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Chapter 1

ACCUMULATION

This chapter will follow the development of the most intuitive of the big
ideas of calculus, that of accumulation. We begin with the discovery of
formulas for areas and volumes by theGreek philosophers Antiphon, Dem-
ocritus, Euclid, Archimedes, and Pappus. This leads to the development of
formulas for volumes of revolution by al-Khwarizmi, Kepler, and a host of
seventeenth-century philosophers. We then move back to the fourteenth
century to the application of accumulation for finding distance when the
velocity is known, sketching the contributions of the Mertonian schol-
ars and Nicole Oresme. Back in the seventeenth century, we will share in
the amazement that came with the discovery of objects of infinite length
yet finite volume, we will see how to turn arc lengths into areas, and we
will conclude with the uses that Galileo andNewtonmade of accumulation
to solve the greatest scientific mystery of the age: how it is possible for the
earth to travel through space at incredible speeds without our experiencing
the least sense of its motion.

1.1
Archimedes and the Volume of the Sphere

In 1906, Johan Ludwig Heiberg discovered a previously unknown work
of Archimedes, The Method of Mechanical Theorems, within a thirteenth-
century prayer book. The Archimedean text, which had been copied from
an earlier manuscript sometime in the tenth century, had been scraped off
the vellum pages so that they could be reused. Fortunately, much of the
original text was still decipherable. What was readable was published in
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the following decade. In 1998, an anonymous collector purchased the text
for two million dollars and handed it over to the Walters Art Museum in
Baltimore, which has since supervised its preservation and restoration as
well as its decipherment using modern scientific tools.

Archimedes wrote the Method, as this book has come to be known, for
his contemporary and colleague Eratosthenes. In it, he explained his meth-
ods for computing areas, volumes, and moments. This text lays out the
core ideas of integral calculus, including the use of infinitesimals, a tech-
nique that Archimedes hid when he wrote his formal proofs. A 2003NOVA
program about this manuscript claimed that

this is a book that could have changed the history of the world. . . .
If his secrets had not been hidden for so long, the world today could
be a very different place. . . .We could have been on Mars today. We
could have accomplished all of the things that people are predicting
for a century from now. (NOVA, 2003)

The implication is that if the world had not lost Archimedes’Method for
those centuries, calculus would have been developed long before. That is
nonsense. As we shall see, Archimedes’ other works were perfectly suffi-
cient to lead the way toward the development of calculus. The delay was
not caused by an incomplete understanding of Archimedes’ methods but
by the need to develop other mathematical tools. In particular, scholars
needed the modern symbolic language of algebra and its application to
curves before they could make substantial progress toward calculus as we
know it. The development of this language and its application to analytic
geometry would not be accomplished until the early seventeenth century.
Even then, it took several decades to transform the “method of exhaus-
tion” into algebraic techniques for computing areas and volumes. The work
of Eudoxus, Euclid, and Archimedes was essential in the development of
calculus, but not all of it was necessary, and it was far from sufficient.

Archimedes of Syracuse (circa 287–212 bce) was the great master of
areas and volumes. Although we cannot be certain of the year of his birth,
the year of his death is all too sure. Sicily had allied with Carthage dur-
ing the Second Punic War (218–201 bce), the war that saw Hannibal cross
the Alps with his elephants to attack Rome. The Roman general Marcellus
laid a two-year siege on Syracuse, then the capital of Sicily. Archimedes
was a master engineer who helped defend the city with weapons he
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Figure 1.1. Sphere with the smallest cylinder that
contains it.

invented: grappling hooks, catapults, and perhaps even mirrors to con-
centrate the sun’s rays to burn Roman ships. Archimedes died during the
sacking of the city when the Romans finally broke through the defenses.
There is a story, possibly apocryphal, that General Marcellus tried to bring
him to safety, but Archimedes was too engrossed in his mathematical
calculations to follow.

Of his many accomplishments, Archimedes considered his greatest to
be the formula for spherical volume—namely that the volume of a sphere is
equal to two-thirds of the volume of the smallest cylinder that contains the
sphere (see Figure 1.1). Archimedes valued this discovery so highly that he
had a sphere embedded in a cylinder and the ratio 2:3 carved as his funeral
monument, an object that still existed over a hundred years later when
Cicero visited Syracuse.1 To see why this gives us the usual formula for
the volume of a sphere, let r be its radius. The smallest cylinder containing
this sphere has a circular base of radius r and height 2r, so its volume is

volume of cylinder = π(Radius)2(Height)=πr2 · 2r = 2πr3.

Two-thirds of this is (4/3)πr3, the volume of a sphere.
As Archimedes explained to Eratosthenes (with some elaboration onmy

part), he thought of the sphere as formed by rotating a circle around its
diameter and imagined its volume as composed of thin slices perpendicular
to the diameter. He began with a circle of diameter AB (Figure 1.2). Let X
denote a point on this diameter and consider the perpendicular from X to
the point C on the circle. If we rotate the area within the circle around the
diameter AB, the thin slice perpendicular to the diameter at X is a disc of
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A

B

X C

Figure 1.2. Circle with diameter AB.

area πXC2 and infinitesimal thickness �X. We represent the sum of the
volumes of all of these discs as

Volume of Sphere =
∑

πXC2
�X.

Now Archimedes relied on some simple geometry. By the Pythagorean
theorem, XC2=AC2−AX2. Because the angle ∠ACB is a right angle, tri-
angles AXC and ACB are similar. We obtain

AX
AC
= AC

AB
, or AC2=AX ·AB.

Putting these together yields

Volume of Sphere=
∑

πXC2
�X

=
∑

πAC2
�X−

∑
πAX2

�X

=
∑

πAX ·AB�X−
∑

πAX2
�X.

The second summation is the volume of a cone. If we take our same
diameter AB and at point X go out to a point D for which AX=AD,
we get an isosceles right triangle (Figure 1.3). When we rotate that trian-
gle around the axis AB, we get a cone of height AB with a base of radius
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X D

A

B
Figure 1.3. Circle with isosceles right
triangle.

AB. Its volume is equal to 1
3πAB

3 or, as Archimedes would have under-
stood it, as 4

3rds of the volume of the smallest cylinder that contains the
sphere, the cylinder of height AB and radius 1

2AB. He had now established
that

Volume of Sphere+ 4
3
Volume of Cylinder=

∑
πAX ·AB�X.

The summation on the right-hand side is problematic as it stands.
Archimedes neatly finished his derivation by considering moments. One
use of moments is to determine balance. The moment is the product of
mass and the distance from the pivot. Two objects of different masses on a
seesaw can be in balance if their moments are equal, or, equivalently, if the
ratio of their masses is the reciprocal of the ratio of their distances from the
pivot (Figure 1.4). Archimedes was working with volumes, not masses, but
if the densities are the same, then the ratio of the volumes equals the ratio
of the masses. We take our two volumes on the left side of the equality and
multiply them by AB, effectively placing them at distance AB to the left of
our pivot (Figure 1.5).

Multiplying the right side of our equality by AB yields

∑
πAX ·AB2 �X.

NowπAB2�X is the volume of a disc of radiusAB and thickness�X. Mul-
tiplying it by AX corresponds to the moment of such a disc at distance AX
from the pivot. Adding up the moments of these discs gives us the moment
of a fat cylinder of radius AB that rests along the balance beam from the
pivot out to distance AB (Figure 1.5). Because this is a cylinder of constant
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A B

ba

Figure 1.4. WeightA at distance awill balance weight B at distance b ifAa=Bb or,
equivalently, if A/B= b/a.

Figure 1.5. The sphere and the cone balance the fat cylinder.

radius, the total moment of all of these discs is the same as the moment
were the fat cylinder to be placed at distance 1

2AB from the pivot. The radius
of the fat cylinder is AB, twice the radius of the smallest cylinder that con-
tains the sphere, so the volume of the fat cylinder is four times the volume
of the cylinder that contains the sphere.

Now we can use the fact that the ratio of the volumes equals the ratio of
the masses equals the reciprocal of the ratio of the distances from the pivot,

Volume of Sphere+ 4
3Volume of Cylinder

4×Volume of Cylinder
= 1

2
,

which gives us the result we seek,

Volume of Sphere= 2
3
Volume of Cylinder.
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This argument was good enough to convince a colleague. It did not con-
stitute a publishable proof. Archimedes would go on to supply such a proof
inOn the Sphere and Cylinder, but rather than trying to explain the intrica-
cies of this technically challenging proof, I will illustrate the essence of the
issues Archimedes faced in amuch simpler example, that of demonstrating
the formula for the area of a circle.

1.2
The Area of the Circle and the Archimedean Principle

Archimedes built on a technique that was much older. He credited the
idea of using infinitely thin slices to find areas and volumes to Eudoxus
of Cnidus who lived in the fourth century bce on the southwest coast of
what is today Turkey. Eudoxus had used this method of slicing to discover
that the volume of a pyramid or cone is one-third the area of the base times
the height. Even before Eudoxus, Antiphon of Athens (fifth century bce)
is credited with discovering that the area of a circle is equal to the area of a
triangle with height equal to the radius of the circle and base given by the
circumference of the circle.

In modern notation, we define π as the ratio of the circumference of a
circle to its diameter,2 so the circumference is π times the diameter, or 2πr.
The area of the triangle is half the height times the base, which is

1
2
r · 2πr=πr2,

the familiar formula for the area of a circle. The formula emerges if we con-
sider building a circle out of very thin triangles (see Figure 1.6). The trian-
gles have heights that are close to the radius of the circle, and these heights
approach the radius as the triangles get thinner. The sum of the bases of the
triangles is close to the circumference of the circle, and again gets closer as
the triangles get thinner. The total area of all of the triangles is the sum of
half the base times the height, which is equal to half the sum of the bases
times the height. This approaches half the circumference (the sum of the
bases) times the radius.
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Figure 1.6. A circle approximated by thin triangles.

What I now give is a slight paraphrasing and elaboration of Archimedes
proof of the formula for the area of a circle. It relies on Proposition 1 from
Book X of Euclid’s Elements.

Two unequal magnitudes being set out, if from the greater there is
subtracted a magnitude greater than its half, and from that which is
left a magnitude greater than its half, and if this process is repeated
continually, then there will be left somemagnitude less than the lesser
magnitude set out. (Euclid, 1956, vol. 3, p. 14)

What this tells us is that if we have two positive quantities, leave one fixed
and keep removing half from the other, then eventually (in a finite number
of steps) the amount that remains of the quantity that has been successively
halved will be less than the amount left unchanged. Today this is known as
the Archimedean Principle, even though it goes back at least to Euclid. It
may seem so obvious as not to be worthmentioning, but it should be noted
that it explicitly rules out the possibility of an infinitesimal, a quantity that
is larger than zero but smaller than any positive real number. If we allowed
the fixed quantity to be an infinitesimal and the other to be a positive real
number, then no matter how many times we take half of the real number,
it will always be larger than the infinitesimal.

Theorem 1.1 (Archimedes, fromMeasurement of a Circle). The area
of a circle is equal to the area of a right triangle whose height is the radius of
the circle and whose length is the circumference.

Proof. Following Archimedes’ proof, we will demonstrate that the area
of the circle is exactly equal to the area of the triangle by showing that it is
neither smaller than the area of the triangle nor larger than the area of the
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Figure 1.7. A circle with an inscribed octagon. The
dashed line shows the height of one of the triangles.

Figure 1.8. Comparing the area between
the circle and the first polygon to the area
between the circle and the polygon with
twice as many sides.

triangle. We first assume that A, the area of the circle, is strictly larger than
T, the area of the triangle, i.e., that A−T> 0.

We consider an inscribed polygon, such as the octagon shown in
Figure 1.7. We let P denote the area of the polygon. Because this polygon
is inscribed in the circle, its area is less than that of the circle, A− P> 0.
The area of the polygon is the sum of the areas of the triangles. Because
each triangle has height less than the radius of the circle and the sum of
the lengths of the bases of the triangles is less than the circumference of
the circle, the area of the polygon is also less than the area of the triangle,
P<T.

We now form a new polygon with twice as many sides by inserting a
vertex on the circle exactly halfway between each pair of existing vertices.
We label its area P′. I claim thatA− P′ is less than half ofA− P. To see why
this is so, consider Figure 1.8. It is visually evident that the area that is filled
by adding extra sides accounts for more than half of the area between the
circle and the original polygon. We continue to double the number of sides
until we get an inscribed polygon of area P∗ for whichA− P∗<A−T. The
Archimedean principle promises us that this will happen eventually. When
it does, then P∗>T.

But the polygon of area P∗ is still an inscribed polygon, so P∗<T. Our
assumption that the area of the circle is larger than T cannot be correct.

What if the area of the circle is strictly less than T? In that case, T−A>
0, and we let P be the area of a circumscribed polygon (see Figure 1.9). The
height of each triangle thatmakes up our polygon is now equal to the radius,
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Figure 1.9. A circle with a circumscribed octagon.
The dashed line shows the height of one of the
triangles.

A

D
B

C

Figure 1.10. Comparing the area between
the circle and a circumscribed polygon to
the area between the circle and a circum-
scribed polygon with twice as many sides.

but the perimeter of the polygon is strictly greater than the circumference
of the circle, so P>T.

Once again we double the number of sides of the polygon by insert-
ing a new vertex exactly halfway between each existing pair of vertices,
and we let P′ denote the area of the new polygon. Figure 1.10 shows how
much of the area P−A is removed when we double the number of sides.
Because BC=BD, it follows that AB is more than half of AC. Compar-
ing triangle ACD and BCD, they both have the same height (perpendicular
distance from D to the line through AC) and the base of ACD is more
than twice the base of BCD, it follows that doubling the number of sides
takes away more than half of the area between the polygon and the circle,
P′ −A< 1

2(P−A).
We repeat this until P∗ −A<T−A. This implies that P∗<T, contra-

dicting the fact that every circumscribed polygon has an area greater than
T. Because A can be neither strictly greater than T nor less than T, it must
be exactly equal to T.

The proof we have just seen may seem cumbersome and pedantic. Most
people would be convinced by Figure 1.6. The problem is that such an
argument relies on accepting “infinitely many” and “infinitely small” as
meaningful quantities. Hellenistic philosophers were willing to use these
as useful fictions that could help them discover mathematical formulas.
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They were not willing to embrace them as sufficient to establish the validity
of a mathematical result.

In the seventeenth century, philosophers engaged in heated debates
over whether it was legitimate to derive results from nothing more than
an analysis of infinitely thin slices. One sees in the work of both New-
ton and Leibniz a recognition of the power of arguments that rest on the
use of infinitesimals, combined with a reluctance to abandon the rigor that
Archimedes insisted upon. This reluctancewould dissipate under the influ-
ence of the Bernoullis and Euler in the eighteenth century, but the problems
this engendered would come roaring back in the early nineteenth in the
form of apparent contradictions and paradoxes. In chapter 4, we will see
how Cauchy recast the arguments of Archimedes and his Hellenistic suc-
cessors into the precise language of limits in order to establish the modern
foundations of calculus.

1.3
Islamic Contributions

In the centuries following Archimedes, mathematics declined as the
Roman Empire grew. There never were many people who could read and
understand theworks of Euclid orArchimedes, much less build upon them.
The continuation of their work required an unbroken chain of teachers
and students steeped in these methods. For several centuries, Alexandria
remained the one bright center of learning in the Eastern Mediterranean,
but even there the number of teachers gradually declined.

One of the final flashes of mathematical brilliance occurred in the early
fourth century ce with Pappus of Alexandria (circa 290–350 ce), the last
great geometer of the Hellenistic world. His Synagoge or Collection was
written as a commentary on and companion to the great Greek geomet-
ric texts that still existed in his time. In many cases, the original texts have
since disappeared. Our knowledge of what they contained, even the fact of
their existence, rests solely on what Pappus wrote about them. One of these
lost books is Plane Loci byApollonius of Perga (circa 262–190 bce). Pappus
preserved the statements of Apollonius’s theorems, but not the proofs. As
we shall see, these tantalizing hints of Hellenistic accomplishments would
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provide direct inspiration for Fermat, Descartes, and their contemporaries
in the seventeenth century.

In the Greco-Roman world, virtually all mathematical work ceased in
the late fifth century when the Musaeum of Alexandria—the Temple of the
Muses—and its associated library and schools were suppressed because of
their pagan associations.3 All was not lost, however. The rise of the Abbasid
empire in the eighth century would see renewed interest and significant
new developments in mathematics.

Harun al-Rashid (763 or 766–809 ce) was the fifth Abbasid caliph or
ruler. Stories of his exploits figure prominently in the classic tales of theOne
Thousand and One Nights. The Abbasids were descendants of the Prophet
Muhammad’s youngest uncle, and they took control of most of the Islamic
world in 750. In 762 they moved their capital from Damascus to Bagh-
dad. Among al-Rashid’s supreme accomplishments was the founding of
the Bayt al-Hikma or House of Wisdom. It was a center for the study of
mathematics, astronomy, medicine, and chemistry. Its library collected and
translated important scientific texts gathered from the Hellenistic Mediter-
ranean, Persia, and India, and it ushered in a great flowering of Islamic4
science that would last until theMongol invasions of the thirteenth century.

Thabit ibnQurra (836–901) was one of the scholars of theHouse ofWis-
dom who built on the work of both Greek and Islamic scholars. One of
his accomplishments was the rediscovery of the formula for the volume of
a paraboloid, the solid formed when a parabola is rotated about its main
axis. Although this result had been known to Archimedes, there is every
indication that ibn Qurra discovered it anew.

Cast into modern language, the derivation of this formula begins with
recognition that a parabola is characterized as a curve for which the dis-
tance from the major axis is proportional to the square root of the distance
along the major axis from the vertex. In modern algebraic notation, if the
vertex is located at (0, 0) and x is the distance from the vertex, then y,
the distance from the axis, can be represented by y= a

√
x (Figure 1.11).

The cross-sectional area of the paraboloid at distance x is π
(
a
√
x
)2=

πa2x. To approximate the volume over 0≤ x≤ b, we slice the paraboloid
into n discs of thickness b/n. At x= ib/n, for each 0≤ i< n, the volume of
the disc is

πa2
ib
n
× b

n
= πa

2b2

n2
i.
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x

a√x

Figure 1.11. Cross-section of a paraboloid.

We now add the volumes of the individual discs,5

πa2b2

n2
(0+ 1+ 2+ · · ·+ (n− 1))= πa

2b2

n2
× n2− n

2
= πa

2b2

2
− πa

2b2

2n
.

As we take larger values of n (and thinner discs), the second term can be
made as small as we wish, guaranteeing that the actual value can be neither
smaller nor larger than πa2b2/2.

Ibn al-Haytham (965–1039) demonstrated the power of this approach
when he showed how to calculate the volume of the solid obtained
by rotating this area about a line perpendicular to the axis of the
parabola (Figure 1.12). If the parabolic curve is represented by
y= b
√
x/a, where 0≤ y≤ b, then the radius of the disc at height ib/n is

given by

a− ay2

b2
= a− a(ib/n)2

b2
,

and the volume of the disc at height y= ib/n is

(1.1) π

(
a− a(ib/n)2

b2

)2
× b

n
=πa2b

(
1
n
− 2i2

n3
+ i4

n5

)
.
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y
b

i b
n

2 aa
x

a i2

n2

y = b x
a

Figure 1.12. A vertical cross-section of al-Haytham’s solid of revolution showing
the horizontal slice.

It only remains to sum this expression over i from 1 to n− 1. We need
closed formulas for 12+ 22+ 32+ · · ·+ (n− 1)2 and 14+ 24+ 34+ · · ·+
(n− 1)4.

In his text On Spirals, Archimedes derived the formula for the sum of
squares by showing that if

S(n)= (n+ 1)n2+ (1+ 2+ · · ·+ n)= (n+ 1)n2+ n(n+ 1)
2

,

then

S(n+ 1)− S(n)= 3(n+ 1)2.

Since S(1)= 3, it follows that

S(n)= 3
(
12+ 22+ · · ·+ n2

)
,

or, equivalently,

12+ 22+ · · ·+ n2= (n+ 1)n2

3
+ n(n+ 1)

6
.

AbuBakr al-Karaji (953–c. 1029) had discovered the formula for the sum
of cubes,
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13+ 23+ · · ·+ n3= (1+ 2+ · · ·+ n)2= n2(n+ 1)2

4
.

Once he had guessed the formula, it was easy to verify by observing that the
right side is 1 when n= 1, and the right side increases by (n+ 1)3 when n
is replaced by n+ 1.

Beyond the cubes, the problem gets harder because the formulas are not
easy to guess. The genius of al-Haytham was to show how to use a known
formula for the sum of the first n kth powers to find the formula for the
sum of the first n k+ 1st powers. He did this using specific sums, but his
approach translates easily into a general statement. Seeking a formula for
the sum of the first n k+ 1st powers, we begin with

(n+ 1)
(
1k+ 2k+ · · ·+ nk

)
.

We distribute n+ 1 through the sum, breaking it into two pieces so that
(n+ 1)ik becomes

(i+ (n+ 1− i)) ik= ik+1+ (n+ 1− i)ik.

It follows that

(n+ 1)
(
1k+ 2k+ · · ·+ nk

)
=
(
1k+1+ 2k+1+ · · ·+ nk+1

)
(1.2)

+ n · 1k+ (n− 1)2k+ · · ·+ 1 · nk

=
(
1k+1+ 2k+1+ · · ·+ nk+1

)

+
(
1k+ 2k+ · · ·+ nk

)

+
(
1k+ 2k+ · · ·+ (n− 1)k

)
+

+ · · ·+
(
1k+ 2k

)
+ 1k.

The key to simplifying this relationship is the fact that the formula for
the sum of the first n kth powers is of the form nk+1/(k+ 1)+ pk(n)where
pk is a polynomial of degree at most k. As al-Haytham knew, this is true
for k= 1, 2, and 3. The remainder of this derivation establishes that if it is
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true for the exponent k, then it holds for the exponent k+ 1. We make this
substitution on both sides of equation (1.2).

(n+ 1)

(
nk+1

k+ 1
+ pk(n)

)
=
(
1k+1+ 2k+1+ · · ·+ nk+1

)
+ 1

k+ 1
(
nk+1+ (n− 1)k+1+ · · ·+ 1k+1

)
+ pk(n)

+ pk(n− 1)+ pk(n− 2)+ · · ·+ pk(1)

nk+2

k+ 1
+ nk+1

k+ 1
+ npk(n)+ pk(n)= k+ 2

k+ 1

(
1k+1+ 2k+1+ · · ·+ nk+1

)
+ pk(n)

+ pk(n− 1)+ pk(n− 2)+ · · ·+ pk(1).

Multiplying through by (k+ 1)/(k+ 2) and solving for the sum of the
k+ 1st powers, we get the desired relationship

(1.3) 1k+1+ 2k+1+ · · ·+ nk+1= nk+2

k+ 2
+ pk+1(n),

where pk+1(n) is a polynomial in n of degree at most k+ 1.6
Now returning to the expression for the volume of each disc, equa-

tion (1.1), we can add these volumes:

total volume=
n∑

i=1
πa2b

(
1
n
− 2i2

n3
+ i4

n5

)

=πa2b
(
1− 2

n3

(
n3

3
+ p2(n)

)
+ 1

n5

(
n5

5
+ p4(n)

))

=πa2b
(

8
15
+ 2p2(n)

n3
+ p4(n)

n5

)
.

Since pk is a polynomial of degree at most k, we can make the last two
terms as small as we wish by taking n sufficiently large. This tells us that
the volume of our solid can be neither larger nor smaller than 8

15 ths of the
volume of the cylinder in which it sits, or 8πa2b/15.
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1.4
The Binomial Theorem

Fourth powers had never occurred to the Hellenistic philosophers whose
mathematics was rooted in geometry, for they would suggest a fourth
dimension. But by the end of the first millennium in the Middle East, in
India, and in China astronomers and philosophers were using polynomials
of arbitrary degree. Sometime around the year 1000, almost simultane-
ously within these three mathematical traditions, the binomial theorem
appeared,

(a+ b)n=
n∑

k=0
Cn
ka

kbn−k,

where Cn
k is the k+ 1st entry of the n+ 1st row in the triangular arrange-

ment
1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1
...

Each entry is recognized as the sumof the two diagonally above, what today
we call Pascal’s triangle.7 The initial purpose of this expansion was to find
roots of polynomials,8 but they would come to play many important roles
in mathematics. In particular, the binomial theorem provides a means of
finding sums of arbitrary positive integer powers.

The starting point for deriving a formula for the sum of kth powers is an
observation of Pascal’s triangle thatwasmademany times bymanydifferent
philosophers. In Figure 1.13, we see that if we start at any point along the
right-hand edge and add up the terms along a southwest diagonal, then
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1
1 1

1 2 1
1 3 3 1

14641
1 5 10 10 5 1

1615201561
1 7 21 35 35 21 7 1

Figure 1.13. The sum of terms down a diagonal,
starting from the edge, is always equal to the next
term down the opposite diagonal.

wherever we choose to stop, the sum of those numbers is equal to the next
number southeast of the number at which we stopped. It is not particularly
difficult to see why this is so. For instance, if we take the example in the
figure,

1+ 3+ 6+ 10+ 15= 35,

1+ 3 is the same as summing 3 and the 1 that lies immediately to its right.
From the way this triangle is constructed, 3+ 1 equals the number directly
below them and to the right of the 6. The sum of the first three terms down
the diagonal is equal to the sum of the last term and the number imme-
diately to its right. The sum of the 6 and the 4 is equal to the number
immediately below them, which is the number immediately to the right
of the 10 that lies along the diagonal. Wherever we choose to stop, the sum
of the terms along the diagonal is equal to the last term plus the term to its
right, which is the number directly below.

The earliest documented appearance of this observation occurs in
an astrological text by the Spanish-Sephardic philosopher Rabbi Abra-
ham ben Meir ibn Ezra (1090–1167). It also appears in the Chinese
manuscript Siyuan Yujian (Jade mirror of the four origins) by Zhu Shijie,
from 1303, and also in 1356 in the Indian text Ganita Kaumudi (Moon-
light of mathematics) by Narayana Pandit (circa 1340–1400). It can be
expressed as

(1.4) Ck
k+Ck+1

k +Ck+2
k + · · ·+Ck+n−1

k =Ck+n
k+1 .

As we will see in section 1.7, Pierre de Fermat would use this insight
to discover the area beneath the graph of y= xk from 0 to a for arbitrary
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positive integer k, the formula that today we would write as

(1.5)
∫ a

0
xk dx= 1

k+ 1
ak+1,

for any positive integer k.

1.5
Western Europe

The works of Euclid and Archimedes that were known to the European
scientists of the sixteenth and seventeenth centuries had survived the
EarlyMiddle Ages in Constantinople, copied over the succeeding centuries
by scribes who often had no understanding of what they were writing. By
the eighth century, Euclid’s Elements and Archimedes’ Measurement of a
Circle andOn the Sphere and Cylinder had found their way from the Byzan-
tine Empire to the courts of the Islamic caliphs who had them translated
into Arabic. By the twelfth century, Latin translations of the Arabic had
begun to appear in Europe. In the following centuries, Euclid was intro-
duced into the university curriculum, but even themaster’s degree required
attending lectures on at most the first six books, and students were seldom
held responsible for anything beyond Book I.

Euclid’s Elements, in Campanus’s Latin translation of an Arabic text, was
the first mathematics book of any significance to be printed. This was in
Venice in 1482. It was followed in 1505 by a translation from a Greek
manuscript based on a commentary on the Elements by Theon of Alexan-
dria (circa 355–405 ce). Until 1808 when François Peyrard discovered an
earlier version of the Elements in the Vatican library, the standard edition
of Euclid’s Elements was the 1572 translation by Commandino of Theon’s
commentary.9

The survival of Archimedes’ work was even more tenuous. In addition
to the Arabic texts, there were two Greek manuscripts, probably copied
around the tenth century in Constantinople, that each contained several of
his works. These are believed to have been taken to Sicily by the Normans
when they conquered that kingdom in the eleventh century. At the defeat
of Manfred of Sicily at the Battle of Benevento in 1266, the Archimedean
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manuscripts were sent to the Vatican in Rome where three years later they
were translated into Latin. In 1543, Niccolò Tartaglia published Latin trans-
lations of Measurement of a Circle, Quadrature of the Parabola, On the
Equilibrium of Planes, and Book I ofOn Floating Bodies. The following year,
all of the knownworks of Archimedes were published in the original Greek
together with a Latin translation.10

Federico Commandino (1509–1575) translated into Latin and then
published works of many of the Greek masters: Euclid, Archimedes,
Aristarchus of Samos, Hero of Alexandria, and Pappus of Alexandria. The
translation into Latin and publication of Pappus’s Collection, which would
inspire both Fermat and Descartes, was completed in 1588 by his student
Guidobaldo del Monte (1545–1607). Commandino and others, including
FrancescoMaurolico (1494–1575), expanded onArchimedes’ results, espe-
cially the problem of finding centers of gravity. Maurolico determined the
center of gravity of a paraboloid using inscribed and circumscribed discs
of constant thickness, calculating the respective centers of gravity of these
stacks of discs and showing that the distance from the apex to the center of
gravity can be neither larger nor smaller than two-thirds the distance from
the apex to the base.11

Over the following decades, the Dutch engineer Simon Stevin
(1548–1620) and the Roman philosopher—and frequent correspondent of
Galileo—Luca Valerio (1552–1618) applied the Archimedean techniques
to determine areas, volumes, and centers of mass. As Baron12 has pointed
out, the work of Maurolico, Commandino, Stevin, and Valerio is entirely
within the framework of the formal proofs received from Archimedes.
In the next century, scholars searching for “quick results and simplified
techniques” would begin to loosen these strictures and adopt the use of
infinitesimals. By the mid-seventeenth century, these tools were suffi-
ciently well established that Cavalieri, Torricelli, Gregory of Saint-Vincent,
Fermat, Descartes, Roberval, and their successors were able to apply
them to the production of many of the common formulas for solids of
revolution.

The first systematic treatment of volumes of solids of revolution was
the Nova steriometria doliorum vinariorum (New solid geometry of wine
barrels) published by Johannes Kepler (1571–1630) in 1615. It included
formulas for the volumes of 96 different solids formed by rotating part
of a conic section about some axis. An example is the volume of an
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A

B Figure 1.14. An apple formed by rotating a
circle about one of its chords.

apple, formed by rotating a circle around a vertical chord of that circle
(see Figure 1.14). Abandoning Archimedean rigor, Kepler established this
result by considering the apple as composed of infinitely many thin cylin-
drical shells. We take one of the vertical chords such asAB, rotate it around
the central axis, and find the surface area of this cylinder. The volume of
the solid is obtained by adding up these surface areas. In practical terms,
what he did was to take these cylinders, unroll each into a rectangle, and
then assemble the rectangles into a solid whose volume he could compute.
It is what today we refer to as the shell method.

There is a simpler way of computing volumes of solids of revolution that
had been known to Pappus of Alexandria in the fourth century ce. In his
Collection of the known geometric results of his time, he stated that the vol-
ume of a solid of revolution is proportional to the product of the area of the
region that is rotated to form the solid and the distance from the center of
gravity to the axis. Unfortunately, all that has survived is the statement of
this theorem with no indication of how Pappus justified it. In 1640, Paul
Guldin (1577–1643), a Swiss Jesuit trained in Rome and a regular corre-
spondent of Kepler, published a statement and proof of this theorem in his
book De centro gravitatis.13

1.6
Cavalieri and the Integral Formula

Bonaventura Cavalieri (1598–1647) was strongly influenced by Kepler.
A student of Benedetto Castelli (1578–1643) who had studied with Galileo,
Cavalieri began an extensive correspondence with Galileo in 1619 and dis-
covered Kepler’s Stereometrica around 1626. He obtained a professorship
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Figure 1.15. Solids with the same cross-sections have identical volumes.

in mathematics at the University of Bologna in 1629, two years after he had
finished much of the work on his Geometria indivisibilibus. It would not be
published until 1635. Galileo had been working along similar lines, and it
has been suggested14 that Cavalieri may have been waiting for Galileo to
publish these results.

Cavalieri proceeded from the assumption that areas can be built up
from one-dimensional lines and solids are composed of two-dimensional
indivisibles. These were not just infinitely thin sheets. Cavalieri explicitly
rejected the idea that solids could be thought of as built from three-
dimensional but infinitesimally thin sheets. His starting point for com-
puting volumes was the observation, going back to Democritus (circa
460–370 bce), that if two solids have the same height and congruent cross-
sections at each intermediate height, then they must have the same volume
(Figure 1.15). Democritus had used this argument to prove that the area of
any pyramid is one-third the area of the base times the height, but making
the step to the assumption that the solid actually is a stack of these two-
dimensional cross-sections went too far for many. Guldin was one of many
vociferous critics.

Cavalieri’s Geometria contains the first derivation of a formula equiv-
alent to the integral formula for xk. Though Cavalieri only carried this
up to the integral of x9, that was far enough that anyone could see what
the general formula had to be. In explaining Cavalieri’s work, it is impor-
tant to recognize that this was written before the development of analytic
geometry, the ability to represent a relationship such as y= xk as a graph
with an area beneath it. What we today interpret as an integral Cava-
lieri understood as simply a sum, a sum involving lines used to build up
an area.



ACCUMULATION 23

A
Figure 1.16. The triangular region is composed of lines
of variable length 0≤ �≤A.

We begin with the triangular region in Figure 1.16 which shows some
of the lines that make up this triangle. Cavalieri thought of the area of this
region as the sum of the lengths of all of these lines,

∑
�. The area of the

entire rectangle15 is the sum of lines of equal length A,
∑

A. The first step
for Cavalieri was the fact that ∑

�∑
A
= 1

2
;

the area of the triangle is half the area of the rectangle.
Instead of simply summing the lengths of the lines that constitute the tri-

angle, he now summed their squares. If we place a square of base �2 on each
line, we get a pyramid, which we have seen was long known to have vol-
ume equal to one-third of the rectangular solid formed by stacking squares
of equal size A×A, ∑

�2∑
A2 =

1
3
.

Cavalieri now stepped into the unknown by considering the ratio of
the sum of cubes of the lines in the triangle to the sum of cubes of A. He
accomplished this using the equality

(1.6) (x+ y)3+ (x− y)3= 2x3+ 6xy2.

Instead of summing �3 as � decreases from A to 0, he added (A/2+ �)3 as
� decreases from A/2 to 0 and A/2− � as � increases from 0 to A/2,16
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Figure 1.17. Pierre de Fermat.

∑
0≤�≤A

�3=
∑

0≤�≤A/2

((
A
2
+ �

)3
+
(
A
2
− �

)3
)
.

He could now use equation 1.6 and the formula he knew for
∑
�2,

∑
0≤�≤A

�3=
∑

0≤�≤A/2

(
2
(
A
2

)3
+ 6

(
A
2

)
�2

)

= 1
4

∑
0≤�≤A/2

A3+ 3A
∑

0≤�≤A/2
�2

= 1
4

∑
0≤�≤A/2

A3+A
∑

0≤�≤A/2

(
A
2

)2

= 1
4

∑
0≤�≤A/2

A3+ 1
4

∑
A/2≤�≤A

A3

= 1
4
∑

0≤�≤A
A3.

He proceeded up to
∑
�9, in each case using the identity

(x+ y)k+ (x− y)k= 2xk+ 2Ck
2x

k−2y2+ 2Ck
4x

k−4y4+ · · ·
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and the formulas he had already found to show that, for 1≤ k≤ 9,
∑
�k∑
Ak =

1
k+ 1

.

If you rotate the rectangle by 90◦ counter-clockwise, you see that he has
demonstrated that the area under the curve y= xk, 0≤ x≤A, is equal to

∑
0≤�≤A

�k= 1
k+ 1

∑
0≤�≤A

Ak= 1
k+ 1

Ak+1.

Unfortunately, few people in 1635 realized what he had accomplished.
Cavalieri’s great work was almost unreadable.17 What people would come
to know of Cavalieri’s mathematics was due to Torricelli’s 1644 explana-
tion in Opera geometrica. By this time, Fermat and Descartes had estab-
lished algebraic geometry for graphing algebraic relationships, and they
and others had found simpler routes to the integral formula.

1.7
Fermat’s Integral and Torricelli’s Impossible Solid

In 1636, Pierre de Fermat (1601–1665) wrote to two of his colleagues in
Paris, Marin Mersenne (1588–1648) and Gilles de Roberval (1602–1675),
announcing that he had discovered a general method for finding the area
beneath the graphof the curve y= xk for positive integer k.Within amonth,
Roberval responded, stating that this result had to rely on the fact that (in
modern notation)

(1.7)
n∑
j=1

j k>
nk+1

k+ 1
>

n−1∑
j=1

j k,

for all positive integers k andn. Fermatwas clearly disappointed that Rober-
val caught on so quickly, but expressed his doubts that Roberval was able
to justify this pair of inequalities.

Reconstructing Fermat’s proof as best we can18 and casting it in modern
notation, the proof begins with the fact that the binomial coefficients can
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be written as

Ck+j−1
k = j( j+ 1)( j+ 2) · · · ( j+ k− 1)

k! .

We expand the numerator as a polynomial in j,

(1.8) Ck+j−1
k = 1

k!
(
j k+ a1j k−1+ a2j k−2+ · · ·+ ak

)
,

where the coefficients ai are integers. Combining equation (1.4) with
equation (1.8), we obtain,

(1.9)
1
k!

n∑
j=1

(
j k+ a1j k−1+ a2j k−2+ · · ·+ ak

)
= n(n+ 1)(n+ 2) · · · (n+ k)

(k+ 1)! .

We can express the sum of kth powers in terms of sums of lower powers,

n∑
j=1

j k= k!
(k+ 1)!n(n+ 1)(n+ 2) · · · (n+ k)

−
n∑
j=1

(
a1j k−1+ a2j k−2+ · · ·+ ak

)
.(1.10)

We use the inductive assumption19 that the sum of mth powers from 1m
up to nm is a polynomial in n of degree m+ 1. We have seen this to be
true for m= 1, 2, and 3 and can assume it to be true up to m= k− 1.
Equation (1.10) is then expressed as

(1.11)
n∑
j=1

j k= 1
k+ 1

nk+1+ a polynomial in n of degree at most k.

To find the area under the curve y= xk, we subdivide the interval from
0 to a into n subintervals of equal width, a/n (Figure 1.18). The combined
area of the inscribed rectangles is
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0 a

y = xk

Figure 1.18. Inscribed rectangles of width a/n below the graph of y= xk.

n−1∑
j=0

(
aj
n

)k a
n
= ak+1

nk+1
n−1∑
j=0

j k

= ak+1(n− 1)k+1

(k+ 1)nk+1
+ a sum of terms involving
negative powers of n.

This can be brought as close as we wish to ak+1/(k+ 1) by taking n
sufficiently large.

The combined area of the circumscribed rectangles is

n∑
j=1

(
aj
n

)k a
n
= ak+1

nk+1
n∑
j=1

j k

= ak+1nk+1

(k+ 1)nk+1
+ a sum of terms involving negative powers of n,

which also can be brought as close as we wish to ak+1/(k+ 1) by taking n
sufficiently large. The area is ak+1/(k+ 1).20

Evangelista Torricelli (1608–1647) was another student of Castelli, earn-
ing his tuition by serving as Castelli’s secretary. He began his correspon-
dence with Galileo in 1632 and spent the last few months of Galileo’s life
with him, from October 1641 until January 1642. In his Opera geomet-
rica, published in 1644, Torricelli embraced the language of indivisibles
that Cavalieri had espoused, but he explicitly stated that his indivisibles do
have “a thickness which is always equal and uniform,”21 even though it is
infinitesimal.
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(a,1/a)
√2

Figure 1.19. Torricelli’s acute hyperbolic solid.

Torricelli is best known today—and at the timemade his reputation—for
the discovery of an infinitely long solid of revolution of finite volume, what
he called an acute hyperbolic solid. This is the solid obtained by rotating
about the horizontal axis the region bounded above by y= 1/a for 0≤ x≤ a
and by y= 1/x, for all x≥ a, where a is strictly positive. Specifically, what he
proved is that the volume of this solid is equal to the volume of the cylinder
of radius

√
2 and height 1/a (see Figure 1.19). In other words, the volume

of this infinitely long solid is the finite value 2π/a.
The proof proceeds by decomposing the acute hyperbolic solid into hol-

low cylinders of infinitesimal thickness. The hollow cylinder at height y
has radius y and circumference 2πy, while the distance from the base to
the hyperbolic curve is 1/y. Every cylinder, irrespective of the value of
y, has the same surface area: 2π , which is the area of a circle of radius√
2. We therefore can match the volume of the acute hyperbolic solid to

that of the cylinder formed by discs of radius
√
2 stacked from y= 0 to

y= 1/a.
Torricelli shared this discovery with Cavalieri in 1641, who wrote back,

I received your letter while in bed with fever and gout . . . but in
spite of my illness I enjoyed the savory fruits of your mind, since I
found infinitely admirable that infinitely long hyperbolic solid which
is equal to a body finite in all the three dimensions. And having spo-
ken about it to some of my philosophy students, they agreed that it
seemed truly marvelous and extraordinary that that could be.22
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In 1643, Cavalieri communicated this result, though not the proof, to Jean-
François Niceron in Paris. He passed it on to Mersenne, and soon the
entire mathematical world knew about it. Torricelli published two proofs
the following year as part of his Opera geometrica, one using the method
of indivisibles as described in the previous paragraph, the other employing
the classical Archimedean approach inwhich he demonstrated that the vol-
ume of his solid could be neither larger nor smaller than that of the cylinder
of radius

√
2 and height 1/a.

Torricelli’s result truly shocked themathematical establishment. He later
recorded that Roberval had not believed the result when he first learned of
it and had attempted to disprove it.23 The fact that the initial proof used
Cavalieri’s indivisibles cast considerable doubt on their reliability, which is
why Torricelli realized that he also needed to provide a justification with
full Archimedean rigor.

1.8
Velocity and Distance

If accumulationwere nomore than away of calculating areas, volumes, and
moments, it would have provided us with an interesting set of results, but
hardly the historical foundation for a major branch of mathematics. What
made accumulation the powerful tool it is today was the discovery of the
connection to instantaneous velocity. If we know the velocity at each point
in time, then we can accumulate small changes in distance to find the total
distance that has been traveled. This is not a simple or obvious idea. More
than one calculus student has been mystified by the fact that we can find
distances by calculating areas under curves.

Today, we take the concept of velocity of an object at a particularmoment
in time for granted. It confronts us every time we look at a speedometer.
Yet explaining what it means requires some subtlety. The fifth century bce
philosopher Zeno of Elea described the paradox of instantaneous velocity:
An arrow is always either in motion or at rest. At a single instant, it cannot
be in motion, for to be in motion is to change position, and if it did change
position in an instant, then that instant would have a duration and could be
subdivided. Therefore, at each instant, the arrow is at rest. But if the arrow
is at rest at every instant, then it is always at rest, and so it never moves.24
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Aristotle answered this paradox by denying the existence of instants in
time, consequently denying the existence of an instantaneous velocity. To
Aristotle and his successors, this was not a great loss. Themotion they stud-
ied was uniform motion, either linear or circular. There was no general
treatment of velocity as the ratio of distance traveled to the time required
or even as a magnitude in its own right.25 But in the fourteenth century
scholars in Oxford and Paris began to study velocity as something that has
a magnitude at each instant of time and to explore what could be said when
velocity is not uniform.

The first of the great European universities was established in Bologna
in 1088. Others soon followed. The Greek classics, which were now being
translated from Arabic, provided grist for the scholars who gathered there.
They sought to understand these works. Soon they would transcend them.

Merton College in Oxford was established in 1264. Starting around
1328, a remarkable group of Mertonian scholars—Thomas Bradwardine,
William Heytesbury, Richard Swineshead, and John Dumbleton—began
their explorations of velocity. The first of their accomplishments was to
separate kinematics, the quantitative study of motion, from dynamics, the
study of the causes of motion. The idea of describing a moving object with
no reference to what set that object inmotion ormaintained its motion was
new. For the first time, scholars began to speak of velocity as amagnitude.26

The earliest description of instantaneous velocity can be found in
William Heytesbury’s 1335 manuscript, Rules for Solving Sophisms. He
made it clear that instantaneous velocity, the velocity at a single instant
of time, is not affected in any way by how far the object has moved, but
is “measured by the path which would be described by the most rapidly
moving point if, in a period of time, it were moved uniformly at the same
degree of velocity.”27 This was an adequate definition that would serve for
close to 500 years. It is not howwe define instantaneous velocity today. Our
modern definition was not fully articulated until the early nineteenth cen-
tury. It is based on limits and the algebra of inequalities and can be found
in section 4.2.

Heytesburywent on to consider themotion of an object that is uniformly
accelerated, whose velocity increases at a constant rate. He argued that the
distance traveled by an object that starts with an initial velocity and accel-
erates or decelerates uniformly to some final velocity is the same as the
distance traveled by an object moving at the mean velocity, the velocity

(continued...)
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