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1.
Minimums, Maximums,

Derivatives, and

Computers

1.1 Introduction

This book has been written from the practical point of view of the
engineer, and so you’ll see few rigorous proofs on any of the pages
that follow. As important as such proofs are inmodernmathematics,
I make no claims for rigor in this book (plausibility and/or direct
computation are the themes here), and if absolute rigor is what you
are after, well, you have the wrong book. Sorry!

Why, you may ask, are engineers interested in minimums? That
question could be given a very long answer, but instead I’ll limit
myself to just two illustrations (one serious and one not, perhaps,
quite as serious). Consider first the problem of how to construct a
gadget that has a fairly short operational lifetime and which, during
that lifetime, must perform flawlessly. Short lifetime and low failure
probability are, as is often the case in engineering problems, po-
tentially conflicting specifications: the first suggests using low-cost
material(s) since the gadget doesn’t last very long, but using cheap
construction may result in an unacceptable failure rate. (An exam-
ple from everyday life is the ordinary plastic trash bag—how thick
should it be? The bag is soon thrown away, but we definitely will be
unhappy if it fails too soon!) The trash bag engineer needs to calcu-
late the minimum thickness that still gives acceptable performance.
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For my second example, let me take you back to May 1961, to the
morning the astronaut Alan Shepard lay on his back atop the rocket
that wouldmake himAmerica’s firstman in space. Hewas very brave
to be there, as previous unmanned launches of the same type of
rocket had shown a disturbing tendency to explode into stupendous
fireballs.When askedwhat he had been thinking just before blastoff,
he replied “I was thinking that the whole damn thing had been built
by the lowest bidder.”

This book is a math history book, and the history of minimums
starts centuries before the time of Christ. So, soon, I will be starting
at the beginning of our story, thousands of years in the past. But
before we climb into our time machine and travel back to those
ancient days, there are a few modern technical issues I want to
address first.

First, to write a book on minimums might seem to be a bit nar-
row; why not include maximums, too? Why not write a history of
extremas, instead? Well, of course minimums and maximums are
indeed certainly intimately connected, since a maximum of y(x) is
a minimum of −y(x). To be honest, the reason for the book’s ti-
tle is simply that I couldn’t think of one I could use with extrema
as catchy as is “When Least Is Best.” I did briefly toy with “When
Extrema Are xxx” with the xxx replaced with exotic, exciting, and
even (for a while, in a temporary fit of marketing madness that I
hoped would attract Oprah’s attention), erotic. Or even “Minimums
Are from Venus, Maximums Are from Mars.” But all of those (cer-
tainly the last one) are dumb, and so it stayed “When Least Is Best.”
There will be times, however, when I will discuss maximums, too.
And now and then we’ll use a computer as well.

For example, consider the problemof finding themaximumvalue
of the rather benign-looking function

y(x) = 3 cos(4πx − 1.3) + 5 cos(2πx + 0.5).

Some students answer too quickly and declare the maximum value
is 8, believing that for some value of x the individual maximums of
the two cosine terms will add. That is not the case, however, since
it is equivalent to saying that there is some x = x̂ such that

4πx̂ − 1.3 = 2πn

2πx̂ + 0.5 = 2πk,
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where n and k are integers. That is, those students are assuming there
is an x̂ such that

x̂ = 2πn + 1.3

4π
= 2πk − 0.5

2π
, n and k integers.

Thus,

2nπ + 1.3 = 4πk − 1,

or

2.3 = 4πk − 2πn = 2π(2k − n),

or

π = 2.3

2(2k − n)
= 23

20(2k − n)
.

But if this is actually so, then as n and k are integers wewould have
π as the ratio of integers, i.e., π would be a rational number. Since
1761, however, π has been known to be irrational and so there are
no integers n and k. And that means there is no x̂ such that y(x̂) = 8,
and so ymax(x) < 8.

Well, then, what is ymax(x)? Is it perhaps close to 8? You might try
setting the derivative of y(x) to zero to find x̂, but that quickly leads
to a mess. (Try it.) The best approach, I think, is to just numerically
study y(x) and watch what it does. The result is that ymax(x) =
5.7811, significantly less than 8. My point in showing you this is
twofold. First, a computer is often quite useful in minimum studies
(and we will use computers a lot in this book). Second, taking the
derivative of something and setting it equal to zero is not always
what you have to do when finding the extrema of a function.

An amusing (and perhaps, for people who like to camp, even use-
ful) example of this is provided by the following little puzzle. Imag-
ine that you have been driving for a long time along a straight road
that borders an immense, densely wooded area. It looks enticing,
and so you park your car on the side of the road and hike into the
woods for a mile along a straight line perpendicular to the road. The
woods are very dense (you instantly lose sight of the road when you
are just one step into the woods), and after a mile you are exhausted.
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You call it a day and camp overnight. When you get up the next
morning, however, you’ve completely lost your bearings and don’t
know which direction to go to get back to your car. You could, if
you panic, wander around in the woods indefinitely! But there is a
way to travel that absolutely guarantees that you will arrive back at
your car’s precise location after walking a certain maximum distance
(it might take even less). How do you walk out of the woods, and
what is the maximum distance you would have to walk? The answer
requires only simple geometry—if you are stumped the answer is at
the end of this chapter.

1.2 When Derivatives Don’t Work

Here’s another example of a minimization problem for which cal-
culus is not only not required, but in fact seems not to be able to
solve. Suppose we have the real line before us (labeled as the x-axis),
stretching from −∞ to +∞. On this line there are marked n points,
labeled in increasing value as x1 < x2 < · · · < xn. Let’s assume all the
xi are finite (in particular x1 and xn), and so the interval of the x-axis
that contains all n points is finite in length. Now, somewhere (any-
where) on the finite x-axis we mark one more point (let’s call it x).
We wish to pick x so that the sum of the distances between x and all
of the original points is minimized. That is, we wish to pick x so that

S = |x − x1| + |x − x2| + · · · + |x − xn|
is minimized. I’ve used absolute-value signs on each term to insure
each distance is non-negative, independent of where x is, either to
the left or to the right of a given xi . Those absolute-value signs may
seem to badly complicate matters, but that’s not so. Here’s why.

First, focus your attention on the two points that mark the ends
of the interval, x1 and xn. The sum of the distances between x and
x1, and between x and xn, is

|x − x1| + |x − xn|
and this is at least |x1 − xn|. If x > xn, or if x < x1 (i.e., if x is
outside the interval), then strict inequality holds, but if x is anywhere
inside the interval (i.e., x1 ≤ x ≤ xn) then equality holds. Thus, the
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minimumvalue of |x−x1|+|x−xn| is achieved by placing x anywhere
between x1 and xn.

Next, shift your attention to the two points x2 and xn−1. We can
repeat the above argument, without modification, to conclude that
the minimum value of |x − x2| + |x − xn−1| is achieved when x is
anywhere between x2 and xn−1. Note that this automatically satisfies
the condition for minimizing the value of |x − x1| + |x − xn|, i.e.,
placing x anywhere between x2 and xn−1 minimizes |x − x1| + |x −
x2| + |x − xn−1| + |x − xn|. You can now see that we can repeat this
line of reasoning, over and over, to conclude

|x − x3| + |x − xn−2| is minimized by placing x anywhere
between x3 and xn−2,

|x − x4| + |x − xn−3| is minimized by placing x anywhere
between x4 and xn−3,

...

and finally, if we suppose that n is an even number of points, then

|x − xn
2
| + |x − xn

2 +1| is minimized by placing x anywhere
between xn

2
and xn

2 +1.

So, we simultaneously satisfy all of these individual minimizations
by placing x anywhere between xn/2 and x(n/2)+1 (if n is even), and
this of course minimizes S.

But what if n is odd? Then the same reasoning as for even n still
works, until the final step; then there is no second point to pair with
x(n+1)/2. Thus, simply let x = x(n+1)/2 and so |x − x(n+1)/2| = 0, which
is certainly the minimum value for a distance. Thus, we have the
somewhat unexpected, noncalculus solution that, for n even, S is
minimized by placing x anywhere in an interval, but for n odd there
is just one, unique value for x (the middle xi) that minimizes S.

1.3 Using Algebra to Find Minimums

As another elementary but certainly not a trivial example of the
claim that derivatives are not always what you want to calculate,
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consider the fact that ancient mathematicians knew that of all rect-
angles with a given perimeter it is the square that has the largest area.
(This is a special result from a general class of maximum/minimum
questions of great historical interest and practical value called iso-
perimetric problems, and I’ll have more to say about them in the next
chapter.) Ask most modern students to show this and you will al-
most surely get back something like the following. Define P to be
the given perimeter of a rectangle, with x denoting one of the two
side lengths. The other side length is then (P − 2x)/2, and so the
area of the rectangle is

A(x) = x

(
P − 2x

2

)
= 1

2
Px − x2.

A(x) is maximized by setting dA/dx = 1
2P −2x equal to zero, and so

x = 1
4P , which completes the proof. Using only algebra, however,

an ancient mathematician could have argued that

A = x

(
P − 2x

2

)
= 1

2
Px − x2 = P 2

16
− P 2

16
+ 1

2
Px − x2

= P 2

16
−
(
x2 − 1

2
Px + P 2

16

)
= P 2

16
−
(
x − P

4

)2

≤ P 2

16

since (x − (P/4))2 ≥ 0 for all x. That is, A is never larger than the
constant P 2/16 and is equal to P 2/16 if and only if (a useful phrase
I will henceforth write as simply iff) x = P/4, which completes the
ancient, noncalculus proof.

As a final comment on this result, which again illustrates the
intimate connection between minimum and maximum problems,
we can restate matters as follows: of all rectangles with a given
area, the square has the smallest perimeter. This is the so-called
dual of our original problem and, indeed, all isoperimetric prob-
lems come in such pairs. I’ll prove this particular dual in section
1.5. Another useful isoperimetric result that seems much like the
one just established—one also known to the precalculus, ancient
mathematicians—is not so easy to prove: of all the triangles with
the same area, the equilateral has the smallest perimeter. See if you
can show this (or its dual) before I do it later in this chapter.

We can use the previous result—of all rectangles with a fixed
perimeter, the square has the maximum area—to solve without
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calculus a somewhat more complicated appearing problem found
in all calculus textbooks. Suppose we wish to enclose a rectangular
plot of land with a fixed length of fencing, with the side of a barn
forming one side of the enclosure. How should the fencing now be
used? We could, of course, use calculus as follows: let x be the length
of each of the two sides perpendicular to the barn wall, and � − 2x

be the length of the side parallel to the barn wall (� is the fixed, total
length of the fencing). Then the enclosed area is

A = x(� − 2x) = x� − 2x2

and so

dA

dx
= � − 4x,

which, when set equal to zero, gives x = 1
4�. Thus, � − 2x = 1

2�,
which says the enclosed area is maximized when it is twice as long
as it is wide. But this solution is far more sophisticated than required.
Simply imagine that we enclose another rectangular area on the
other side of the barn wall. We already know that, together, the
two rectangular plots should form a square, and so each of the two
rectangular plots are half of the square, i.e., twice as long in one
dimension as in the other.

Our ancient mathematician’s trick of completing the square is a
very old one, and some historians claim that it can be found implicit
in Euclid’s Elements (Book 6, Proposition 27), circa 300 B.C. There, the
problem discussed is equivalent to that of dividing a constant into
two parts so that their product is maximum. So, if the constant is C,
then the two parts are x and C − x, with the product

M = x(C − x) = Cx − x2 = −(x2 − Cx)

= −
(

x2 − Cx + C2

4
− C2

4

)
= −

(
x − C

2

)2

+ C2

4
.

Thus, as (x − (C/2))2 ≥ 0 for all x, then M is never larger than C2/4
and is equal to C2/4 iff x = C/2.

Stated this way, Euclid’s problem surely seems rather abstract, but
in 1673 the Dutch mathematical physicist Christiaan Huygens gave
a nice physical setting to the calculation. Suppose we have a line and
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A

C

B
a

x

b

c

d1

d2

FIGURE 1.1. Huygen’s problem.

two points (A and B) not on the line. Where should the point C be
located on the line so that the sum of the squares of the distances
from C to A and C to B, (AC)2 + (BC)2, is minimum? With no loss
in generality we can draw the geometry of this problem as shown
in figure 1.1, with A on the y-axis. The figure shows A and B on
the same side of the line, and places C between A and B, but as the
analysis continues you’ll see that these assumptions in no way affect
the result.

In the notation of the figure we are to find the value of x that,
with a, b, and c constants, minimizes d2

1 + d2
2 . Now,

d2
1 + d2

2 = {
x2 + a2} + {

(b − x)2 + c2}
= a2 + b2 + c2 − 2x(b − x)

Thus, we need to maximize the product x(b − x); but we already
know from Euclid how to do that—set x = 1

2b. That is, C is midway
between A and B. If you redraw figure 1.1 so that either x >b or
x < 0, and then write the expression for d2

1 + d2
2 , you’ll see that the

result is unchanged.
An elementary example of an extremal problem in which there is

(by the very nature of the problem) nothing to differentiate comes
from discrete probability theory. Then the independent variable
does not vary continuously but, rather, in discontinuous jumps. In
such cases, taking a derivative simply has no meaning. So, suppose
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we toss four fair die, i.e., each one of the six faces on each die has
probability 1

6 of showing. What is the most likely number of die
that will show a 3? The answer can only be one of five numbers,
of course, the integers zero through four. If we define the value of
the random variable X as the number of die that show a 3, then
elementary probability theory tells us that P(X = k) = probability
that X = k is given by

P(X = k) =
(
n

k

)(
1

6

)k (5

6

)n−k

,

where n is the number of die and
(
n

k

) = n!/(k!(n−k)!). So, with n = 4,

P(X = 0) = 625

1296

P(X = 1) = 500

1296

P(X = 2) = 150

1296

P(X = 3) = 20

1296

P(X = 4) = 1

1296
.

Thus, the most likely number of 3’s to show is zero. But even more
likely to happen is that at least one 3 shows, as

P(X ≥ 1) =
4∑

k=1

P(X = k) = 671

1296
> P(X = 0).

This strikes many as a paradoxical result, but that is part of the
inexhaustible charm of probability!

1.4 A Civil Engineering Problem

As amore sophisticated example of howminimization problems can
sometimes be attacked with noncalculus approaches, consider the
following. We have two towns, A and B, on opposite sides of a river
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B

b

w

A

a

x

d 

river

FIGURE 1.2. Minimum-distance bridge placement problem.

with constant width w. As shown in figure 1.2, A is distance a from
the river, B is distance b, and the lateral separation of the two towns
is d. Our problem is to determine where we should build a bridge
over the river (perpendicular to the river’s banks) so as to make the
journey between A and B as short as possible. That is, what is x?

With calculus, this question is not hard to answer. We simply
write the total distance as

T =
√
a2 + x2 + w +

√
b2 + (d − x)2

and then set dT /dx = 0. Thus,

dT

dx
= 1

2

[
2x√

a2 + x2
− 2(d − x)√

b2 + (d − x)2

]
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and setting this equal to zero gives

x = ad

a + b
.

Ancient mathematicians could also have solved this problem,
however, long before the invention of the calculus, using just el-
ementary geometry. To see how, let me first make a fundamental,
exceedingly important and useful mathematical observation called
the triangle inequality. The triangle inequality asserts that, given any
triangle, the sum of any two of its sides is at least as large as the
third side. It is really just a statement of the fact that the shortest
path connecting two points in a plane is the straight line passing
through the two points. Thinking of the triangle’s sides as directed
line segments with both magnitude and direction (i.e., as vectors),
we can write

→
u and

→
v as two of the sides and

→
u + →

v as the third side,
as shown in figure 1.3.

The triangle inequality says that | →
u |+ | →

v | ≥ | →
u + →

v |, where the
absolute value signs denote the length of the vector. It is obvious
that the inequality becomes an equality iff

→
u and

→
v point in the

same direction (and so the triangle collapses to the “trivial triangle”
with zero area).We can, in fact, now drop the imagery of the triangle
itself, and simply think of

→
u and

→
v as any two vectors not necessarily

associated with a triangle (although in many problems there will be
a triangle).

Now, redraw figure 1.2 as figure 1.4 and label the various path seg-
ments as vectors. Notice that nomatter what

→
x is, the sum (

→
a + →

x )+
(
→
d − →

x + →
b ) is constant. Mathematically this is trivial (the two

→
x ’s

u + v

u

 v

FIGURE 1.3. Vector addition.
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B

b

w

A

a

d

x

a + x

d − x + b

d − xα

θ

FIGURE 1.4. Bridge geometry in vector notation.

cancel), but physically this is because of the important observation
that every vector sum (plus a constant

→
w term to account for the

bridge) starts at A and ends at B, no matter what
→
x may be. By

the triangle inequality | →
a + →

x | + | →
d − →

x + →
b | ≥ | →

a + →
d + →

b |; an
equality (which is the minimum sum) is achieved only when

→
a + →

x

and
→
d − →

x + →
b are in the same direction. That is, when θ = α in the

notation of figure 1.4.
Since the two triangles in figure 1.4 are right triangles with their

other two angles equal, they are similar triangles. Thus, dropping
the vector notation, we have

a

x
= b

d − x
,

which is easily solved to give the location of the bridge at

x = ad

a + b
,

just as before. But this time no derivative was required. And, in
fact, our ancient mathematician’s solution actually provides some
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immediate extra physical insight that the calculus one does not;
since θ = α, the path segments connecting each town to its respec-
tive river bank are parallel.

1.5 The AM-GM Inequality

There are yet other methods the mathematicians of old, in the days
before calculus, could have used to solve many problems that seem-
ingly require the calculation of derivatives. One of the most elegant
of these methods is what is called the AM-GM inequality (the arith-
metic mean-geometric mean inequality). It is easy to state:

If x1, x2, · · · , xn are any n positive numbers, n ≥ 1, and
if A = (1/n) (x1 + x2 + · · · + xn) is the arithmetic mean of the x’s
and if G = (x1x2 · · · xn)1/n is the geometric mean of the x’s,
then A ≥ G with equality iff x1 = x2 = · · · = xn.

New demonstrations of this famous and remarkably useful in-
equality appear on a regular basis to this day, but one of the easiest
to understand (as well as one of the most elegant) is the 1954 proof
by a mathematician named G. Ehlers. I know nothing more about
Ehlers, but his proof of the AM-GM inequality is a gem and you can
find it in appendix A. That proof uses just simple algebra and induc-
tion, but no calculus, which is appropriate since the whole point here
is to show how we can solve many minimum/maximum problems
without the techniques of calculus.

For example, recall the isoperimetric dual problem mentioned at
the start of section 1.3: show that of all rectangles with a given area
it is the square that has the smallest perimeter. This is actually quite
easy to demonstrate with the AM-GM inequality. If we call the sides
of the rectangle x and y, then the problem is to determine x and y

so that we minimize

P = 2x + 2y = 2(x + y),

given that

A = xy

is a constant. From the AM-GM inequality with n = 2 we immedi-
ately have
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1

2
(x + y) ≥ √

xy = √
A

with equality iff x = y. That is,

P = 2(x + y) ≥ 4
√
A,

which says P is never smaller than the constant 4
√
A and is equal to

that constant iff x = y (iff the rectangle is a square).
Closely related to this result is one concerning right triangles.

Imagine all possible right triangles with perpendicular sides of
lengths x and y that sum to a constant, i.e.,

x + y = k.

If we write A to denote the areas of the triangles, then

A = 1

2
xy.

Now, the AM-GM inequality for n = 2 says

x + y

2
≥ √

xy = √
2A

with equality iff x = y. Thus,

k

2
≥ √

2A,

or

A ≤ k2

8

with equality iff x = y. This shows that of all right triangles with
perpendicular sides that sum to a constant, it is the isosceles right tri-
angle that has the largest area (a result known since ancient times).

For another elegant illustration of the power of the AM-GM in-
equality, think back a bit to a question I asked you to ponder: of all
triangles with a given area, show that it is the equilateral that has
the smallest perimeter. Did you have any success doing that? It’s
not trivial! I’ll do it here with the aid of the AM-GM inequality by
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showing the dual theorem: of all triangles with a given perimeter P ,
the equilateral has the largest area. As a prelude, recall the amazing
formula for the area A of any triangle in terms of the lengths of its
sides (a, b, and c). This formula is named after the Egyptian mathe-
matician Heron of Alexandria, who is thought to have lived in the
first century A.D. Some historians have speculated that the formula
was known by Archimedes three centuries earlier, but there is no
real evidence of that (other than Archimedes’ genius, which makes
it probable that he did know it), while the formula does appear in
Heron’sMetrica. It is not an easy formula to derive [seeWilliamDun-
ham, Journey throughGenius: The Great Theorems ofMathematics (John
Wiley 1990, pp. 118–27)], but it is easy to state:

A = √
s(s − a)(s − b)(s − c),

where s = 1
2 (a + b+ c) = 1

2P , the so-called semiperimeter of the tri-
angle. Since P is given, then so is s and Heron’s formula tells us that
to maximize A we must maximize the product (s − a)(s − b)(s − c).

Notice first that each of the factors in that product is indeed
positive, e.g.,

s − a = a + b + c

2
− a = −a + b + c

2
> 0

because from the triangle inequality for nontrivial triangles (trian-
gles with nonzero area) we have b + c > a. Now, from the AM-GM
inequality, we have

(s − a) + (s − b) + (s − c)

3
= 3s − (a + b + c)

3
= 3s − 2s

3

= s

3
≥ [(s − a)(s − b)(s − c)]1/3

with equality iff (s − a) = (s − b) = (s − c), i.e., iff a = b = c. The
term s/3 is a constant upper-bound to the inequality and so the area
is maximized if a = b = c, and that’s the entire proof!

As a third example of the AM-GM inequality solving a problem
ordinarily thought to require calculus, consider the following ques-
tion that probably appears in every calculus textbook ever written.
A food can (with both ends sealed, of course) with the given vol-
ume V is to have the shape of a right circular cylinder. What are the
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dimensions of the can (the radius r and the height h) so that the
surface area is minimum? The “calculus way” to answer this is to
write the surface area S and the volume as

S = 2πr2 + 2πrh

V = πr2h

and then to eliminate h. Thus, h = V/πr2, and so

S = 2πr2 + 2πr
V

πr2
= 2πr2 + 2V

r
.

We minimize S (as we’ll see in chapter 4) by setting dS/dr to zero,
i.e.,

dS

dr
= 4πr − 2V

r2
= 0,

which gives the solution for r. Thus, V = 2πr3, or

V

πr2
= h = 2r.

That is, the height of the can with minimum surface area is equal
to the diameter of the can.

Here’s how the AM-GM inequality answers the same question. As
before,

S = 2π
(
r2 + rh

) = 2π

(
r2 + V

πr

)
= 2π

(
r2 + V

2πr
+ V

2πr

)
.

Or

S

6π
= 1

3

(
r2 + V

2πr
+ V

2πr

)
.

From the AM-GM inequality, we have

1

3

(
r2 + V

2πr
+ V

2πr

)
≥
(
r2 · V

2πr
· V

2πr

)1/3

=
(

V 2

4π2

)1/3

,

and so
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S

6π
≥
(

V 2

4π2

)1/3

or S ≥ 6π

(
V 2

4π2

)1/3

.

Thus, the surface area is never less than the constant 6π
(
V 2

4π2

)1/3
, and

is equal to that minimum value when r2 = V
2πr = V

2πr , i.e., when
V = 2πr3 just as we found before (but before we had to know how
to calculate a derivative).

Now, here’s a little variation for you to play with: in the example
just done, both ends of the can were sealed. Suppose instead that
only the bottom end is sealed. For the same volume as before, what
now is the relationship between r and h to minimize the surface
area, and what is the ratio of the new minimized surface area to the
one just calculated? It should be obvious that the ratio is less than
one, but how much less than one? Remember, no calculus! There are
two ways for you to attack this problem. You can start over and use
the AM-GM inequality, of course. More clever, however, is to use our
previous result, by noticing that if we take two cans, each with only
one end sealed, and butt the unsealed ends together, we get a can
with both ends sealed! Either way, you should get the same answers.
(The answers are at the end of this section.)

We can use the AM-GM inequality to prove the following curious,
and I think unobvious, fact: given two food cans of equal volume
and equal height, one cylindrical and the other rectangular in shape,
the cylindrical can will always have the smaller total surface area. To
see this, observe that if V is the common volume, then, for either
shape, we can write

V = (area of bottom) × (height).

So, since the heights are also equal, then the areas of the bottoms
(and tops) of the two shapes are equal, too. Thus, to decide which
can shape has the smaller total surface area we need only to com-
pare the vertical surface areas. To do that, let’s make the following
definitions:

Sc = vertical surface area of a cylindrical can of radius r and
height h, i.e., Sc = 2πrh,

Sr = vertical surface area of a rectangular can with dimensions
a × b × h, i.e., Sr = 2ha + 2hb = 2h(a + b).
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This means

Sr − Sc = 2h(a + b) − 2πrh = 2h[(a + b) − πr].

From the AM-GM inequality we have (a + b) ≥ 2
√
ab, and so

Sr − Sc ≥ 2h
[
2
√
ab − πr

]
because I’ve replaced (a+b) with a smaller quantity. Now, since the
volumes of the two cans are equal we can also write

V = πr2h = abh,

and so

√
ab =

√
V

h

and

πr = π

√
V

πh
= √

π

√
V

h
.

This gives us

Sr − Sc ≥ 2h

[
2

√
V

h
− √

π

√
V

h

]
= 2h

√
V

h

[
2 − √

π
]
> 0

because it is clear that 2 >
√
π (i.e., 4 > π). So, no matter how you

choose the various dimensions of the two cans, if they have equal
volume and equal height then the cylindrical can will always have
the smaller total surface area.

If we don’t require the two can shapes to have the same height,
then it is no longer true that the cylindrical can will have the smaller
surface area no matter what the dimensions may be. For example,
suppose the rectangular can has dimensions 1× 1×π , for a volume
of π . Its total surface area is then 2 + 4π = 14.57. If the cylindrical
can has a radius of r and height h, then for the same volume we
have πr2h = π , or

h = 1

r2
.
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Its total surface area is

T = 2πr2 + 2πrh = 2πr2 + 2πr
1

r2

= 2π

(
r2 + 1

r

)
.

It is clear that we could pick r tomake T arbitrarily larger than 2+4π .
But it is also true that, if we pick r to give the minimum surface

area for the cylindrical can, that area will be smaller than 2 + 4π .
That is, differentiating T gives

dT

dr
= 2π

(
2r − 1

r2

)

which is zero when r = (
1
2

)1/3
, which gives

T = 2π



(
1

2

)2/3

+ 1(
1

2

)1/3


 = 2π

1

2
+ 1(

1

2

)1/3 = 2π21/3 · 3
2

= 3π21/3 = 11.87,

nearly 19% less than the surface area of the rectangular can.
As the final example of this section, let me show you howmathe-

maticians of old could have solved yet another maximum problem.
As shown in appendix B, using nothing but algebra (no calculus),
a consequence of the AM-GM inequality is yet another inequality
called the arithmetic mean-quadratic mean inequality (the AM-QM
inequality): if x1, x2, · · · , xn are n numbers, then

x1 + x2 + · · · + nn

n
≤
√
x21 + x22 + · · · + x2n

n
, n ≥ 1

with equality iff x1 = x2 = · · · = xn. But the AM-GM inequality itself
tells us that

(x1x2 · · · xn)1/n ≤ x1 + x2 + · · · + xn

n
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with equality iff x1 = x2 = · · · = xn, and so

(x1x2 · · · xn)1/n ≤
√
x21 + x22 + · · · + x2n

n

with equality iff x1 = x2 = · · · = xn.
This general result has a very pretty geometric interpretation for

n = 2, i.e., for

√
x1x2 ≤

√
x21 + x22

2
.

Suppose that x21 + x22 = R2 (a constant). The equation x21 + x22 = R2

is a circle (centered on the origin of the x1, x2 coordinate system)
with radius R, and so

√
x1x2 is bounded from above by the constant

R/
√
2. And since 4x1x2 is the area of a rectangle inscribed in that

circle, then that area is bounded from above by the constant 2R2 and
that area is equal to 2R2 iff x1 = x2. That is, the inscribed rectangle
of maximum area is the inscribed square.

The answers to the problem of the cylindrical can with min-
imum surface area, with just one end sealed, are

a. r = h

b. ratio of surface areas = 1

2
3
√
4 = 0.7937.

1.6 Derivatives from Physics

There are minimum/maximum problems of great interest that do
contain derivatives, but not because we are going to set them equal
to zero. They are present because, for example, the physics of the
problem requires them. The actual determination of a minimum
(or a maximum) of something in such problems, however, depends
on other sorts of arguments. So, for the penultimate section of this
introductory chapter, let me take you through the details of one
such problem that has derivatives aplenty because of the physics and
not because of the mathematics.
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v0

cannon

center of Earth (r = 0)

surface of Earth
(r = R)

FIGURE 1.5. Vertical cannon shot.

Consider figure 1.5. There we have a cannon pointing straight up,
directly away from the center of the earth (not drawn to scale!). If
we fire the cannon a shell is ejected with initial velocity v0, it rises
upward to some maximum height, stops, and then falls back down
to the ground. It is clear that the larger v0, the higher the shell will
go before gravity brings its upward motion to a halt. We can show,
in fact, that if v0 has a certain critical minimum value, then the
shell will not return to earth. That minimum value for v0 is called
the escape velocity.

If we measure distance from the center of the earth as r (r = 0
is the center, and r = R is the surface of the earth), then Newton’s
second law of motion (force equals mass times acceleration) and his
inverse-square law of gravity tells us that if we ignore air-drag on the
shell, then

m
d2r

dt2
= −G

Mm

r2
, r ≥ R,
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where: m = mass of the shell,
M = mass of the earth,
G = universal constant of gravitation.

The minus sign on the right side of the differential equation is
present because increasing r is directed upward, while the gravi-
tational force on the shell is in the opposite direction, downward
toward the center of the earth.

We can solve this second-order differential equationwith the help
of a powerful result from differential calculus called the chain rule
(discussed in chapter 4): if we write v(r) as the velocity of the shell
at distance r from the center of the earth, then by definition

v = dr

dt
,

and so the acceleration of the shell is

d2r

dt2
= dv

dt
= dr

dt
· dv
dr

= v
dv

dr
.

This reduces our original differential equation to the more tractable
(with m canceled on both sides) equation

v
dv

dr
= −GM

1

r2
, r ≥ R.

We can “separate the variables” in this equation and write

v dv = −GM
dr

r2
,

which is easily integrated to give

1

2
v2 = GM

1

r
+ C,

where C is the so-called “constant of indefinite integration.” Now,
since v = v0 when r = R, then

1

2
v20 = GM

1

R
+ C,

or
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C = 1

2
v20 − GM

1

R
,

and thus

1

2
v2 = GM

1

r
+ 1

2
v20 − GM

1

R
.

If we define H as the shell’s maximum distance from the center of
the earth, then, as by definition v = 0 when r = H , we have

0 = GM

H
+ 1

2
v20 − GM

R
,

or

H = GM

GM

R
− 1

2
v20

.

If v0 = 0 then H = R, which is simply the obvious; if the shell
“leaves” the cannon with zero initial velocity, then it doesn’t go
anywhere! But as v0 increases from zero, then H increases from R

and, obviously, as 1
2v

2
0 approaches GM/R we see that H diverges to

infinity, i.e., the shell does not return to earth. So, the minimum
escape velocity is the initial velocity given by

v0 =
√
2GM

R
.

Any velocity greater than this also means the shell isn’t coming
back, of course.

We can express this result in the following interesting alternative
way.When r = R, the gravitational force on the shell is simply what
we call its weight at the surface of the earth, which is mg, where g

is the acceleration of gravity at the surface. Thus,

mg = G
Mm

R2
,

and so GM = g R2. This gives the escape velocity as

v0 =
√
2gR2

R
= √

2gR.



24 C H A P T E R 1

Taking the earth’s radius as 3,950 miles, and g as 32.2 ft/sec2, we
have the escape velocity as

v0 =
√
2 × 32.2 × 3,950 × 5,280 ft/sec

= 36,649 ft/sec = 6.94 miles/sec.

This is not the way we send people into space, of course, as
the initial acceleration of the shell (spaceship) from zero to almost
seven miles per second over the length of a cannon barrel would be
unsurvivable. (But see Jules Verne’s From the Earth to the Moon. In
his 1865 novel, he proposed getting around the problem of shoot-
ing men to the moon using a fantastic 900-foot-long cannon. It
wouldn’t work, but it is clever.) But, serious proposals have been
made to put nonhuman payloads into orbit or on the moon, using
super-high acceleration up to the escape velocity. Such accelerations
would be achieved not with a cannon but, rather, with the far more
exotic technology of electromagnetic launchers, which are in ac-
tual use today at several sophisticated rollercoaster rides around the
world.

1.7 Minimizing with a Computer

For the final two examples of this chapter, which return to the theme
of the computer as a useful tool in extremal problems, suppose first
that a man can walk n times faster than he can swim (it seems
reasonable that n ≥ 1, but I’ll not use that assumption in what
follows). He wants to travel from A, on the edge of a circular lake
with radius R (centered on point O) to C, also on the edge of the
lake. C’s location is specified by the given angle β (measured from
the diameter AOD), as shown in figure 1.6. His general strategy is to
first swim along the chord AB, and then to walk the rest of the way
along the lake’s edge from B to C. If his total travel time is T , then
where should B be to minimize T ?

If we denote by θ the central angle subtended by the man’s walk,
then the isosceles triangle OAB (with the chord AB as its base) has
equal base angles of α and a third angle of γ = π − θ − β. Thus,

(2α) + (π − θ − β) = π radians,
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α
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B

A
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R

R

FIGURE 1.6. Crossing a circular lake in minimum time.

or

α = 1

2
(θ + β).

It is clear from figure 1.6 that the man’s swimming and walking
distances are, respectively, 2R cos

{
1
2 (θ + β)

}
and Rθ . So, if we call

his swimming speed unity (in arbitrary units) then his walking speed
is n and we have the total travel time as

T = 2R cos

{
1

2
(θ + β)

}
+ Rθ

n

= R

[
2 cos

{
1

2
(θ + β)

}
+ θ

n

]
.
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As a quick, partial check on this expression, notice that if β = π

radians (C = A) then we also have θ = 0 and T = 0, just as we
should have (it doesn’t take any time to travel from where you are
to where you are!).

Our problem then is simply this: given a value of β in the interval
0 to π (thus locating C), what θ minimizes T (thus locating B)? This
is an easy question to study with the aid of a computer. Figure 1.7
shows how T varies with θ , for five values of n, with β = 0 (C is
directly across the lake from A) and figure 1.8 assumes β = 90°. In
both figures the constant scale factor of R in the expression for T
has been ignored since it has no affect on the value for θ that gives
an extrema in T .

The plots in the two figures contain a wealth of information. In
figure 1.7, for example, the n = 1 and n = 1.5 curves have their
minimum values at θ = 0 (the man should swim, all the way, from
A to C), while the n = 2, n = 2.5, and n = 3 curves have their

T/
R

θ (in degrees)

n = 1.0

n = 1.5

n = 2.0

n = 2.5

n = 3.0

3.5

3.0

2.5

2.0

1.5

1.0

β = 0˚

200 40 60 80 100 120 140 160 180

FIGURE 1.7. Total travel time across the lake, β = 0°.
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1.8

1.6

1.4

1.0

0.4

β = 90˚
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1.2

0.8

0.6

FIGURE 1.8. Total travel time across the lake, β = 90°.

minimumvalues at θ = 180° (theman shouldwalk, all the way, from
A to C). The curves suggest that there is some value of n between 1.5
and 2 where either of the pure walk-only and swim-only strategies
would give the minimum travel time. What is that critical value of
n? A little thought should convince you it is n = 1

2π = 1.57. The
curves of figure 1.8 suggest the same general conclusion for β > 0,
i.e., as n increases from unity the strategy for minimizing the total
travel time begins as the pure strategy of swimming all the way and
then switches to the pure strategy of walking all the way. Is this
always true? That is, for any value of β, is it true that there is never
a mixed strategy of walking and swimming that minimizes T ? I’ll
leave that for you to think about!

For my last example in this chapter, consider the following prob-
lem that is superficially similar to the one just treated, but which
offers some surprising complications. But not so much complica-
tion that we can no longer make a fruitful computer analysis. So,
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FIGURE 1.9. Another water-crossing problem.

suppose now that the man is initially at point A on a beach with a
right-angle bend, as shown in figure 1.9. The man wishes to travel
from A to E in minimum time; at any point B, as he walks along
the first section of beach toward C, he can enter the water and swim
toD, where he exits the water and continues walking on the second
section of beach toE. That is, he can “cut a corner” from one section
of beach to the other. The lengths of the two sections of beach are
a and b, as shown in figure 1.9.

It is not difficult to express the problem mathematically. If we
write v1 and v2 for the man’s speeds while swimming and walking,
respectively, and if x and y are the distances of pointsD and B from
the corner of the beach (C), respectively, then the total travel time
is a function of two variables:

T (x, y) = a − y

v2
+

√
x2 + y2

v1
+ b − x

v2
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= (a + b) − (x + y)

v2
+

√
x2 + y2

v1
.

Our problem, then, is to determine the values of x and y that mini-
mize T for given values of a, b, v1, and v2.

The answer for v1 > v2, for any a and b, is physically obvious:
x = b and y = a, i.e., the man swims the entire trip because then
he travels the straight line path (shortest possible path) from A to
E at the greater speed. As argued before, swimming faster than he
can walk isn’t very plausible, however, and the case of v1 < v2 is
far more interesting (both physically and mathematically). Before
continuing with the analysis of T (x, y), it is important to notice
that, with a single exception, the values of x and y are independent,
subject only to the constraints of 0 ≤ x ≤ b, 0 ≤ y ≤ a. The single
exception is that if either x or y is zero then so must be the other;
this is because of the physically required continuous nature of a path
from A to E.

Now, we could attack the problem of minimizing T (x, y) with
the aid of rather sophisticated calculus, but that isn’t attractive for
several reasons. First, that would be out of place so early in this book
and, second, there is a very pretty geometric interpretation of the
problem. Indeed, you’ll see the same approach used later, when we
get to linear programming in chapter 7. And third, the approach I’ll
show you nowmakes great use of the sheer computational power of
a computer.

To begin, all pairs of points (x, y) that satisfy the constraints
0 ≤ x ≤ b, 0 ≤ y ≤ a form what is called the set of feasible solutions.
For our problem, this set is the rectangle shown in figure 1.10, with
the understanding that the bottom edge (x > 0, y = 0) and the left
vertical edge (x = 0, y > 0) are not included in the feasible solution
set; the corner point (0, 0) is, however, in the feasible solution set.
We want to find the point in the feasible solution set that minimizes
T (x, y). Now, notice that we can write

v1v2 T = v1(a + b) − v1(x + y) + v2
√
x2 + y2,

or √
x2 + y2 −

(
v1

v2

)
(x + y) = U,
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FIGURE 1.10. Feasible solution set for the geometry of figure 1.7.

where

U = v1T −
(
v1

v2

)
(a + b).

Since v1, v2, a, and b are given positive constants, then it is clear
that the minimization of T is equivalent to the minimization of U .
This simple observation turns out to be the key observation in the
following analysis.

The equation

√
x2 + y2 =

(
v1

v2

)
(x + y) + U

defines a curve y = y(x) for any given U ; as we vary U we will also
vary the curve y = y(x). We wish to determine the minimum U that
results in a curve that still passes through at least one point of the
feasible solution set. Using a computer to draw these curves will give
us all the insight we need to determine the minimizing U(= Umin)

and, hence, the minimized T (= Tmin):

(continued...)
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