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Chapter 1

Euclidean and Non-Euclidean Geometry

1.1 Euclidean and Hyperbolic Geometry

Differential Geometry is the application of calculus to the geometry of space that is curved. But to
understand space that is curved we shall first try to understand space that is flat.

We inhabit a natural world pervaded by curved objects, and if a child asks us the meaning of
the word “flat,” we are most likely to answer in terms of the absence of curvature: a smooth surface
without any bumps or hollows. Nevertheless, the very earliest mathematicians seem to have been
drawn to the singular simplicity and uniformity of the flat plane, and they were rewarded with
the discovery of startlingly beautiful facts about geometric figures constructed within it. With the
benefit of enormous hindsight, some of these facts can be seen to characterize the plane’s flatness.

[1.1] Pythagoras’s Theorem: the geometry of
32 + 42 = 52.

One of the earliest and most profound
such facts to be discovered was Pythagoras’s
Theorem. Surely the ancients must have been
awed, as any sensitive person must remain
today, that a seemingly unalloyed fact about
numbers,

32 + 42 = 52,

in fact has geometrical meaning, as seen in
[1.1].1

While Pythagoras himself lived in Greece
around 500 BCE, the theorem bearing his
name was discovered much earlier, in various
places around the world. The earliest known
example of such knowledge is recorded in the
Babylonian clay tablet (catalogued as “Plimp-
ton 322”) shown in [1.2], which was un-
earthed in what is now Iraq, and which dates
from about 1800 BCE.

The tablet lists Pythagorean triples:2 integers (a, b, h) such that h is the hypotenuse of a
right triangle with sides a and b, and therefore a2 + b2 = h2. Some of these ancient examples are
impressively large, and it seems clear that they did not stumble upon them, but rather possessed
a mathematical process for generating solutions. For example, the fourth row of the tablet records
the fact that 135002 + 127092 = 185412.

The deeper knowledge that underlay these ancient results is not known,3 but to find the first
evidence of the “modern,” logical, deductive approach to mathematics we must jump 1200 years
into the future of the clay tablet. Scholars believe that it was Thales of Miletus (around 600 BCE)

1We repeat what was said in the Prologue: equations are labelled with parentheses (round brackets)—(. . .), while figures are
labelled with square brackets—[. . .].
2In fact the tablet only records two members (a, h) of the triples (a, b, h).
3In the seventeenth century, Fermat and Newton reconstructed and generalized a geometrical method of generating the general
solution, due to Diophantus. See Exercise 5.

3
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[1.2] Plimpton 322: A
clay tablet of Pythago-
rean triples from 1800
BCE.

L

p

P

[1.3] Euclid’s Parallel Axiom: P is the unique parallel
to L through p, and the angle sum of a triangle is π.

who first pioneered the idea of deducing new
results from previously established ones, the
logical chain beginning at a handful of clearly
articulated assumptions, or axioms.

Leaping forward again, 300 years beyond
Thales, we find one of the most perfect exem-
plars of this new approach in Euclid’s Ele-
ments, dating from 300 BCE. This work sought
to bring order, clarity, and rigour to geometry
by deducing everything from just five simple
axioms, the fifth and last of which dealt with
parallel lines.

Defining two lines to be parallel if they
do not meet, Euclid’s Fifth Axiom4 is illus-
trated in [1.3]:

Parallel Axiom. Through any point p not on the line L there exists precisely one
line P that is parallel to L.

But the character of this axiom was more complex and less immediate than that of the first
four, and mathematicians began a long struggle to dispense with it as an assumption, instead
seeking to show that it must be a logical consequence of the first four axioms.

This tension went unresolved for the next 2000 years. As the centuries passed, many attempts
were made to prove the Parallel Axiom, and the number and intensity of these efforts reached a
crescendo in the 1700s, but all met with failure.

Yet along the way useful equivalents of the axiom emerged. For example: There exist similar
triangles of different sizes (Wallis in 1663; see Stillwell (2010)). But the very first equivalent was
already present in Euclid, and it is the one still taught to every school child: the angles in a triangle
add up to two right angles. See [1.3].

The explanation of these failures only emerged around 1830. Completing a journey that had
begun 4000 years earlier, Nikolai Lobachevsky and János Bolyai independently announced the

4Euclid did not state his axiom in this form, but it is logically equivalent.
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discovery of an entirely new form of geometry (now called Hyperbolic Geometry) taking place in
a new kind of plane (now called the hyperbolic plane). In this Geometry the first four Euclidean
axioms hold, but the parallel axiom does not. Instead, the following is true:

Hyperbolic Axiom. There are at least two parallel lines through p that do not
meet L.

(1.1)

[1.4] Johann Heinrich Lambert (1728–1777).

These pioneers explored the logical consequences
of this axiom, and by purely abstract reasoning
were led to a host of fascinating results within
a rich new geometry that was bizarrely different
from that of Euclid.

Many others before them, perhaps most
notably Saccheri (in 1733; see Stillwell 2010) and
Lambert (in 1766; see Stillwell 2010), had discov-
ered some of these consequences of (1.1), but their
aim in exploring these consequences had been to
find a contradiction, which they believed would
finally prove that Euclidean Geometry to be the
One True Geometry.

Certainly Saccheri believed he had found a
clear contradiction when he published “Euclid
Freed of Every Flaw.” But Lambert is a much more
perplexing case, and he is perhaps an unsung hero
in this story. His results penetrated so deeply into
this new geometry that it seems impossible that
he did not at times believe in the reality of what
he was doing. Regardless of his motivation and
beliefs5, Lambert (shown in [1.4]) was certainly the first to discover a remarkable fact6 about the
angle sum of a triangle under axiom (1.1), and his result will be central to much that follows in
Act II.

Nevertheless, Lobachevsky and Bolyai richly deserve their fame for having been the first to
recognize and fully embrace the idea that they had discovered an entirely new, consistent, non-
Euclidean Geometry. But what this new geometry really meant, and what it might be useful for,
even they could not say.7

Remarkably and surprisingly, it was the Differential Geometry of curved surfaces that ultimately
resolved these questions. As we shall explain, in 1868 the Italian mathematician Eugenio Beltrami
finally succeeded in giving Hyperbolic Geometry a concrete interpretation, setting it upon a
firm and intuitive foundation from which it has since grown and flourished. Sadly, neither
Lobachevsky nor Bolyai lived to see this: they died in 1856 and 1860, respectively.

This non-Euclidean Geometry had in fact already manifested itself in various branches of
mathematics throughout history, but always in disguise. Henri Poincaré (beginning around 1882)
was the first not only to strip it of its camouflage, but also to recognize and exploit its power

5I thank Roger Penrose for making me see that Lambert deserves greater credit than he is usually granted. Penrose did so by
means of the following analogy: “Should we not give credit to Einstein for the cosmological constant, even if he introduced it
for the wrong reasons? And should we blame him for later retracting it, calling it the “greatest blunder of my life”? Or what
about General Relativity itself, which Einstein seemed to become less and less convinced was the right theory (needing to be
replaced by some kind of non-singular unified field theory) as time went on?” [Private communication.]
6If you cannot wait, it’s (1.8).
7Lobachevsky did in fact put this geometry to use to evaluate previously unknown integrals, but (at least in hindsight) this
particular application must be viewed as relatively minor.
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in such diverse areas as Complex Analysis, Differential Equations, Number Theory, and Topo-
logy. Its continued vitality and centrality in the mathematics of the 20th and twenty-first cen-
turies is demonstrated by Thurston’s work on 3-manifolds, Wiles’s proof of Fermat’s Last
Theorem, and Perelman’s proof of the Poincaré Conjecture (as a special case of Thurston’s
Geometrization Conjecture), to name but three examples.

In Act II we shall describe Beltrami’s breakthrough, as well as the nature of Hyperbolic Geo-
metry, but for now we wish to explore a different, simpler kind of non-Euclidean Geometry, one
that was already known to the Ancients.

1.2 Spherical Geometry

To construct a non-Euclidean Geometry we must deny the existence of a unique parallel. The
Hyperbolic Axiom assumes two or more parallels, but there is one other logical possibility—no
parallels:

Spherical Axiom. There are no lines through p that are parallel to L : every line
meets L.

(1.2)

Thus there are actually two non-Euclidean8 geometries: spherical and hyperbolic.
As the name suggests, Spherical Geometry can be realized on the surface of a sphere—

denoted S2 in the case of the unit sphere—which we may picture as the surface of the Earth. On
this sphere, what should be the analogue of a “straight line” connecting two points on the surface?
Answer: the shortest route between them! But if you wish to sail or fly from London to New York,
for example, what is the shortest route?

L

p

[1.5] The great circles of S2 intersect in pairs of
antipodal points.

The answer, already known to the ancient
mariners, is that the shortest route is an arc of
a great circle, such as the equator, obtained
by cutting the sphere with a plane passing
through its centre. In [1.5] we have chosen L to
be the equator, and it is clear that (1.2) is satis-
fied: every line through p meets L in a pair of
antipodal (i.e., diametrically opposite) points.

In the plane, the shortest route is also the
straightest route, and in fact the same is true on
the sphere: in a precise sense to be discussed
later, the great circle trajectory bends neither
to the right nor to the left as it traverses the
spherical surface.

There are other ways of constructing the
great circles on the Earth that do not require
thinking about planes passing through the
completely inaccessible centre of the Earth.
For example, on a globe you may map out

your great circle journey by holding down one end of a piece of string on London and pulling
the string tightly over the surface so that the other end is on New York. The taut string has

8Nevertheless, the reader should be aware that in modern usage “non-Euclidean Geometry” is usually synonymous with
“Hyperbolic Geometry.”
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automatically found the shortest, straightest route—the shorter9 of the two arcs into which the
great circle through the two cities is divided by those cities.

With the analogue of straight lines now found, we can “do geometry” within this sphe-
rical surface. For example, given three points on the surface of the Earth, we can connect them
together with arcs of great circles to obtain a “triangle.” Figure [1.6] illustrates this in the case
where one vertex is located at the north pole, and the other two are on the equator.

A

[1.6] A particularly simple “triangle”
on the sphere.

But if this non-Euclidean Spherical Geometry was
already used by ancient mariners to navigate the oceans,
and by astronomers to map the spherical night sky, what
then was so shocking and new about the non-Euclidean
geometry of Lobachevsky and Bolyai?

The answer is that this Spherical Geometry was
merely considered to be inherited from the Euclidean Geo-
metry of the 3-dimensional space in which the sphere
resides. No thought was given in those times to the
sphere’s internal 2-dimensional geometry as representing
an alternative to Euclid’s plane. Not only did it violate
Euclid’s fifth axiom, it also violated a much more basic
one (Euclid’s first axiom) that we can always draw a
unique straight line connecting two points, for this fails
when the points are antipodal.

On the other hand, the Hyperbolic Geometry of Lobachevsky and Bolyai was a much more
serious affront to Euclidean Geometry, containing familiar lines of infinite length, yet flaunting
multiple parallels, ludicrous angle sums, and many other seemingly nonsensical results. Yet the
21-year-old Bolyai was confident and exuberant in his discoveries, writing to his father, “From
nothing I have created another entirely new world.”

We end with a tale of tragedy. Bolyai’s father was a friend of Gauss, and sent him what
János had achieved. By this time Gauss had himself made some important discoveries in this
area, but had kept them secret. In any case, János had seen further than Gauss. A kind word in
public from Gauss, the most famous mathematician in the world, would have assured the young
mathematician a bright future. But Nature and nurture sometimes conspire to pour extraordinary
mathematical gifts into a vessel marred by very ordinary human flaws, and Gauss’s reaction to
Bolyai’s marvellous discoveries was mean-spirited and self-serving in the extreme.

First, Gauss kept Bolyai in suspense for six months, then he replied as follows:

Now something about the work of your son. You will probably be shocked for a moment
when I begin by saying that I cannot praise it, but I cannot do anything else, since to praise
it would be to praise myself. The whole content of the paper, the path that your son has
taken, and the results to which he has been led, agree almost everywhere with my own
meditations, which have occupied me in part for 30–35 years.

Gauss did however “thank” Bolyai’s son for having “saved him the trouble”10 of having to write
down theorems he had known for decades.

János Bolyai never recovered from the surgical blow delivered by Gauss, and he abandoned
mathematics for the rest of his life.11

9If the two points are antipodal, such as the north and south poles, then the two arcs are the same length. Furthermore, the
great circle itself is no longer unique: every meridian is a great circle connecting the poles.
10Gauss had previously denigrated Abel’s discovery of elliptic functions in precisely the same manner; see Stillwell (2010,
p. 236).
11If this depresses you, turn your thoughts to the uplifting counterweight of Leonhard Euler. An intellectual volcano erupting
with wildly original thoughts (some of which we shall meet later) he was also a kind and generous spirit. We cite one, parallel
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1.3 The Angular Excess of a Spherical Triangle

As we have said, the parallel axiom is equivalent to the fact that the angles in a triangle sum to π. It
follows that both the spherical axiom and the hyperbolic axiom must lead to geometries in which
the angles do not sum to π. To quantify this departure from Euclidean Geometry, we introduce the
angular excess, defined to be the amount E by which the angle sum exceeds π:

E≡ (angle sum of triangle) −π.

For example, for the triangle shown in [1.6], E =(θ+ π
2 + π

2 ) −π= θ.
A crucial insight now arises if we compare the triangle’s angular excess with its area A. Let the

radius of the sphere be R. Since the triangle occupies a fraction (θ/2π) of the northern hemisphere,
A =(θ/2π) 2πR2 = θR2. Thus,

E = 1
R2 A. (1.3)

[1.7] Thomas Harriot (1560–1621).

In 1603 the English mathematician Thomas
Harriot (see [1.7]) made the remarkable discov-
ery12 that this relationship holds for any triangle
∆ on the sphere; see [1.8a]. Harriot’s elementary
but ingenious argument13 goes as follows.

Prolonging the great-circle sides of∆ divides
the surface of the sphere into eight triangles, the
four triangles labelled ∆, ∆α, ∆β, ∆γ each being
paired with a congruent antipodal triangle. This
is clearer in [1.8b]. Since the area of the sphere is
4πR2, we deduce that

A(∆) + A(∆α) + A(∆β)+ A(∆γ) = 2πR2. (1.4)

On the other hand, it is clear in [1.8b] that ∆
and ∆α together form a wedge whose area is a
fraction (α/2π) of the area of the sphere:

A(∆) + A(∆α) = 2αR2.

Similarly,

A(∆) + A(∆β) = 2βR2,

A(∆) + A(∆γ) = 2γR2.

example. When the then-unknown 19-year-old Lagrange wrote to him with overlapping discoveries in the calculus of varia-
tions, Euler wrote back: “. . . I deduced this myself. However, I decided to conceal this until you publish your results, since in
no way do I want to take away from you any of the glory that you deserve.” See Gindikin (2007, p. 216). Incidentally, Euler
also personally intervened to rescue Lambert’s career!
12This discovery is most often attributed to Girard, who rediscovered it about 25 years later.
13This argument was later rediscovered by Euler in 1781.
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[1.8] Harriot’s Theorem (1603): E(∆) = A(∆)/R2.

Adding these last three equations, we find that

3A(∆) + A(∆α)+ A(∆β) + A(∆γ)= 2(α+β+γ)R2. (1.5)

Finally, subtracting (1.4) from (1.5), we find that

A(∆) =R2(α+β+γ−π) =R2 E(∆),

thereby proving (1.3).

1.4 Intrinsic and Extrinsic Geometry of Curved Surfaces

The mathematics associated with this stretched-string construction of a “straight line” will be
explored in depth later in the book. For now we merely observe that the construction can be
applied equally well to a nonspherical surface, such as the crookneck squash shown in [1.9].

Just as on the sphere, we stretch a string over the surface, thereby finding the shortest,
straightest route between two points, such as a and b. Provided that the string can slide around
on the surface easily, the tension in the string ensures that the resulting path is as short as
possible. Note that in the case of cd, we must imagine that the string runs over the inside of the
surface.

In order to deal with all possible pairs of points in a uniform way, it is therefore best to imagine
the surface as made up of two thinly separated layers, with the string trapped between them.
On the other hand, this is only useful for thought experiments, not actual experiments. We shall
overcome this obstacle shortly by providing a practical method of constructing these straightest
curves on the surface of a physical object, even if the patch of surface bends the wrong way for a
string to be stretched tightly over the outside of the object.

These shortest paths on a curved surface are the equivalent of straight lines in the plane, and
they will play a crucial role throughout this book—they are called geodesics. Thus, to use this new
word, we may say that geodesics in the plane are straight lines, and geodesics on the sphere are
great circles.

But even on the sphere the length-minimizing definition of “geodesic” is provisional, because
we see that nonantipodal points are connected by two arcs of the great circle passing through them:
the short one (which is the shortest route) and the long one. Yet the long arc is every bit as much a
geodesic as the short one. There is the additional complication on the sphere that antipodal points
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a
b

c

d

r

1

2
∆

∆

[1.9] The intrinsic geometry of the surface of a crookneck squash: geodesics are the equivalents of straight lines,
and triangles formed out of them may possess an angular excess of either sign, depending on how the surface
bends: E(∆1)> 0 and E(∆2)< 0.

are connected by multiple geodesics, and this nonuniqueness occurs on more general surfaces, too.
What is true is that any two points that are sufficiently close together can be joined by a unique
geodesic segment that is the shortest route between them.

Just as a line segment in the plane can be extended indefinitely in either direction by laying
down overlapping segments, so too can a geodesic segment be extended on a curved surface, and
this extension is unique. For example, in [1.9] we have extended the dashed geodesic segment
connecting the black dots, by laying down the overlapping dotted segment between the white
points.

Because of the subtleties associated with the length-minimizing characterization of geodesics,
before long we will provide an alternative, purely local characterization of geodesics, based on
their straightness.

With these caveats in place, it is now clear how we should define distance within a surface
such as [1.9]: the distance between two sufficiently close points a and b is the length of the geodesic
segment connecting them.

Figure [1.9] shows how we may then define, for example, a “circle of radius r and centre c”
as the locus of points at distance r from c. To construct this geodesic circle we may take a piece of
string of length r, hold one end fixed at c, then (keeping the string taut) drag the other end round
on the surface. But just as the angles in a triangle no longer sum to π, so now the circumference
of a circle no longer is equal to 2πr. In fact you should be able to convince yourself that for the
illustrated circle the circumference is less than 2πr.

Given three points on the surface, we may join them with geodesics to form a geodesic
triangle; [1.9] shows two such triangles, ∆1 and ∆2:

• Looking at the angles in ∆1, it seems clear that they sum to more than π, so E(∆1)> 0, like a
triangle in Spherical Geometry.
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[1.10] Bending a piece of paper changes the extrinsic geometry, but not the intrinsic geometry.

• On the other hand, it is equally clear that the angles of ∆2 sum to less than π: E(∆2)< 0, and
(as we shall explain) this opposite behaviour is in fact exhibited by triangles in Hyperbolic
Geometry. Note also that if we construct a circle in this saddle-shaped part of the surface, the
circumference is now greater than 2πr.

The concept of a geodesic belongs to the so-called intrinsic geometry of the surface—a fun-
damentally new view of geometry, introduced by Gauss (1827). It means the geometry that is
knowable to tiny, ant-like, intelligent (but 2-dimensional!) creatures living within the surface. As
we have discussed, these creatures can, for example, define a geodesic “straight line” connecting
two nearby points as the shortest route within their world (the surface) connecting the two points.
From there they can go on to define triangles, and so on. Defined in this way, it is clear that the
intrinsic geometry is unaltered when the surface is bent (as a piece of paper can be) into quite
different shapes in space, as long as distances within the surface are not stretched or distorted in
any way. To the ant-like creatures within the surface, such changes are utterly undetectable.

Under such a bending, the so-called extrinsic geometry (how the surface sits in space) most
certainly does change. See [1.10]. On the left is a flat piece of paper on which we have drawn a
triangle ∆ with angles (π/2), (π/6),and (π/3). Of course E(∆)= 0. Clearly we can bend such a
flat piece of paper into either of the two (extrinsically) curved surfaces on the right.14 However,
intrinsically these surfaces have undergone no change at all—they are both as flat as a pancake!
The illustrated triangles on these surfaces (into which ∆ is carried by our stretch-free bending of
the paper) are identical to the ones that intelligent ants would construct using geodesics, and in
both cases E = 0: geometry on these surfaces is Euclidean.

Even if we take a patch of a surface that is intrinsically curved, so that a triangle within it has
E ̸= 0, it too can generally be bent somewhat without stretching or tearing it, thereby altering its
extrinsic geometry while leaving its intrinsic geometry unaltered. For example, cut a ping pong
ball in half and gently squeeze the rim of one of the hemispheres, distorting that circular rim into
an oval (but not an oval lying in a single plane).

1.5 Constructing Geodesics via Their Straightness

We have already alluded to the fact that geodesics on a surface have at least two characteristics in
common with lines in the plane: (1) they provide the shortest route between two points that are
not too far apart and (2) they provide the “straightest” route between these points. In this section
we seek to clarify what we mean by “straightness,” leading to a very simple and practical method
of constructing geodesics on a physical surface.

14But note that we must first trim the edges of the rectangle to bend it into the shape on the far right.
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1. 2.

4. 3.

[1.11] On the curved surface of a fruit or vegetable, peel a narrow strip surrounding a geodesic, then lay it flat on
the table. You will obtain a straight line in the plane!

Most texts on Differential Geometry pay scant attention to such practical matters, and it is
perhaps for this reason that the construction we shall describe is surprisingly little known in
the literature.15 In sharp contrast, in this book we urge you to explore the ideas by all means
possible: theoretical contemplation, drawing, computer experiments, and (especially!) physical
experiments with actual surfaces. Your local fruit and vegetable shop can supply your laboratory
with many interesting shapes, such as the yellow summer squash shown in [1.11].

We can now use this vegetable to reveal the hidden straightness of geodesics via an experi-
ment that we hope you will repeat for yourself:

1. On a fruit or vegetable, construct a geodesic by stretching a string over its curved surface.
2. Use a pen to trace the path of the string, then remove the string.
3. Make shallow incisions on either side of (and close to) the inked path, then use a vegetable

peeler or small knife to remove the narrow strip of peel between the two cuts.
4. Lay the strip of peel flat on the table, and witness the marvellous fact that the geodesic within

the peeled strip has become a straight line in the plane!

But why?!
To understand this, first let us be clear that although the strip is free to bend in the direction

perpendicular to the surface (i.e., perpendicular to itself), it is rigid if we try to bend it sideways,
tangent to the surface. Now let us employ proof by contradiction, and imagine what would hap-
pen if such a peeled geodesic did not yield a straight line when laid flat on the table. It is both a

15One of the rare exceptions is Henderson (1998), which we strongly recommend to you; for more details, see the Further
Reading section at the end of this book.
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[1.12] Suppose that the illustrated dotted path is a geodesic such that a narrow (white) strip surrounding it does
not become a straight line when laid flat in the plane. But in that case we can shrink the dotted path in the plane
(towards the shortest, straight-line route in the plane) thereby producing the solid path. But if we then reattach
the strip to the surface, this solid path is still shorter than the original dotted path, which was supposed to be the
shortest path within the surface—a contradiction!

drawback and an advantage of conducting such physical experiments that they will simply not
permit us to construct something that is impossible, as is required in our desired mathematical
proof by contradiction. Nevertheless, let us suppose that there exists a geodesic path, such as the
dotted one shown on top left of [1.12], that when peeled and laid flat on the table (on the right)
does not become a straight line.

The shortest route between the ends of this dotted (nonstraight) plane curve is the straight
line connecting them. (As illustrated, this is the path of the true geodesic we already found using
the string—but pretend you don’t know that for now!) Thus we may shorten the dotted curve by
deforming it slightly towards this straight, shortest route, yielding the solid path along the edge
of the peeled strip. Therefore, after reattaching the strip to the surface (bottom left) the solid curve
provides a shorter route over the surface than the dotted one, which we had supposed to be the
shortest: a contradiction! Thus we have proved our previous assertion:

If a narrow strip surrounding a segmentG of a geodesic is cut out of a surface and
laid flat in the plane, then G becomes a segment of a straight line.

(1.6)

We are now very close to the promised simple and practical construction of geodesics. Look
again at step 3 of [1.11], where we peeled off the strip of surface. But imagine now that we are
reattaching the strip to the surface, instead. Ignore the history of how we got to this point: what are
we actually doing right now in this reattachment process? We have picked up a narrow straight
strip (of three-dimensional peel—but mathematically idealized as a two-dimensional strip) and
we have unrolled it back onto the surface into the shallow channel from which we cut it. But here



14 • Chapter 1 Euclidean and Non-Euclidean Geometry

is the crucial observation: this shallow channel need not exist—the surface decides where the strip
must go as we unroll it!

Thus, as a kind of time-reversed converse of (1.6), we obtain a remarkably simple and prac-
tical method16 of constructing geodesics on a physical surface:

To construct a geodesic on a surface, emanating from a point p in direction v, stick
one end of a length of narrow sticky tape down at p and unroll it onto the surface,
starting in the direction v.

(1.7)

(Note, however, that this does not provide a construction of the geodesic connecting p to a
specified target point q.)

If this construction seems too simple to be true, please try it on any curved surface you have
to hand. You can check that the sticky tape17 is indeed tracing out a geodesic by stretching a string
over the surface between two points on the tape: the string will follow the same path as the tape.
But note that, as a promised bonus, this new tape construction works on any part of a surface, even
where the surface is concave towards you, so that the stretched-string construction breaks down.

Of course all of this is a concrete manifestation of a mathematical idealization. A totally flat
narrow strip of tape of nonzero width cannot18 be made to fit perfectly on a genuinely curved
surface, but its centre line can be made to rest on the surface, while the rest of the tape is tangent
to the surface.

1.6 The Nature of Space

Let us return to the history of the discovery of non-Euclidean Geometry, and take our first look at
how these two new geometries differ from Euclid’s.

As we have said, Euclidean Geometry, is characterized by the vanishing of E(∆). Note that,
unlike the original formulation of the parallel axiom, this statement can be checked against experiment:
construct a triangle, measure its angles, and see if they add up to π. Gauss may have been the first
person to ever conceive of the possibility that physical space might not be Euclidean, and he even
attempted the above experiment, using three mountain tops as the vertices of his triangle, and
using light rays for its edges.

Within the accuracy permitted by his equipment, he found E = 0. Quite correctly, Gauss did
not conclude that physical space is definitely Euclidean in structure, but rather that if it is not
Euclidean then its deviation from Euclidean Geometry is extremely small. But he did go so far as
to say (see Rosenfeld 1988, p. 215) that he wished that this non-Euclidean Geometry might apply
to the real world. In Act IV we shall see that this was a prophetic statement.

16This important fact is surprisingly hard to find in the literature. After we (re)discovered it, more than 30 years ago, we began
searching, and the earliest mention of the underlying idea we could find at that time was in Aleksandrov (1969, p. 99), albeit
in a less practical form: he imagined pressing a flexible metal ruler down onto the surface. Later, the basic idea also appeared
in Koenderink (1990), Casey (1996), and Henderson (1998). However, we have since learned that the essential idea (though not
in our current, practical form) goes all the way back to Levi-Civita, more than a century ago! See the footnote on page 236.
17We recommend using masking tape (aka painter’s tape) because it comes in bright colours, and once a strip has been created,
it can be detached and reattached repeatedly, with ease. A simple way to create narrow strips (from the usually wide roll of
tape) is to stick a length of tape down onto a kitchen cutting board, then use a sharp knife to cut down its length, creating
strips as narrow as you please.
18This is a consequence of a fundamental theorem we shall meet later, called the Theorema Egregium.
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Although Gauss had bragged to friends that he had anticipated the Hyperbolic Geometry
of Lobachevsky and Bolyai by decades, even he had unknowingly been scooped on some of its
central results.

In 1766 (eleven years before Gauss was born) Lambert rediscovered Harriot’s result on the
sphere and then broke totally new ground in pursuing the analogous consequences of the Hyper-
bolic Axiom (1.1). First, he found that a triangle in Hyperbolic Geometry (if such a thing even
existed) would behave oppositely to one in Spherical Geometry:

• In Spherical Geometry the angle sum of a triangle is greater than π: E> 0.

• In Hyperbolic Geometry the angle sum of a triangle is less than π: E< 0.

Thus a hyperbolic triangle behaves like a triangle drawn on a saddle-shaped piece of surface, like
∆2 in [1.9]. Later we shall see that this is no accident.

Furthermore, Lambert discovered the crucial fact that E(∆) is again simply proportional
to A(∆):

In both Spherical and Hyperbolic Geometry,

E(∆) = KA(∆),

where K is a constant that is positive in Spherical Geometry, and negative in
Hyperbolic Geometry.

(1.8)

Several interesting observations can be made in connection with this result:

• Although there are no qualitative differences between them, there are nevertheless infinitely
many different Spherical Geometries, depending on the value of the positive constant K.
Likewise, each negative value of K yields a different Hyperbolic Geometry.

• Since the angle sum of a triangle cannot be negative, E >−π. Thus in Hyperbolic Geometry
(K< 0) we have the strange and surprising result that no triangle can have an area greater than
|π/K|.

• From (1.8) we deduce that two triangles of different size cannot have the same angles. In other
words, in non-Euclidean Geometry, similar triangles do not exist! (This accords with Wallis’s
1663 discovery that the existence of similar triangles is equivalent to the Parallel Axiom.)

• Closely related to the previous point is the fact that in non-Euclidean Geometry there exists
an absolute unit of length. (Gauss himself found it to be an exciting possibility that this purely
mathematical fact might be realized in the physical world.) For example, in Spherical Geo-
metry we could define this absolute unit of length to be the side of the equilateral triangle
having, for instance, angle sum 1.01π. Similarly, in Hyperbolic Geometry we could define it
to be the side of the equilateral triangle having angle sum 0.99π.

• A somewhat more natural way of defining the absolute unit of length is in terms of the con-
stant K. Since the radian measure of angle is defined as a ratio of lengths, E is a pure number.
On the other hand, the area A has units of (length)2. It follows that K must have units of
1/(length)2, and so there exists a length R such that K can be written as follows: K =+(1/R2)

in Spherical Geometry; K =−(1/R2) in Hyperbolic Geometry. Of course in Spherical Geo-
metry we already know that the length R occurring in the formula K =+(1/R2) is simply the



16 • Chapter 1 Euclidean and Non-Euclidean Geometry

radius of the sphere. Later we will see that this length R occurring in the formula K =−(1/R2)

can be given an equally intuitive and concrete interpretation in Hyperbolic Geometry.

• The smaller the triangle, the harder it is to distinguish it from a Euclidean triangle: only when
the linear dimensions are a significant fraction of R will the differences become discernable.
For example, we humans are small compared to the radius of the Earth, so if we find ourselves
in a boat in the middle of a lake, its surface appears to be a Euclidean plane, whereas in reality
it is part of a sphere. This Euclidean illusion for small figures is the reason that Gauss chose the
largest possible triangle to conduct his light-ray experiment, thereby increasing his chances
of detecting any small curvature that might be present in the space through which the light
rays travelled.
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as rate of turning, 101
as repulsive force, 272, 274
as spreading of normals, 131, 132
as stiffness of spring, 272
Cartesian formula, 222
centre of, 98
circle of, 98
conformal formula, 41, 89, 472
controls area of small circle, 20,

278–279
controls circumference of small

circle, 20, 28, 278–279
definition for plane curve, 98
dependence of sign on shape, 19
Euclidean Geometry characterized by

vanishing of, 472
Euler’s Formula for surfaces, 110
extrinsic equals intrinsic, 142
extrinsic formula for, 134
Gaussian, 17
geometric formula for, 99
Hilbert’s Theorem on surfaces of

constant negative, 22, 52
holonomy as measure of, 246
intrinsic, 17
mean, 110, 130, 222
metric formula, 38
metric formula (forms proof of),

451–452
metric formula (geometric proof of),

261–268
Minding’s Theorem on surfaces of

constant, 21
Newton’s formula for, 100
nonisometric surfaces with equal

curvature, 224
normal, 115
of n-saddle, 224
of black hole, 460–464

of cone, 134, 142
of conical spike, 143–145
of cosine graph, 99
of cylinder, 132, 134, 142
of hyperbolic point, 164
of monkey saddle, 224
of parabola, 99
of polyhedral spike, 145–147
of polyhedral spike, defined, 147
of pseudosphere, 53, 142
of saddle, 224
of sphere, 132, 134, 142
of spike, defined, 144
of surface of revolution, 114, 142
of the Beltrami–Poincaré disc, 90
of the Beltrami–Poincaré half-plane,

251
of the Universe, 474
of torus, 21, 90, 142
of tractrix, 105
parametric formula, 103
polar formula, 221, 224
principal, 109
radius of, 98
related to acceleration, 102
related to force, 98
Rodrigues’s extrinsic formula for,

134
sign defined by orientation, 135
sign for plane curves, 99
simplified formula for unit speed

orbit, 104
surface of revolution, 220, 221
surfaces of constant, 89
surfaces of constant negative, 22, 52
surfaces of constant positive, 21
Theorema Egregium, see Theorema

Egregium
total, 165
umbilic point, 110
via Shape Operator, 222

curvature vector, 107
geodesic curvature component,

117
normal curvature component, 117

cylinder
curvature of, 134, 142
extrinsic curvature, 132

Darboux vector, 219
Darboux, Jean-Gaston, 219, 430
dark energy, 333
de Rham cohomology, 397, 419–429

Closed 1-Form Deformation
Theorem, 423

Closed 2-Form Deformation
Theorem, 427

cohomologous 1-forms, 423
cohomology class, 423
first de Rham cohomology group,

423
first de Rham cohomology group of

torus, 428–429
inverse-square point source,

424–426
period of 1-form, 423
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period of 2-form, 427
second de Rham cohomology

group, 426
topological circulation, 421–423
vortex 1-form, 419–421

Dedekind, 298
degree (of mapping), 173, 177–180, 182
Descartes

anticipation of Euler’s Polyhedral
Formula, 184

determinant, 153
coordinate-independence of, 153
of Shape Operator, 153

Differential Equations
integral curves, 211
Poincaré’s Qualitative Theory of,

211
Differential Forms, see Forms
Differential Geometry via Forms

1-forms in terms of basis, 447
2-forms in terms of basis, 448
adapted frame field, 446
adapted frame field of sphere,

447
area 2-form, 447
attitude matrix, 435–438
Bianchi Identities, 459–460
black hole curvature, 460–464
Cartan’s First Structural Equation,

439, 458
Cartan’s Method of Moving Frames,

430–432
Cartan’s Razor, 462
Cartan’s Second Structural

Equation, 440
Cartan’s Second Structural Equation

(generalized), 456
Cartan’s Two Structural Equations,

438–445
Cartan, Élie, 430
Codazzi Equations in geometric

form, 450
connection 1-forms, 432–435

differing conventions, 433
connection equations, 434
curvature 2-forms, 455–460
curvature 2-forms (defined), 456
curvature 2-forms (notation), 456
curvature 2-forms (of 2-surface),

473
curvature matrix (of curvature

2-forms), 456
cylindrical frame field, 436–438
Darboux, Jean-Gaston, 430
dual 1-form basis, 438, 439, 430–474
extra structure of orthonormal

frame, 431
extrinsic curvature 2-form, 446, 448
First Structural Equations of

2-surface, 448
Frenet Frame, 430
Frenet–Serret Equations, 430
Gauss Equation in geometric form,

450
Gauss Equation of 2-surface, 448
generalized exterior derivative,

457

Hilbert’s Lemma, 453–454
Hilbert’s Lemma curvature formula,

452
Liebmann’s Rigid Sphere Theorem,

454–455
moving frame field, 432
O’Neill championed Forms

approach in 1966, 431
Peterson–Mainardi–Codazzi

Equations of 2-surface, 448
principal frame field, 449
Riemann tensor via curvature

2-forms, 457, 459
Shape Operator, 446
Shape Operator symmetry, 449
six Fundamental Form equations of

a 2-surface, 448
spherical frame field, 441–445
Symmetry Equation (meaning of),

449
Symmetry Equation of 2-surface,

448
dipole, 196, 199

streamlines, 227
Dirac bra-ket, 352
directional derivative, 149

meaning of, 151
discontinuity (of vector field), 195
dodecahedron, 185

tesselation of sphere, 26
Dombrowski, Peter, 138, 252
dual (of vectors), 347
dual polyhedra, 227
Dupin indicatrix, 111, 162, 204

elliptic, 111
hyperbolic, 111
parabolic, 111

Dupin, Charles, 110, 111
Durian, 143
Dyck, Walther, 174, 215

Eddington, Sir Arthur, 322, 325
Einstein

1905 discovery of Special Relativity,
382

1915 discovery of General Relativity,
327

1916 prediction of gravitational
waves, 323

1917 introduction of cosmological
constant,Λ, 332

aberration formula, 93
and precession of orbit of Mercury,

322
curved spacetime, 82
discovered General Relativity

without parallel transport,
232

electromagnetic motivation of
relativity, 382

final Gravitational Field Equation,
327

first attempt at Gravitational Field
Equation, 327

first three predictions of General
Relativity, 322

geometric form of field equation,
328

Greatest Blunder, 332
Happiest Thought, 307
ignorance of Bianchi Identity in

1915, 327
need for new theory of gravity,

231
portrait of, 320
prediction of bending of light, 322
Special Theory of Relativity, 74, 75
tensor, 328
Vacuum Field Equation, 319

Einstein summation convention, 292
Einstein tensor, 328

conservation of, 340
Electromagnetism

1-form potential, 402
conservation of electric charge,

470
electric 1-form, 383
electric 2-form, 383
electric field, 383
Faraday 2-form, 383, 402, 469
Faraday’s Law of Electromagnetic

Induction, 415
Heaviside’s simplification of

Maxwell’s Equations, 382
Hodge duality, 385, 402
magnetic 1-form, 383
magnetic 2-form, 383
magnetic field, 383
Maxwell 2-form, 384, 402, 469
Maxwell’s Equations (1873

publication), 382
Maxwell’s Equations (source-free),

384
Maxwell’s Equations (via Forms),

401–403
Maxwell’s Equations (with sources),

384
photons (spinning), 470
self-duality, 470
spacetime source of, 402, 469
vector potential, 402

elliptic point, 111, 134, 136
energy–momentum tensor, 326
Enneper, 164
Equation of Geodesic Deviation, 302
Escher, M. C., 63
Euclid’s Elements, 4, 185
Euler characteristic

adding handle reduces by two, 191
definition of, 167, 184
determines degree of spherical map,

174
Hopf’s calculation of, 227
of polygonal net, 187
related to degree, 217
vanishes for hollow handle, 192

Euler’s Polyhedral Formula, 184
Cauchy’s proof, 186–188
Euler’s own proof, 184
Legendre’s proof, 188–190, 226
Platonic solids for the, 185

Euler’s Relation (for homogeneous
functions), 471
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Euler, Leonhard
breakthrough on curvature of

surfaces, 109
curvature formula, 110
curvature formula (original form),

110
description of polyhedra, 183
generosity to young Lagrange, 7
geodesics, 119
impossibility of perfect map, 31
portrait of, 183
rescued Lambert’s career, 8
rigid motions of the sphere, 73

Euler–L’Huilier Formula, 190
proof of, 209

event (in spacetime), 74
event horizon, 329, 330, 464
extended complex plane, 44
exterior derivative, see Forms
exterior product, 372
extrinsic geometry

definition of, 11

faithfullness of map, 33
Faltings, Gerd, 24
Faraday

2-form, 383
admiration of Maxwell, 382
first electric generator, 381
introduced flux concept, 377
laboratory, 381
portrait of, 381

Fermat, 58
Fermat’s Last Theorem, 6, 58
Fermat’s Principle, 58
Feynman

Newtonian derivation of Snell’s
Law, 58

on Newton, 126
quantum-mechanical explanation of

Fermat’s Principle, 58
fiducial vector field, 205
field of line elements, 211
fixed points, 77
flux

as 2-form, 378, 408
associated vector, 377
definition of, 378
introduced by Faraday, 377
refined by Maxwell, 377

Focus, 196, 200
folding paper, 221
Forms

1-forms
“contravariant” explained,

465
“covariant” explained, 465
as duals of vectors, 347
basis, 352–354
Cartesian basis, 356–357
components of, 354
connection 1-forms, 432–435
contraction of, 347
definition of, 346–347
Dirac bras as, 352
Dirac delta function, 465

direction (sense, orientation), 349
dual basis, 352
electromagnetic potential, 402
examples of, 347–352
field of, 347
geometrical addition of, 357–359
gradient, 350, 351
gradient (defined), 355
gravitational work as, 347–349
interpretation of df, 357
kernel of, 349
notation, 346
row vectors as, 352
stack, 349
topographic map, 350
visualized, 349

2-forms
anti-self-dual, 470
area 2-form, 371, 373
area 2-form (polar), 374–375
area formula for surface,
f= const., 467

as flux, 378, 398
associated vector (definition of),

377
basis, 375–376
basis (as area projection), 376
basis (geometric meaning), 377
definition of, 370
factorizes in R3, 466
Faraday, 383, 402
flux, 408
flux as vector, 376–378
Maxwell, 402
need not factorize in R4, 466
self-dual, 470
symplectic manifolds, 370
vector product as wedge product,

379–381
via wedge product, 372–374

3-forms
basis, 390
factorizes in R4, 467
need at least three dimensions,

386
volume (Cartesian), 387
volume (spherical polar), 389

4-forms
volume, 391

Bianchi Identities, 459–460
Cauchy’s Theorem, 398, 417
Cauchy–Riemann Equations, 397
closed, 419–429, 467, 471
closed (definition), 396
de Rham cohomology, 397, 419–429
discovery by Cartan, 345
exact, 419–429, 467, 471
exact (definition), 396
exterior derivative

generalized to vectors, 457–460
exterior derivative (d)

as integral, 406–411
closed Forms (definition), 396
exact Forms (definition), 396
explanation of d2 = 0, 413
Fundamental result: d2 = 0,

395–396

Leibniz Rule (Product Rule) for
0-forms, 356

Leibniz Rule (Product Rule) for
p-forms, 394–395

of 0-form, 355
of 1-form, 392–394
of 2-form, 394
of p-form, 394
Poincaré Lemma, 396, 418

exterior product, 372
gauge freedom, 396
gauge transformation, 396
Maxwell’s Equations, 401–403
p-forms

definition of, 370
need at least p dimensions,

386
Poincaré Lemma, 396, 418
potential, 396
Vector Calculus

curl, 398
divergence, 399
flux 2-form, 398
Gibbs and Heaviside, 274
identities via Forms, 400, 468
integral theorems, 413–415
irrotational, 399
via Forms, 398–400

vector potential, 402
wedge product, 372–374

as vector product, 379–381
definition of, 372
geometry of, 374
of 2-form and 1-form, 387
of three 1-forms, 390
vector product formula, 380
volume formula, 381

Frenet Approximation, 220
Frenet frame, 106
Frenet–Serret Equations, 108, 220, 430,

434
variable speed, 219

Friedmann, Alexander, 474
Friedmann–Lemaître–Robertson–Walker

Universe, 474
Fundamental Forms

are not Differential Forms, 164
first, 164
second, 164
third, 164

fundamental group, 207
Fundamental Theorem of Exterior

Calculus, 411–412
boundary of a boundary is zero:

B2 = 0, 413
Cauchy’s Theorem, 417
circulation, 404
Divergence Theorem, 415
explanation of d2 = 0, 413
exterior derivative as integral,

406–411
Faraday’s Law of Electromagnetic

Induction, 415
flux 2-form, 408
Gauss’s Theorem, 415
Green’s Theorem, 414
history of, 411–412
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integral theorems of vector calculus,
413–415

line integral of 1-form, 404–406
line integral of 1-form

(path-independence), 405–406
line integral of exact 1-form, 406
named by N.M.J. Woodhouse, 412
Penrose precedent for FTEC

terminology, 412
proof of, 415–417
role of Stokes, 411
statement of, 411
Stokes’s Theorem, 414
work, 404

Galileo, 308
Gamow, George, 332
gauge freedom, 396
gauge transformation, 396
Gauss

and possibility of absolute unit of
length, 15

and the spherical map, 131
Beautiful Theorem, 138
curvature, see curvature
discovery of intrinsic geometry, 11,

31
Dombrowski’s analysis of, 138
experimental test of the curvature of

physical space, 14
first curvature formula, 40
General Investigations of Curved

Surfaces, 3, 17
introduction of metric, 31
isometries versus bendings, 141
metric notation, 36, 37
motto, 138
portrait of, 17
reaction to Riemann’s ideas, 298
rotations of sphere as Möbius

transformations, 73
Theorema Egregium, 138, 140, 142
treatment of Abel, 7
treatment of Bolyai, 7
treatment of Riemann, 297
unaware of Global Gauss–Bonnet

Theorem, 174
Gauss map, 131
Gauss’s Integral Theorem, see

Fundamental Theorem of Exterior
Calculus

Gauss’s Lemma, 274
via computation, 337
visualized, 275

Gauss–Bonnet Theorem
General Local, 336
Global, see Global Gauss–Bonnet

Theorem
Local, 22, 174, 336

Gaussian curvature, see curvature
General Relativity, see Gravity
Generalized Stokes’s Theorem (GST),

see Fundamental Theorem of
Exterior Calculus (FTEC)

genus, 166
increasing by adding handles, 191

of sphere, 166
of torus, 166
of two-holed doughnut, 166

Genzel, Reinhard, 464
geodesic

as equivalent of straight line, 9
as shortest route, 9
as straightest route, 11, 13, 118
as taut string, 9, 118
equation of, 244
of H3, 79
of Beltrami–Poincaré disc model,

62
of Beltrami–Poincaré half-plane, 60,

128–129
of cone, 27
of pseudosphere, 28, 89
parallel transport via, 240–241
possible nonuniqueness of, 10
relative acceleration, 270
sticky-tape construction of, 14, 239
vanishing geodesic curvature, 119
via parallel transport, 235–236, 238,

239
geodesic circle, 10
geodesic curvature, 115

extrinsic construction, 120
intrinsic formula for, 244
intrinsic measurement of, 119
on a cone, 334
on a sphere, 334
on touching surfaces, 334
used to construct geodesics, 120
vanishes for geodesics, 119
vector, 117, 243
via intrinsic differentiation, 335

geodesic equation, 244, 286
geodesic polar coordinates, 274–276
geodesic triangle, 10
geometric inversion, 68, 81, 82
geometrization conjecture, 6
geometrized units, 328
GGB, see Global Gauss–Bonnet Theorem
Ghez, Andrea, 464
Gibbs, Josiah Willard, 274
gimel (from the Hebrew alphabet), 75
Global Gauss–Bonnet Theorem, 167

discovered by Kronecker and Dyck,
174

for sphere, 168–169
for torus, 90, 169–170
Hopf’s intrinsic proof, 258–260
intuitive interpretation of, 167
paradoxes?, 225
some predictions of, 224
via angular excess, 194
via Bagels and Bridges, 171–172
via folded membrane, 182
via thick pancake, 171
via topological degree, 173
via vector fields, 217

Goldbach’s Conjecture, 183
Goldbach, Christian, 183
gradient 1-form, 351
gradient vector, 354–355
graph (topological), 186
gravitation, see Gravity

gravitational lensing, 325
Gravitational Spinor, see Weyl

Curvature
gravitational wave astronomy, 325
gravitational waves, 323–326

curvature of, 323
depiction of oscillating tidal forces,

324
details of first detection (14th of

September, 2015), 325
Einstein’s 1916 prediction of, 231
enormous energy of, 325
field lines of tidal forces, 323
first detection of, 231
harnessed for gravitational wave

astronomy, 325
naming convention for, 325

gravity
bending of light, 322
Big Bang, 474
Birkhoff’s Theorem, 329
birth of a black hole, 330
black hole, 329
Cosmological Einstein Field

Equation, 332, 474
cosmological constant,Λ, 332, 474
curvature of Friedmann–Lemaître–

Robertson–Walker Universe,
474

dark energy, 333
eclipses and the tides, 339
Einstein (matter) Field Equation, 327
Einstein (matter) Field Equation

(geometrical form), 328
Einstein (vacuum) Field Equation,

319
Einstein tensor, 328, 340
Einstein’s initial Gravitational Field

Equation, 327
eliminated in free fall, 307
energy-momentum tensor, 326
event horizon, 329
geometrical signature of

inverse-square attraction, 314
geometrical signature of

inverse-square law, 313
geometrized units, 328
gravitational waves, 323–326
gravitational work as 1-form,

347–349
neutron star, 329
neutron star collision, 331
Newton’s apple, 307
Newton’s explanation of the ocean

tides, 311
Newton’s Inverse-Square Law, 98,

307–309
precession of orbit of Mercury, 322
redshifting of light, 322
repulsion of negative energy, 333
spacetime singularity, 464
spacetime tidal forces, 317
spherical Schwarzschild field, 320
standard model (cosmological), 474
static Universe, 332
stellar evolution, 329
stress–energy tensor, 326
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gravity (continued)
tidal force field around spherical

mass, 309
tidal forces, 308–312
Tolman–Oppenheimer–Volkoff

limit, 329
Universe’s expansion is

accelerating, 332
Weyl curvature, 340, see Weyl

curvature
great circle, 6
Green’s theorem, see Fundamental

Theorem of Exterior Calculus
Green, George, 411
group, 65
GST, see Fundamental Theorem of

Exterior Calculus

H2, see hyperbolic plane
Hairy-Ball Theorem, 472
handle (topological), 192
harmonic oscillator, 271
Harriot

angular excess theorem on sphere, 8
discovered conformality of

stereographic projection, 46
discovered Snell’s Law, 58
portrait of, 8

Heaviside, Oliver, 274, 382
helicoid, 224, 480
helix, 220
Henderson, David W., 252
Hilbert

and Polyhedral Theorema Egregium,
148

impossibility of hyperbolic plane
within Euclidean space, 82

spherical map, 131
theorem on surfaces of constant

negative curvature, 22, 52
worked with Schwarzschild, 319

Hipparchus, 44
Hodge duality, 377, 379, 385, 402, 468
Hodge, Sir W.V.D., 377
Hofstadter, Douglas, xxvi
holonomy

along open curve, 257–258
definition of, 245
equivalence to angular excess, 247
invariance under spherical map, 255
is additive, 248
measures relative acceleration of

geodesics, 278
measures total curvature, 246
of geodesic polygon, 247
of geodesic triangle, 247
of the hyperbolic plane, 248–251
on cone and sphere, 335
on the sphere, 245–246
Riemann curvature and, 290
vector, 293

homeomorphic, 166
homeomorphism, 165
homogeneous coordinates, 70
homogeneous function (defined), 471
homogeneous functions, 471

honey-flow, 202
as othogonal trajectories of

topographic map, 204
on surface of genus g, 209, 227
precise definition of, 215
reversing flow preserves indices,

217
sign of index determines orientation

of covering by spherical map,
216, 217

singular points related to spherical
map, 215, 216

Hooke’s Law, 123, 271
Hopf

calculation of Euler characteristic,
227

indices (fractional), 213
intrinsic proof of Global

Gauss–Bonnet Theorem,
258–260

line field, 211
metric notation, 37
Poincaré–Hopf Theorem, 206, 213
portrait of, 176
spherical map, 131
Umlaufsatz, 176, 225

horosphere, 82
curvature of, 92
metric of, 92

Hubble Constant, 325
Hubble’s Law (1929), 332

constant of, 325
Hubble, Edwin

discovered expansion of Universe
(1929), 332

discovered galaxies beyond our
own (1924), 332

Huygens
finite area of pseudosphere, 88
influence on Newton, xviii
investigated pseudosphere, 22, 53

Hyperbolic Axiom, 5, 52, 60, 63
Hyperbolic Geometry

K = −1, by convention, 56
3-dimensional, 74, 79–82
absolute unit of length, 16
angle of parallelism, 60
angular excess proportional to area,

15
as geometry of surface of constant

negative curvature, 51
aymptotics, 60
Beltrami’s critical discovery, 51
Bolyai–Lobachevsky Formula, 61, 62
conformal Beltrami–Poincaré disc

model of, 63
conformal Beltrami–Poincaré

half-plane model of, 56
conformal mapping between

models, 63
curvature of H3, 473
definition of, 5
discovery of, 4
Euclidean and Spherical Geometries

subordinate to it, 82
Euclidean illusion for small figures,

16

Euclidean plane within H3, 82
Euclidean sphere within H3, 82
horizon, 57, 79
horosphere, 82, 92
isometries ofH3, 81
Lambert as pioneer of, 5, 15
limit rotation, 74
maximum area of a triangle, 15
metric of H3, 79
Poincaré as prophet of, 5
points at infinity, 57
some properties of, 15–16
sphere in H3, 92
standardized half-plane metric,

56
ultraparallels, 60
visualizing length within, 57

hyperbolic plane, 5, 52
K =−1, by convention, 56
conformal Beltrami–Poincaré disc

model of, 63
conformal Beltrami–Poincaré

half-plane model of, 56
definition of, 57
generalized to H3, 79
geodesics via Clairaut’s Theorem,

128–129
hemispherical H2 in H3, 80
isometries as Möbius

transformations, 73
metric within H3, 91
pseudosphere as flawed model of,

52
within H3, 80

hyperbolic point, 111, 134, 136

Ibn Sahl, 58
icosahedron, 185

tesselation of sphere, 26
ideal points, 57
index, 196

as winding number, 198
determined by infinitesimal

neighbourhood, 199
formal definition, 197, 205
fractional, 213
illustrated for complex powers, 200
invariance of, 197, 198
of complex powers, 198–201
of dipole, 197, 199
of honey-flow on fried banana, 204
of saddle point, 197
of vortex, 197
on a surface, 204
on a surface (illustrated), 205

index of refraction, 59
integral curve, 195
integration, see Fundamental Theorem

of Exterior Calculus
intrinsic derivative, 241–244

definition of, 242
formal properties of, 243
geodesic curvature via, 244
of n-manifold, 284–286
Shape Operator formula for, 243
visualized, 242
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intrinsic geometry
definition of, 11

inversion, 68
effect on Riemann sphere, 68
is anticonformal, 69
preserves circles, 69

isometries
definition of, 61
direct, 65
group structure of, 65–66
of H3, 81
of flat spacetime, 74–79
of hyperbolic plane as Möbius

transformations, 73
of Riemann sphere, 73, 90
opposite, 65
symmetry groups of surfaces of

constant curvature, 72–74
versus bendings, 141

isothermal coordinates, 40, 84

Jacobi Equation
computational proof of, 301–302
defined, 271
geodesic polar coordinates proof of,

274–276
holonomy proof of, 276–278
in n-manifold, 302
introduced, 269
negative curvature, 272–274
on general surface, 336
positive curvature, 270–272
Sectional Jacobi Equation, 299–302
zero curvature, 269–270

Jacobi, Carl Gustav Jacob, 269
Jobs, Steve, xxvi

Kepler, 58, 123
Kepler’s Laws, 124
kernel (of 1-form), 349
Kerr solution, 322
Kerr, Roy, 322
Klein

classification of closed surfaces,
191

reaction to Riemann’s ideas, 298
worked with Schwarzschild, 319

Kronecker delta, 353
Kronecker, Leopold, 174

Lambert
and first theorems of Hyperbolic

Geometry, 5
career rescued by Euler, 8
discovery of hyperbolic equivalent

of Harriot’s Theorem, 15
portrait of, 5
projection of sphere, 85

Laplace Equation, 85
Laplacian, 40

in polar coordinates, 47
Le Verrier, Urbain, 322
Legendre, 189
Leibniz, xviii

Leibniz Rule, see Forms, exterior
derivative

Lemaître, Georges, 474
level curves, 203
Levi-Civita connection, 242
Levi-Civita, Tullio, 231

discoverer of parallel transport,
232

portrait of, 232
Levy, Anthony, xxvii
L’Huilier, Simon-Antoine-Jean, 190, 226
Lie Bracket, 287
Lie, Sophus, 287
Liebmann, Heinrich

equivalence of Möbius and Lorentz
transformations, 74

sphere rigidity theorem, 21, 454–455
light cone

picture of, 316
LIGO detector, 231
limit rotation, 74
line field, 211

applications to physics, 214
as flow around barriers, 213
fractional indices, 212
Poincaré–Hopf Theorem applies to,

213
singular points of, 212

Linear Algebra (Visual), 221
Listing, 166
Lobachevsky, 4

initally sought 3-dimensional
non-Euclidean Geometry, 79

named horosphere, 82
loop, 175
Lorentz

contraction, 75
Special Theory of Relativity, 75
symmetries of spacetime as Möbius

transformations, 74–79
Lorentz transformations, 74–79

as spin-matrices, 77
as spin-transformations, 77
boost, 78, 93
classification of, 78
fixed null rays of, 77
four archetypes, 77
four-screw, 78
as Möbius transformations, 77
null rotation, 79
preservation of spacetime interval,

77
loxodrome, 87
lune, 168

Mainardi–Codazzi Equations, see
Peterson–Mainardi–Codazzi
Equations

manifold, 280
n-dimensional, 280
3-manifold as exemplar of
n-manifold, 281

angular excess in a 3-manifold,
282

pseudo-Riemannian, 280
Riemannian, 280

map
conformal, 39
definition of, 31
element of area, 38
faithfulness of, 33
of hyperbolic plane, see hyperbolic

plane
of pseudosphere, 55
of sphere, see sphere

Maxwell
admiration of Faraday, 382
and Polyhedral Theorema Egregium,

148
portrait of, 382
refined flux concept, 377
Smith’s Prize examination, 411

Maxwell’s Equations, see
electromagnetism
via Forms, 401–403

mean curvature, 110
Mercator projection, 86

loxodrome, 87
rhumb line, 87

meridian, 121
Merton College, Oxford, xviii, xxvii
metric

conformal, 39
conformal stereographic, 47
curvature formula, 38, 261
definition of, 31
formula in orthogonal coordinates,

37
Gauss’s notation differs from ours,

37
general formula for 2-surface, 36
in orthogonal coordinates, 262
of H2 in H3, 91
of H3, 79
of Beltrami–Poincaré disc model, 62,

90
of Beltrami–Poincaré half-plane

model, 56
of conformal map of pseudosphere,

55
of hemispherical H2 in H3, 81
of horosphere, 92
of pseudosphere, 53
of pseudosphere via parameterized

tractrix, 88
of torus, 90
spacetime interval, 75
tensor, 363–364
used to change tensor valence,

366–368
Meusnier’s Theorem, 117
Meusnier, Jean-Baptiste, 110
Minding’s Theorem, 21, 276, 336
Minding, Ferdinand, 53
minimal surface, 130
Minkowski, 382

spacetime geometry, 74
spacetime interval, 75
worked with Schwarzschild, 319

miracles
false, xxiii
true, xxiii

Misner, Charles, 475
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Möbius
band, 166
classification of closed surfaces, 166
strip, 166

Möbius transformations, 67–74
as isometries of H3, 81
as Lorentz transformations, 77
as rotations of the Riemann sphere,

73, 90
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isometries of Riemann sphere, 73
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matrix representation of, 70–71
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singular, 67
symmetry groups of surfaces of

constant curvature, 66, 72–74
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Riemannian Geometry, 481

naked singularity, 464
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Newton

and Celestial Mechanics, 210
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explained Kepler’s Laws, 124
explained the ocean tides, 311
general curvature formula, 100

geometric curvature formula, 99
geometric definition of tractrix, 52
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Law of Gravitation, 308
parametric curvature formula, 103
Principia, xviii–xx
Principia, area is the clock, 124
Principia, Lemma II, 99
Principia, Proposition 1, 124
Principia, Proposition 2, 126
Principia, Proposition 10, 123
Principia Proposition 31, 309
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proof of Kepler’s Second Law,
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Second Law of Motion, 97
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Principia, xviii
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Equality
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normal curvature vector, 243
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picture of, 316
Riemann sphere representation of,
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null vector, 76
Nye, J. F., 478
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Differential Geometry, 431, 475
championed Shape Operator, 164

octahedron, 185, 227
optics, 58
orientable surface, 165
orthogonal coordinates, 37
orthogonal linear transformation, 222
osculating plane, 106
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centroid theorem, 90

parabolic point, 111, 134, 136
Parallel Axiom

definition of, 4
via angle sum of a triangle, 4
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parallel transport
discovery of, 232
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in n-manifold via
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283–284
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as father of topology, 165
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discovery of Möbius isometries of
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Poincaré disc, see Beltrami–Poincaré
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Poincaré Lemma, 396, 418
Poincaré–Hopf Theorem, 206

also applies to line fields, 213
Hairy Ball Theorem, 472
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physical applications of, 477
proof of, 207–208
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87
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curvature of, 146, 147
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projective coordinates, 70
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projective map, 32
projective model, 32
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constant negative curvature of, 53
curvature of, 142
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punctured plane, 419
Pythagoras, 3
Pythagoras’s Theorem

characterizes flatness, 3

Pythagorean triples
Babylonian examples, 3
definition of, 3
general formula for, 25
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spacetime, 76
fixed points under Möbius

transformation, 77
rotated by complex inversion, 69
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transformations, 73, 90
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and exponential operator, 339
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antisymmetry of, 290
changing valence of, 367
components of, 292–293
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286–287
different notational conventions, 290
history of, 297–298
is a tensor, 291–292
number of components, 281, 338
Riemann curvature operator, 287
standard definition of, 360
symmetries of, 294–295, 337
vector holonomy, 293
visualization of, 289
Weyl curvature, see Weyl curvature
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Schmidt, Brian P., 332
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Schwarzschild Solution, 320

interior, 321
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portrait of, 321
Second Fundamental Form, 151
sectional curvature, 282, 296–297
Segerman, Henry, 191
self-adjoint matrix, 153
self-dual 2-form, 470
Shape Operator, 151

also called the Second Fundamental
Form, 164

Cartesian formula, 222
curvature formula, 222
curvature interpretation of, 159
curvature interpretation visualized,

160
determinant of, 153
determined by three normal

curvatures, 161
diagonalized matrix of, 153
effect on asymptotic directions, 163
eigenvectors and eigenvalues of,

152, 223
general matrix of, 158, 161
geometric meaning of components,

160
is linear, 152
is symmetric, 153
matrix representation of, 152
of saddle, 223
visualization of, 150

Singer
Atiyah–Singer Index Theorem, 165
spherical map, 131

singular point, 195
singular value decomposition

discovered by Beltrami, 154
geometric derivation of, 154–156
in R3, 222
matrix form of, 155
singular values of, 154
statement of, 154
twist of, 154
visualization of, 155

Sink, 200
skew symmetric, 222
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Snell’s Law, 58

Fermat’s two proofs of, 58
Generalized, 59
mechanical proof of, 87
Newtonian proof of, 58
Ptolemy’s experiments, 58

soap films, 130
Source, 200

physics of, 201
spacetime

4-velocity, 316
4-vector, 74
absolute, observer-independent

structure of, 75
causal structure of, 316
diagrams, 315–316
event, 74, 316
event horizon, 330
Gravitational Field Equation, 319
interval, 75
light cone, 316
Lorentz transformation, 76
metric, 314–315
metric tensor, 314
Minkowski, 74
null cone, 316
null vector, 315
singularity of, 330, 464
spacelike vector, 315
spherical Schwarzschild geometry,

320
symmetries as Möbius

Transformations, 74–79
tetrad, 315
tidal forces, 317
timelike vector, 315
Weyl curvature, 319
Weyl curvature formula, 340
world-line, 315

spacetime interval, 75
preservation by Lorentz

transformation, 77
vivid interpretation of, 75

spaghettification, 330
Special Theory of Relativity, 74, 382

aberration formula, 93
discrepancy between clocks in

relative motion, 75
Einstein, 75
Einstein’s 1905 paper, 382
Lorentz, 75
Lorentz transformation, 76
Minkowski, 74
Poincaré, 75
spacetime interval, 75

Spectral Theorem, 157
sphere

Archimedes–Lambert metric, 86
Archimedes–Lambert projection,

85
area in cylindrical polar coordinates,

88
area of small circle on, 20
central cylindrical projection, 86
central projection, 32, 83
central-cylindrical metric, 86
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28

Clairaut’s theorem, 121
curvature of, 134, 142
extrinsic curvature, 132
genus of, 166
Global Gauss–Bonnet Theorem for,

168–169
holonomy on, 245–246
in H3, 92
isometries as Möbius

Transformations, 73
Liebmann’s rigidity theorem, 21
longitude-latitude metric formula,

34
lune of, 168
Mercator projection, 86
other surfaces with same intrinsic

geometry, 21
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used to derive rotations of, 73
projective map, 32
projective metric formula, 33
projective model, 32
Riemann, 44
rigidity of, 454–455
stereographic metric, 47, 83
stereographic projection of, 44
tessellation of, 26
vector fields on, 206
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absolute unit of length, 15
Euclidean illusion for small figures,

16
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Harriot’s angular excess theorem, 8
perpendicular bisector of, 25
Spherical Axiom, 6

spherical map, 131
and orientation, 135
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by, 132
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degree of, 180
folds of image, 182
“Gauss map”, 131
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index of, 178
negative covering by, 173
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preserves parallel transport, 255
related to honey-flow, 215
“Rodrigues–Gauss map”, 131
topological degree of, 173

spin-matrix, 77
spin-transformation, 77
2-spinor, 70
spinorial objects, 71
stable node, 200
Star Trek

Captain Kirk, 191, 482

Dr. McCoy, 38
forms proof of (“Star Trek phaser”)

metric curvature formula, 452
geometric proof of (“Star Trek

phaser”) metric curvature
formula, 266

Mr. Spock, 191, 476, 482
NCC-1701, 435
(“Star Trek phaser”) metric

curvature formula, 38
The City on the Edge of Forever, 38
The Doomsday Machine, 191

stereographic projection, 44
conformality, 46
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image of line, 45
image of point, 44
preservation of metric under

Möbius transformation, 73
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Stiefel, Eduard, 208
stiffness, 271
Stillwell, xxvii
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xxvii, 63, 64
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Stokes’s Theorem, see Fundamental

Theorem of Exterior Calculus
streamline, 195
stress-energy tensor, 326
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Clairaut’s Theorem, see Clairaut’s
Theorem

curvature of, 114, 142, 220, 221
meridian of, 121
normal of, 168
of constant curvature, 89
of constant positive curvature, 21
of tractrix is pseudosphere, 22
parallel of, 123
principal radii of curvature, 112
total curvature, 169

surfaces of constant mean curvature,
480

SVD, see singular value decomposition
symmetric matrix, 153

geometric meaning of, 156

Tabachnikov, Sergei, 58
Tensor Calculus, 231
tensors, 360–369

addition of, 361
and Linear Algebra, 361–362,

364–365
antisymmetric, 369, 370
basis tensors, 362
changing valence, 366–368
components of, 362–363
contraction, 365–366
contravariant indices, 363
covariant indices, 363
definition of, 360
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Einstein tensor, 328, 340
index lowering, 367
index raising, 367
matrix multiplication, 466
metric, 363–364
preliminary definition, 291
product of, 361
Riemann, see Riemann tensor
skew symmetric, 369
symmetric, 369
valence of, 360

tessellation
of the plane, 25
of the sphere, 26

tetrad, 315
Thales, 3
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Theorema Egregium, 138, 140
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tidal forces, 308–312
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spacetime depiction of, 317
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Weyl curvature formula, 340

Tolman–Oppenheimer–Volkoff limit,
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topological defect, 478
topological degree, 173, 215
topological joke, 191
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topological transformation, 165
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curvature in terms of, 164
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genus of, 166
Global Gauss–Bonnet Theorem for,
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metric of, 90
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total curvature of, 90
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TOV, see Tolman–Oppenheimer–Volkoff
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trace of matrix, 161

invariance of, 162
tractrix
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as geodesic of pseudosphere, 28
curvature of, 105
equation of, 52
mechanical definition of, 52
Newton’s geometric definition of, 52
parametric description of, 88
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transpose of matrix, 153
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geometric visualization of, 157
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