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C H A P T E R   1

SIZE AND SCALE  

OF THE UNIVERSE

Neil deGrasse Tyson

We begin with the solar system. Ascend to the 
stars. Then reach for the galaxy, the universe, and 
beyond.

The universe. It’s bigger than you think. It’s 
hotter than you think. It is denser than you think. 
It’s more rarified than you think. Every thing you 
think about the universe is less exotic than it ac-
tually is. Let’s get some numerical machinery to-
gether before we begin. Start with the number 1. 
 You’ve seen this number before.  There are no 
zeros in it. If we wrote this in exponential nota-
tion, it is ten to the zero power, 100. The number 
1 has no zeros to the right of that 1, as indicated by 
the zero exponent. Moving onward, the number 
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10 can be written as 10 to the first power, 101. 
Let’s go to a thousand—103. What’s the metric 
prefix for a thousand? Kilo-  kilogram— a thou-
sand grams; kilo meter— a thousand meters. 
Let’s go up another three zeros, to a million, 106, 
whose prefix is mega- . Maybe this is the highest 
they had learned how to count at the time they 
in ven ted the megaphone; perhaps if they had 
known about a billion, by appending three more 
zeroes, giving 109, they would have called them 
“gigaphones.”

Do you know how big a billion is? What kinds 
of  things come in billions?

Currently we are approaching 8 billion  people 
in the world.

How about Jeff Bezos, the founder of Amazon 
. com? What’s his wealth up to? More than 100 bil-
lion dollars. Where have you seen 100 billion? 
Well, McDonald’s: “Over 99 Billion Served.” 
That’s the biggest number you ever see in the 
street. McDonald’s never displayed 100 billion, 
 because they allocated only two numerical slots 
for their burger count, and so, they just  stopped 
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at 99 billion.  After that, they pulled a Carl Sagan 
on us and now say, “billions and billions served.”

Take 100 billion hamburgers, and lay them end 
to end. Start at New York City, and go west.  Will 
you get to Chicago? Of course.  Will you get to 
California? Yes. Find some way to float them. 
This calculation uses the dia meter of the bun 
(4 inches), so it’s all about the bun. Now float 
them across the ocean, along a  great circle route, 
and you  will cross the Pacific, pass Australia, the 
Indian Ocean, Africa, and across the Atlantic 
Ocean, fi nally arriving back in New York City. 
That’s a lot of hamburgers. But you have some 
left over  after you have circled Earth’s circumfer-
ence. So, you make the trip all over again, 215 
more times. Afterward, you still have some left. 
 You’re bored circumnavigating Earth, so you 
stack what remains. How high do you go? You’ll 
go to the Moon, and back, with stacked ham-
burgers (each 2 inches tall)  after  you’ve already 
been around the world 216 times. Only then 
 will you have used your 100 billion hamburgers. 
That’s why cows are scared of McDonald’s. By 
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comparison, the Milky Way galaxy has about 300 
billion stars. Perhaps McDonald’s is gearing up for 
the cosmos.

When you are 31 years, 7 months, 9 hours, 4 
minutes, and 20 seconds old,  you’ve lived your 
billionth second. I’m just geeky enough to have 
celebrated that moment in my life with a fast sip 
of champagne.

Let’s keep  going. What’s the next step up? 
A trillion: 1012. We have a metric prefix for 
that: tera-. You  can’t count to a trillion. If you 
counted one number  every second, it would take 
you 1,000 times 31 years—31,000 years, which is 
why we  don’t recommend  doing this, even at 
home. A trillion seconds ago, cave dwellers— 
troglodytes— were drawing pictures on their 
living- room walls.

At New York City’s Rose Center of Earth and 
Space, a spiral ramp timeline of the universe be-
gins at the Big Bang and displays 13.8 billion 
years. Uncurled, it’s the length of a football field. 
 Every step you take spans 50 million years. You 
get to the end of the ramp, and you ask, where are 
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we? Where is the history of our  human species? 
The entire period of time, from a trillion seconds 
ago to  today, from graffiti- prone cave dwellers 
 until now, occupies only the thickness of a single 
strand of  human hair, which we have mounted at 
the end of that timeline. You think we live long 
lives; you think civilizations last a long time? No. 
Not relative to the cosmos itself.

What’s next? 1015. That’s a quadrillion, with the 
metric prefix peta- . Between 1 and 10 quadrillion 
ants live on (and in) Earth, according to Harvard 
biologist E. O. Wilson.

Then comes 1018, a quintillion, with metric 
prefix exa-. That’s the estimated number of grains 
of sand on ten large beaches.

Up another  factor of 1,000 and we arrive at 1021, 
a sextillion. We have ascended from kilo meters 
to megaphones to McDonald’s hamburgers to 
Cro- Magnon artists to ants to grains of sand on 
beaches,  until fi nally arriving  here: more than 10 
sextillion—

the number of stars in the observable universe.
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 There are  people, who walk around  every day, 
asserting that we are alone in this cosmos. They 
simply have no concept of large numbers, no con-
cept of the size of the cosmos.  Later,  we’ll learn 
more about what we mean by the observable uni-
verse, the part of the universe we can see.

While  we’re at it, how about a number much 
larger than 1 sextillion—1081? It’s the number of 
atoms in the observable universe. Why would you 
ever need a number bigger than that? What “on 
Earth” could you be counting? How about 10100, a 
nice round- looking number. This is called a googol. 
Not to be confused with Google, the internet com-
pany that misspelled “googol” on purpose.

 There are not enough objects in the universe 
for a googol to count. It is just a fun number. We 
can write it as 10100, or as is true for all out big 
numbers, if you  don’t have superscripts, this 
works too: 10^100. But you can still use such big 
numbers for some situations:  don’t count  things; 
instead count the ways  things can happen. For 
example, how many pos si ble chess games can be 
played? A game can be declared a draw by  either 
player  after a  triple repetition of a position, or 
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when each has made 50 moves in a row without 
a pawn move or a capture, or when  there are not 
enough pieces left to produce a checkmate. If 
we say that one of the two players must declare a 
draw whenever one of  these three  things happen, 
then we can calculate the number of all pos si ble 
chess games. Rich Gott did this ( because that’s 
just the kind of  thing he does) and found the an-
swer was a number less than 10^(10^4.4). That’s 
a lot bigger than a googol, which is 10^(10^2). 
Again,  you’re not counting  things; you are 
counting pos si ble ways of  doing  things. In that 
way, numbers can get very large.

 Here’s a still bigger number. If a googol is 1 fol-
lowed by 100 zeros, then how about 10 to the 
googol power? That has a name too: a googolplex. 
It is 1, with a googol zeroes  after it. Can you even 
write out this number? Nope. You would need 
a googol zeroes, and a googol is larger than the 
number of atoms in the universe, then  you’re 
stuck writing it this way: 10googol, or 1010^100 or 
10^(10^100).

 We’re not just wasting your time.  Here’s 
a  number bigger than a googolplex. Jacob 
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Bekenstein in ven ted a formula allowing us to 
estimate the maximum number of dif fer ent 
quantum states that could have a total mass and 
size comparable to our observable universe. 
Given the quantum fuzziness we observe, that 
would be the maximum number of distinct ob-
servable universes like ours. It’s 10^(10^124), 
which has 1024 times as many zeros as a googol-
plex.  These 10^(10^124) universes range from 
ones that are scary, filled with mostly black holes, 
to ones that are exactly like ours but where your 
nostril is missing one oxygen molecule and some 
space alien’s nostril has one more.

A mathematical theorem once contained 
the bad ass number 10^(10^(10^34)). It’s called 
Skewe’s number. And it dwarfs them all.

Time to get a sense of the extremes in the 
universe.

How about density? You intuitively know 
what density is, but let’s think about density 
in the cosmos. First, explore the air around us. 
 You’re breathing 2.5 × 1019 molecules per cubic 
 centimeter—78% nitrogen and 21% oxygen (plus 
1% “other”). When we talk about density  here, 
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 we’re referencing the number of molecules, 
atoms, or loose particles that compose the mate-
rial in question.

A density of 2.5 × 1019 molecules per cubic 
centimeter is likely higher than you thought. 
What about our best laboratory vacuums? We 
do pretty well  today, bringing the density down 
to about 100 molecules per cubic centimeter. 
How about interplanetary space? The solar 
wind at Earth’s distance from the Sun has about 
10 protons per cubic centimeter. How about in-
terstellar space, between the stars? Its density 
fluctuates, depending on where  you’re hanging 
out, but regions in which the density falls to 
1 atom per cubic centimeter are not uncommon. 
In intergalactic space, that number is much less: 
1 per cubic meter.

We  can’t get vacuums that empty in our best 
laboratories.  There is an old saying, “Nature ab-
hors a vacuum.”  People who said that never left 
Earth’s surface. In fact, Nature just loves a vacuum, 
 because that’s what most of the universe is. When 
they said “Nature,” they  were just referring to the 
base of this blanket of air we call our atmosphere, 
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which does indeed rush in to fill empty spaces 
whenever it can.

Smash a piece of chalk into smithereens against 
a blackboard and pick up a fragment. Let’s say a 
smithereen is about 1 millimeter across. Imagine 
that’s a proton. Do you know what the simplest 
atom is? Hydrogen. Its nucleus contains one 
proton, and normal hydrogen has an electron 
occupying a spherically  shaped volume that 
surrounds the proton. We call  these volumes 
orbitals. If the chalk smithereen is the proton, 
then how big would the full hydrogen atom be? 
One hundred meters across— about the size of a 
football field. So atoms are quite empty, though 
small: about 10−10 meters in dia meter. That’s 
one ten- billionth of a meter. Only when you get 
down to 10−14 or 10−15 meters are you mea sur ing 
the size of the nucleus. Let’s go smaller. We do 
not yet know the dia meter of the electron. It’s 
smaller than we are able to mea sure. However, 
superstring theory suggests that it may be a tiny 
vibrating string as small as 1.6 × 10−35 meters in 
length. So  matter is an excellent repository of 
empty space.
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Now let’s go the other way, climbing to higher 
and higher densities. How about the Sun? It’s 
quite dense (and crazy hot) in the center, but 
much less dense at its edge. The average density 
of the Sun is about 1.4 times that of  water. And 
we know the density of  water—1 gram per cubic 
centimeter. In its center, the Sun’s density is 160 
grams per cubic centimeter. Yet the Sun is un-
distinguished in  these  matters. Stars can (mis)
behave in amazing ways. Some expand to get big 
and bulbous with very low density, while  others 
collapse to become small and dense. In fact, 
consider the proton smithereen and the lonely, 
empty space that surrounds it.  There are pro-
cesses in the universe that collapse  matter down, 
crushing it  until  there’s no empty volume be-
tween the nucleus and the electrons. In this state 
of existence, the  matter reaches the density of an 
atomic nucleus. Within such stars, each nucleus 
rubs cheek to cheek with neighboring nuclei.

The objects out  there with  these extraor-
dinary properties happen to be made mostly 
of neutrons— a super- high- density realm of the 
universe.
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In our profession, we tend to name  things ex-
actly as we see them. Big red stars we call red 
 giants. Small white stars we call white dwarfs. 
When stars are made of neutrons, we call them 
neutron stars. Stars we observe pulsing, we call 
them pulsars. In biology they come up with big 
Latin words for  things. MDs write prescrip-
tions in a cuneiform that patients  can’t under-
stand, then hand them to the pharmacist, who 
understands the cuneiform. In biochemistry, 
the most popu lar molecule has ten syllables— 
deoxyribonucleic acid. Yet the beginning of all 
space, time,  matter, and energy in the cosmos 
is simply the Big Bang. We are a  simple  people, 
with a monosyllabic lexicon. The universe is hard 
enough, so  there is no point in making big words 
to confuse you further.

Want more? In the universe,  there are places 
where the gravity is so strong that light  doesn’t 
come out. You fall in, and you  can’t come out; 
 these are called black holes. Once again, with 
single syllables, we get the  whole job done.

How dense is a neutron star? Cram a herd of 
100 million elephants into a Chapstick casing. 
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In other words, if you put 100 million elephants 
on one side of a seesaw, and a single Chapstick 
of neutron star material on the other side, they 
would balance. That’s some dense stuff.

How about temperature? Let’s talk hot. Start 
with the surface of the Sun. About 6,000 kelvins— 
6,000 K (a temperature in kelvins is equal to its 
temperature in degrees centigrade + 273). That 
 will vaporize anything you give it. That’s why the 
Sun is gas,  because that temperature vaporizes 
every thing. By comparison, the average tempera-
ture of Earth’s surface is a mere 287 K.

How about the temperature at the Sun’s 
center? As you might guess, the Sun’s center is 
hotter than its surface. The Sun’s core is about 
15 million K.

Let’s go cool. What is the temperature of 
the  whole universe? It does indeed have a 
temperature— left over from the Big Bang. In the 
beginning, 13.8 billion years ago, all the space, 
time,  matter, and energy you can see, out to 13.8 
billion light- years, was crushed together. (A light- 
year is the distance light, traveling at 300,000 
kilo meters a second, can travel in a year— about 
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10 trillion kilo meters.) The nascent universe 
1 second  after its birth was hot, about 10 billion 
K, a seething cauldron of  matter and energy. 
Cosmic expansion since then has cooled the 
universe down to a mere 2.7 K.

 Today we continue to expand and cool. As 
unsettling as it may be, all data show that  we’re 
on a one- way trip. We  were birthed by the Big 
Bang, and  we’re  going to expand forever. The 
temperature  will continue to drop, eventually 
becoming 2 K, then 1 K, then half a kelvin, as-
ymptotically approaching absolute zero. Ulti-
mately, its temperature may bottom out at about 
7 × 10−31 K (that’s 0.7 million- trillion- trillionths of 
a degree above absolute zero)  because of an ef-
fect discovered by Stephen Hawking that we 
 will discuss in chapter 8. But that fact brings no 
comfort. Stars  will finish fusing all their thermo-
nuclear fuel, and one by one they  will blink out, 
disappearing from the night sky. Interstellar gas 
clouds do make new stars, but of course this de-
pletes their gas supply. You start with gas, you 
make stars, the stars age, and they leave  behind a 
corpse— the dead end- products of stellar evolu-
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tion: black holes, neutron stars, and white dwarfs. 
This keeps  going  until all the lights of the galaxy 
turn off, one by one. The galaxy goes dark. The 
universe goes dark. This leaves black holes that 
emit only a feeble glow of light— again predicted 
by Stephen Hawking.

And so the cosmos ends. Not in fire, but in ice. 
And not with a bang, but with a whimper.

Have a nice day! And, welcome to the universe.
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