in chapter 10 that it is possible to take a limit in which
the size, charge, and mass of the body all scale to zero in a suitable manner. To leading
order, the motion x(t) of the body becomes independent of its internal structure and is
given by the Lorentz force equation6

dp
dt

= F= q
(
Eext + v ×Bext) , (1.26)

where v = dx/dt, and p= γmv with γ = (1− v 2/c2)−1/2. Here Eext and Bext are the
“externally prescribed” fields, with the influence of the charge-current of eq. (1.25)
ignored. Note that the force F appearing in eq. (1.26) corresponds to eq. (1.24), with
ρ and J given by eq. (1.25). The equation of motion (1.26) makes good mathematical
sense and, for specified external fields, has a unique solution for a given initial position
and velocity of the point charge.

One might attempt to go beyond the context of problems of type I or type II to con-
sider the full, coupled Maxwell-matter system with point charges. In other words, one
could attempt to solve Maxwell’s equations with source eq. (1.25) simultaneously with
eq. (1.26), where now E and B represent the full electromagnetic field, including the
effects of the point charge. However, this system of equations does not make mathe-
matical sense, since Maxwell’s equations imply that E must be singular at the location
of the charge, in which case, eq. (1.26) is ill defined. This is a reflection of the fact
that the coupledMaxwell-matter system is nonlinear, and distributional solutionsmake
sense for a nonlinear system only in very limited circumstances—which do not apply
here.

6I also show in chapter 10 how to obtain leading-order corrections to Lorentz force motion taking into
account the self-field of the body.
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This difficulty is resolved by simply recognizing that, at a fundamental level in clas-
sical electrodynamics,7 ρ and J must be taken to be quantities smoothly distributed in
spacetime. No difficulties of the sort mentioned in the previous paragraph arise when
one considers continuum charged matter. In particular, as we shall see in chapter 9, the
self-consistent coupled system of Maxwell’s equations and the equation of motion of a
charged scalar field is well posed. The notion of a point charge is convenient to intro-
duce in the circumstances described above, but it cannot be viewed as a fundamental
description of charged matter.

7The same is true in quantum electrodynamics in the sense that for any physically acceptable state of
charged matter, 〈ρ〉 and 〈J〉 must be smoothly distributed in spacetime.
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Born rigidity, 206
boundary/matching conditions; conductor, 28,

100; dielectric, 42–43; general medium,
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coherency matrix, 156
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dielectric medium; electrodynamics, 113–125;
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Fraunhofer, 152; Fresnel, 152; scattering, 148–150
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dipole moment density; electric, 41; magnetic, 65
Dirac monopoles, 199–203; quantization condition,

201
Dirac string, 200n8
Dirichlet problem, 30
dispersion, 119; anomalous, 122
dissipation, 102, 118, 124
Doppler shift, 184
Drude model, 123
dual field tensor, 185
dual vector, 164–165
duality rotation, 71, 185

Einstein summation convention, 170
electric parity, 56
electrostatics, 13–37
energy; conservation, 7–8, 72, 173, 185; in medium,

116; dielectric, 44–48; electromagnetic field, 71; in
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energy flux, 72; in medium, 116
Euler equation, 126, 127
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Fermat’s principle, 138, 140, 154
Fermi normal coordinates, 215
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electrostatics, 20–21; in magnetostatics, 60–61;
Lorentz, 11, 73, 176–177, 208–213; corrections
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4-velocity, 163
Fourier transform, 75
Fraunhofer diffraction, 152
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Gauss’s theorem, 14–15
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Hall effect, 68
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Hodge decomposition theorem, 103n13
Hopf fibration, 202n9
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index of refraction, 115
inductance, 68
induction equation, 127
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initial value formulation, 91–97

intensity, 140
interference, 140–147; Young’s experiment, 154
interference pattern, 141–142, 146–147
ionosphere, 125

Kirchhoff approximation, 151
Klein-Gordon field (charged), 194–195
Kramers-Kronig relations, 118

Lagrangian; charged particle, 191; electromagnetic
field, 5–6, 188–189; Klein-Gordon, 194–195

Laplace’s equation, 15
Laplacian, 14; on sphere, 23
Larmor radius, 178
Larmor’s formula, 84, 182
Legendre polynomials, 23
Lienard-Wiechert fields, 178–183; field strengths, 180;
potentials, 180; power radiated, 181–183

light cone, 162
light rays, 137–139, 153, 166; expansion, 153; shear,
153

Lorentz force, see force, Lorentz
Lorentz model, 120–125
Lorentz transformation, 160, 166–167; charge-current,
174; field strengths, 175

Lorenz gauge, see gauge conditions

magnetic charge, 200
magnetic diffusion, 130, 134
magnetic medium; electrodynamics, 113–120;
magnetostatics, 65–66, 69

magnetic monopoles, 199–203
magnetic parity, 56
magnetic scalar potential, 58
magnetic shielding, 69
magnetization, 65
magnetization current, 65
magnetoacoustic waves, 130, 134
magnetohydrodynamics, 125–131
magnetostatics, 50–69
mass conservation, fluid, 126
matched asymptotic expansions, 216
matching conditions, see boundary/matching
conditions

maximum principle, 36
Maxwell’s equations, 1, 70–71, 74; covariant form,
172–173; in medium, 113–115

mean value theorem, 36
metric; Euclidean space, 161; spacetime, 161; inverse,
164

Mie scattering, 148–150
modes; conducting cavity, 102, 111; waveguide,
104–107

momentum; canonical, 192; conservation, 7–8, 72,
173, 185; in medium, 116–117; electromagnetic
field, 71; hidden, 68, 221; of particle in special
relativity, 170

momentum density, 6, 71; in medium,
116
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multipole expansion
—in electrodynamics: nonrelativistic (Carte-
sian), 80–84; relativistic (spherical), 84–90
—in electrostatics: Cartesian, 22; spherical, 23
—in magnetostatics: Cartesian, 53–55; spherical,
55–58

multipole moments
—electrodynamic: electric parity, 90, 109;
magnetic parity, 89, 109
—electrostatic: Cartesian, 19–20; spherical, 27
—magnetostatic, 57

near-zone approximation, 216
Neumann function, spherical, 86
Newton’s second law, 169

Ohm’s law, 123, 127
optical fiber, 154
outgoing wave, 86

paramagnetic, 66
paraxial condition, 110
permeability, 66; vacuum, 1n1
permittivity, 42; complex, 118; vacuum, 1n1
phase velocity, 100, 119
plane wave, 97–100; expansion in spherical

harmonics, 109, 148
plasma, 123–125
plasma frequency, 124
Poincare transformation, 160
point charge, 10–12, 16–17, 21, 204–225

—motion of, 175–178, 221–225; including
self-force, 221–225; in uniform electric field,
177–178; in uniform magnetic field, 178
—radiation from, 178–183
—self-energy, 21, 206; contribution to mass, 213
—self-force, 213–221

Poisson’s equation, 13–14; dielectric, 42
polarization (dielectric), 41
polarization (wave), 99; by reflection, 132; circular,

99; degree of, 156; elliptical, 99; linear, 99; Stokes
parameters, 156

potential; 4-vector, 3, 171; magnetic scalar, 58; scalar,
2; vector, 2

power radiated; electric dipole, 84; from point charge,
181–183

power spectrum, 144
Poynting vector, 72
pre-acceleration, 223
proper time, 162–163

quadrupole moment, 19
quality factor, 102

radiation, 80–90; electric dipole, 82–84; electric
quadrupole, 84; magnetic dipole, 84

radiation field, 81
radiation reaction, see force, self-, point charge

Rayleigh scattering, 149–150
reduction of order, 224
resonant frequency, 122
rest mass, 62n5, 169, 212
retarded Green’s function, 74–78
retarded solution, 78–80, 173; for point charge,

179–181
retarded time, 79
runaway solution, 223

scattering; dielectric ball (Mie), 148–150; Rayleigh,
149–150; Thompson, 133

Schrodinger equation, 193
self-consistent perturbative equation, 223–225
self-energy, see point charge, self-energy
self-force, see force, self-
shielding; Faraday cage, 29; magnetic, 69
skin depth, 124
Snell’s law, 131, 154
solenoid, 67
Sommerfeld radiation condition, 86
spacelike related, 162
spacetime interval, 160
spacetime metric, 161; inverse, 164
spherical harmonics, 23–24; vector, 56
Stokes parameters, 156
stress tensor, 6, 71
stress-energy-momentum tensor, 172–173, 189–190;

conservation, 173, 212–213
structure group, 197
surface charge, 28, 43
susceptibility; electric, 42; complex, 118; magnetic, 65
synchrotron radiation, 182

tangent space, 161
tensor, 167
Thomas precession, 215n4, 221
Thompson scattering, 133
torque, 220; in electrostatics, 21; in magnetostatics,

61
total internal reflection, 131
trivial bundle, 198
twin paradox, 163, 184

U(1) group, 196
uniqueness results; electrodynamics, 96; electrostatics,

15–17, 29, 34; magnetostatics, 53; wave equation, 95

wave equation, 74
wave 4-vector, 166
waveguide, 102–107; modes; evanescent, 105; TE, 106,

111; TEM, 107; TM, 106, 111
wave vector, 99
WKB approximation, 136, 153
worldline, 163

Yang-Mills theory, 199
Young’s experiment, 154




