
—
—
—

Contents

1 A brief introduction to phylogenetics in R 1
1.1 Introduction 1
1.2 Preliminaries 3
1.3 R phylogenetics 5
1.4 ape and the "phylo" object in R 7
1.5 The internal structure of a tree in R 11
1.6 Reading and writing phylogenetic trees 15
1.7 Plotting and manipulating trees 16
1.8 Multiple trees in a single object 24
1.9 Managing trees and comparative data 25
1.10 A simple comparative analysis: Phylogenetic principal

components analysis 29
1.11 Practice problems 32

2 Phylogenetically independent contrasts 35
2.1 Introduction 35
2.2 Phylogenetic nonindependence 36
2.3 Phylogenetically independent contrasts 38
2.4 What happens if we ignore the tree? 47
2.5 Practice problems 58

3 Phylogenetic generalized least squares 59
3.1 Introduction 59
3.2 Statistical nonindependence of phylogenetic data 60
3.3 Equivalence of contrasts regression and PGLS 61
3.4 Assumptions of PGLS 67
3.5 Phylogenetic ANOVA and ANCOVA 71
3.6 Practice problems 74

v

4 Modeling continuous character evolution on a phylogeny 75
4.1 Introduction 75
4.2 The Brownian motion model 75
4.3 Brownian motion on a phylogeny 79
4.4 Properties of Brownian motion 80
4.5 Fitting a Brownian model to data 82
4.6 Phylogenetic signal 90
4.7 Other models of continuous character evolution on phylogenies 98
4.8 Fitting and comparing alternative continuous character models 100
4.9 Practice problems 105

5 Multi-rate, multi-regime, andmultivariate models for continuous traits 107
5.1 Multi-rate Brownian evolution 108
5.2 Multi-optimum Ornstein–Uhlenbeck evolution 112
5.3 Multivariate Brownian evolution 122
5.4 Exploring evolutionary heterogeneity 129
5.5 Practice problems 144

6 Modeling discrete character evolution on a phylogeny 145
6.1 Introduction 145
6.2 The Mkmodel 145
6.3 Fitting the Mkmodel to data 149
6.4 Comparing alternative discrete character models 161
6.5 Practice problems 165

7 Other models of discrete character evolution 167
7.1 Introduction 167
7.2 Correlated binary traits 167
7.3 Modeling heterogeneity in the evolutionary rate for a discrete trait 177
7.4 Modeling rate variation using the hidden-rates model 185
7.5 A polymorphic trait model 201
7.6 The threshold model for studying discrete and continuous character traits 209
7.7 Practice problems 219

8 Reconstructing ancestral states 221
8.1 Introduction 221
8.2 Ancestral states for continuous characters 222
8.3 Properties of ancestral state estimation for continuous traits 228
8.4 Discrete characters 235
8.5 Joint ancestral state reconstruction 238
8.6 Marginal ancestral state reconstruction 241
8.7 Stochastic character mapping 243
8.8 What about parsimony? 251
8.9 Practice problems 254

9 Analysis of diversification with phylogenies 255
9.1 Introduction 255
9.2 Lineage-through-time plots and the γ statistic 256
9.3 Estimating speciation and extinction rates from a reconstructed phylogeny 262
9.4 The effect of incomplete sampling on diversification rates 269
9.5 Likelihood surface of a birth-death model 272

vi Contents

—
—
—

9.6 Analyzing diversification using diversitree 273
9.7 Practice problems 280

10 Time- and density-dependent diversification 281
10.1 Introduction 281
10.2 Time-varying diversification 282
10.3 Fitting time-variable diversification models to data 284
10.4 Diversity-dependent diversification 300
10.5 Testing for variation in diversification rates among clades 305
10.6 Practice problems 308

11 Character-dependent diversification 309
11.1 Introduction 309
11.2 Binary-state speciation and extinction (BiSSE) model 310
11.3 Multi-state speciation and extinction (MuSSE) model 321
11.4 Hidden-state speciation and extinction (HiSSE) model 328
11.5 Quantitative-trait speciation and extinction (QuaSSE) model 344
11.6 Practice problems 354

12 Biogeography and phylogenetic community ecology 357
12.1 Introduction 357
12.2 Ancestral area reconstruction 358
12.3 Phylogenetic community ecology 370
12.4 Practice problems 382

13 Plotting phylogenies and comparative data 383
13.1 Introduction 383
13.2 Phylogenies in the R plotting environment 384
13.3 Plotting phylogenies without actually plotting them 399
13.4 Algorithms for drawing trees 401
13.5 Practice problems 412

References 413
Index 421
Index of R functions 425

Contents vii

—
—
—

A brief introduction to phylogenetics in R 1
1.1 Introduction

This book is about carrying out phylogenetic comparative analyses in the R statistical comput-
ing environment.

In this chapter, we will:

1. Introduce the general field of evolutionary research called phylogenetic comparative biology
and discuss how the R scientific computing environment can be used in the analysis of
phylogenetic data.

2. Present and explain the general structure of this volume, including how we expect it to be
read and used.

3. Introduce the major R function libraries (called “packages”) used to analyze phylogenetic
data in the R environment.

4. Examine the "phylo" object: an important data structure that is used by most
phylogenetic R packages to encode a tree.

5. Finally, illustrate a number of important R functions for phylogenetic analysis, including
how to read and write trees and phylogenetic data, how to plot trees in various styles, how
to manage phylogenetic trees and data, and how to conduct a simple phylogenetic
comparative analysis in R.

1.1.1 What is phylogenetic comparative analysis?

Phylogenetic comparative analysis1 is the general endeavor of using a phylogenetic tree, fre-
quently combined with phenotypic trait data for the species in the tree, to learn something
about evolution (Harvey and Pagel 1991; Pennell and Harmon 2013).

Although the modern field of phylogenetic comparative analysis is relatively young (tracing
back largely to Felsenstein 1985), phylogenetic comparative methods have diversified in scope,
number, and importance in recent decades (reviewed in Harmon 2019).

1Often called phylogenetic comparative methods, PCMs, or sometimes just the comparative method.

1

Contemporary phylogenetic comparative methods now encompass an enormous range of
topics. For instance, phylogenetic comparative analyses have been employed to measure the
relationships between characters while taking the phylogeny into account (Martins andHansen
1997), to infer the rates of species proliferation and extinction through time (Nee 2006), and
to fit sophisticated mathematical models to phylogenies and comparative data in an attempt to
explain the diversity of life that we see around us on this planet (Maddison et al. 2007). Compar-
ativemethods have also been used to track the spread of diseases (Stadler andBonhoeffer 2013),
to understand contemporary threats to species (Greenberg and Mooers 2017), and to describe
the dynamics of evolution over thousands or millions of years (Uyeda et al. 2016). Phylogenet-
ics comparative methods have even been used to study the global SARS-CoV-2 pandemic that
started in 2019 (e.g., Wang et al. 2020; Sjaarda et al. 2021).

1.1.2 Phylogenetic comparative analysis in R

Over the past decade, the scientific computing environment R (R Development Core Team
2020) has grown to play a key role in phylogenetic comparative methods. Many developers
of PCMs tend to work in R, and many PCM users prefer to conduct their analyses in R. This
synergy between users and developers means that R has become an essential tool for scientists
interested in employing the comparative method in their research.

The purpose of this book to teach users how to carry out phylogenetic comparativemethods
using R.We only briefly cover R basics, so readers completely new to the R environment might
think about complementing this volume with a simpler book focused on introducing the R
computing environment.

This book is designed to complement, not replace, a more complete theoretical treatment
of phylogenetic comparative methods. As such, we do not fully explain the mathematics and
conceptual basis of all comparative methods covered herein. For a more comprehensive review
of the theoretical basis of phylogenetic comparative analysis, we recommend Harmon (2019),
Garamszegi (2014), Nunn (2011), or one of several excellent books that cover parts of phyloge-
netic comparative biology as part of a larger treatment of phylogeny inference (e.g., Felsenstein
2004; Yang 2006). We expect that this book will be used either in parallel with a full course of
study on phylogenies and the comparative method (using, for instance, Harmon 2019) or by
scientists already familiar with much of the theoretical basis of phylogenetic inference, phylo-
genetic comparative methods, or both—and ready to immerse themselves in the phylogenetic
comparative biology in the R computing environment. Our goal in this book is thus highly
practical: to give scientists the tools they need to start analyzing their own comparative data.

The book is not designed to cover all phylogenetic comparative methods. First, we focus
exclusively on phylogenetic comparative methods implemented in the R computing environ-
ment. Several important phylogenetic analyses (e.g., Pagel andMeade 2013; Rabosky 2014) are
implemented in software that run outside of R. As such, we largely consider these methods to
be out of scope for the book.2 Second, we focus especially onmethods implemented in our own
packages phytools (Revell 2012) and geiger (Harmon et al. 2008; Pennell et al. 2014), as well as
in the core phylogenetics R package ape (Paradis et al. 2004). In part, this is due to our own
intrinsic biases; however, it’s also motivated in equal measure by a desire to ensure that this
book remains useful over the medium to long term. As package authors and maintainers, it’s
much easier for us to guarantee that updates and extensions of the phytools and geigerR libraries
will always remain compatible with the code presented in this book. As such, when amethod is
implemented in both geiger or phytools and another R package, we will generally prefer to use

2Although we promise to discuss the relationship of some of these important methodologies to those that
we are covering.

2 Chapter 1

—
—
—

our packages—unless functionality is vastly different between the different implementations.
On the other hand, in this book we do covermany importantmethods implemented in R pack-
ages other than our own, and in those cases (obviously), we show how to use these function
libraries.

One quick note on controversies in the field. Phylogenetic comparative methods grew
organically, with new methods being added rapidly—and sometimes with very little testing
or evaluation. Occasionally, methods are shown to have undesirable properties. In other cases,
statistical approaches that are commonly used have nuances that can only be appreciated with
extensive simulation studies. We subscribe to the philosophy that comparative methods are
“normal statistical methods.” Consequently, we tend to describe these critiques in terms of
standard statistical concepts such as statistical error, model adequacy, identifiability, and so on.

This book is largely based on the content that we developed for a series of classes and work-
shops that we’ve taught over the past half-dozen years or so across at least eleven countries and
four continents. These workshops were not developed or taught in a vacuum and owe their
existence to a long list of collaborators, including (but not restricted to)M. Alfaro, R. Betancur,
A. Crawford, S. De Esteban-Trivigno, A. Gonzalez-Voyer, R. Zenil-Feruguson, and J. Tavera,
among others.

1.1.3 How to use this book

As noted in the previous section, this book is designed to complement, not replace, more
comprehensive theoretical treatments of phylogenetic comparative methods, such as Harmon
(2019).

We anticipate that some readers will progress through this book from start to finish in a
“self-study” course, while others will leap from one chapter to another, depending on their
prior R phylogenetics experience, specific questions, or particular topics of interest. As such,
we have designed each chapter to “stand apart,” in that we reiterate reading input data from file,
checking data for completeness, and so on, even if it duplicates computational steps of a prior
chapter with the same files. The chapters of the book still do build from beginning to end, so
background explanations of each R computation or analysis step are not constantly repeated in
the text.

We envision that most readers will use this book as a manual or guidebook to undertaking
real phylogenetic analyses in an interactive session of R. We picture readers with the book
propped open next to their laptop or desktop computer, transcribing (or adapting) our scripts
from the book into R. All files that we use in this book are available from download through
the book’s website,3,4 so there should be no limit in the reader’s ability to follow along.

1.2 Preliminaries

R is at the same time a statistical software, a scientific computing environment, and a program-
ming language.

3The book website is https://press.princeton.edu/books/phylogenetic-comparative-methods-in-r; however,
for quick access to the files we’ll use throughout this volume, readers can refer to
http://www.phytools.org/Rbook/.

4Readers might notice in frustration that throughout this book, we have used data files that contain phylo-
genetic trees in different formats, or with mismatched taxa labels, or with data that need to be reorganized or
subsampled before analysis. This was an intentional decision, with the aim of helping our readers becomemore
comfortable in working with realistic (and thus sometimes a littlemessy) data sets in the R environment. Please
forgive us!

Introduction to phylogenetics in R 3

R is distributed free and open source. This means that it is not only free to download and
use, but any user or developer can also see the entire source code of the project—and even
potentially modify it as they see fit!

1.2.1 The R command line

AlthoughR can be intimidating,most users of R are not doing R programming and can find rel-
atively simple ways to carry out their analyses. However, use of R does typically require that you
enter commands into a text-based command-line interface, whichmay be slightly disorienting
at first.5

One goal of this book in general, and the current chapter in particular, is to help users get
comfortable with the commands and language of R.

1.2.2 Packages and resources

The rich functionality of R is built almost entirely on what are called contributed packages
created by members of the R community of users and developers.

Contributed R packages are best thought of as small libraries of new, usually thematically
related R programs known as functions. The majority of contributed packages are stored in a
public repository called CRAN,6 an acronym for the Comprehensive R Archive Network.

In this chapter, we’ll review some of the basics of working with phylogenies in the R envi-
ronment. We’ll assume that the reader has some prior experience with R and already knows
a little to a lot about phylogenies and the phylogenetic comparative method. Many excellent
introductions to R are available both in book form and on the web. Felsenstein (2004) remains
an incredible reference for all things phylogeny. Harmon (2019) is (in the humble opinion of
the authors) the most comprehensive resource developed to date for phylogenetic comparative
analyses.

1.2.3 Code chunks and R output

This chapter and all other chapters in this book have been written by the authors but were
assembled using R. As such, all the gray boxes consist of what we’ll refer to as “code chunks”:
one or various lines of R script meant to be run in an interactive R session.

All the intervening courier text sections and all of the figures are the expected output
from R.

That means that to follow along with the R activities of this book, it is possible to simply
enter the scripts from the gray boxes into your R session and run them. In fact, this is what
we’d recommend!

1.2.4 Entering R commands using a GUI

Rather than typing the commands directly into your R interactive session command prompt,
we always suggest entering your R commands first into a scripting window and then
executing the code in R.7

5Particularly for computer users raised in a post-MS-DOS world!
6https://cran.r-project.org/.
7This is easiest to do from within an R graphical user interface or GUI, such as RGui forWindows or RStudio

(RStudio Team 2020) on pretty much any platform.

4 Chapter 1

—
—
—

This is a good habit to get into not only when learning how to use R for the first time but
also down the road when you begin to apply R to analyze your own data. That is because doing
so will permit you to easily save all the commands that we’ve run in R so that you can readily
review them, modify them, and rerun them later if necessary. It also permits you to easily
publish all the steps of your data analysis alongside your scientific papers or reports, facilitating
reproducibility of research by your peers.

Once you have entered your commands into a scripting window, you do not need to copy
and paste your code from one window to the other. Instead, most R graphical user interfaces
(GUIs) permit us to directly execute lines from our script in our R session with a simple
shortcut. In the R Windows GUI (RGui), this can be done by typing CTRL-R with the cur-
sor located on the line you want to execute or with various lines selected and highlighted.
In RStudio for Windows, the shortcut is CTRL-ENTER, whereas in RStudio on a Mac, it is
Command-ENTER.

1.3 R phylogenetics

R phylogenetics is built on the contributed packages for phylogenetics in R, and there aremany
such packages. A partial list of the R packages that contain phylogeny-related functionality is
available on a website called the CRAN phylogenetics task view.8

In this book, we’ll only be working with a subset of these packages.

1.3.1 Installing R packages and checking version numbers

We can begin by installing a few of the most critical of R phylogenetics packages: ape (Paradis
et al. 2004; Paradis and Schliep 2019), phangorn (Schliep 2011), phytools (Revell 2012), and
geiger (Harmon et al. 2008; Pennell et al. 2014). To ensure that we get the most recent CRAN
package versions, we need to have the most up-to-date R version installed on our computer!

In an interactive R session, it’s pretty straightforward to see which R version you have
installed.

At the time of writing, the most recent version of R was version 4.1.1.9

R.version

_
platform x86_64-w64-mingw32
arch x86_64
os mingw32
system x86_64, mingw32
status
major 4
minor 1.1
year 2021
month 08
day 10

8https://cran.r-project.org/web/views/Phylogenetics.html.
9Although it will certainly be long out of date by the time this book arrives to your shelf!

Introduction to phylogenetics in R 5

svn rev 80725
language R
version.string R version 4.1.1 (2021-08-10)
nickname Kick Things

Next, let’s proceed to install the various packages that we intend to use in this chapter.
This can be done easily using the R function install.packages as follows.10

install.packages("ape")
install.packages("phangorn")
install.packages("phytools")
install.packages("geiger")

We can proceed to verify the package versions that we’ve installed by using the base R
function packageVersion:

packageVersion("ape")

[1] ’5.5’

packageVersion("phangorn")

[1] ’2.7.1’

packageVersion("phytools")

[1] ’0.7.96’

packageVersion("geiger")

[1] ’2.0.7’

Some packages are updated frequently, others less often, but you shouldn’t be surprised to
see a mismatch between the versions shown above and the package versions you have installed
on your computer. Just be aware that sometimes errors can result from using packages that are
out of date and thus incompatible with one another.

Installing automatically from CRAN using install.packages installs not only your
target package but also any libraries on which that package depends, if that package has not yet
been installed.

For instance, a package dependency of R package B on R package A means that package
B uses functions of A “internally” (that is, inside of its own functions). Consequently, use of
package B requires that A be installed and loaded. Fortunately, R takes care of these details for
us. If a dependent package can’t be found or loaded, R will give an error warning us that the
missing package needs to be installed.

10This works for packages that are on CRAN, which covers most common R packages for comparative
methods. Some other packages we use in this book must be installed from GitHub using the R package
devtools.

6 Chapter 1

—
—
—

1.4 ape and the "phylo" object in R

Now we’ve installed some critical R phylogenetics packages (ape, phangorn, phytools, and
geiger).

The most important “core” package for phylogenies in R is called ape (Paradis et al. 2004;
Paradis and Schliep 2019), which stands for Analysis of Phylogenetics and Evolution in R.11

1.4.1 Loading the ape package

Although we installed our main R phylogenetics packages, to make best use of a contributed
package, we must proceed to load it in our current R session.

Here, we’ll do this using the base function library as follows.12

library(ape)

1.4.2 Reading a phylogenetic tree file

ape does many different things. To get started, let’s read a “toy” phylogenetic tree of vertebrates
from a relatively simple Newick text string.13

text.string<-
"(((((Robin,Iguana),((((Cow,Whale),Pig),Bat),
(Lemur,Human))),Coelacanth),Goldfish),Shark);"

vert.tree<-read.tree(text=text.string)

1.4.3 Plotting a phylogenetic tree

We can plot this tree in our R session using the ape package "phylo" S3 plot method as
follows.14 We see the result in figure 1.1.

11A good way to think of what makes ape a core package in phylogenetics also has to do with dependency
relationships between packages.Many other R phylogenetics packages depend on ape, or depend on packages
that depend on ape, while ape does not itself depend on other phylogenetics packages.

12Note that a highly similar function calledrequirewill do prettymuch exactly the same thing.library
and require are subtly different, but for our purposes, they are interchangeable, and you should feel free to
use whichever one you prefer!

13A Newick string—named, believe it or not, after a lobster restaurant in New Hampshire—is a simple way
to encode a phylogenetic tree using a series of nested parentheses. More closely nested species are more closely
related. For instance, the simple Newick tree ((chimp,human),gorilla); tells us that the operational taxa chimp
and human aremore closely related to each other than either is to gorilla. There are other ways that phylogenetic
trees can be represented in machine-readable text, but the Newick string is by far the most common.

14The terminology S3 method refers to a way that R uses to assign a generic function to an object class.
This is helpful, because if our object is a set of points in two dimensions and we send this object to plot,
R knows—unless we tell it otherwise—to draw a scatterplot. Likewise, if our object is a phylogeny, R knows to
draw a tree. Commonly usedmethods areplot,print,summary, andpredict, but there aremany others,
and it’s even possible for R programmers to develop their own new generic methods! One tricky aspect of S3
generic methods is that lazy R programmers can develop methods for new object classes without documenting
them—so long as the arguments are nominally equivalent.

Introduction to phylogenetics in R 7

Shark

Goldfish

Coelacanth

Human

Lemur

Bat

Pig

Whale

Cow

Iguana

Robin

Figure 1.1
A simple phylogenetic plot of vertebrate species
drawn with the apemethod plot.phylo.

plot(vert.tree,no.margin=TRUE)

1.4.4 Getting help for an R function

It’s easy to identify ways in which this plot might be improved. For instance, perhaps the lines
could be thicker, the font size larger, the margins smaller, and so on. In fact, all of these options
are available in the function.

In general, to see the help page for a function, you can call the functionhelp15 on the name
of the function you need help with: in our case, plot.

help(plot)

As we are using an S3 method to plot, however, we have to do something different. If we
want to see the help page for the plot function applied to phylo objects, we must run16

help(plot.phylo)

1.4.5 Function arguments and values

Help pages in R are very useful for novice and experienced R users alike. They have a standard-
ized format that details what arguments the function takes as input, what the function does, and
what value the function returns to the user.

Function arguments are best thought of as the options and inputs of the function. These
might include our data, as well as any specifications that the function needs to run our analysis
or to generate a plot.

15Just entering ?function_name at the command prompt in R will have the same effect—and is quicker
too.

16This is generally true for S3 methods. That is to say, if the method has been documented for a particular
object class, this documentation will be found at nameOfMethod.classOfObject.

8 Chapter 1

—
—
—

The function value is what is returned by the function. For some functions, all results
are printed to screen or used to make a graph. Many functions, however, return the results
of their execution to the user in the form of one or more numerical values or a special
object.

Once we’ve familiarized ourselves with a function via its help page, it is often useful to use
the helper base R function args in interactive sessions to obtain a list of the arguments that
the function accepts:

args(plot.phylo)

function (x, type = "phylogram",
use.edge.length = TRUE, node.pos = NULL,
show.tip.label = TRUE, show.node.label =
FALSE, edge.color = "black",
edge.width = 1, edge.lty = 1, font = 3,
cex = par("cex"),
adj = NULL, srt = 0, no.margin = FALSE,
root.edge = FALSE,
label.offset = 0, underscore = FALSE,
x.lim = NULL, y.lim = NULL,
direction = "rightwards", lab4ut = NULL,
tip.color = "black",
plot = TRUE, rotate.tree = 0, open.angle
= 0, node.depth = 1,
align.tip.label = FALSE, ...)
NULL

1.4.6 Different ways to plot a phylogenetic tree

Reviewing the help page for plot.phylo, as well as the long list of function arguments listed
above, suggests that we can visualize our phylogenies in R in a remarkably large number of
different ways, even just using this function (and thus not considering all the other various
contributed package functions designed to plot phylogenies).

To see this, let’s plot our phylogeny in three different styles (figure 1.2).

par(mfrow=c(2,2),mar=c(1.1,1.1,3.1,1.1))
plot(vert.tree)
mtext("(a)",line=1,adj=0)
plot(vert.tree,type="cladogram")
mtext("(b)",line=1,adj=0)
plot(unroot(vert.tree),type="unrooted",

lab4ut="axial",x.lim=c(-2,6.5),
y.lim=c(-3,7.5))

mtext("(c)",line=1,adj=0)

Now why don’t we have a look at what this code does line by line.17

17We’ll try to do this as much as possible throughout the book.

Introduction to phylogenetics in R 9

Shark
Goldfish
Coelacanth
Human
Lemur
Bat
Pig
Whale
Cow
Iguana
Robin(a)

Shark
Goldfish
Coelacanth
Human
Lemur
Bat
Pig
Whale
Cow
Iguana
Robin(b)

Shark

Goldfis
h

Co
el

ac
an

th

Hum
an

Lemur

Bat

Pig

W
ha

leCow

IguanaRobin

(c)

Figure 1.2
A phylogeny plotted in three different styles. (a) A right-facing square cladogram/phylogram. (b) A slanted
cladogram/phylogram. (c) An unrooted style. All three graphs were drawn using the ape plotting method,
plot.phylo.

The first line, par(mfrow=c(2,2),mar=c(1.1,1.1,3.1,1.1)), tells R to divide
our plotting device into four subplots for a 2× 2 grid—done via the argument mfrow. By way
of the argument mar, it also tells R to set themargins to custom values. The order of this vector
is bottom, left, top, and right—so we see that we are setting all the margins to 1.1 units, except
the upper margin, which we set to 3.1.18

The second line,plot(vert.tree), plots the tree using the S3plotmethodwithmost
of its default arguments—but changed font=1 to print the tip labels in regular (instead of
italic) font.

The third line, mtext("(a)",line=1,adj=0), adds a subplot label (“(a)”).19 The
mtext argument line=1 tells R to put the text one line above the figure margin, while the
argument adj=0 tells R to align the text to the left of the plot area.

Finally the fourth, fifth, sixth, and seventh lines repeat the same pattern for each of the sub-
plots but with different plotting styles: first a slanted cladogram (type="cladogram") in
figure 1.2b and then anunrooted tree (type="unrooted") in figure 1.2c.20 We also adjusted

18We’ll see a lot more of par throughout the book.
19The function name mtext is short formargin text.
20In the lattermost of these, the argument lab4ut="axial"—which stands for labels for unrooted tree—

tells R to orientate the tip labels in the same direction as the terminal branches of the phylogeny. Who would’ve
guessed? This is what help pages are for!

10 Chapter 1

—
—
—

the x and y limits of the plot (using the arguments x.lim and y.lim, respectively)—but this
was simply because we discovered that for type="unrooted" with lab4ut turned on,
R was cutting off some of our taxon labels. The specific values that we used are idiosyncratic
to the particular tree we’re plotting—but these arguments are nonetheless useful to remember
should the readers find themselves in a similar situation or want to leave space around their
plotted tree for any other reason.21

1.5 The internal structure of a tree in R

When we read any phylogeny from file or from a text string (as we did in the previous section),
we create an object in the R workspace.

Normally, it won’t be necessary to interact directly with this object’s internal structure.
Instead, we usually pass the object unchanged to other functions—such as when we plotted
our phylogeny in different styles to create figure 1.2.

Nonetheless, we believe that for users who commonly work with phylogenies in the R envi-
ronment, it can be extremely useful to develop a basic working understanding of the structure
of phylogenetic objects in memory during an interactive R session.22

1.5.1 Trees as lists

This object—that is, the one created in memory when we simulate or estimate a phylogeny or
read one from an input file—is a list of class "phylo".

In R, a list is just a customizable object type that can combine two or various objects of
different types.

For instance, a list might contain a vector of real numbers (with mode "numeric") as its
first element, then a vector of strings (with mode "character") as its second element, and
so on.

Lists are virtually endlessly flexible, because they can also include other lists23 (and even
functions) among their elements.

Assigning our phylogenetic list with a special class, "phylo", is just a convenient way to
tell other functions in R, particularly S3 methods, how to treat that object.

1.5.2 Elements of the "phylo" list

An object of class "phylo" always consists of at least three elements.
These components of the object are normally “hidden” from view. That is to say, just typing

the name of your "phylo" object does not reveal the structure of the object in memory, as it
would for a standard list in R.

vert.tree

##
Phylogenetic tree with 11 tips and 10 internal nodes.

21Such as to add additional graphical elements or features to the plot later; see chapter 13.
22In fact, we estimate that if we had a penny for every geiger or phytools user issue that could have been

resolved through knowledge of the structure of the "phylo" object, we’d have at least two dollars!
23Or lists of list, or lists of lists of lists, and so on.

Introduction to phylogenetics in R 11

##
Tip labels:
Shark, Goldfish, Coelacanth, Human, Lemur, Bat, ...
##
Rooted; no branch lengths.

What’s happened here? Why do we see a summary of the object instead of its structure?
What has occurred is that something called an S3 print method has been activated to

(guess what?) print a summary of some of the important attributes of that object.
In the case of a "phylo" object, this summary is designed to give us a printout of the

number of terminal taxa in the tree and a list of some of their labels.
R lets us, however, reveal the internal structure of this (and, in fact, virtually any) R object

using the handy function str24 as follows.

str(vert.tree)

List of 3
$ edge : int [1:20, 1:2] 12 12 13 13 14 14 15
17 21 21 ...
$ Nnode : int 10
$ tip.label: chr [1:11] "Shark" "Gold_fish"
"Coelacanth" "Human" ...
- attr(*, "class")= chr "phylo"
- attr(*, "order")= chr "cladewise"

This tells us that our vert.tree object is a list composed of (in this case) three different
elements, along with a couple of different attributes.

More specifically, the different parts of our object include

1. edge: a 20 × 2 (in this case) matrix containing starting and ending indices for the nodes
subtending each branch of the phylogeny. By convention, tip nodes (that is, those
corresponding to species or operational taxa) are numbered 1 through N for N species,
while internal nodes are numbered N + 1 (at the root) through N+ the number of internal
nodes.25

2. Nnode: an integer value giving the total number of internal nodes in the tree.
3. tip.label: a character vector of length N containing the labels for all the tips or

terminal taxa in the phylogeny.

1.5.3 Node indices

Now let’s see how these different components relate to the structure of the tree by replotting
our phylogeny, but this time overlaying the numerical indices from the matrix edge onto the
nodes and terminals of the tree (figure 1.3). We can do that in R as follows.

24Short for structure.
25There will be N − 1 of these if our tree is both rooted and perfectly bifurcating. An unrooted, bifurcating

tree has N − 2 internal nodes. Trees with polytomies can have fewer nodes still, while trees with unbranching
nodes can have more.

12 Chapter 1

—
—
—

Shark

Goldfish

Coelacanth

Human

Lemur

Bat

Pig

Whale

Cow

Iguana

Robin

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Figure 1.3
A simple phylogeny of vertebrate specieswith nodes labeled by their indices in the"phylo"edgematrix.
We created the plot using the phytools function plotTree and added node labels using labelnodes
(although the latter could have also been done just as easily with the ape function nodelabels).

library(phytools)
plotTree(vert.tree,offset=1,type="cladogram")
labelnodes(1:(Ntip(vert.tree)+vert.tree$Nnode),

1:(Ntip(vert.tree)+vert.tree$Nnode),
interactive=FALSE,cex=0.8)

Reviewing our code line by line, we first loaded an additional R package called phytools
(library(phytools)).

We then plotted our tree, but instead of using the S3method, we elected26 to use the phytools
function plotTree.

Finally, we used the ape function labelnodes to add numerical labels to all the internal
and “external” (that is, tip) nodes of the phylogeny.27

Just to reiterate, here what we have done is simply plotted our tree, and then we’ve overlain
the “node numbers” onto the plotted tree. The node numbers are simply the indices from the
"phylo" object element edge, which is itself a matrix containing the starting and ending
indices for each branch of the phylogeny!

26For no particular reason.
27We could have also used the ape functions nodelabels() and tiplabels() without any

arguments—but that doesn’t look quite as nice, in our opinion. Try it and see if you agree!

Introduction to phylogenetics in R 13

vert.tree$edge

[,1] [,2]
[1,] 12 1
[2,] 12 13
[3,] 13 2
[4,] 13 14
[5,] 14 3
[6,] 14 15
[7,] 15 17
[8,] 17 21
[9,] 21 4
[10,] 21 5
[11,] 17 18
[12,] 18 6
[13,] 18 19
[14,] 19 7
[15,] 19 20
[16,] 20 8
[17,] 20 9
[18,] 15 16
[19,] 16 10
[20,] 16 11

If we now go ahead and compare vert.tree$edge to our plot in figure 1.3, we should
see that each row of the matrix corresponds to one and only one branch in the tree. In other
words, the edge matrix completely represents the topology of our tree using a simple table!

We should also notice

1. that edge has a number of rows that are equal to the number of branches (20) in this
phylogeny, and

2. that each branch starts and ends with a unique pair of indices, just as we learned above.

1.5.4 Tip labels and node counts of a phylogeny

As we already saw, the other components of our "phylo" object include the vector
tip.label and an integer Nnode, which gives the number of interior nodes in the tree.

Let’s take a look at these two elements now as well.

vert.tree$tip.label

[1] "Shark" "Goldfish" "Coelacanth"
[4] "Human" "Lemur" "Bat"
[7] "Pig" "Whale" "Cow"
[10] "Iguana" "Robin"

vert.tree$Nnode

[1] 10

14 Chapter 1

—
—
—

By convention, the order of the tip labels in tip.label corresponds to the numerical
order of the tip indices (scored from 1 through N, remember) in our phylogeny.

The component Nnode has an even more straightforward interpretation—which we think
doesn’t require any additional explanation.

1.5.5 The "phylo" class

An object of class "phylo" also (by definition) has at least one attribute—its class. This is
just a value to tell various functions—and, particularly, S3 methods—in R what to do with an
object of this type.

For instance, if we call the generic method plot, the object class attribute is what instructs
R to use the method plot.phylo that has been exported by the R package ape.

An object of class "phylo" can have other components too. The most common of these is
edge.length: a vector of class "numeric" containing all the branch lengths or our tree.
Although our object vert.tree does not include branch lengths, if it did, we would see that
the numeric vectoredge.length contained the branch lengths of the phylogeny in precisely
the order of the rows of edge.

In addition, other elements and attributes can be added for special types of phylogenetic
trees. Some R functions will behave differently if these additional elements or attributes are
present in our "phylo" object. We’ll see more about this in later chapters of the book!

1.6 Reading andwriting phylogenetic trees

Naturally, R can easily read and write trees to and from files.

1.6.1 Reading a tree from a file

For example, let’s download the tree file Anolis.tre (Mahler et al. 2010, available from the
book’s website28) and read it into R.

For this task, we’ll use the ape function read.tree.29
As soon as you have the tree file in your current working directory in R,30 you can read it in

anolis.tree<-read.tree(file="Anolis.tre")
anolis.tree

##
Phylogenetic tree with 100 tips and 99 internal nodes.
##
Tip labels:
ahli, allogus, rubribarbus, imias, sagrei, bremeri, ...

28The site is http://www.phytools.org/Rbook/, as indicated earlier. Henceforward, we’ll only provide theURL
of the book website on the first instance that it’s referenced in each chapter.

29read.tree and, likewise, read.newick in the phytools package read phylogenies in simple Newick
format. Different functions of ape, phytools, and other packages can be used to read trees that have been written
to file in other formats.

30To see your current working directory in R, type getwd() at the command prompt. To change your
working directory, use the function setwd.

Introduction to phylogenetics in R 15

##
Rooted; includes branch lengths.

plotTree(anolis.tree,ftype="i",fsize=0.4,lwd=1)

This is a tree containing

Ntip(anolis.tree)

[1] 100

100 species of lizards in the neotropical lizard genus Anolis (figure 1.4).

1.6.2 Writing a tree to a file

In addition to reading a tree from file, we can also write them. For instance, we can easily write
our vertebrate tree from earlier in the chapter to a simple text file in Newick format.

write.tree(vert.tree,file="example.tre")

This is what the resultant text file example.tre should look like.31

cat(readLines("example.tre"))

(Shark,(Gold_fish,(Coelacanth,(((Hu ...

1.7 Plotting andmanipulating trees

We’ve already seen a few in this chapter, but there are a wide range of ways in which we can
plot and manipulate trees in R.

Next, let’s take a look at a few more of the most common ways that phylogenies are plotted
in R.32

Meanwhile, we can also see how R can be used to (for lack of a better word) manipulate
phylogenies.

Common types of manipulation of phylogenies in R include dropping or “pruning” species
from a tree, extracting subtrees, and shrinking or stretching trees to have a particular total
length. We’ll focus on the former two types of manipulation here.

1.7.1 Pruning taxa from the phylogeny

A convenient and popular plotting method for large rooted trees is a circular or “fan” tree. We
can start by plotting our Anolis tree in this way and then go from there.

31You can also open the file on your computer using any text editor to check if you’d like.
32R is an extremely flexible plotting environment, so there are many plotting options that we are not seeing

here; however, some of these will be visited in subsequent chapters.

16 Chapter 1

—
—
—

ahli
allogus
rubribarbus
imias
sagrei
bremeri
quadriocellifer
ophiolepis
mestrei
jubar
homolechis
confusus
guafe
garmani
opalinus
grahami
valencienni
lineatopus
reconditus
evermanni
stratulus
krugi
pulchellus
gundlachi
poncensis
cooki
cristatellus
brevirostris
caudalis
marron
websteri
distichus
barbouri
alumina
semilineatus
olssoni
etheridgei
fowleri
insolitus
whitemani
haetianus
breslini
armouri
cybotes
shrevei
longitibialis
strahmi
marcanoi
baleatus
barahonae
ricordii
eugenegrahami
christophei
cuvieri
barbatus
porcus
chamaeleonides
guamuhaya
altitudinalis
oporinus
isolepis
allisoni
porcatus
argillaceus
centralis
pumilis
loysiana
guazuma
placidus
sheplani
alayoni
angusticeps
paternus
alutaceus
inexpectatus
clivicola
cupeyalensis
cyanopleurus
alfaroi
macilentus
vanidicus
argenteolus
lucius
bartschi
vermiculatus
baracoae
noblei
smallwoodi
luteogularis
equestris
monticola
bahorucoensis
dolichocephalus
hendersoni
darlingtoni
aliniger
singularis
chlorocyanus
coelestinus
occultus

Figure 1.4
A phylogenetic tree of Anolis lizards plotted in a right square phylogram style using the phytools function
plotTree.

Introduction to phylogenetics in R 17

In comparative analyses with phylogenetic data, we are often called upon to prune species
out of the tree or to extract one clade or another.

This might be the case, for instance, when we have phylogenetic data for one set of taxa and
morphological, phenotypic, or biogeographic data for a different, but nonetheless overlapping,
set. Fortunately, pruning taxa and extracting clades are relatively straightforward operations in
an interactive R session.

Let’s imagine, for instance, that instead of working with the 100-taxonAnolis tree, we would
like to analyze a phylogeny that contained only a subset of these taxa.33 We can focus our
attention on the anoles from Puerto Rico, which (in this phylogeny) consist of A. cristatellus,
A. cooki, A. poncensis, A. gundlachi, A. pulchellus, A. stratulus, and A. evermanni (which form
a clade), as well as A. occultus and A. cuvieri.

As a first step, let’s find these Puerto Rican anoles on our complete phylogeny.
The following script uses a phytools function called add.arrow to add red34 arrows

pointing to particular tips on the phylogeny that we are interested in.
We have to plot the arrows by indicating the tip numbers (not the labels) of the terminal taxa

that we want to mark. To find these, we will use the R base function grep.
grep matches a character pattern to a vector and returns the positions of the elements

of the vector in which that pattern is found. Here, we’re going to use it to match the spe-
cific epithets35 of the Puerto Rican anoles to the vector comprising all the tip labels of the
tree.

Perhaps the reader is beginning to see how useful it can be to know something about the
structure of the "phylo" object—because otherwise, wemight not know that these labels can
be found in the vector anolis.tree$tip.label!

pr.species<-c("cooki","poncensis",
"gundlachi","pulchellus","stratulus",
"krugi","evermanni","occultus","cuvieri",
"cristatellus")

nodes<-sapply(pr.species,grep,x=anolis.tree$tip.label)
nodes

cooki poncensis gundlachi
26 25 24
pulchellus stratulus krugi
23 21 22
evermanni occultus cuvieri
20 100 54
cristatellus
27

33Although Anolis is a clade with over 400 described species across the tropical and subtropical Americas,
our phylogeny includes only representatives from the Greater Antillean region of the Caribbean.

34Here and throughout the volume, we’ll refer to the colors that would be plotted if you reproduced our
code in R. The figures that you’ll actually see in the print version of the book, however, have been recolored in
grayscale by the publisher to help ensure that the book can be printed, and sold, at a reasonable price. Hopefully
this isn’t too confusing!

35The specific epithet is the second part of the Latin binomial name of a species, so for the species Homo
sapiens, the specific epithet is sapiens. In our Anolis tree, all tips belong to the same genus, so they’ve been
labeled using only the epithet.

18 Chapter 1

—
—
—

 ahli
 allogus
 rubribarbus imias sagrei bremeri quadriocellife

r
 ophiolepis

 mestrei
 jubar homolechis

 confusu
s

 guafe garm
ani

 op
alin

us

 gra
ham

i

 va
len

cie
nn

i

 lin
ea

to
pu

s

 re
co

nd
itu

s

 e
ve

rm
an

ni

 st
ra

tu
lu

s

 k
ru

gi
 p

ul
ch

el
lu

s

 g
un

dl
ac

hi
 p

on
ce

ns
is

cooki

cristatellus

brevirostris

caudalis

m
arron

w
ebsteri

distichus

barbouri

alum
ina

sem
ilineatus

olssoni

etheridgei

fowleri
insolitus

whitemani
haetianus bresliniarmouri cybotesshrevei longitibialisstrahmi marcanoi

baleatus
barahonae

ricordii

eugenegrahami

christophei

cuvieri

barbatus

porcus

chamaeleonides

guamuhaya

altitu
dinalis

op
orin

us

isolep
is

allis
oni

porcatu
s

arg
illa

ce
us

ce
ntra

lis

pu
m

ilis
lo
ys

ia
na

gu

az
um

a
pl

ac
id

us
sh

ep
la

ni
al

ay
on

i
an

gu
st

ic
ep

s
pa

te
rn

us

al
ut

ac
eu

s

 inexpectatus
 clivicola

 cupeyalensis
 cyanopleurus

 alfaroi
 m

acilentus
 vanidicus

 argenteolus
 lucius

 bartschi
 verm

iculatus

 baracoae
 noblei

 smallwoodi

 luteogularis

 equestris

 monticola

 bahorucoensis

 dolichocephalus

 hendersoni

 darlingtoni

 aliniger

 singularis

 chlorocyanus

 coelestinus
 occultus

Figure 1.5
Phylogenetic tree of Anolis lizards. We plotted the tree using the phytools function plotTree and then
highlighted the species from Puerto Rico using the function add.arrow.

Note that we’ve used a function belonging to the so-called apply family of functions—
this one called sapply. apply family functions are designed to iterate operations over the
elements of a matrix, vector, or list, without the necessity of writing a loop.36

The easiest way to interpret our sapply call, nodes <- sapply(pr.species,
grep, x=anolis.tree$tip.label), is as “apply to the elements of pr.species
the function grep with the argument x of grep set to anolis.tree$tip.label.”

We’ll see more uses of various apply family functions throughout this chapter and the rest
of the book.

Now that we have identified the tip node numbers of all the Puerto Rican Anolis lizards in
our tree, we can plot our tree and label these species using arrows just as we planned. The result
is seen in figure 1.5.

36The most common loop programming structure in R, as well as in many other programming languages,
is called a for loop. for loops can be very useful in R. We’ll see examples of for loops later on the book.

Introduction to phylogenetics in R 19

plotTree(anolis.tree,type="fan",fsize=0.6,lwd=1,
ftype="i")

add.arrow(anolis.tree,tip=nodes,arrl=0.15,col="red",
offset=2)

The orientation of the arrows in figure 1.5 should exactly match the orientation of the tip
branch.37

Now let’s prune the species that we marked with arrows out of the tree.

anolis.noPR<-drop.tip(anolis.tree,pr.species)
plotTree(anolis.noPR,type="fan",fsize=0.6,lwd=1,

ftype="i")

Weshould see that the functionwe used here,drop.tip, cuts not only the terminal branch
but any branch that leads exclusively to tips that are being pruned. We’ve plotted the pruned
phylogeny in figure 1.6.

1.7.2 Extracting a clade

Alternatively, let’s imagine that we want to extract the main clade of Puerto Rican Anolis
species. In our example, this is the clade that includes all but two of the species found on the
island.

To extract a clade, we need to identify the node index of the most recent common ancestor
(MRCA) of the members of the clade we want to prune.

In our case, this corresponds to the MRCA of all the species except for Anolis cuvieri and
Anolis occultus.38 We can find the node number of the MRCA of a set of taxa using getMRCA
from the ape package.

node<-getMRCA(anolis.tree,pr.species[
-which(pr.species%in%c("cuvieri","occultus"))])

node

[1] 123

Just for fun, before we pull it out, let’s go ahead and visualize the clade that we plan to extract.
To do so, we’ll use the phytools function paintSubTree.39 We can also combine this

with the function arc.cladelabels to add a nice clade delimiter to our plot. The result is
shown in figure 1.7.

37This is harder to guarantee when we make this kind of figure using a point-and-click image editor!
38Here we used negative indexing to pull out undesired elements from our vector of taxon names. Negative

indexing returns all the elements of a vector, matrix, or list with the exception of those that were indexed. Does
that make sense?

39This function will also reappear later in the book!

20 Chapter 1

—
—
—

 ahli
 allogus

 rubribarbus imias sagrei bremeri quadriocellife
r

 op
hiolep

is
 mestre

i
 jubar homolechis

 confusu
s

 guafe

 garm
ani

 o
pa

lin
us

 g
ra

ha
m

i

 va
le

nc
ie

nn
i

 li
ne

at
op

us

 re
co

nd
itu

s

 b
re

vi
ro

st
ris

 c
au

da
lis

 m
ar

ro
n

w
ebsteri

distichus

barbouri

alum
ina

sem
ilineatus

olssoni

etheridgei

fow
leri

insolitus

whitem
ani

haetianus

breslini
armouri

cybotesshrevei
longitibialisstrahmi marcanoibaleatusbarahonae

ricordii
eugenegrahami

christophei
barbatus

porcus

chamaeleonides

guamuhaya

altitudinalis

oporinus

isolepis

allisoni

porcatus

argilla
ceus

centra
lis

pu
milis

loy
sia

na
guazu

m
a

pl
ac

id
us

sh
ep

la
ni

al
ay

on
i

an
gu

st
ic

ep
s

pa
te

rn
us

al

ut
ac

eu
s

in
ex
pe

ct
at

us

cl
iv

ic
ol

a

 cupeyalensis
 cyanopleurus
 alfaroi

 m
acilentus

 vanidicus
 argenteolus

 lucius
 bartschi

 verm
iculatus

 baracoae
 noblei

 smallwoodi

 luteogularis

 equestris

 monticola

 bahorucoensis

 dolichocephalus

 hendersoni

 darlingtoni

 aliniger

 singularis

 chlorocyanus
 coelestinus

Figure 1.6
Phylogeny of Anolis in which we first pruned all Puerto Rican species from the tree using the ape function
drop.tip.

plot(paintSubTree(anolis.tree,node,"b","a"),
type="fan",fsize=0.6,lwd=2,
colors=setNames(c("gray","blue"),c("a","b")),
ftype="i")

arc.cladelabels(anolis.tree,"clade to extract",node,
1.35,1.4,mark.node=FALSE,cex=0.6)

The numbers 1.35 and 1.4 have no special significance—in this case, they merely set
the relative offset of the clade line and the clade label from the tips of the tree. Readers who
want to duplicate this plot with their own phylogeny will probably have to use different values
(although sometimes the defaults can work fairly well).

Now, we can proceed to extract the clade of interest using the ape function
extract.clade as follows.

Introduction to phylogenetics in R 21

 ahli
 allogus

 rubribarbus imias sagrei bremeri quadriocellife
r

 ophiolepis
 mestrei

 jubar homolechis

 confusu
s

 guafe garm
ani

 op
alin

us

 gra
ham

i

 va
len

cie
nn

i

 lin
ea

to
pu

s

 re
co

nd
itu

s

 e
ve

rm
an

ni

 st
ra

tu
lu

s

 k
ru

gi

 p
ul

ch
el

lu
s

 g
un

dl
ac

hi
 p

on
ce

ns
is

cooki

cristatellus

brevirostris

caudalis

m
arron

w
ebsteri

distichus

barbouri

alum
ina

sem
ilineatus

olssoni

etheridgei

fowleri
insolitus

whitemani
haetianus bresliniarmouri cybotesshrevei longitibialisstrahmi marcanoi

baleatus
barahonae

ricordii

eugenegrahami

christophei

cuvieri

barbatus

porcus

chamaeleonides

guamuhaya

altitu
dinalis

op
orin

us

isolep
is

allis
oni

porcatu
s

arg
illa

ce
us

ce
ntra

lis

pu
m

ilis
lo
ys

ia
na

gu

az
um

a
pl

ac
id

us
sh

ep
la

ni
al

ay
on

i
an

gu
st

ic
ep

s
pa

te
rn

us

al
ut

ac
eu

s inexpectatus
 clivicola
 cupeyalensis
 cyanopleurus

 alfaroi
 m

acilentus
 vanidicus

 argenteolus
 lucius

 bartschi
 verm

iculatus

 baracoae
 noblei

 smallwoodi

 luteogularis

 equestris

 monticola

 bahorucoensis

 dolichocephalus

 hendersoni

 darlingtoni

 aliniger

 singularis

 chlorocyanus

 coelestinus
 occultus

clade to extract

Figure 1.7
Tree of Anolis lizards. Here we marked the part of the tree we plan to extract by mapping this clade onto
our "phylo" object with the phytools function paintSubTree and then by drawing the tree using
plot.simmap.

pr.clade<-extract.clade(anolis.tree,node)
pr.clade

##
Phylogenetic tree with 8 tips and 7 internal
nodes.
##
Tip labels:
evermanni, stratulus, krugi, pulchellus,
gundlachi, poncensis, ...
##
Rooted; includes branch lengths.

22 Chapter 1

—
—
—

evermanni

stratulus

krugi

pulchellus

gundlachi

poncensis

cooki

cristatellus
(a)

evermanni
stratulus
krugi
pulchellus
gundlachi
poncensis
cooki
cristatellus
cuvieri
occultus

(b)

Figure 1.8
(a) Largest clade fromPuerto Rico extracted from the full tree of CaribbeanAnolis lizards using the ape func-
tion extract.clade. (b) Phylogeny containing all of the Anolis the species from Puerto Rico obtained
from the full tree using the function keep.tip.

Likewise, just as we extracted the clade, we can also perform the converse operation—which
would be to prune everything in the tree except for these species.

To do this, we will use a different ape function called keep.tip.

pr.tree<-keep.tip(anolis.tree,pr.species)
pr.tree

##
Phylogenetic tree with 10 tips and 9 internal
nodes.
##
Tip labels:
evermanni, stratulus, krugi, pulchellus,
gundlachi, poncensis, ...
##
Rooted; includes branch lengths.

Here are the two resultant phylogenies (figure 1.8).

par(mfrow=c(1,2))
plotTree(pr.clade,ftype="i",mar=c(1.1,1.1,3.1,1.1),

cex=1.1)
mtext("(a)",line=0,adj=0)
plotTree(pr.tree,ftype="i",mar=c(1.1,1.1,3.1,1.1),

cex=1.1)
mtext("(b)",line=0,adj=0)

1.7.3 Interactive treemanipulation using collapseTree

Finally, sometimes it’s fun to prune our tree interactively—by clicking on nodes or tips of the
phylogeny after it has been plotted. In R, this can be done using the ape function drop.tip,

Introduction to phylogenetics in R 23

which has an interactive mode, or by using the animated phytools function collapseTree
as follows.

anolis.pruned<-collapseTree(anolis.tree)

Obviously, this cannot be demonstrated on the pages of a book, but please try it out! As you
click on or near nodes of the tree, you should see clades collapse or reexpand.40 When you’re
done, just right-click and select stop.

1.8 Multiple trees in a single object

It’s often useful to store multiple phylogenies in a single object. This could be true, for instance,
when we have a set of trees in a posterior sample from Bayesian phylogeny inference, if we’re
workingwith a bootstrap distribution of phylogenies, or whenwewant to replicate a simulation
analysis across a large number of trees.

1.8.1 The "multiPhylo" object

In R, multiple phylogenetic trees are usually stored in the form of an object of class
"multiPhylo".

This sounds fancy, but it is really nothing more than a list of objects of class "phylo" but
with the class attribute "multiPhylo" assigned!

Many, but not all, functions in ape, phytools, and other R packages are “vectorized” so that
they can be applied to both "phylo" and "multiPhylo" objects. For instance:

anolis.trees<-c(anolis.tree,anolis.noPR,pr.clade,
pr.tree)

print(anolis.trees,details=TRUE)

4 phylogenetic trees
tree 1 : 100 tips
tree 2 : 90 tips
tree 3 : 8 tips
tree 4 : 10 tips

write.tree(anolis.trees,file="example.trees")

Here, we first combined all of our individual trees into a single "multiPhylo" object
using the function (and S3 method) c (short for combine).

Next, we printed a summary of our object. Meanwhile, we also turned on the print
method optional argument details so that we could see a bit more information about each
tree in the object—in this case, the number of terminal taxa (“tips”) in each tree.

Finally, we wrote all the trees to a single text file using the ape function write.tree.
This output file is merely just a simple text file, with each of our phylogenies written in

Newick format onto separate lines:

40The animation works better in some R GUIs than others!

24 Chapter 1

—
—
—

cat(readLines("example.trees"),sep="\n")

((((((((ahli:0.131,allogus:0.131):0 ...
((((((((ahli:0.131,allogus:0.131):0 ...
((evermanni:0.214,stratulus:0.214): ...
((((evermanni:0.214,stratulus:0.214 ...

1.9 Managing trees and comparative data

Throughout this book, we’ll often be called upon to manage not only phylogenies but also
comparative phenotypic trait data for species.

To see an example of how to do this with real data, let’s use two different data files from the
book webpage: anole.data.csv and ecomorph.csv (Mahler et al. 2010).

We’ll combine the data of these files with the phylogeny from our Anolis tree file
(Anolis.tre) that we read into R earlier in the chapter.

1.9.1 The CSV file format

Both of our two data files (anole.data.csv and ecomorph.csv) are written in a
common data file format called CSV41 format.

R can read data in lots of different formats; however, CSV format is pretty reliable andwidely
used. Precisely as you might expect, CSV format is a simple text format for tabular data, but
in which the elements in different rows are separated by a hard return, while the elements in
different columns within a row are separated by the comma character: ,.

Let’s read our CSV files into R using the function read.csv as follows:

anole.data<-read.csv(file="anole.data.csv",row.names=1,
header=TRUE)

ecomorph<-read.csv(file="ecomorph.csv",row.names=1,
header=TRUE,stringsAsFactors=TRUE)

Calls to read.csv, like those we’ve executed here, generate data frames in R.42
The argument row.names=1 tells R to look for row names in the first column of our data

file, while header=TRUE tells R that the first row of our data file contains the column or
variable names.

An astute reader might also notice that in our second read.csv call, we were careful to
set the argument stringsAsFactors to TRUE. This is to ensure that the discrete character
trait contained in this file was read into R as a multilevel factor rather than as a simple set of
character strings.43

Although we find the CSV format to be a very reliable way to store tabular data, one compli-
cation is that in South America and in some parts of continental Europe, the comma (,) is used

41 CSV stands for comma-separated values.
42A data frame looks like amatrix, but it’s technically a list arranged in a tabular way such that all the columns

of the data frame are vectors with the same number of elements. We’ll encounter and work with a lot of data
frames in this book!

43Prior to R version 4.0,stringsAsFactors defaulted toTRUE, and this would not have been necessary.

Introduction to phylogenetics in R 25

as a decimal separator in place of the period (.). As such, it would be impractical to demar-
cate columns in tabular data using commas. Frequently, then, in these places, the columns of a
CSV-formatted text file will have been demarcated using the semicolon character (;).

This is no problem at all for R as we can modify the separator and decimal characters
using the read.csv function arguments sep=";" and dec=",", respectively, or simply
by substituting the function read.csv2 (which uses these arguments by default).

As an aside, one phenomenon that we have often observed in teaching R phylogenet-
ics is that for many users, their spreadsheet software will be set to open CSV format files
automatically by default. As a consequence, students often mistakenly open CSV files in their
spreadsheet program and then proceed to resave them in a different format instead of as a
genuine CSV file. This should obviously be avoided.44

Now that we’ve read our data into R, let’s proceed and use the function head to inspect the
first few rows of the data frames that we’ve created and then dim to review the dimensions45
of our two data frames.

head(anole.data)

SVL HL HLL FLL LAM
ahli 4.03913 2.88266 3.96202 3.34498 2.86620
alayoni 3.81570 2.70212 3.27950 2.80245 3.07527
alfaroi 3.52665 2.37816 3.30542 2.48366 2.73387
aliniger 4.03656 2.89884 3.64623 3.15908 3.15677
allisoni 4.37539 3.35896 3.96069 3.44620 3.23921
allogus 4.04014 2.86103 3.94018 3.33829 2.80827
TL
ahli 4.50400
alayoni 4.07265
alfaroi 4.41601
aliniger 4.54173
allisoni 5.05911
allogus 4.52189

dim(anole.data)

[1] 100 6

head(ecomorph)

ecomorph
ahli TG
allogus TG
rubribarbus TG
imias TG
sagrei TG
bremeri TG

44Some spreadsheet software files can be read directly by R, but this is less reliable and as such we don’t really
recommend it.

45That is, the number of rows and columns, respectively.

26 Chapter 1

—
—
—

dim(ecomorph)

[1] 82 1

Doing this, we can see that our first data frame (anole.data) has 100 rows and contains
six different numeric variables, with the names SVL (snout-to-vent length, incidentally—on a
log scale), HL (head length), HLL (hindlimb length), and so on. Our data frame ecomorph,
by contrast, has only 82 rows and contains one factor variable (also denominated ecomorph).
The row names of both data frames contain the taxon labels: in this case, the specific epithets
of species of lizard in the genus Anolis, just as in our tree.

1.9.2 Comparing a character data set and tree

Although it seems likely that the first data set has the same set of species as our 100-taxonAnolis
tree from earlier in the exercise, we can (and should!) verify this.

Let’s do so using the geiger function name.check.46

library(geiger)
name.check(anolis.tree,anole.data)

[1] "OK"

This result ("OK") tells us that the taxon names in the phylogeny exactly match those of the
data frame.

name.check is useful not only for identifying incongruencies between the phylogeny and
data but also instances in which a taxon label may have been misspelled, mistranscribed, or
misread by R in either our data set or the tree.

In the case of ecomorph, however, there are obviously fewer observations in the data than
in the tree. That suggests that there are at least somedifferences between the data and phylogeny.
Let’s use name.check again to see how they differ.

chk<-name.check(anolis.tree,ecomorph)
chk

$tree_not_data
[1] "argenteolus" "argillaceus"
[3] "barbatus" "barbouri"
[5] "bartschi" "centralis"
[7] "chamaeleonides" "christophei"
[9] "etheridgei" "eugenegrahami"
[11] "fowleri" "guamuhaya"
[13] "lucius" "monticola"
[15] "porcus" "pumilis"
[17] "reconditus" "vermiculatus"

46We could have also used the geiger function comparative.data, which serves some of the same
purposes but works a little differently than name.check.

Introduction to phylogenetics in R 27

##
$data_not_tree
character(0)

Now we can see that when there are differences between our data and our tree,
name.check returns a handy list indicating which taxa are in the tree but not the data, as
well as vice versa.

For examples with larger discrepancies between data and tree, we can also print an abbre-
viated summary of our result as follows:

summary(chk)

18 taxa are present in the tree but not the data:
argenteolus,
argillaceus,
barbatus,
barbouri,
bartschi,
centralis,
....
##
To see complete list of mis-matched taxa, print object.

1.9.3 Pruning a tree tomatch your data set, and vice versa

Now, precisely as we learned earlier in the chapter, let’s go ahead and prune47 all the taxa that
are present in our phylogeny, but not in our ecomorph data frame. This can be done using
ape’s drop.tip function as follows:

ecomorph.tree<-drop.tip(anolis.tree,chk$tree_not_data)
ecomorph.tree

##
Phylogenetic tree with 82 tips and 81 internal nodes.
##
Tip labels:
ahli, allogus, rubribarbus, imias, sagrei, ...
##
Rooted; includes branch lengths.

We can similarly subsample our data to include only those taxa present in a phylogeny.
Let’s do it for our data frame anole.data so that it contains only data for the species in

our new, pruned phylogeny that we’ve denominated ecomorph.tree.48

47That is, remove from the phylogeny.
48This trick subsamples the data frame to include only rows whose names match ecomorph.

tree$tip.label—the taxon labels of our tree. One odd behavior of R is that if our data frame has
only one column, this operation will return a vector rather than a data frame with one column! This can

28 Chapter 1

—
—
—

ecomorph.data<-anole.data[ecomorph.tree$tip.label,]
head(ecomorph.data)

SVL HL HLL FLL
ahli 4.03913 2.88266 3.96202 3.34498
allogus 4.04014 2.86103 3.94018 3.33829
rubribarbus 4.07847 2.89425 3.96135 3.35641
imias 4.09969 2.85293 3.98565 3.41402
sagrei 4.06716 2.83515 3.85786 3.24267
bremeri 4.11337 2.86044 3.90039 3.30585
LAM TL
ahli 2.86620 4.50400
allogus 2.80827 4.52189
rubribarbus 2.86751 4.56108
imias 2.94375 4.65242
sagrei 2.91872 4.77603
bremeri 2.97009 4.72996

Our new trait data frame (ecomorph.data) should now match our pruned phylogeny
exactly—but let’s make sure, once again using the function name.check:

name.check(ecomorph.tree,ecomorph.data)

[1] "OK"

This result ("OK") tells us that name.check now thinks that our tree and data match
exactly!

1.10 A simple comparative analysis: Phylogenetic principal
components analysis

Now that ourAnolis lizard tree and data sets match, let’s go ahead and do a very simple analysis
called a “phylogenetic principal components analysis” or phylogenetic PCA (Revell 2009) using
our morphological character data.

A phylogenetic PCA is exactly the same as a regular PCA except that we’re going to take the
nonindependence of species into account when we compute the covariances (or correlations)
between different traits.

Whereas in regular (nonphylogenetic) PCA, principal components are orthogonal,49 in
phylogenetic PCA, components are evolutionarily orthogonal, meaning that the evolution-
ary correlations50 between principal components are all zero. Likewise, whereas principal
components describe successive orthogonal dimensions of maximum variance in the original
multidimensional trait space, phylogenetic principal components correspond to successive
evolutionarily orthogonal dimensions of maximum evolutionary variance.

be circumvented by using the argument drop=FALSE as follows: ecomorph.data <- anole.data
[ecomorph.tree$tip.label„drop=FALSE]. Isn’t that weird?

49That is to say, uncorrelated.
50The evolutionary correlation will be discussed in much greater detail in chapters 2 and 3.

Introduction to phylogenetics in R 29

The interpretation of the first phylogenetic principal component is thus that it is the axis
of greatest, multivariate evolution51 of our traits. Subsequent axes are successive orthogonal
dimensions of maximum evolution.

To undertake a phylogenetic principal component analysis in R, we can use the function
phyl.pca in the phytools package as follows.52

ecomorph.pca<-phyl.pca(ecomorph.tree,ecomorph.data)
ecomorph.pca

Phylogenetic pca
Standard deviations:
PC1 PC2 PC3 PC4
0.81375257 0.22561158 0.12277034 0.10577996
PC5 PC6
0.04926765 0.03692593
Loads:
PC1 PC2 PC3
SVL -0.9712073 0.16073225 0.01979472
HL -0.9644970 0.16959751 -0.01199377
HLL -0.9814007 -0.02674374 0.10309671
FLL -0.9712156 0.17590524 0.10692548
LAM -0.7809539 0.37434869 -0.47406978
TL -0.9013706 -0.42546037 -0.07612345
PC4 PC5 PC6
SVL 0.14785037 -0.06199108 -0.069477241
HL 0.17994467 0.08065005 0.044203206
HLL -0.13799438 0.06907952 -0.041160294
FLL -0.09104262 -0.06097041 0.048562708
LAM -0.15858923 0.00217263 -0.008754817
TL 0.01713199 -0.01755709 0.010858471

par(mar=c(4.1,4.1,2.1,1.1),las=1) ## set margins
plot(ecomorph.pca,main="")

From this printout, we can see that phylogenetic PC1 loads strongly, and negatively, for all of
the traits in our data set. This principal component represents evolutionary variation in overall
size. Remember that the sign of each principal component is arbitrary, so let’s flip it. This is easy
enough to do in R as follows.

ecomorph.pca$Evec[,1]<--ecomorph.pca$Evec[,1]
ecomorph.pca$L[,1]<--ecomorph.pca$L[,1]
ecomorph.pca$S<-scores(ecomorph.pca,

newdata=ecomorph.data)

51Under our chosen evolutionary model: more in chapters 4 and 5.
52The plotting argument las=1, which we can also often set using par(las=1) and we use in many

places throughout the book, merely sets the axis tick labels to plot horizontally rather than parallel to the axis
(las=0, the default in R) or vertically (las=2).

30 Chapter 1
(continued...)

—
—
—

Index

.PlotPhyloEnv R structure, 394

Akaike Information Criterion (AIC), 87, 103; Akaike
weights from, 103

algorithms for drawing trees, 401
allometry, 73–74
ancestral area reconstruction, 358
ancestral state reconstruction, 221–254; accuracy of,

230–232; joint methods for, 223, 238; plotting of, 226
Anoles, 116; convergent evolution of, 122; ecomorphs

of, 117, 122; lamellae of, 116
ape (R package), 2, 5, 7, 13
apply functions, 19, 54; sapply and, 19
Attini ants, 359

Bayesian statistics, 141–142; burnin for, 141; posterior
sample for, 142; prior probability of, 138

bayou (R package), 136
binary state speciation and extinction (BiSSE) model,

310, 315; Bayesian analysis of, 319; Bayesian
prior distributions for, 319; maximum likelihood
estimation of, 316–318; starting values for, 315

BioGeoBEARS (R package), 359; input file for, 360
birth-death model, 47; Bayesian estimation of, 277,

289; maximum likelihood estimation of, 266, 272;
time-varying, 281–299

Blomberg’s K, 90
Brownian motion, 75–88; ancestral states for, 83, 222;

diffusion parameter of, 76–78, 108; log transforma-
tion and, 88; maximum likelihood estimation of, 83,
87; multiple rate, 108–112; multivariate, 122; noncen-
sored model for, 118; on a phylogenetic tree, 79–80;
properties of, 81; trend model, for, 233; variance
under, 79

caper (R package), 64
Centrarchidae, 124
Cetacea, 285
circular (fan) tree, 16
coda (R package), 212, 293
Comprehensive R Archive Network (CRAN), 3, 4, 5
congruence class, 282
Cordylidae, 130
corHMM (R package), 195
correlated residual error due to phylogeny, 60
corStruct class, 64
CSV file format, 25
customizing phylogenetic plots, 393

darters, 258
DDD (R package), 300
devtools (R package), 6, 136
dewlaps, 178
discrete characters, 145; correlated evolution of, 167;
dependent model of, 167; evolutionary heterogeneity
and, 177–178; evolutionary regimes of, 178

Dispersal-Extinction-Cladogenesis (DEC) model, 358–
370; jump speciation and, 365; model comparison for,
368

diversitree (R package), 273–278, 284, 310
diversity-dependent diversification, 300; maximum
likelihood estimation of, 302–305

drawing a slanted phylogram, 403

early burst model, 98; testing for, 101–102
eels, 222
evolutionary correlation, evolutionary covariance, 35,
51, 54, 124, 128; variation in, 125

evolutionary heterogeneity, 129

421

evolutionary rate, 83, 124
extinction, 255, 263; fraction, 329
extracting a clade from a tree, 227
eye size evolution, 59–74

fan tree, 16
Felsenstein’s worst-case scenario, 35–38
flatworms, 205
functions (in R), 4, 9, 402

gamma statistic, 256, 260
geiger (R package), 2, 3, 5
generalized least squares, phylogenetic. See phylogenetic

generalized least squares (PGLS)
genome size, 85–86
geological color scale, 386
GitHub, 6
graphical elements, adding to a tree, 386–393
grunters (fishes), 321
grunts (fishes), 311, 328

Hessian matrix, 184
hidden-rates model, 185–201
hidden-state speciation and extinction (HiSSE) model,

328–344; CID model for, 332; CID-2 model for, 333;
design matrix for, 330; full model for, 338; MiSSE
model and, 340; plotting of, 335

high-probability density interval (HPD), 212, 278
hisse (R package), 329
home range evolution, 38–42

ignoring phylogeny, effects of, 54–58
incomplete sampling of lineages, 261
indexing with negative numbers, 115

likelihood ratio test, 95, 161
limb loss, 187
lineage-through-time (LTT) plot, 256
linear models, 38–41
Liolaemidae, 108, 216
lists (in R), 11–12
lmtest (R package), 161

marginal ancestral state reconstruction, 198
mean nearest taxon phylogenetic distance (MNTD), 378
mean pairwise phylogenetic distance between species in

a community (MPD), 378
meristic trait, 201
Mkmodel, 145; AIC and Akaike weights for, 154;

all-rates-different (ARD) model for, 155, 236; ances-
tral state reconstruction of, 235; design matrix for,
157; directional model for, 157; equal-rates (ER)
model for, 152, 236; equilibrium distribution of, 204;
expected changes for, 153; likelihood, of, 149; like-
lihood ratio test for, 161; ordered model, for, 156;
Qmatrix of, 146; rate parameters of, 153; simulations
for, 147; symmetric transition (SYM) model of, 154,
236; waiting times under, 146

Monte-Carlo Constant Rates (MCCR) test, 261–262
morphospace, 234
multiPhylo object, 24
multiSimmap object, 247
multi-state speciation and extinction (MuSSE) model,
321; model selection for, 327; ordered model of,
325

mutation rate, 83

nested models, 161
Newick format, 7
nlme (R package), 64
non-ultrametric trees, 65, 205

optimization, 87, 285
ordered trait, 201
Ornstein-Uhlenbeck model, 100, 113; multi-optimum,
for, 112; testing of, 101–102

OUwie (R package), 115

packages (in R), 4, 5
Pagel’s λ, 69, 94–98
parental care, evolution of, 168
parsimony, 251
patristic distance matrix from a tree, 378
phangorn (R package), 5
Phrynosomatidae, 108
phylo class, 11–15
phylogenetically independent contrasts (PICs), 35–58,
60

Phylogenetic ANOVA, 70–74
phylogenetic community ecology, 2, 370–382
phylogenetic correlation, 61–65, 67–69, 79–82
phylogenetic diversity, 372–382; community dendro-
gram of, 382; comparing communities with, 381; null
distribution of, 374, 376

Phylogenetic generalized ANCOVA, 70–74
phylogenetic generalized least squares (PGLS), 59,
61–67

phylogenetic nonindependence, 36–38
phylogenetic PCA, 29, 115
phylogenetic signal, 90–97
phylogenetic trees, plotting of, 384
phylomorphospace, 31, 128
phytools (R package), 2, 3, 5, 13
picante (R package), 370
piscivory, 124–129
plants of the San Juan islands, 370
plot axes, 386
plot margins, 385
pollen grain evolution, 195
polymorphic traits, 201
polytomies, 261
postorder traversal of a tree, 404
pulled diversification rate, 282
pull of the present, 263
pure-birth model, 256, 268
P-value calculation, 93

422 Index

—
—
—

Quantitative-state speciation and extinction (QuaSSE
model), 344; maximum likelihood estimation of, 350;
model selection for, 353

random number generation, 46–47
rColorBrewer (R package), 210
regimes, 136
regression: ordinary least squares (OLS), 39–42, 60;

without intercept for PICS, 44
Restricted Maximum Likelihood (REML), 69
reversible-jump MCMC, 136
R GUI, 4
root prior probability distribution, 197
row names, 25
R package dependencies, 7
Rphylip (R package), 211

S3 methods, 7, 11
sampling fraction, 266–268, 269–272
Scale insects, 346
simmap object, 114
simulating Brownian motion, 47–48
simulating phylogenetic trees, 47
speciation, 255, 263

species turnover, 329
standard R graphical device, 384
stochastic character mapping, 246
strip chart, 185
subplots, 10
Syngnathidae, 340

temporal shifts in evolution, 130
threshold model, 209; correlated evolution under, 211;
discrete and continuous traits for, 215; liability of, 210

traitgrams, 407
transient model, 203
tree files: reading from, 15; writing to, 16
tree pruning, 16–20; interactive, 23–24
treeSim (R package), 228
type I error, 51

unique evolutionary events, 173–177
using plot=FALSE for customizing figures, 399

variation in diversification rates across clades, 305
viviparity, 217

while loop, 47

Index 423

