CONTENTS

A Note to the Reader vii

1 Size and Scale of the Universe 1
 NEIL DEGRASSE TYSON

2 Pluto’s Place in the Solar System 16
 NEIL DEGRASSE TYSON

3 The Lives and Deaths of Stars 33
 MICHAEL A. STRAUSS AND NEIL DEGRASSE TYSON

4 The Search for Life in the Galaxy 69
 NEIL DEGRASSE TYSON

5 Our Milky Way and Its Supermassive Black Hole 98
 MICHAEL A. STRAUSS

6 Galaxies, the Expanding Universe, and the Big Bang 113
 MICHAEL A. STRAUSS

7 Inflation and the Multiverse 150
 J. RICHARD GOTT
8 Our Future in the Universe 192

J. Richard Gott

Acknowledgments 219

Index 221
We begin with the solar system. Ascend to the stars. Then reach for the galaxy, the universe, and beyond.

The universe. It’s bigger than you think. It’s hotter than you think. It is denser than you think. It’s more rarified than you think. Everything you think about the universe is less exotic than it actually is. Let’s get some numerical machinery together before we begin. Start with the number 1. You’ve seen this number before. There are no zeros in it. If we wrote this in exponential notation, it is ten to the zero power, 10^0. The number 1 has no zeros to the right of that 1, as indicated by the zero exponent. Moving onward, the number
10 can be written as 10^1. Let’s go to a thousand—10^3. What’s the metric prefix for a thousand? *Kilo*- kilogram—a thousand grams; kilometer—a thousand meters. Let’s go up another three zeros, to a million, 10^6, whose prefix is *mega*-. Maybe this is the highest they had learned how to count at the time they invented the megaphone; perhaps if they had known about a billion, by appending three more zeroes, giving 10^9, they would have called them “gigaphones.”

Do you know how big a billion is? What kinds of things come in billions?

Currently we are approaching 8 billion people in the world.

How about Jeff Bezos, the founder of Amazon.com? What’s his wealth up to? More than 100 billion dollars. Where have you seen 100 billion? Well, McDonald’s: “Over 99 Billion Served.” That’s the biggest number you ever see in the street. McDonald’s never displayed 100 billion, because they allocated only two numerical slots for their burger count, and so, they just stopped
at 99 billion. After that, they pulled a Carl Sagan on us and now say, “billions and billions served.”

Take 100 billion hamburgers, and lay them end to end. Start at New York City, and go west. Will you get to Chicago? Of course. Will you get to California? Yes. Find some way to float them. This calculation uses the diameter of the bun (4 inches), so it’s all about the bun. Now float them across the ocean, along a great circle route, and you will cross the Pacific, pass Australia, the Indian Ocean, Africa, and across the Atlantic Ocean, finally arriving back in New York City. That’s a lot of hamburgers. But you have some left over after you have circled Earth’s circumference. So, you make the trip all over again, 215 more times. Afterward, you still have some left. You’re bored circumnavigating Earth, so you stack what remains. How high do you go? You’ll go to the Moon, and back, with stacked hamburgers (each 2 inches tall) after you’ve already been around the world 216 times. Only then will you have used your 100 billion hamburgers. That’s why cows are scared of McDonald’s. By
comparison, the Milky Way galaxy has about 300 billion stars. Perhaps McDonald’s is gearing up for the cosmos.

When you are 31 years, 7 months, 9 hours, 4 minutes, and 20 seconds old, you’ve lived your billionth second. I’m just geeky enough to have celebrated that moment in my life with a fast sip of champagne.

Let’s keep going. What’s the next step up? A trillion: 10^{12}. We have a metric prefix for that: *tera*-. You can’t count to a trillion. If you counted one number every second, it would take you 1,000 times 31 years—31,000 years, which is why we don’t recommend doing this, even at home. A trillion seconds ago, cave dwellers—trogloidytes—were drawing pictures on their living-room walls.

At New York City’s Rose Center of Earth and Space, a spiral ramp timeline of the universe begins at the Big Bang and displays 13.8 billion years. Uncurled, it’s the length of a football field. Every step you take spans 50 million years. You get to the end of the ramp, and you ask, where are
we? Where is the history of our human species? The entire period of time, from a trillion seconds ago to today, from graffiti-prone cave dwellers until now, occupies only the thickness of a single strand of human hair, which we have mounted at the end of that timeline. You think we live long lives; you think civilizations last a long time? No. Not relative to the cosmos itself.

What’s next? 10^{15}. That’s a quadrillion, with the metric prefix $peta$-. Between 1 and 10 quadrillion ants live on (and in) Earth, according to Harvard biologist E. O. Wilson.

Then comes 10^{18}, a quintillion, with metric prefix exa-. That’s the estimated number of grains of sand on ten large beaches.

Up another factor of 1,000 and we arrive at 10^{21}, a sextillion. We have ascended from kilometers to megaphones to McDonald’s hamburgers to Cro-Magnon artists to ants to grains of sand on beaches, until finally arriving here: more than 10 sextillion—

the number of stars in the observable universe.
There are people, who walk around every day, asserting that we are alone in this cosmos. They simply have no concept of large numbers, no concept of the size of the cosmos. Later, we’ll learn more about what we mean by the observable universe, the part of the universe we can see.

While we’re at it, how about a number much larger than 1 sextillion—10^{81}? It’s the number of atoms in the observable universe. Why would you ever need a number bigger than that? What “on Earth” could you be counting? How about 10^{100}, a nice round-looking number. This is called a googol. Not to be confused with Google, the internet company that misspelled “googol” on purpose.

There are not enough objects in the universe for a googol to count. It is just a fun number. We can write it as 10^{100}, or as is true for all out big numbers, if you don’t have superscripts, this works too: $10^{^100}$. But you can still use such big numbers for some situations: don’t count things; instead count the ways things can happen. For example, how many possible chess games can be played? A game can be declared a draw by either player after a triple repetition of a position, or
when each has made 50 moves in a row without a pawn move or a capture, or when there are not enough pieces left to produce a checkmate. If we say that one of the two players must declare a draw whenever one of these three things happen, then we can calculate the number of all possible chess games. Rich Gott did this (because that’s just the kind of thing he does) and found the answer was a number less than $10^{(10^{4.4})}$. That’s a lot bigger than a googol, which is $10^{(10^{2})}$. Again, you’re not counting things; you are counting possible ways of doing things. In that way, numbers can get very large.

Here’s a still bigger number. If a googol is 1 followed by 100 zeros, then how about 10 to the googol power? That has a name too: a googolplex. It is 1, with a googol zeroes after it. Can you even write out this number? Nope. You would need a googol zeroes, and a googol is larger than the number of atoms in the universe, then you’re stuck writing it this way: 10^{googol}, or $10^{10^{100}}$ or $10^{(10^{100})}$.

We’re not just wasting your time. Here’s a number bigger than a googolplex. Jacob
Bekenstein invented a formula allowing us to estimate the maximum number of different quantum states that could have a total mass and size comparable to our observable universe. Given the quantum fuzziness we observe, that would be the maximum number of distinct observable universes like ours. It’s $10^{(10^{124})}$, which has 10^{24} times as many zeros as a googolplex. These $10^{(10^{124})}$ universes range from ones that are scary, filled with mostly black holes, to ones that are exactly like ours but where your nostril is missing one oxygen molecule and some space alien’s nostril has one more.

A mathematical theorem once contained the badass number $10^{(10^{(10^{34})})}$. It’s called *Skewe’s number*. And it dwarfs them all.

Time to get a sense of the extremes in the universe.

How about density? You intuitively know what density is, but let’s think about density in the cosmos. First, explore the air around us. You’re breathing 2.5×10^{19} molecules per cubic centimeter—78% nitrogen and 21% oxygen (plus 1% “other”). When we talk about density here,
we’re referencing the number of molecules, atoms, or loose particles that compose the material in question.

A density of 2.5×10^{19} molecules per cubic centimeter is likely higher than you thought. What about our best laboratory vacuums? We do pretty well today, bringing the density down to about 100 molecules per cubic centimeter. How about interplanetary space? The solar wind at Earth’s distance from the Sun has about 10 protons per cubic centimeter. How about interstellar space, between the stars? Its density fluctuates, depending on where you’re hanging out, but regions in which the density falls to 1 atom per cubic centimeter are not uncommon. In intergalactic space, that number is much less: 1 per cubic meter.

We can’t get vacuums that empty in our best laboratories. There is an old saying, “Nature abhors a vacuum.” People who said that never left Earth’s surface. In fact, Nature just loves a vacuum, because that’s what most of the universe is. When they said “Nature,” they were just referring to the base of this blanket of air we call our atmosphere,
which does indeed rush in to fill empty spaces whenever it can.

Smash a piece of chalk into smithereens against a blackboard and pick up a fragment. Let’s say a smithereen is about 1 millimeter across. Imagine that’s a proton. Do you know what the simplest atom is? Hydrogen. Its nucleus contains one proton, and normal hydrogen has an electron occupying a spherically shaped volume that surrounds the proton. We call these volumes orbitals. If the chalk smithereen is the proton, then how big would the full hydrogen atom be? One hundred meters across—about the size of a football field. So atoms are quite empty, though small: about 10^{-10} meters in diameter. That’s one ten-billionth of a meter. Only when you get down to 10^{-14} or 10^{-15} meters are you measuring the size of the nucleus. Let’s go smaller. We do not yet know the diameter of the electron. It’s smaller than we are able to measure. However, superstring theory suggests that it may be a tiny vibrating string as small as 1.6×10^{-35} meters in length. So matter is an excellent repository of empty space.
Now let’s go the other way, climbing to higher and higher densities. How about the Sun? It’s quite dense (and crazy hot) in the center, but much less dense at its edge. The average density of the Sun is about 1.4 times that of water. And we know the density of water—1 gram per cubic centimeter. In its center, the Sun’s density is 160 grams per cubic centimeter. Yet the Sun is undistinguished in these matters. Stars can (mis)behave in amazing ways. Some expand to get big and bulbous with very low density, while others collapse to become small and dense. In fact, consider the proton smithereen and the lonely, empty space that surrounds it. There are processes in the universe that collapse matter down, crushing it until there’s no empty volume between the nucleus and the electrons. In this state of existence, the matter reaches the density of an atomic nucleus. Within such stars, each nucleus rubs cheek to cheek with neighboring nuclei.

The objects out there with these extraordinary properties happen to be made mostly of neutrons—a super-high-density realm of the universe.
In our profession, we tend to name things exactly as we see them. Big red stars we call *red giants*. Small white stars we call *white dwarfs*. When stars are made of neutrons, we call them *neutron stars*. Stars we observe pulsing, we call them *pulsars*. In biology they come up with big Latin words for things. MDs write prescriptions in a cuneiform that patients can’t understand, then hand them to the pharmacist, who understands the cuneiform. In biochemistry, the most popular molecule has ten syllables—deoxyribonucleic acid. Yet the beginning of all space, time, matter, and energy in the cosmos is simply the *Big Bang*. We are a simple people, with a monosyllabic lexicon. The universe is hard enough, so there is no point in making big words to confuse you further.

Want more? In the universe, there are places where the gravity is so strong that light doesn’t come out. You fall in, and you can’t come out; these are called *black holes*. Once again, with single syllables, we get the whole job done.

How dense is a neutron star? Cram a herd of 100 million elephants into a Chapstick casing.
In other words, if you put 100 million elephants on one side of a seesaw, and a single Chapstick of neutron star material on the other side, they would balance. That’s some dense stuff.

How about temperature? Let’s talk hot. Start with the surface of the Sun. About 6,000 kelvins—6,000 K (a temperature in kelvins is equal to its temperature in degrees centigrade + 273). That will vaporize anything you give it. That’s why the Sun is gas, because that temperature vaporizes everything. By comparison, the average temperature of Earth’s surface is a mere 287 K.

How about the temperature at the Sun’s center? As you might guess, the Sun’s center is hotter than its surface. The Sun’s core is about 15 million K.

Let’s go cool. What is the temperature of the whole universe? It does indeed have a temperature—left over from the Big Bang. In the beginning, 13.8 billion years ago, all the space, time, matter, and energy you can see, out to 13.8 billion light-years, was crushed together. (A light-year is the distance light, traveling at 300,000 kilometers a second, can travel in a year—about
10 trillion kilometers.) The nascent universe 1 second after its birth was hot, about 10 billion K, a seething cauldron of matter and energy. Cosmic expansion since then has cooled the universe down to a mere 2.7 K.

Today we continue to expand and cool. As unsettling as it may be, all data show that we’re on a one-way trip. We were birthed by the Big Bang, and we’re going to expand forever. The temperature will continue to drop, eventually becoming 2 K, then 1 K, then half a kelvin, asymptotically approaching absolute zero. Ultimately, its temperature may bottom out at about 7×10^{-31} K (that’s 0.7 million-trillion-trillionths of a degree above absolute zero) because of an effect discovered by Stephen Hawking that we will discuss in chapter 8. But that fact brings no comfort. Stars will finish fusing all their thermonuclear fuel, and one by one they will blink out, disappearing from the night sky. Interstellar gas clouds do make new stars, but of course this depletes their gas supply. You start with gas, you make stars, the stars age, and they leave behind a corpse—the dead end-products of stellar evolu-
tion: black holes, neutron stars, and white dwarfs. This keeps going until all the lights of the galaxy turn off, one by one. The galaxy goes dark. The universe goes dark. This leaves black holes that emit only a feeble glow of light—again predicted by Stephen Hawking.

And so the cosmos ends. Not in fire, but in ice. And not with a bang, but with a whimper.

Have a nice day! And, welcome to the universe.
INDEX

Index note: Page numbers in italic indicate illustrations.

acceleration: and expansion, 162–164, 166–167, 183–185, 191, 200–201; and inflation, 167
age of the universe, 19, 126–127, 137, 148
Albrecht, Andreas, 179
Allen, Chuck, 205
alpha particles, 176–177
Alpher, Ralph, 128, 133–134, 138–139
Andromeda galaxy, 108, 114, 117–118, 125, 192; collision with Milky Way, 192; distance from Milky Way, 116, 117
Anthropic Principle, 212–213
antimatter, 44
anti-neutrinos, 132
Asteroid Belt, 28
asteroids, 23–26, 28, 30, 91, 208
atmosphere, 78; greenhouse effect of, 20, 79, 95–97
atoms, 63; density (“emptiness”) of, 10; formation of, 58; number in observable universe, 6; and recombination, 136
barred-spiral galaxies, 102
Bekenstein, Jacob, 7–8
Bell, Jocelyn, 56
Berlin Wall, estimating future longevity of, 204
Bezos, Jeff, 2
Big Bang, 12, 13, 126; and CMB, 148–149; and composition of the universe, 130–131, 183–184; and conditions required to form elements, 130–131; and detectable photons, 137–138; and deuterium (heavy hydrogen),
Index

Big Bang (continued)
132–133, 135; and expansion of the universe,
154–155; Friedman’s universe model, 154–161,
157, 162, 163, 164, 170; Gamow’s “hot” Big
Bang theory, 169–170; and helium, 131–135;
and hydrogen, 131–135; and inflationary epoch
(accelerated expansion), 162–170, 163; and	nonuniformity, 139–140, 171–173; and nuclear fu-
sion reactions, 130–132; recombination period,
136, 144; and repulsive gravitational effects, 170;
and thermal energy, 131–133, 161; and time,
159; and uniformity of universe, 160–162

Big Crunch, 155–159, 156

Big Rip, 201

binary stars, 57, 65–66; planets orbiting, 79–80
black holes, 47, 58; collisions between, 196; evapora-
tion of, 60, 193–195, 197; event horizons, 59;
formation of, 59, 65; gravity of, 12; and mass,
109–110; in Milky Way, 109–111; proton decay
and microscopic, 197; supermassive, 109–112;
and time travel, 111–112

blue stars, 41–42; age of, 40,
106–107; temperature of, 34, 48

Brown, Mike, 29, 30, 31

brown dwarfs, 48–49

bubble universes, 199;
collisions between, 180;
and de Sitter “waist,”
172, 174; formation of,
177–179; and inflation,
171–174, 177–180, 182,
187–189; and “local”
laws of physics, 176; and
multiverse, 170; and
quantum tunneling,
176–178

Caldwell, Robert, 201
carbon, 44, 51, 54, 62, 64,
87–89, 134, 203; CO2,
20–21, 96–97

Carter, Brandon, 203, 213

Cepheid variable stars,
115–116, 117

Ceres (asteroid), 23–24,
25, 28
Cerro Tololo Inter-American Observatory, Chile, 57, 101, 102
Chang, Kenneth, 24
Charon (moon of Pluto), 18
CMB. See cosmic microwave background (CMB) radiation
Coleman, Sidney, 171
color: and age of stars, 40–41; and temperature of stars, 48–49
Coma Cluster, 108–109
Comet Lovejoy, 89
comets, 19, 25–26, 28, 89
communication: mathematics as language, 90
conservation of energy, 168–169
contraction of the universe (Big Crunch), 155–159, 156
Copernican formula for estimating future longevity, 204–207, 212–213
Copernican principle, 67–68, 124, 155, 206
Copernicus, Nicholas, 67–68
Cosmic Background Explorer (COBE) satellite, 139, 142
cosmic microwave background (CMB) radiation, 138–144, 194; and
dark matter, 141–144; fluctuations in, 140–142, 144, 148–149, 161–162, 171, 179–181, 191; and inflation, 179–181, 191
cosmic strings, 190
cosmic web, 171
cosmological constant, 164–166, 183, 185, 192, 200
Cotham, Frank, 91
Crab Nebula, 55
dark energy, 144, 148, 183–185, 192–193; energy density of, 183, 184, 192, 197–198, 200–202; and inflation theory, 191; and quantum tunneling, 197; “slow roll,” 199–201, 202; as vacuum state, 201–202; \(w_0 \) values, 185, 200–202
dark matter, 130–131; and CMB fluctuations, 141–144; and mass, 107–108; and “unseen elementary particles,” 143–144; and WIMPs, 144
density, 8–9; of empty
space, 164; and forma-
tion of bubble universes,
171; Friedman’s high-
density universe model,
159–160; Friedman’s
low-density universe
model, 159, 174, 181–182;
of gaseous planets, 29;
neutron stars as dense
objects, 11–12; of the
Sun, 11. See also vacuum
density waves, 1–6
de Sitter, Willem, 166–167
de Sitter space, 166–167,
174
de Sitter waist, 167–168,
172, 172, 174, 177–178,
187–189
deuterium (heavy hydrogen),
45–46, 132–133, 135
deuterons, 132–133
Dicke, Robert, 203
Doomsday Calculations
(Poundstone), 210–211
Doppler, Christian, 121
Doppler shift, 41, 120–122
Drake, Frank, 70–73, 80
Drake equation, 70–73,
80–83, 86, 94–96, 214
dwarf planets, 31
Dysnomia (moon of Eris), 29
Earth: formation and age
of, 85; location in Milky
Way, 100–101; Moon of,
3, 19, 77; as planet, 18,
20, 32, 61, 67–68, 124;
relative size of, 3
Eddington, Sir Arthur,
153
Einstein, Albert, 129–130;
cosmological constant,
164–165, 185, 192, 200;
and static universe, 164;
theory of general rela-
tivity, 57–58, 150–154,
159, 166, 190; theory
of special relativity,
150–151, 165–167, 174
electrons, 10
elements: Big Bang and
conditions required to
form, 130–131
The Elements in the Theory
of Astronomy (Hymers),
25–26
$E = mc^2$, 44–45, 51, 59,
150–151
Enceladus (moon of
Saturn), 27, 84
endothermic energy, 53
Englert, François, 164–165
Eris (Kuiper Belt object),
29, 31

For general queries, contact webmaster@press.princeton.edu
Europa (moon of Jupiter), 27, 83–84

event horizons, 59, 193

exoplanets: atmosphere of, 78, 81; and binary star systems, 79–80; detection of, 74–76, 81; orbit and suitability for life, 79–80

expansion of the universe, 124–134, 142, 148, 150;
Friedman’s model, 154–156; Hubble and discovery of, 160; and repulsive gravity, 185–186; and thermal radiation, 128–130, 137–138

exponential notation, 1–2

eyes, 92

Fermi, Enrico, 214

fission, nuclear, 51–53

Friedman, Alexander:
and Big Bang universe model, 154–161, 162, 163, 164, 170; and contracting universe (Big Crunch), 155; and expanding universe model, 154–156; and “football” spacetime, 156, 157, 158, 162, 163; and high-density universe model, 159–160;

and low-density universe model, 159, 174, 181–182

fusion, nuclear, 52–53; Big Bang and, 130–132

galaxies: age and shape of, 117–119; age of stars in, 104; barred-spiral shape, 101–103; clustering and cosmic web, 171; collisions between, 118, 192; distribution of, 145–147, 146, 179–180; distribution of stars in, 103–104; elemental composition of, 120–122; elliptical, 117–119; formation of, 179; irregular, 117–118; mapping of, 145–147, 146; number of, 119–120, 159; spectra of, 120–122; spiral, 104–105, 118–119; worldlines (geodesics) of, 156–157. See also Milky Way galaxy

Gamow, George, 128, 133–135, 139, 169–170, 176–177

Ganymede (moon of Jupiter), 27

gas planets, 21, 28–29, 32

Genzel, Reinhard, 110

For general queries, contact webmaster@press.princeton.edu
INDEX

geodesics, 151–152; world-
lines of galaxies, 156–157
Ghez, Andrea, 110
Gibbons, Gary, 193–195
Gibbons and Hawking radi-
ation, 193–195, 200
The Glass Universe (Sobel), 36
globular clusters, 39, 40–41,
103
googol and googolplex, 6–7
Gott, Rich, 7
Gott-Li self-creating multi-
verse, 189–191, 190
Gould, Stephen Jay, 93, 210
gravitational instability,
140–141
gravitational radiation,
195–196
gravitational repulsion,
166, 168, 170,
172–173, 184–186; moons
and tidal forces, 27;
Newton’s law, 18–19, 150,
154; structure of universe
and gravitational pull,
140–141, 170–171
greenhouse effect, 20, 79,
95–97
Guth, Alan, 162–169,
171–173, 182
habitable zone, 70–71,
73–74, 76–86, 95–97
halos of galaxies, 103–104
Hartle, James, 188
Harvard College Observa-
tory, 36
Haumea (dwarf planet), 31
Hawking, Stephen, 14–15,
60, 179–180, 188; and
Gibbons and Hawking
radiation, 193–195
Hawking mechanism: and
gravitational waves, 196
Hawking radiation, 60,
193–194
Hayden Planetarium, 16
heat. See temperature
Heisenberg’s uncertainty
principle, 170–171, 177,
186

For general queries, contact webmaster@press.princeton.edu
helium, 44, 46; and Big Bang, 131–135; and gas planets, 21–22
Herman, Robert, 138
Herschel, William, 26, 98–99
Hertzsprung, Ejnar, 34–37
Hertzsprung-Russell (HR) diagram, 34–38, 35; and “main sequence” stars, 35
Higgs, Peter, 164–165
Higgs field and Higgs particle, 164–165, 174, 198–199. See also vacuum energy

\[H_0 = 67 \pm 1 \text{(km/sec)/Mpc} \]
(Hubble Constant), 123–124, 126
Hoyle, Fred, 126, 134
Hubble, Edwin, 115–116, 117, 120, 122–123
Hubble constant, 123–124, 126
Hubble’s law, 123–124, 145, 154–155
Hubble Space Telescope, 119
Hulse, Russell, 57–58
humans (*Homo sapiens*), 5; colonization of Mars by, 215–216; colonization of the galaxy by, 208, 214–217; and Copernican Principle, 67–68, 89–90; evolution of, 5, 92, 207–210; extinction of, 209–210, 217; future longevity of species, 202, 207–208; as hyper-realistic simulations, 210–212; and intelligence, 89–93; and self-destructive technology, 72, 95–97; and space flight, 214–216
Humason, Milton, 123
hydrogen, 21; and Big Bang, 131–135; and composition of stars, 43; deuterium (heavy hydrogen), 45–46
inflation, 162–174; and bubble universes, 177–178, 189–190; and CMB fluctuations, 179–180, 191; and dark energy, 191, 192–193; and de Sitter “waist” universe, 177–178, 187–188; and distribution of galaxies, 179–180; and exponentially accelerated expansion, 166–167; and Gibbons and Hawking radiation,
inflation (continued)
195–196; gravitational waves and evidence for, 186; Guth's solution to uniformity question, 162–169; and initial conditions of Big Bang, 170; and Linde's branching model, 188–190, 190; and self-creating universe, 189–191; and Starobinski model, 186–187; and uniformity, 162–171

International Astronomical Union (IAU), 30–31
interstellar medium, 55, 66, 100
interstellar space, 9, 88–89
Io (moon of Jupiter), 27
iron, 53, 54

James Webb Space Telescope, 81–82
Jupiter, 21–22, 49; atmosphere of, 22; moons of, 27
Jurić, Mario, 147

Kamionkowski, Mark, 201
Kant, Immanuel, 114–115
Kepler 62e (exoplanet), 76

Kepler satellite, 74–76, 78–80
Kipping, David, 212
Kepler Belt and Kuiper Belt objects, 28; Pluto as Kuiper Belt object, 22–24, 26–27
Large Hadron Collider, 143–144, 164–165
Large Magellanic Cloud, 118
Laser Interferometer Gravitational-Wave Observatory (LIGO), 58–60, 196
LAWKI (“life as we know it”), 86–87
Leavitt, Henrietta, 36, 115–116
Lemaître, Georges, 164, 193
Leslie, John, 213
Li, Li-Xin, 189–191

life, extraterrestrial: and atmosphere, 78, 79, 96–97; and carbon as elemental building block, 87–89; and colonization, 214–215; communication with, 72, 81, 82–83, 90, 93, 94; and diversity, 84–85; Drake equation and intelligent, 70–73, 80–83, 86, 94–96; and
Enceladus, 84; energy requirements for, 69, 76–79, 95–96, 203; and Europa, 83–84; exoplanets suitable for supporting, 74, 78–81; and extinction, 91–93; extragalactic, 94–95; and habitable zone, 70–71, 73–74, 76–83, 76–86, 95–97; humans as life-form example, 89–90, 97; and intelligence, 89–91, 195–196 (See also Drake equation under this heading); and “life as we know it” LAWKI, 86; and locomotion, 92; and sight/vision, 92; stars suitable for supporting, 73–74, 76–79, 96; Star Trek and, 87–88; and technology, 71–72, 82, 91, 93–94; and temperature, 70, 77–78, 95–97, 195–196; terrestrial life as point of reference, 84–85, 92, 96–97; time required for emergence and evolution of, 85–86; water as requirement for, 79, 83–84

light years, 13
Linde, Andrei, 176, 179, 188–190, 199
longevity, Copernican formula for estimating future, 204–207, 212–213
low-density universe:
and bubble universes, 173–174
luminosity: and gravitational waves, 59–60;
of stars, 37; and temperature, 40; of variable Cepheids, 115–116
machines, and intelligence, 210
Mars, 20–21, 32; as habitable, 21; human colonization of, 215–216
Mather, John, 142
McDonald’s, 2–4
megaparsecs, 124
Mercury, 18, 20, 28; precession of, 152
Milky Way galaxy: and Andromeda galaxy, 108, 116, 118, 125, 192; appearance from above, 103; appearance from Earth’s perspective, 98–101, 100, 103; black hole at center
Milky Way galaxy (continued) of, 109–111; gravitational forces within, 107; halo of, 103–104; location in the universe, 124; location of Sun and solar system in, 99–101, 124; mass of, 104–105, 107–108; number of stars in, 3–4, 98–99, 104–105; and orbital motion of stars, 104–106; rotation of, 104; shape of, 99–100, 104; speed of stars orbiting in, 104–108; visible stars in, 98–99

Mount Wilson Observatory, 115–116

multiverse, 172, 173; and bubble universes, 170; and infinite expansion, 180

Musk, Elon, 216

nebulae, 113–114

Neptune, 21, 22; moons of, 27

neutrinos, 45

neutrons, 11–12; transmutation into protons, 132

neutron stars, 12, 47, 55, 57–58, 64–65

New Horizons mission (NASA), 31

Newton, Isaac, 18–19, 154

Newton’s law of gravity, 18–19, 150, 154

Nielson, Holgar, 213

nuclear weapons, 52

O B A F G K M L T Y (classification scheme for stars), 47–49

Oort, Jan, 28

Oort Cloud, 28

open clusters, 39

orbital motion, 10

orbital motion, 10
orbits: “backwards,” 27–28; elliptical, 19, 23, 79, 109; gravity and elliptical, 18–19; Mercury’s orbit and precession, 152; multi-planet systems and stable circular orbits, 79; tidal locking and shape of orbit, 77–78
origin of universe, 13–14; and quantum tunneling, 187–188; self-creating multiverse, 188–191. See also Big Bang
Orion Nebula, 66–67
oxygen, 51, 54, 62, 64
Pauli, Wolfgang, 63
Pauli exclusion principle, 62–63
Payne-Gaposchkin, Cecelia, 36, 134
Peebles, Jim, 140–142, 144, 199
Penzias, Arno, 138–139
Perlmutter, Saul, 183
phantom energy, 201–202
photinos, 143
photons, 44–45, 128–129; and photinos, 143; scattering in plasma, 136–137
Piazzi, Guiseppi, 25
Planck satellites and satellite team, 144, 180–181, 184–186
planetary nebulae, 47
planets: of binary systems, 79–80; defining characteristics of, 20–21, 24–26, 30; gaseous, 21–22, 28; size of, 20–22; and Sun, 32; terrestrial, 20–21, 28. See also specific, i.e., Mars
Plank, Max, 129–130
plasma, 136
Pleiades (star cluster), 40
Pluto (Disney cartoon dog), 24
Pluto (dwarf planet): as comet, 19; controversy over designation as planet, 17–18, 29–31; human emotional attachment to, 24; as Kuiper Belt object, 22–24, 26–27; moons of, 18, 31; orbit of, 19; size of, 19, 26–27
The Pluto Files (Tyson), 31
positrons, 44–45, 132, 197
Poundstone, William, 210–211
precession of Mercury, 152
Príncipe Island, 153
protons, 10–11; decay and microscopic black holes, 197; and nuclear fission, 51–53; and thermonuclear fusion, 43–51, 131–132; transmutation into neutrons, 64, 132
pulsars, 12, 56
quantum physics: Heisenberg’s uncertainty principle, 170–171, 177, 186
quantum tunneling, 175, 175–179, 182, 198, 200; and de Sitter “waist,” 187–188; Gamow’s discovery of, 176–177; and inflationary universe, 187–188; and “local” laws of physics, 188; and radioactive decay of uranium, 176–177
quasars, 110–112
radio pulsars, 56
radio waves, 56, 94
Ratra, Bharat, 199
recombination, 136–137, 144
red dwarfs, 42
red giants, 12, 37–38, 40, 47, 51, 54; supergiants, 38, 47, 63–64; temperature of, 48; visible to the naked eye, 63–64
Index

scale of the universe, 16–17, 67; and comprehending large numbers, 1–8
Schmidt, Brian, 183
search for life. See life, extraterrestrial
selectrons, 143
SETI (Search for Extraterrestrial Intelligence), 72
shape of the universe, 16
Shapley, Harlow, 36, 99, 114–115, 124
silicon, 63, 87–89, 134
singularities, 158–159, 170, 201
size of the universe: distance between stars, 99; as finite, 187–188; large numbers and scale of, 1–8, 16–17, 67
Skewe’s number, 8
Slepian, Zack, 185, 199
Slipher, Vesto, 122
Sloan Digital Sky Survey, 145–149; and distribution of galaxies, 146; and structure of universe, 145–149
Sloan Great Wall, 147
slow-roll dark energy, 199–200
Smoot, George, 142
Sobel, Dava, 36
Sobral, Brazil, 153
solar eclipse, 152–153
Solar system, 32
spacetime: as curved, 151–152, 158; and geodesics, 151
SpaceX, 216
speed of light, 45, 128–129, 167
speed of recession, 122–123
spiral nebulae, 114, 116–117
Starobinski, Alexei, 186–187
stars: age of, 33–34, 38–42, 106–107, 148; atomic composition of, 33, 42–43, 44–47, 51; binary star systems, 41, 57, 65–66, 79–80; birth of, 39–40; Cepheid variable, 115–116; classification of, 33–34, 38–39, 47–49; color of, 34, 39, 41–42; compared to nuclear weapons, 51–52; and core collapse, 53–58, 62; core temperatures of, 43; density of, 11–13; distance between, 99; elements formed within, 53–54, 58, 134–135 (See also specific elements); fission
stars (continued)
and exothermic energy
of, 51–53; and heavy
elements, 134–135;
Hertzsprung-Russell
(HR) diagram, 34–38,
35; interstellar dis-
tance between, 99; and
interstellar medium, 55,
66; life cycle of, 14–15,
39–40, 196; luminosity
of, 33–34, 40–42, 50;
magnetic fields of, 56;
“main sequence,” 35;
mass of, 48–51; neutron
stars, 11–13; and nuclear
fusion, 52–53; number
in Milky Way Galaxy, 67;
number in observable
universe, 5–6; number in
universe, 119–120; O B A
F G K M L T Y spectral
classification scheme,
47–49; open clusters,
39; stellar nurseries and
birth of, 39–40, 66–67,
106–107; the Sun (See
Sun); supernovae, 47,
63–64; surface tempera-
ture of, 33; temperature
of, 33–34, 40–41, 43,
47–49. See also brown
dwarfs; red dwarfs; red
giants; white dwarfs
Star Trek, 80–81
Steinhardt, Paul, 179
stellar nurseries, 39–40,
66–67, 106–107
strong nuclear force, 43–44
Sun: density of, 11; future of,
60–64, 192; luminosity
of, 50; as “typical” star,
105
superforce, 165, 169
supermassive black holes,
109–112
supernovae, 47, 55–57,
183; types II and Ia,
65; and white dwarfs,
65–66
superstring theory, 10
supersymmetry, 143–144
surface of constant epoch,
173–174
Taylor, Joe, 57–58
temperature: Big Bang
and thermal radiation,
128–133, 161; color as
proxy for, 34; Gibbons
and Hawking thermal
radiation, 193–195;
greenhouse effect of
atmosphere, 20, 79,
95–97; and habitable zone requirements for life, 70, 95–96; and luminosity of stars, 40, 47; and O B A F G K M L T Y classification of stars, 47–49; of planets in our solar system, 20–22; and recombination, 136–137; of stars, 37; of the Sun, 13; thermal energy and Big Bang nuclear fusion, 161; and thermonuclear fusion, 43–44; and tidally locked planets, 77–78; and uniformity of the universe, 161; of the universe, 13–15, 171, 181, 194 terrestrial planets, 22, 28, 32 thermonuclear fusion, 43–44, 131–132 Thompson, J. J., 153 Thorne, Kip, 190 tidal forces, 83 tidal locking, 77–78 time: and Big Bang model of universe, 159; and Einstein’s theory of general relativity (spacetime), 150–151, 159; human scale and measurement of, 4–5; surface of constant epoch, 173–174 time loops, 189–191 time travel, 111–112 Titan (moon of Saturn), 27 Tombaugh, Clyde, 18, 24, 31–32 transits, 74–75 Triton (moon of Neptune), 27–28 Trojan asteroids, 30 Type Ia supernovae, 183 ultraviolet light, 66–67 uncertainty principle, 197 universe: age of, 126; appearance from Earth, 114–115; as composed of plasma, 136; curvature of, 181–182; elemental composition of, 131–133; and expansion (See expansion of the universe); gravitational pull and structure of, 140–141, 170–171; and inflation (See inflation); origin of (See Big Bang); shape of, 181–182; structure of, 112, 140, 145, 149, 171, 180–181; temperature of, 13–14
uranium, 51–52, 57, 176–177
Uranus, 21, 22, 26, 28, 32
vacuum, 9–10
vacuum energy, 164–166, 183, 198–199, 201;
and bubble universe, 178–179; dark energy as
form of, 185, 198; density
and quantum tunneling, 174–176
Venus, 20, 28
Vesta (asteroid), 28
\(v = H_0 d \) (Hubble’s law), 124
Vilenkin, Alex, 187
water: on Enceladus, 27; on
Europa, 27; on Mars, 21;
required for life, 69–70
Weak Anthropic Principle, 203
weakly interacting massive
particles (WIMPs), 144
Weinberg, Nevin, 201
white dwarfs, 12, 38, 47,
62–63; Sun as future,
192; and supernovae,
65–66
Wilkinson, David, 139
Wilkinson Microwave An-
isotropy Probe (WMAP)
satellite, 144, 180–181,
184–185
Wilson, E. O., 5
Wilson, Robert, 138–139
WIMPs (weakly interacting
massive particles), 144
WMAP (Wilkinson Micro-
wave Anisotropy Probe)
satellite, 144, 180–181,
184–185
women and astrophysics, 36
worldlines (geodesics),
156–158, 160
wormholes, 190
\(w_0 \) values, 185, 200–202
Zwicky, Fritz, 108–109