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Chapter 1

INTRODUCTION

Prediction problems are central to asset pricing. To price stocks,
investors must forecast firms’ future cash flows. Investors seeking out-
performing trading strategies search for signals that predict asset returns.
Researchers testing asset pricing models look for predictor variables that
can forecast return differences between assets or that capture forecastable
variation in returns across time.Models of credit risk require predictors of
default. Hedging and risk management models require forecasts of asset
return comovement.
The number of predictor variables that are potentially relevant in these

applications is enormous. Technological advances have led to an explo-
sive growth in the amount of information that is available to investors
and analysts. Even if we look just at the narrow slice of data that can
be extracted from corporate financial reports, the growth in data avail-
ability has been staggering. Figure 1.1 provides some rough estimates.
One hundred years ago, printed annual volumes like the Moody’s man-
uals that summarized corporate financial reports represented much of
what was readily available to the public. With the advent of electronic
computing, databases like COMPUSTAT expanded coverage to perhaps
hundreds or thousands of variables per firm. Today, there is an almost
uncountable number of variables that one can construct from publicly
available information. The SEC’s Edgar database contains financial report
data on the order of magnitude of terabytes. With textual analysis, one
could probably construct a million variables for each firm from these files.
Corporate financial reports represent only a small fraction of what is

potentially available to investors. Databases that record the past history
of market prices and transactions contain a gigantic volume of data; sen-
timent measures can be extracted from social media; online reviews by
customers and employees may contain valuable information; and many
other data sources could be relevant.
This abundance of potential predictor variables gives rise to a statis-

tical problem. As an example, consider the case of cross-sectional stock
return prediction. Say there areN=5000 stocks for which we can observe
returns. The number of return predictors, J, that we might consider for
forecasting differences in stocks’ returns could easily exceed the num-
ber of stocks. Is it possible to estimate the relationship between so many
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Figure 1.1. Corporate financial reports: ‘Big data’

predictors and future returns in a way that delivers useful forecasts of
returns?
Conventional statistical techniques like ordinary least squares regres-

sion (OLS) are not designed for such high-dimensional settings where J
is big relative to N. When J>N, OLS regression doesn’t have a unique
solution. And even if J<N, but J is not much smaller than N, the OLS
estimator often does not produce useful predictions. With such a high
number of explanatory variables, the OLS regression overfits noise. This
leads to a good in-sample fit, but poor out-of-sample forecasts.

1.1 Ad hoc Sparsity in Empirical Asset Pricing

Research in asset pricing has, until recently, side-stepped this high-
dimensionality problem by focusing on low-dimensional models. Work
on cross-sectional stock return prediction, for example, has focused on
regressions with a small number of firm characteristics. Collectively,
researchers have investigated the predictive power of a large number of
firm characteristics, but in any individual study, the number of predic-
tors considered by researchers is typically small. Similarly, researchers
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looking to summarize the investment opportunities in the cross-section
of stock returns with factor models have focused on models with a very
small number of factors. For example, Hou, Xue, and Zhang (2015) and
Fama and French (2015) include only three or four factors in addition
to the value-weighted market portfolio excess return in their factor mod-
els. These factors are portfolios constructed based on firm characteristics
such as firm size, profitability, investment, or the ratio of the firm’s book
equity to market equity.
Given the background of an enormously large number of variables that

could potentially be relevant for predicting returns and for constructing
characteristics-based factor portfolios, focusing on such a small number
of factors effectively means that the researchers are imposing a very high
degree of sparsity on these models. Among the hundreds, thousands, or
more potential factors, researchers have chosen a specification that sets
the effect of almost all of them to zero.
Imposing such extreme sparsity on the model ensures that conventional

statistical methods are well behaved. But the imposition of sparsity is
ad hoc. The researchers proposing these models have tested their low-
dimensional factor models only against a small subset of the universe of
factors that one could potentially construct based on firm-level variables.
So we do not really know how much these models miss, in terms of pre-
dictive power, relative to the joint effect of this large number of omitted
factors. In this regard, it is interesting to note that the number of “stan-
dard” factors that researchers view as necessary to adequately capture
the cross-section of expected stock returns has been trending up over
time. Fama and French (1993) started with three, then came four- and
five-factor versions, and Barillas and Shanken (2018) suggest that six are
necessary. One interpretation of this expansion in the number of factors
is that the literature is slowly adjusting to the fact that there are, indeed,
relevant omitted factors.

1.2 Ad hoc Sparsity in Theoretical Asset Pricing

These issues are not only relevant for empirical research in asset pric-
ing, but they also raise questions about theoretical modeling of investor
decision making. Asset prices reflect investors’ expectations of future
asset payoffs. But how do investors come up with these expectations?
Real-world investors face the same problem that empirical asset pric-
ing researchers face: there is an enormous number of potentially relevant
predictor variables. Distilling them into a good forecasting model is a
high-dimensional problem that conventional statistical methods are not
well suited for.
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Most theoretical asset pricing models assume rational expectations.
This assumption is much stronger than just rationality of expectations. In
these models, investors do not have to estimate the forecasting model—
they already know it. More precisely, investors know perfectly the func-
tional relationship between any relevant predictor variables and the
variables they would like to forecast. Given the values of the predictor
variables, investors are assumed to be able to calculate the conditional
expectations of the forecasted variables. This assumption is often moti-
vated with the idea that the model is meant to represent an equilibrium
that would be reached after investors have had time to learn these func-
tional relationships in a stable environment. Even in a low-dimensional
setting, the assumption that the learning process has reached an end
is questionable. Indeed, Timmermann (1993), Lewellen and Shanken
(2002), Collin-Dufresne, Johannes, and Lochstoer (2017), and Nagel and
Xu (2019) have argued that investor learning about parameters of the
data-generating process is important for understanding asset prices. In a
more realistic high-dimensional setting in which investors have to extract
the predictive information from thousands of observable variables, the
investors-have-already-learned argument is even less convincing.
Arguably, therefore, we should have theoretical models in which

investors struggle with high dimensionality in the same way as econo-
metricians do when they study asset price data. Existing models in which
investors learn about forecasting models and their parameters typically
assume that investors condition their forecasts on a small number of pre-
dictors. This sparsity is imposed ad hoc. It seems difficult to make the case
that such a sparse representation adequately reflects the forecasting envi-
ronment faced by real-world investors. Possibly, this mismatch between
the difficulty of the prediction problem faced by investors in theoretical
models and the difficulty of prediction problems in the real world could be
a cause of the empirical shortcomings of existing theoretical asset pricing
models.

1.3 Machine Learning

Machine Learning (ML) offers tools to tackle high-dimensional predic-
tion problems. Broadly, ML involves algorithms that allow computers to
learn from data. The computer is fed training data to learn, and then the
trained algorithm can be used to make predictions. For example, in image
recognition, an algorithm could be fed data on image features (numerical
color values for each image pixel) from a large number of images that
are labeled into categories. To take an extremely simple case, say we are
interested in classifying images of food into ones showing hot dogs and
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Figure 1.2. Image classification example

ones that do not show hot dogs. From the training data set of already-
labeled images, the ML algorithm learns the relationship between image
pixels and the classification as a hot dog or not hot dog. Figure 1.2 pro-
vides a stylized illustration. Once trained, the algorithm can then be used
to predict, for not-yet-classified images, whether they show a hot dog or
not a hot dog. In other applications, trained ML algorithms may clas-
sify email as spam based on email content, predict tumors based on gene
expression data, or interpret sensor data in autonomous driving.
In many of these ML applications, the number of features is extremely

large, and often larger than the number of observations that are available
to train the algorithm. Conventional statistical tools like ordinary least-
squares (OLS) regression would not work in such a setting. Much of the
success of ML in practice is due to the development of effective meth-
ods to discipline the estimation such that the estimated model (or trained
algorithm) produces useful out-of-sample forecasts.
The ML literature therefore offers a rich toolbox to tackle asset pricing

prediction problems in high-dimensional settings. Many of these meth-
ods are not fundamentally new to the statistics literature, but the ML
community has pushed them very successfully into applications. By exper-
imenting heavily and focusing on methods that “work” rather than on
understanding the theoretical properties of estimators, the ML literature
has assembled an impressive array of methods that have proven to be
useful in practical prediction problems. The aim of this book is to survey
some of the first steps that asset pricing research has taken to bring these
tools into asset pricing, highlight current challenges, and sketch some
paths that researchers could take going forward.
The ML toolbox offers the opportunity to analyze asset prices without

imposing extreme ad hoc sparsity on prediction problems. In empir-
ical work, ML tools allow an econometrician to take into account
the joint effect of a large number of predictor variables. In theoretical
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Table 1.1
Terminology in ML and Statistics

ML Statistics

Training, Learning Estimation

Learner, Algorithm Model, Estimator

Features Covariates, Explanatory Variables,
Independent Variables, Predictors

Target, Label, Output Dependent Variable

Example, Instance Data Point, Observation

work, investors can be modeled as machine learners in a realistic high-
dimensional environment.
A recurrent theme throughout this book is that even though ML meth-

ods have been impressively successful in a wide variety of applications,
using these tools off the shelf in asset pricing is not necessarily going
to work well. The properties of data in asset pricing applications are
often substantially different from those in technology,medicine, and other
scientific fields. Successful application of ML methods in asset pricing
therefore will often require some adaptation. To develop appropriate
adaptations, we need to bring in some prior economic knowledge about
the environment that generates the data. The idea, sometimes associated
withML, that one could make predictions in an entirely data-driven auto-
mated fashion is too good to be true. Much of this book is devoted to
the question of how we can use economic reasoning to make ML tools
effective in asset pricing.
Bayesian statistics offers a framework to incorporate prior knowledge

into statistical estimation. The Bayesian framework therefore allows us
to build a bridge between economic theories of asset pricing and ML. At
various points throughout the book I draw on Bayesian statistics to give
an interpretation of ML methods and to suggest economically motivated
adaptations of these methods.

1.4 Terminology

Coming from computer science, the machine learning literature has devel-
oped its own terminology. The concepts and methods often overlap with
similar ones in the statistics literature, but they are named differently. This
can be confusing. Table 1.1 lists some common terms that will appear
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throughout various parts of this book. I will use the ML and statistics
terminology interchangeably.

1.5 Supervised and Unsupervised Learning

MLmethodscanbebroadlyclassified into twocategories.Supervised learn-
ing basically refers to regression methods. The training data that is used to
train the algorithm comeswith features xi and labels yi.The goal is to find a
function yi = f (xi) that maps features into labels. Thesemethods are called
supervised learning because one can view the training of the algorithm as
a learning process supervised by a “teacher.” The learner makes predic-
tions based on xi in the training data. By revealing the correct labels yi, the
teacher tells the learner whether the prediction was correct. This informa-
tion about correct or incorrect predictions is used by the learner to tweak
the estimate of the function. Once the training is completed, this learned
function can then be used to predict labels out-of-sample in data setswhere
we only have features, but not labels. The image classification example we
discussed earlier belongs to this supervised learning category, but there is
a large number of other methods that belong into this category as well.
Chapter 2 reviews some of the most important ones.
In unsupervised learning, the data that is used to train the algorithm

only has features, not labels. The goal in unsupervised learning is to find
a compressed summary of the data that captures its essential properties.
One simple example of a method in this category is principal component
analysis (PCA). In PCA, a set of variables is approximated with a smaller
number of underlying factors that capture a large amount of the common
variation among the variables.
Methods in both categories have useful applications in asset pricing. In

this book, I focus largely on supervised learning. One of the fundamental
problems in asset pricing—both for financial economists studying asset
prices and for investment practitioners—is the estimation of expected
asset returns conditional on a set of predictor variables. This is, effec-
tively, a supervised learning problem. Similarly, estimation of cash flow
forecasting models in asset valuation is a supervised learning problem.
Unsupervised learning methods often play a secondary role in asset pric-
ing applications, for example, in an initial dimension-reduction step that
summarizes data before it is fed into a supervised learning algorithm.
The distinction between supervised and unsupervised learning in asset
pricing applications is not as sharp as it may seem, though. As we
will see, some supervised learning approaches effectively have built-in
dimension-reduction elements that are similar to those in unsupervised
learning approaches.
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1.6 Limitations of This Book

This book has some limitations that I would like to clarify at the outset.
First, this book is primarily a book about asset pricing. I discuss the appli-
cation of ML techniques in asset pricing, but this book is not the place to
look for information on the latest new developments in ML. Moreover, I
do not devote much space to computational questions. This is not because
computational issues are unimportant. Quite to the contrary. The success
of ML in analyzing huge, high-dimensional data sets is founded on many
clever computational advances. But these topics are covered well in the
ML literature. Conceptual questions about the suitability of ML tools for
asset pricing problems have received comparatively less attention. The
focus of this book is on closing this gap.
Second, this book is not an exhaustive survey of machine learningmeth-

ods in asset pricing. There are many exciting new approaches in current
working papers and recently published studies, but I will be able to dis-
cuss only a small number of these. Rather than attempting to provide a
comprehensive review of the literature, my objective is to highlight the
opportunities that exist and the generic challenges that arise when we
apply ML methods in asset pricing. The array of available ML tools is
vast. I hope to provide some useful thoughts on issues that we need to con-
sider when we bring them into asset pricing. One theme that I return to
throughout the book is that economic restrictions are important. To reap
the full benefit of ML methods in asset pricing, we need to bring in a lim-
ited dose of economic reasoning when we pick from the ML toolbox and
make specification choices. Off-the-shelf application of ML techniques
without thoughtful adaptation to the specific properties of data in asset
pricing is unlikely to work well.
Third, within the area of asset pricing, I focus mostly on cross-sectional

return prediction applications. There are certainly other areas in asset
pricing where ML methods can be useful, too. For example, valuation
models require predictions of asset fundamentals, credit risk models
require prediction of credit risk realizations, and risk management appli-
cations require predictions of codependencies between asset prices. For all
of these, ML techniques can be useful for bringing in high-dimensional
predictive information and for handling nonlinear relationships. Yet, a
short book like this one necessarily has to be selective. The focus on
cross-sectional return prediction in this book simply reflects what I have
been working on in my own research. I nevertheless hope that by using
these specific applications for illustration, I can provide some insights that
generalize beyond these specific settings.
Finally, throughout this book, I often highlight open questions rather

than providing definite answers. This book therefore does not offer
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cookbook recipes for applying ML techniques in asset pricing. Instead, by
pointing out interesting unresolved issues, I hope to provide some inspi-
ration for future research that addresses these issues. In this spirit, the
last chapter summarizes a number of open research questions that are
particularly important for further progress in this area of asset pricing.

1.7 Organization of This Book

The rest of this book is organized as follows. Chapter 2 provides a brief
overview of a number of basic supervised learning methods. The chap-
ter begins by reviewing regression methods that are designed to predict
continuous variables, including ridge regression, lasso, trees and ran-
dom forests, and neural networks. Several of these learning algorithms
involve hyperparameters that need to be set in advance, before the actual
estimation. Chapter 2 discusses data-driven methods of tuning these
hyperparameters to optimize the predictive performance of the learning
algorithm. Hyperparameters often control the degree of regularization
imposed on the estimation. Chapter 2 ends with a brief illustration of
a Bayesian interpretation of regularization. In this interpretation, regu-
larization corresponds to imposing certain prior distributions on model
parameters. We use this Bayesian interpretation in subsequent chapters
inject economic reasoning and prior knowledge into the design of ML
approaches in asset pricing.
Chapter 3 explores challenges that arise when applying ML methods

in asset pricing. The chapter starts by outlining some key differences
between the properties of data that most ML algorithms have been devel-
oped for and the properties of data that are typical in asset pricing.
Throughout the chapter, I illustrate some of these issues with a concrete
empirical example of cross-sectional stock return prediction using each
stock’s own price history as source of predictive information. The chap-
ter highlights that while ML methods are well suited for the prediction
problems that arise in asset pricing, these techniques require significant
adaptation if they are to deliver on their full potential. What works in
typical ML applications, say in the technology sector or biostatistics, does
not necessarily work well in asset pricing. Among other things, the low
signal-to-noise ratio in asset pricing applications means that attempts
to simply let the data speak within an extremely flexible framework
are unlikely to yield good results. We will have to impose some struc-
ture on the learning algorithm. To do so, we need to connect the ML
methods to basic economic frameworks of asset pricing and portfolio
choice. Some principles from Bayesian statistics are useful for making this
connection.
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Chapter 4 describes an approach that makes some progress in this
direction. It starts from a basic mean-variance portfolio choice problem—
or, equivalently, the problem of finding a stochastic discount factor
expressed as a linear combination of asset returns—and the notion that
near-arbitrage opportunities are unlikely to exist in the stock market. By
formulating Bayesian prior beliefs about the risk-return opportunities in
the market, this framework allows us to impose economically motivated
constraints on the return prediction problem. The estimator that emerges
from this approach is similar to the elastic net estimator common in
many ML applications, but with some important differences that come
from taking into account the fact that prediction error covariances are an
important determinant of a portfolios risk-return profile. The empirical
application of this estimator uses a broad set of firm characteristics as
return predictors, as well as nonlinear transformations of those, includ-
ing pairwise interactions between characteristics. The empirical findings
suggest that imposing economically motivated prior beliefs is important
for obtaining good out-of-sample predictive performance.
Chapter 5 takes a theoretical perspective. The earlier chapters show

that statistical analysis of financial market data must address the fact that
the environment is high-dimensional and ML methods provide a good
toolbox for this purpose. But what about the investors whose invest-
ment decisions determine the asset prices that feed into these statistical
analyses? If the information environment in financial markets is such
that the prediction problems are high-dimensional, investors in theoretical
models of financial markets should presumably face this high dimen-
sionality, too. Machine learning methods therefore provide an attractive
blueprint for modeling investor belief formation in theoretical models.
Chapter 5 pursues this approach. To focus on fundamental issues,we con-
sider a simple environment in which investors must learn from historical
data the relationship between stocks’ cash flows and a large set of firm
characteristics that serve as predictor variables. Investors are Bayesian
and shrink their prediction model estimates toward objectively correct
prior beliefs. In equilibrium, stocks are priced such that returns are unpre-
dictable out-of-sample. However, returns are strongly predictable in-
sample in ex-post statistical analyses of returns. This is due to the fact that
an econometrician analyzing data ex post with in-sample analyses has the
advantage of hindsight knowledge that investors in real time do not have.
In a low-dimensional environment this implicit advantage of the econo-
metrician can be small, but it is large in a high-dimensional environment.
In-sample regressions are therefore ill suited for inferring risk premia or
the effects of behavioral biases of investors from asset price data.
Chapter 6 concludes the book by outlining a research agenda for future

research on ML in asset pricing.
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