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CHAPTER

1
Rudiments of complex analysis

Webegin by recalling some standard definitions and notations. Throughout this book
the complex plane will be denoted by C. Every z ∈C has a unique representation of
the form z= x+ iy in which x, y∈R and i is the imaginary unit, so i2=−1. We call
x and y the real and imaginary parts of z and we write

x=Re(z) and y= Im(z).

The complex conjugate of z is the complex number defined by

z̄= x− iy.

The relations

Re(z)= 1
2
(z+ z̄) and Im(z)= 1

2i
(z− z̄)

are easily verified. Note that z ∈R if and only if z= z̄.
The absolute value (ormodulus) of z= x+ iy is the non-negative number

|z| =
√
x2+ y2.

Evidently |z|> 0 if and only if z 6= 0, and the relation

|z|2= zz̄

holds.
If z 6= 0, the complex number z/|z| has absolute value 1 and can be represented

by the complex exponential eiθ = cos θ + i sin θ for some θ ∈R, called an argument
of z, which is unique up to addition of an integer multiple of 2π . The expression

z= |z| eiθ
is called the polar representation of z.

We will reserve the following notations for the open disk of radius r centered at p
and the unit disk centered at the origin:

D(p, r)={z ∈C : |z− p|< r} D=D(0, 1).
1
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Unless otherwise stated, whenwewrite z= x+ iy wemean x, y are real, so x=Re(z)
and y= Im(z). Similarly, for a complex-valued function f , when we write f = u+ iv we
mean u, v are real-valued, so u=Re( f ) and v= Im( f ).

1.1 What is a holomorphic function?

Our point of departure is the notion of complex differentiability which is fundamental
to everything that follows.

DEFINITION 1.1. Suppose f is a complex-valued function defined in an open
neighborhood of some p∈C. We say f is (complex) differentiable at p if the
limit

f ′(p)= lim
z→p

f (z)− f (p)
z− p

exists. The number f ′(p) is called the (complex) derivative of f at p.

As usual, differentiability implies continuity. In other words, if f ′(p) exists, then f
is continuous at p:

lim
z→p

f (z)− f (p)= lim
z→p

f (z)− f (p)
z− p

(z− p)= f ′(p) · 0= 0.

The basic rules of differentiation that we learn in calculus hold for complex
derivatives.

THEOREM 1.2.

(i) Suppose f and g are differentiable at p. Then the sum f + g and the product f g
are differentiable at p and

( f + g)′(p)= f ′(p)+ g′(p)

( f g)′(p)= f ′(p)g(p)+ f (p)g′(p).

Moreover, if g(p) 6= 0, the quotient f /g is differentiable at p and(
f
g

)′
(p)= f ′(p)g(p)− f (p)g′(p)

(g(p))2
.

(ii) Suppose g is differentiable at p and f is differentiable at g(p). Then the composi-
tion f ◦ g is differentiable at p and the “chain rule” holds:

( f ◦ g)′(p)= f ′(g(p)) g′(p).
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The assumption g(p) 6= 0 in (i) combined with continuity of g at p implies that g
is non-zero in an open neighborhood of p, so the quotient f /g is well defined in that
neighborhood.

Proof. (i) The results for the sum and product are easy to prove. For the quotient
rule, first consider the special case where f = 1 everywhere. Writing

1
g(z)
− 1

g(p)
z− p

=−g(z)− g(p)
z− p

· 1
g(z)g(p)

,

letting z→ p, and using continuity of g at p, we obtain (1/g)′(p)=−g′(p)/(g(p))2.
The quotient rule now follows from this and the product rule applied to f /g= f · 1/g.

(ii) Define

ε(w)=

f (w)− f (g(p))

w− g(p)
− f ′(g(p)) w 6= g(p)

0 w= g(p).

Then ε is continuous at g(p) and the relation

f (w)− f (g(p))= ( f ′(g(p))+ ε(w)) (w− g(p))

holds throughout an open neighborhood of g(p). Setting w= g(z), it follows that

( f ◦ g)(z)− ( f ◦ g)(p)
z− p

= (f ′(g(p))+ ε(g(z))) g(z)− g(p)
z− p

.

As z→ p, g(z)→ g(p) by continuity, so ε(g(z))→ 0. Hence the right side tends to
f ′(g(p)) g′(p).

EXAMPLE 1.3 (Polynomials). It is immediate from the definition that the identity function
f (z)= z is differentiable everywhere and f ′(z)= 1 for all z. By repeated application of Theo-
rem 1.2(i), it follows that every polynomial f (z)=∑d

n=0 an zn is differentiable everywhere and
f ′(z)=∑d

n=1 nan zn−1 for all z.

EXAMPLE 1.4. The smooth function f (z)= zz̄= |z|2 is complex differentiable only at the origin.
In fact, for z 6= 0,

f (p+ z)− f (p)
z

= (p+ z)(p̄+ z̄)− pp̄
z

= p
z̄
z
+ p̄+ z̄.

But z̄/z does not have a limit as z→ 0, since z̄/z= 1 if z is real while z̄/z=−1 if z is purely imag-
inary. It follows that the right side of the above equation has a limit as z→ 0 if and only if p= 0,
and that f ′(0)= 0.

Under the canonical isomorphism C→R2 given by z= x+ iy 7→ (x, y), every
complex-valued function f = u+ iv can be identified with the map into the plane
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R2 given by f (x, y)= (u(x, y), v(x, y)). To understand the relation between the com-
plex derivative of f as defined above and the real derivative of f as a map into the
plane, let us first introduce a few useful notations. The partial differentiation opera-
tors ∂/∂x and ∂/∂y acting on smooth real-valued functions can be naturally extended
to complex-valued functions. Explicitly, if f = u+ iv, we set

(1.1)
∂f
∂x
= ∂u
∂x
+ i

∂v
∂x

∂f
∂y
= ∂u
∂y
+ i

∂v
∂y

.

For complex-variable computations, it will be convenient to introduce two new
differential operators defined by

(1.2)
∂f
∂z
= 1

2

(
∂f
∂x
− i
∂f
∂y

)
∂f
∂ z̄
= 1

2

(
∂f
∂x
+ i
∂f
∂y

)
,

so

(1.3)
∂f
∂x
= ∂f
∂z
+ ∂f
∂ z̄

∂f
∂y
= i

(
∂f
∂z
− ∂f
∂ z̄

)
.

It is important to keep in mind that the operators ∂/∂z and ∂/∂ z̄ are not defined as
partial differentiation with respect to z and z̄. After all, z and z̄ are not independent
variables!

EXAMPLE 1.5. By the definition (1.2),

∂

∂z
(z)= 1

2

(
∂

∂x
− i

∂

∂y

)
(x+ iy)= 1

∂

∂z
(z̄)= 1

2

(
∂

∂x
− i

∂

∂y

)
(x− iy)= 0

∂

∂ z̄
(z)= 1

2

(
∂

∂x
+ i

∂

∂y

)
(x+ iy)= 0

∂

∂ z̄
(z̄)= 1

2

(
∂

∂x
+ i

∂

∂y

)
(x− iy)= 1.

Since it is easy to verify the product rule for ∂/∂z and ∂/∂ z̄ (see problem 3), it follows that these
linear operators act on polynomials in z and z̄ in the following way:

∂

∂z

∑
j,k

ajk zj z̄k
=∑

j,k

jajk zj−1 z̄k
∂

∂ z̄

∑
j,k

ajk zj z̄k
=∑

j,k

kajk zj z̄k−1.

Observe that these are the answers we would have obtained if we had taken “partial derivatives”
with respect to z and z̄.

EXAMPLE 1.6. The operators ∂/∂z and ∂/∂ z̄ act on log |z| as follows:
∂

∂z
log |z| = 1

4

(
∂

∂x
− i

∂

∂y

)
log(x2+ y2)= 1

2
x− iy
x2+ y2

= 1
2z

,

∂

∂ z̄
log |z| = 1

4

(
∂

∂x
+ i

∂

∂y

)
log(x2+ y2)= 1

2
x+ iy
x2+ y2

= 1
2z̄

.
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If we write log |z| as 1
2 log(zz̄) and take “partial derivatives” with respect to z and z̄, we obtain

∂f
∂z
= 1

2
z̄
zz̄
= 1

2z
∂f
∂ z̄
= 1

2
z
zz̄
= 1

2z̄
,

which agree with the previous computations.

In both of the above examples, we could formally consider z and z̄ as independent
variables and compute ∂f /∂z and ∂f /∂ z̄ by “partial differentiation” with respect to the
corresponding variable, pretending the other is fixed. Such formal computations are
not totallymeaningless and in fact there are practical situationswhere their legitimacy
can be justified. We will provide such a justification at the end of this section.

We continue identifying f = u+ iv with the map into the plane given by f (x, y)=
(u(x, y), v(x, y)). By definition, this map is real differentiable at p if there is a neces-
sarily unique linear map Df (p) :R2→R2, called the real derivative of f at p, such
that

lim
(x,y)→(0,0)

‖ f (p+ (x, y))− f (p)−Df (p)(x, y)‖
‖(x, y)‖ = 0.

Here ‖(x, y)‖=√x2+ y2 is the Euclidean norm which agrees with the absolute value
of x+ iy as a complex number. Equivalently, we can express this condition as the
first-order Taylor approximation formula: For all (x, y)∈R2 sufficiently close to the
origin (0, 0),

(1.4) f (p+ (x, y))= f (p)+Df (p)(x, y)+ ε(x, y),
where the “error term” ε(x, y) satisfies ‖ε(x, y)‖/‖(x, y)‖→ 0 as (x, y)→ (0, 0). It is
easy to see that in the standard basis ofR2, the linear mapDf (p) is represented by the
2× 2 matrix of partial derivatives

(1.5) Df (p)=


∂u
∂x
(p)

∂u
∂y
(p)

∂v
∂x
(p)

∂v
∂y
(p)

 .

For convenience, let us use the subscript notation for our differential operators.
Thus,

fx= ∂f
∂x

, fy= ∂f
∂y

, fz= ∂f
∂z

, fz̄= ∂f
∂ z̄

.

Suppose f has a real derivative at p so (1.4) holds. Using the matrix (1.5) for Df (p),
we see that

Df (p)(x, y)=
[
ux(p) uy(p)
vx(p) vy(p)

][
x
y

]
=
[
xux(p)+ yuy(p)
xvx(p)+ yvy(p)

]
,

which by (1.1) and (1.3) can be identified with the complex number
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(xux(p)+ yuy(p))+ i(xvx(p)+ yvy(p))= xfx(p)+ yfy(p)

= 1
2
(z+ z̄)( fz(p)+ fz̄(p))+ 1

2
(z− z̄)( fz(p)− fz̄(p))

= z fz(p)+ z̄ fz̄(p).

Hence, in our complex-variable notation the Taylor formula (1.4) reads

(1.6) f (p+ z)= f (p)+ z fz(p)+ z̄ fz̄(p)+ ε(z),
where ε(z)/z→ 0 as z→ 0. If fz̄(p)= 0, we obtain

f (p+ z)− f (p)
z

= fz(p)+ ε(z)z .

Letting z→ 0, it follows that the complex derivative f ′(p) exists and is equal to fz(p).
Conversely, suppose f ′(p) exists, so

f (p+ z)= f (p)+ f ′(p)z+ ε(z),
where ε(z)/z→ 0 as z→ 0. Then the complex multiplication z 7→ f ′(p)z, viewed as
a linear map R2→R2, satisfies the condition (1.4). Hence the real derivative Df (p)
exists andDf (p)(x, y) can be identified with f ′(p) · (x+ iy). If f ′(p)=α+ iβ , we have

f ′(p) · (x+ iy)= (αx−βy)+ i(βx+αy),
which shows Df (p) is represented by the matrix

(1.7) Df (p)=
[
α −β
β α

]
.

Comparing with (1.5), we see that α= ux(p)= vy(p) and β =−uy(p)= vx(p). In
particular,

fz̄(p)= 1
2
( fx(p)+ i fy(p))= 1

2
((α+ iβ)+ i(−β + iα))= 0.

Let us summarize our findings in the following

THEOREM 1.7. For a given complex-valued function f = u+ iv defined in an open
neighborhood of p∈C, the following conditions are equivalent:

(i) The complex derivative f ′(p) exists.
(ii) The real derivative Df (p) exists and

fz̄(p)= 0.

(iii) The real derivative Df (p) exists and

ux(p)= vy(p) uy(p)=−vx(p).
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Under any of these conditions, we have

f ′(p)= fz(p)= fx(p)=−i fy(p).

EXAMPLE 1.8. The polynomial f (z)= z2= (x2− y2)+ i(2xy) has the complex derivative f ′(z)=
2z for all z. Furthermore,

fx= 2x+ i2y= 2z fy=−2y+ i2x= i2z

fz = 2z fz̄ = 0,

which are consistent with Theorem 1.7.

EXAMPLE 1.9. Consider the continuous function f :C→C defined by f (z)= z5/|z|4 for z 6= 0
and f (0)= 0. Write f = u+ iv, where for (x, y) 6= (0, 0)

u(x, y)= x5− 10x3y2+ 5xy4

(x2+ y2)2
and v(x, y)= y5− 10x2y3+ 5x4y

(x2+ y2)2

and u(0, 0)= v(0, 0)= 0. Thus

ux(0, 0)= lim
x→0

u(x, 0)
x
= 1 and vy(0, 0)= lim

y→0

v(0, y)
y
= 1

and similarly

uy(0, 0)= lim
y→0

u(0, y)
y
= 0 and vx(0, 0)= lim

x→0

v(x, 0)
x
= 0,

so the pair of conditions in Theorem 1.7(iii) holds. However, the complex derivative f ′(0) does not
exist since

f (z)
z
=
(

z
|z|
)4

does not have a limit as z→ 0. For example, this quotient tends to 1 when z tends to 0 along the real
line, while it tends to −1 when z tends to 0 along the line Re(z)= Im(z). Note that this example
does not contradict Theorem 1.7 since Df (0) does not exist.

Here is another important observation: Suppose f ′(p)=α+ iβ so Df (p) has the
matrix form (1.7). If f ′(p) 6= 0, then det(Df (p))=α2+β2> 0, which meansDf (p) is
orientation-preserving. Moreover, the matrix (1.7) can be decomposed as

Df (p)=
[√

α2+β2 0
0

√
α2+β2

] 
α√

α2+β2
−β√
α2+β2

β√
α2+β2

α√
α2+β2

 .

Geometrically, this is a rotation by the angle arccos(α/
√
α2+β2) about the origin,

followed by a dilation by the factor
√
α2+β2. Alternatively, the action of Df (p) can

be identified with the complex multiplication by f ′(p), which amounts to a rotation
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by the argument of f ′(p) followed by a dilation by the factor | f ′(p)|. This geometric
description shows thatDf (p) is an angle-preserving linear transformation in the sense
that the angle between any twonon-zero vectors v1, v2 is the same as the angle between
their images Df (p)v1,Df (p)v2. Such linear maps are often called conformal because
they preserve shapes (but not necessarily scales).

COROLLARY 1.10. Suppose f has a non-zero complex derivative at p∈C. Then the
real derivative Df (p) :R2→R2 is an orientation-preserving conformal linear trans-
formation.

For several alternative characterizations of conformal linear transformations in
dimension 2, see problem 9. We will return to the issue of angle preservation in
chapters 4 and 6.

DEFINITION 1.11. Let U⊂C be non-empty and open. A function f :U→C is
called holomorphic inU if f ′(p) exists for every p∈U. The set of all holomorphic
functions inU is denoted byO(U). Elements ofO(C) are called entire functions.

Coined by Cauchy’s
students C. A. Briot and
J. C. Bouquet,
“holomorphic” comes from
the Greek óλoς (whole) and
µoρϕή (form). According
to R. Remmert, the
widespread adoption of the
notation O for holomorphic
appears to have been purely
accidental.

It follows from Theorem 1.2 that sums, products, and compositions of holomor-
phic functions are holomorphic. In particular, pointwise addition and multiplication
of functions make O(U) into a commutative ring with identity.

EXAMPLE 1.12 (Ratios). By Theorem 1.2(i), if f , g ∈O(U) and g 6= 0 in U, then f /g ∈O(U).
An important example is provided by rational functions: If f and g are polynomials in z, g not
identically zero, and if p1, . . . , pn are all the roots of the polynomial equation g(z)= 0, then the
rational function f /g is holomorphic in C r {p1, . . . , pn}.

The following is an immediate corollary of Theorem 1.7:

THEOREM 1.13. Suppose f = u+ iv is real differentiable as a map U→R2. Then f ∈
O(U) if and only if

(1.8) fz̄= 0,

or equivalently,

(1.9) ux= vy and uy=−vx
throughout U. In this case,

f ′= fz= fx=−i fy.

The pair of equations (1.9) are classically known as the Cauchy-Riemann equa-
tions. The equivalent form (1.8) is called the complex Cauchy-Riemann equation.

The Cauchy-Riemann
equations had been studied
earlier in the 18th century
by d’Alembert and Euler.
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EXAMPLE 1.14. The exponential function exp :C→C defined by

exp(z)= ez = ex eiy= ex(cos y+ i sin y)

is entire. In fact,

∂

∂x
exp= ex eiy and

∂

∂y
exp= iex eiy, so

∂

∂ z̄
exp= 0.

It follows that
exp′= ∂

∂z
exp= exp .

The basic identity
exp(z+w)= exp(z) exp(w) for z,w∈C

can be proved as follows: Fix w and set f (z)= exp(z+w). By the chain rule, f ′(z)= exp(z+w)=
f (z). Since exp 6= 0, the ratio g= f / exp is entire and g′= 0 everywhere by the quotient rule. It
follows that g is a constant function (this can be seen, for example, by noting that g′= 0 implies
that the real and imaginary parts of g have vanishing partial derivatives in the plane, hence are
constant). Since g(0)= exp(w), we conclude that g(z)= exp(z+w)/ exp(z)= exp(w) for all z, as
required.

EXAMPLE 1.15. Let ϕ : [0, 1]→ [0, 1] be a Cantor function, i.e., a continuous non-decreasing
function which satisfies ϕ(0)= 0, ϕ(1)= 1, and ϕ′= 0 a.e. (the graph of such ϕ is often called
a “devil’s staircase”). Extend ϕ to a map R→R by setting ϕ(x+ n)=ϕ(x)+ n for 0≤ x≤ 1 and
n∈Z. Define f :C→C by

f (x+ iy)= x+ i(y+ϕ(x)).
Then f is a homeomorphism, with fx= 1 and fy= i; hence fz = 1 and fz̄ = 0 a.e. on C. However,

As is customary, “a.e.” is
short for “almost
everywhere,” that is, outside
a set of Lebesgue measure
zero.

f is not holomorphic since ϕ′, and hence fz, fails to exist everywhere. This does not contradict
Theorem 1.13 because f is not real differentiable.

REMARK 1.16. The implication fz̄= 0=⇒ f ∈O(U) holds under much weaker con-
ditions than real differentiability in Theorem 1.13. For example, a generalization of a
classical theorem of Looman and Menshov asserts that if f :U→C is continuous, fz
and fz̄ exist outside a countable set in U, and fz̄= 0 a.e. in U, then f ∈O(U) [GM].
Another well-known result of the same flavor is “Weyl’s lemma” which is important
in the theory of quasiconformal maps (see [A3]).

We end this section with a brief justification for computing fz and fz̄ as partial
derivatives. Suppose F(z,w) is holomorphic in each variable near a point (p, p̄)∈
C×C. This means there is an r> 0 such that z 7→ F(z,w) is holomorphic in D(p, r)
for each fixed w∈D(p̄, r) and w 7→ F(z,w) is holomorphic in D(p̄, r) for each fixed
z ∈D(p, r). Set z= x+ iy and w= s+ it. Then F, viewed as a function of the four
real variables (x, y, s, t), can be shown to be real differentiable. Consider the function
f (z)= F(z, z̄)= F(x, y, x,−y) which is defined in some neighborhood of p. Using the
symbol Dj for partial differentiation with respect to the j-th variable, we apply the
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chain rule to obtain

fx=D1F+D3F and fy=D2F−D4F,

where the left sides of these equations are evaluated at z and the right sides are
evaluated at (z, z̄)= (x, y, x,−y). This gives

fz= 1
2( fx− ify)= 1

2(D1F− iD2F)+ 1
2(D3F+ iD4F)

fz̄= 1
2( fx+ ify)= 1

2(D1F+ iD2F)+ 1
2(D3F− iD4F).

Denote by DzF and DwF the complex derivatives of F with respect to each variable
when the other is kept fixed. Then (D1F− iD2F)/2=DzF and D3F+ iD4F= 0 since
F is holomorphic in w. Similarly, (D3F− iD4F)/2=DwF and D1F+ iD2F= 0 since
F is holomorphic in z. It follows that

fz=DzF and fz̄=DwF.

This means fz and fz̄ are obtained by taking the partial derivatives of F(z,w) with
respect to z and w, respectively, and then substituting w= z̄.

In Example 1.5, this result can be applied to the polynomial function F(z,w)=∑
j,k ajk z

j wk to justify the given formulas. In Example 1.6, it can be applied to
F(z,w)= log(zw) which, as we will see in chapter 2, has well-defined holomorphic
branches in each variable in a small neighborhood of (p, p̄) provided that p 6= 0.

1.2 Complex analytic functions

For every p∈C and every sequence {an}∞n=0 of complex numbers, we can form the
power series

(1.10)
∞∑
n=0

an (z− p)n

in the complex variable z. Such series provide an abundance of examples of holo-
morphic functions and play a central role in complex analysis, especially the classical
function theory according toWeierstrass. For now, the basic fact that we need to know
(or remember) is that each power series (1.10) has a disk of convergence about p char-
acterized by the property that it converges within this disk and diverges outside of it.
Moreover, we can effectively compute the radius of this disk once we know the coef-
ficients an or merely their asymptotic behavior as n→∞. This fact is stated more
precisely in the following

THEOREM 1.17 (Cauchy, 1821). Consider the power series (1.10) and define

(1.11) R= 1
lim supn→∞ n√|an| ∈ [0,+∞].
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Then (1.10) converges absolutely and uniformly in the disk D(p, r) for every r<R and
diverges at every point z with |z− p|>R.

The number R is called the radius of convergence of the power series (1.10).
Observe that the possibilities R= 0 or R=+∞ have not been excluded.

This result is also attributed
to Hadamard who
rediscovered it in 1888.

Proof. First consider the power series inside the disk of radius R. If R= 0 there
is nothing to prove, so assume R> 0 and let 0< r< s<R. The definition of R shows
that there is an integer N ≥ 1 such that |an| sn< 1 for all n≥N. If |z− p|< r, then

∞∑
n=N
|an| |z− p|n≤

∞∑
n=N
|an| rn=

∞∑
n=N
|an| sn

(r
s

)n≤ ∞∑
n=N

(r
s

)n
.

Since r/s< 1, the far right geometric series converges, which proves that the power
series converges absolutely and uniformly in D(p, r).

Now consider the power series outside the disk of radius R. If R=+∞ there is
nothing to prove, so assume R<+∞ and let r> s>R. The definition of R shows that
there is an increasing sequence S of positive integers such that |an| sn> 1 for all n∈ S.
If |z− p| = r, then

|an| |z− p|n= |an| sn
(r
s

)n
>
(r
s

)n
whenever n∈ S. Since r/s> 1, it follows that the power series diverges since its general
term fails to converge to zero.

The behavior of power series on the circle of convergence |z− p| =R is much
more subtle. In fact, no general statement similar to Theorem 1.17 can be made for
what should be happening on this circle.

EXAMPLE 1.18. The power series
∞∑
n=0

zn
∞∑
n=1

zn

n2

∞∑
n=1

zn

n

all have a radius of convergence of 1. The first diverges everywhere on the unit circle ∂D since its
general term zn does not tend to zero when |z| = 1. The second converges uniformly on ∂D since
it is dominated by the convergent series

∑
1/n2. The third converges at every point of ∂D other

than 1 (see problem 13).

More on the behavior of power series on the circle of convergence will be
discussed in chapter 10.

DEFINITION 1.19. Let U⊂C be non-empty and open. We call a function f :
U→C complex analytic if for every diskD(p, r)⊂U there exists a power series∑∞

n=0 an (z− p)n which converges to f (z) whenever z ∈D(p, r).
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It is a fundamental fact that a function is complex analytic in U if and only if it is
holomorphic in U. The following theorem proves the “only if ” part of this statement.
The “if ” part, which is more difficult, will be proved in Theorem 1.37.

THEOREM 1.20. Let f :U→C be complex analytic. Then

(i) f ∈O(U) and f ′ is also complex analytic in U.
(ii) All higher derivatives f (k) for k≥ 1 exist and are complex analytic in U. More-

over, the power series representation of the higher derivatives are obtained by
term-by-term differentiation of that of f , that is, if D(p, r)⊂U and

(1.12) f (z)=
∞∑
n=0

an (z− p)n for z ∈D(p, r),

then the representation

f (k)(z)=
∞∑
n=k

n(n− 1) · · · (n− k+ 1) an (z− p)n−k

holds in D(p, r).
(iii) The coefficients {an} of the power series (1.12) are given by

(1.13) an= f (n)(p)
n! (n≥ 0).

In particular, {an} is uniquely determined by f , so any power series in z− pwhich
converges to f in some disk in U centered at p must coincide with (1.12).

Proof. Define g(z)=∑∞n=1 nan (z− p)n−1. Note that by limn→∞ n√n= 1 and
the formula (1.11), the power series with coefficients {nan} has the same radius of
convergence as the power series with coefficients {an}, so g converges in D(p, r). We
will show that for every z0 ∈D(p, r), f ′(z0) exists and is equal to g(z0). This will prove
(i). Evidently, (ii) follows by induction from (i), and (iii) follows from (ii).

After replacing z− p by z, we may assume p= 0. Fix z0 ∈D(0, r) and take any
ε > 0. Choose s such that |z0|< s< r. Since the power series of g converges absolutely
in D(0, r), we can find an integer N ≥ 2 such that

∞∑
n=N+1

n|an| sn−1<ε.

For z 6= z0 in D(0, r), write

f (z)− f (z0)
z− z0

− g(z0)=
∞∑
n=2

an
(
zn− zn0
z− z0

− nzn−10

)

=
( N∑
n=2
+

∞∑
n=N+1

)
an (zn−1+ zn−2z0+ · · ·+ zn−10 − nzn−10 ).
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The first (finite) sum tends to 0 as z→ z0. The second sum has its absolute value
bounded above by

∑∞
n=N+1 2n|an| sn−1< 2ε if |z|< s. Hence,

lim sup
z→z0

∣∣∣∣ f (z)− f (z0)
z− z0

− g(z0)
∣∣∣∣≤ 2ε.

Since εwas arbitrary, it follows that limz→z0( f (z)− f (z0))/(z− z0) exists and is equal
to g(z0).

EXAMPLE 1.21. The radius of convergence of the power series f (z)=∑∞n=0 zn is 1, hence f ∈
O(D). The formula for the sum of a geometric series shows that in fact f (z)= 1/(1− z). Term-by-
term differentiation of this power series, which is legitimate by Theorem 1.20, yields other useful
formulas. For example, it follows that

∞∑
n=1

n zn−1=
(

1
1− z

)′
= 1
(1− z)2

,

so ∞∑
n=1

n zn= z
(1− z)2

for |z|< 1.

Differentiating once more, we obtain
∞∑
n=1

n2 zn−1=
(

z
(1− z)2

)′
= 1+ z
(1− z)3

,

so ∞∑
n=1

n2 zn= z(1+ z)
(1− z)3

for |z|< 1.

Continuing inductively, we can find closed expressions (as rational functions in z) for the power
series

∑∞
n=1 np zn in the unit disk for every positive integer p.

EXAMPLE 1.22. Since limn→∞ 1/ n√n! is easily seen to be 0, the radius of convergence of the
power series f (z)=∑∞n=0 zn/n! is +∞. Hence, by Theorem 1.20, f is an entire function with
f (0)= 1, and term-by-term differentiation gives f ′= f . The exponential function exp defined in
example 1.14 also satisfies exp(0)= 1 and exp′= exp. It follows that the ratio g= f / exp is entire,
g(0)= 1, and g′= 0 everywhere by the quotient rule, which shows g is the constant function 1.
Thus, we arrive at the following alternative formula for the exponential function:

exp(z)=
∞∑
n=0

zn

n! for all z ∈C.

1.3 Complex integration

We now turn to integration of complex-valued functions along curves. Our standing
assumption in this section is that all curves are piecewise smooth. This regularity
assumption greatly simplifies the arguments but it is not essential, as one can fashion
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a definition to allow more general curves such as those that are merely rectifiable.
However, such generalizations are not worth the extra effort: The integration theory
we are about to develop will be applied almost exclusively to holomorphic functions
and such integrals, as we will see in chapter 2, depend only on the “homology class” of
the curve. This means the integral along an arbitrary curve (rectifiable or not) can be
defined as the integral along any piecewise smooth curve in the same homology class.
Thus, one can ultimately arrive at the most general definition using only the special
case treated here.

Let U⊂C be a non-empty open set. A curve in U is a continuous map γ :
[a, b]→U, where [a, b]= {t ∈R : a≤ t≤ b}. We call γ (a) the initial point and γ (b)
the end point of γ . For simplicity we often say that γ is a curve from γ (a) to γ (b).
γ is a closed curve if γ (a)= γ (b). We denote by |γ | the image of γ as a subset
of C, that is, |γ | = {γ (t) : t ∈ [a, b]}. We say γ is piecewise C1 if there is a partition
a= t0< t1< · · ·< tn= b such that for each 1≤ k≤ n, γ is continuously differen-
tiable in the open interval (tk−1, tk), and the one-sided limits limt→t+k−1

γ ′(t) and
limt→t−k

γ ′(t) exist.
Throughout this section we will assume that all curves are piecewise C1, even if it is

not explicitly mentioned.

DEFINITION 1.23. Let γ : [a, b]→C be a curve and f : |γ |→C be a continuous
function. The integral of f along γ is the complex number defined by

(1.14)
∫
γ

f (z) dz=
∫ b

a
f (γ (t))γ ′(t) dt.

Here γ ′= dγ /dt is defined at all but finitely many points of [a, b].

By writing f = u+ iv and γ (t)= x(t)+ iy(t), and separating the real and imagi-
nary parts, we see that the integral in (1.14) can bewritten in terms of a pair of classical
“line integrals” along γ :

(1.15)
∫
γ

f (z) dz=
∫
γ

(u dx− v dy)+ i
∫
γ

(v dx+ u dy).

It is easy to see that the right side of (1.14) remains unchanged if we reparametrize
γ . In fact, if ϕ : [c, d]→ [a, b] is a C1 orientation-preserving homeomorphism and
η= γ ◦ϕ, then by the change of variable formula in calculus,∫ d

c
f (η(t)) η′(t) dt=

∫ d

c
f (γ (ϕ(t))) γ ′(ϕ(t)) ϕ′(t) dt

=
∫ b

a
f (γ (s)) γ ′(s) ds.
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In particular, the domain of γ can always be chosen to be the unit interval [0, 1] by
precomposing it with an affinemap, namely by considering the reparametrized curve
t 7→ γ ((1− t)a+ tb) instead.

Given γ : [0, 1]→C, the reverse curve γ− : [0, 1]→C is defined by γ−(t)=
γ (1− t). Since∫ 1

0
f (γ−(t)) (γ−)′(t) dt=−

∫ 1

0
f (γ (1− t)) γ ′(1− t) dt

=−
∫ 1

0
f (γ (t)) γ ′(t) dt,

we see that ∫
γ−

f (z) dz=−
∫
γ

f (z) dz.

There is an obvious way of combining two curves whenever the end point of one
is the initial point of the other: If γ , η : [0, 1]→U are curves such that γ (1)= η(0),
we can define the product γ � η : [0, 1]→U by

(γ � η)(t)=
{
γ (2t) t ∈ [0, 1/2]
η(2t− 1) t ∈ [1/2, 1].

This amounts to first traveling along γ and then along η, both with twice the usual
speed so as to finish the journey in unit time. The additivity property of the integral
shows that the relation

(1.16)
∫
γ �η

f (z) dz=
∫
γ

f (z) dz+
∫
η

f (z) dz

holds for every continuous function f : |γ | ∪ |η|→C.
Closely related to the complex integral is the notion of the line integral of

f :U→C, viewed as a scalar function, as one learns in calculus:

(1.17)
∫
γ

f (z) |dz| =
∫ 1

0
f (γ (t)) |γ ′(t)| dt.

For example, the case f = 1 gives∫
γ

|dz| =
∫ 1

0
|γ ′(t)| dt.

This is by definition the length of γ for which we use the notation length(γ ). It is
evident that ∣∣∣∣∫

γ

f (z) dz
∣∣∣∣≤ ∫

γ

| f (z)| |dz|.
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p

q

[p, q]
a b

c

∂T

T p

r

T(p, r)

Figure 1.1. Three basic curves that frequently arise in complex integration. From left to right: an
oriented segment, the oriented boundary of a triangle, and an oriented circle.

This proves the following useful inequality which we will frequently invoke when
estimating integrals:

(1.18)
∣∣∣∣∫
γ

f (z) dz
∣∣∣∣≤ sup

z∈|γ |
| f (z)| · length(γ ).

If we denote the supremum of | f | on |γ | by M and the length of γ by L, then
(1.18) reads | ∫

γ
f (z) dz| ≤ML. This is why (1.18) is informally referred to as the

ML-inequality.

EXAMPLE 1.24 (Oriented segments). For p, q∈C, let [p, q] denote the oriented line segment
traversed once from p to q (see Fig. 1.1 left). We take γ : [0, 1]→C defined by γ (t)= (1− t)
p+ tq as the standard parametrization of [p, q]. In the interest of simplifying our notations, we
often denote the image |γ | by [p, q] as well. Thus, for any continuous function f : [p, q]→C,∫

[p,q]
f (z) dz= (q− p)

∫ 1

0
f ((1− t)p+ tq) dt.

Note that
∫
[q,p] f (z) dz=−

∫
[p,q] f (z) dz since [q, p] is the reverse of [p, q].

EXAMPLE 1.25 (Oriented triangle boundaries). Let T be the closed triangle with vertices a, b, c
labeled counterclockwise. We use the notation T=4abc, so4abc=4bca=4cab. By definition,
the oriented boundary ∂T is the product ([a, b] � [b, c]) � [c, a], that is, the closed curve obtained
from the segment [a, b], followed by [b, c], followed by [c, a] (see Fig. 1.1 middle). Again, to sim-
plify notations, we denote the corresponding subset of the plane by ∂T as well. By (1.16), for any
continuous function f : ∂T→C,∫

∂T
f (z) dz=

∫
[a,b]

f (z) dz+
∫
[b,c]

f (z) dz+
∫
[c,a]

f (z) dz.

EXAMPLE 1.26 (Oriented circles). For p∈C and r> 0, let T(p, r) denote the oriented circle |z−
p| = r traversed once in the counterclockwise direction (see Fig. 1.1 right).We take γ : [0, 2π ]→C
defined by γ (t)= p+ reit as the standard parametrization of T(p, r), and often denote the image
|γ | = {z ∈C : |z− p| = r} by T(p, r) as well (the distinction is easily understood from the context).
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Evidently, for any continuous function f :T(p, r)→C,∫
T(p,r)

f (z) dz= ir
∫ 2π

0
f (p+ reit)eit dt.

As a special case, consider a continuous complex-valued function f defined on the unit circle
T=T(0, 1). The integral of f as a scalar function can be expressed as a complex integral:∫ 2π

0
f (eit) dt=

∫
T
f (z)

dz
iz
.

More generally, the Fourier coefficients of f , defined by

f̂ (n)= 1
2π

∫ 2π

0
f (eit) e−int dt (n∈Z),

can be expressed as the complex integrals

f̂ (n)= 1
2π i

∫
T

f (z)
zn+1

dz.

The following elementary observation will be useful:

LEMMA 1.27 (Continuous dependence on vertices). Let f :U→C be continuous and
T=4abc be a closed triangle in U. Then, for every ε > 0 there exists a δ > 0 such that
if |a− a′|, |b− b′|, and |c− c′| are all less than δ, then T′=4a′b′c′⊂U and∣∣∣∣∫

∂T
f (z) dz−

∫
∂T′

f (z) dz
∣∣∣∣<ε.

Proof. Since the integral along the oriented boundary of a triangle is the sum of
three integrals along oriented segments, it suffices to prove continuous dependence
for oriented segments. Fix [a, b]⊂U and let V be any open neighborhood of [a, b]
whose closure V is a compact subset of U. Given ε > 0, use uniform continuity of f
onV to find 0<δ<ε such that | f (z)− f (w)|<ε whenever z,w∈V and |z−w|<δ.
We can also arrange that [a′, b′]⊂V whenever |a− a′|<δ and |b− b′|<δ. Let [a′, b′]
be any such segment and note that if γ (t)= (1− t)a+ tb and η(t)= (1− t)a′+ tb′,
then

|γ (t)− η(t)| ≤ (1− t)|a− a′| + t|b− b′|<δ,
|γ ′(t)− η′(t)| = |(b− a)− (b′− a′)| ≤ |b− b′| + |a− a′|< 2δ

for all 0≤ t≤ 1. Hence,∣∣∣∣∫[a,b] f (z) dz−
∫
[a′,b′]

f (z) dz
∣∣∣∣= ∣∣∣∣∫ 1

0

[
f (γ (t)) γ ′(t)− f (η(t)) η′(t)

]
dt
∣∣∣∣

=
∣∣∣∣∫ 1

0

[(
f (γ (t))− f (η(t))

)
γ ′(t)+ f (η(t))

(
γ ′(t)− η′(t))] dt∣∣∣∣
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≤
∫ 1

0
|f (γ (t))− f (η(t))| |γ ′(t)| dt+

∫ 1

0
| f (η(t))| |γ ′(t)− η′(t)| dt

≤ |b− a|
∫ 1

0
| f (γ (t))− f (η(t))| dt+ 2δ

∫ 1

0
| f (η(t))| dt

≤ |b− a| ε+ 2δ sup
z∈V
| f (z)| ≤ (|b− a| + 2 sup

z∈V
| f (z)|) ε,

which proves the asserted continuity.

DEFINITION 1.28. A function F ∈O(U) is called a primitive of a continuous
function f :U→C if F′(z)= f (z) for all z ∈U.

A primitive is what
students of calculus call
“antidetrivative.”

Suppose F is a primitive of f and γ : [0, 1]→U is a piecewise C1 curve. By the
chain rule, the relation (F ◦ γ )′(t)= F′(γ (t))γ ′(t) holds for all but finitely many t ∈
[0, 1] (see problem 6). Since F′(γ (t))γ ′(t) is piecewise continuous on [0, 1] with at
worst jump discontinuities, the fundamental theorem of calculus shows that∫

γ

f (z) dz=
∫ 1

0
f (γ (t)) γ ′(t) dt=

∫ 1

0
F′(γ (t)) γ ′(t) dt

=
∫ 1

0
(F ◦ γ )′(t) dt= F(γ (1))− F(γ (0)).

THEOREM 1.29. A continuous function f :U→C has a primitive in U if and only if∫
γ
f (z) dz= 0 for every closed curve γ in U.

Proof. First suppose f has a primitive F. If γ : [0, 1]→U is a closed curve, then
γ (0)= γ (1), so ∫

γ

f (z) dz= F(γ (1))− F(γ (0))= 0.

Conversely, suppose f integrates to zero along every closed curve in U. To show f
has a primitive, it suffices to consider the case when U is connected (and therefore
path-connected); the general case follows by applying this case to each connected
component ofU. If γ , η are two curves inU with the same initial and end points, then
the product γ � η− is a closed curve. Hence, by additivity (1.16) and our assumption,∫

γ

f (ζ ) dζ −
∫
η

f (ζ ) dζ =
∫
γ

f (ζ ) dζ +
∫
η−

f (ζ ) dζ =
∫
γ �η−

f (ζ ) dζ = 0.

Now fix a point p∈U. For any z ∈U use path-connectivity of U to find a curve γ in
U from p to z and define

F(z)=
∫
γ

f (ζ ) dζ .
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By the above remark, the right-hand side is independent of the choice of γ and yields
a well-defined function F :U→C. Let us show that F is a primitive of f . Fix z0 ∈U
and choose r> 0 small enough so that D(z0, r)⊂U. Let z ∈D(z0, r) and let γ be any
curve in U from p to z0. The product γ � [z0, z] is then a curve in U from p to z. By
additivity,

F(z)− F(z0)=
∫
γ �[z0,z]

f (ζ ) dζ −
∫
γ

f (ζ ) dζ =
∫
[z0,z]

f (ζ ) dζ ,

so if z 6= z0,

(1.19)
F(z)− F(z0)

z− z0
− f (z0)= 1

z− z0

∫
[z0,z]

( f (ζ )− f (z0)) dζ .

Since f is continuous at z0, for each ε > 0 we can find a 0<δ< r such that | f (ζ )−
f (z0)|<ε whenever |ζ − z0|<δ. Since |z− z0|<δ implies |ζ − z0|<δ for every ζ ∈
[z0, z], theML-inequality (1.18) applied to the right side of (1.19) gives∣∣∣∣F(z)− F(z0)

z− z0
− f (z0)

∣∣∣∣≤ 1
|z− z0| · ε · length([z0, z])= ε

whenever 0< |z− z0|<δ. Thus, F′(z0) exists and is equal to f (z0). Since z0 ∈U was
arbitrary, we conclude that F is a primitive of f in U.

EXAMPLE 1.30. For every integer n 6=−1, the power function f (z)= zn has a primitive F(z)=
zn+1/(n+ 1). It follows from Theorem 1.29 that

∫
γ
zn dz= 0 if γ is any closed curve in the

punctured plane C r {0} and n 6=−1, or if γ is any closed curve in C and n≥ 0.
The case n=−1 is completely different: For any r> 0,∫

T(0,r)

1
z
dz=

∫ 2π

0

1
reit

rieit dt= 2π i 6= 0.

Note that the result is independent of the radius r. It follows from Theorem 1.29 that the function
z 7→ 1/z does not have a primitive in any punctured neighborhood of 0.

1.4 Cauchy’s theory in a disk

Our primary goal in this section is to prove that every holomorphic function in a
disk has a primitive. Somewhat surprisingly, all the local properties of holomorphic
functions are consequences of this central fact of Cauchy’s theory. The special case of
a disk will be enough for our purposes here; general domains and global issues will
be dealt with in chapter 2.

According to Theorem 1.29, the existence of a primitive is equivalent to having
vanishing integrals along all closed curves. Convexity of the disk allows us to replace
the latter with something far simpler in terms of triangles.
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THEOREM 1.31. Let D⊂C be an open disk and f :D→C be continuous. Suppose∫
∂T f (z) dz= 0 for every closed triangle T⊂D. Then f has a primitive in D.

Proof. Let p be the center of D and define

F(z)=
∫
[p,z]

f (ζ ) dζ for z ∈D.

We show that F is a primitive of f . Take distinct points z0, z ∈D and apply the
condition

∫
∂T f (ζ ) dζ = 0 to the closed triangle T with vertices p, z, z0 to obtain

F(z)− F(z0)=
∫
[p,z]

f (ζ ) dζ −
∫
[p,z0]

f (ζ ) dζ =
∫
[z0,z]

f (ζ ) dζ .

The rest of the argument, that is, dividing by z− z0 and letting z→ z0 to show that
F′(z0)= f (z0), is identical to the proof of Theorem 1.29.

The problemof constructing primitives inD is thus reduced to showing that every
f ∈O(D) satisfies the triangle condition of Theorem 1.31. If we knew that the deriva-
tive f ′ is continuous (which is true but we have not yet proved it), this would be
an easy consequence of Green’s theorem. To see this, suppose f ∈O(D) and assume
f ′ is continuous in D. Then the partial derivatives of u=Re( f ) and v= Im( f ) are
continuous in D and Green’s theorem together with the Cauchy-Riemann equations
ux= vy, uy=−vx shows that for every closed triangle T⊂D,∫

∂T
(u dx− v dy)=

∫∫
T
(−vx− uy) dx dy= 0

and ∫
∂T
(v dx+ u dy)=

∫∫
T
(ux− vy) dx dy= 0.

Hence, by (1.15),
∫
∂T f (z) dz= 0.

It was Goursat’s key observation that the triangle condition for a holomor-
phic function can be proved directly without any reference to Green’s theorem and
continuity of the derivative.

THEOREM 1.32 (Goursat, 1900). If f ∈O(U), then
∫
∂T f (z) dz= 0 for every closed

triangle T⊂U.
Goursat’s formulation of
Theorem 1.32 was in fact
more complicated. It was
A. Pringsheim who in 1901
realized it suffices to
consider triangles. Proof. Fix a closed triangle T⊂U and set I= ∫

∂T f (z) dz. Connect the mid-
points of the edges of T to form four congruent triangles, each having half the
diameter of T. It is easy to see that I is the sum of the integrals of f along the ori-
ented boundaries of these four triangles (see Fig. 1.2). Hence, one of these triangles,
which we call T1, satisfies ∣∣∣∣∫

∂T1
f (z) dz

∣∣∣∣≥ 1
4
|I|.



1.4 l Cauchy’s theory in a disk 21

Figure 1.2. The integral along the oriented boundary of the large triangle is equal to the sum of
the integrals along the oriented boundaries of the four smaller ones because each internal edge is
traversed twice in opposite directions, so its net contribution to the integral is zero.

Replacing T by T1 in the above construction and continuing inductively, we obtain a
nested sequence T⊃T1⊃T2⊃T3⊃ · · · of closed triangles with the properties

diam(Tn)= 2−n diam(T) and
∣∣∣∣∫
∂Tn

f (z) dz
∣∣∣∣≥ 4−n|I|.

Here “diam” denotes the Euclidean diameter.
The nested intersection

⋂∞
n=1 Tn is a single point p∈U. By the assumption, f ′(p)

exists, so given any ε > 0 there exists a δ > 0 such that

| f (z)− f (p)− f ′(p)(z− p)| ≤ ε|z− p| whenever |z− p|<δ.
Choose n large enough that diam(Tn)< δ. If z ∈ ∂Tn, then |z− p| ≤ diam(Tn), so

| f (z)− f (p)− f ′(p)(z− p)| ≤ ε diam(Tn).

Observe that by Theorem 1.29,∫
∂Tn
( f (p)+ f ′(p)(z− p)) dz= 0

since the integrand has a primitive f (p)z+ (1/2)f ′(p)(z− p)2. Hence, by the ML-

Edouard Jean-Baptiste
Goursat (1858–1936)

inequality (1.18),

4−n |I| ≤
∣∣∣∣∫
∂Tn

f (z) dz
∣∣∣∣= ∣∣∣∣∫

∂Tn
( f (z)− f (p)− f ′(p)(z− p)) dz

∣∣∣∣
≤ ε diam(Tn) length(∂Tn)

= ε 2−n diam(T) · 2−n length(∂T),
which implies

|I| ≤ ε diam(T) length(∂T).
Since this is true for every ε > 0, we must have I= 0.

Theorems 1.31 and 1.32 put together now imply the following

THEOREM 1.33. Let D⊂C be an open disk and f ∈O(D). Then f has a primitive in D.
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Combining Theorem 1.29 and Theorem 1.33, we arrive at

THEOREM 1.34 (Cauchy’s theorem in a disk, 1825). Let D⊂C be an open disk and
f ∈O(D). Then for every closed curve γ in D,∫

γ

f (z) dz= 0.

REMARK 1.35. Here is a minor technical point that will be exploited in the next result:
Cauchy’s Theorem 1.34 remains true under the apparently weaker assumption that f
is continuous in D and holomorphic in Dr {p} for some p∈D. To see this, it suffices
to show that

∫
∂T f (z) dz= 0 for every closed triangle T⊂D. If T⊂Dr {p}, this fol-

lows from Theorem 1.32, so assume p∈T. First consider the case where p is on the
boundary of T. By slightly moving a vertex of T, we can find a triangle T′, arbitrarily
close to T, for which p /∈T′. Since ∫

∂T′ f (z) dz= 0 and since by Lemma 1.27 the inte-
gral along the boundary of a triangle depends continuously on vertices, we conclude
that

∫
∂T f (z) dz= 0. If p belongs to the interior of T=4abc, write ∫

∂T f (z) dz as the
sum of the integrals along the boundaries of 4abp, 4bcp, and 4cap, and reduce to
the previous case.

Later we will see that such a point p is not really exceptional, so under the above
assumptions f ∈O(D) (compare Example 1.40 or Theorem 3.5).

THEOREM 1.36 (Cauchy’s integral formula in a disk). Let D⊂C be an open disk and
f ∈O(D). If D(p, r)⊂D, then

f (z)= 1
2π i

∫
T(p,r)

f (ζ )
ζ − z

dζ for z ∈D(p, r).

In particular, the values of f on the circleT(p, r) uniquely determine the values of
f inside the disk D(p, r).

Proof. Fix z ∈D(p, r) and define g :D→C by

g(ζ )=

f (ζ )− f (z)
ζ − z

ζ 6= z

f ′(z) ζ = z.

Evidently g is continuous in D and holomorphic in Dr {z}. Hence by Remark 1.35,∫
T(p,r) g(ζ ) dζ = 0. This gives

1
2π i

∫
T(p,r)

f (ζ )
ζ − z

dζ = f (z) · 1
2π i

∫
T(p,r)

1
ζ − z

dζ .

To finish the proof, we need to show that the integral on the right is 2π i. Take the
parametrization of T(p, r) defined by γ (t)= z+ ρ(t)eit for t ∈ [0, 2π ], where ρ(t) is
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T(p, r)

p
z

t
ρ(t)

z+ ρ(t) eit

Figure 1.3. Parametrizing the oriented circle T(p, r) as seen from an off-center point z, used in
the proof of Theorem 1.36.

the unique positive number which satisfies |z+ ρ(t)eit− p| = r (see Fig. 1.3). It is easy
to check that t 7→ ρ(t) is continuously differentiable. Hence∫

T(p,r)

1
ζ − z

dζ =
∫ 2π

0

γ ′(t)
γ (t)− z

dt=
∫ 2π

0

(ρ′(t)+ iρ(t)) eit

ρ(t) eit
dt

=
∫ 2π

0

ρ′(t)
ρ(t)

dt+ 2π i

= log(ρ(2π))− log(ρ(0))+ 2π i= 2π i,

where the last equality holds since ρ(2π)= ρ(0).

More general versions of Theorems 1.34 and 1.36 will be proved in chapter 2. For
now, let us collect some corollaries of these basic results. The first one is the converse
of Theorem 1.20:

THEOREM 1.37 (Holomorphic implies complex analytic). Every f ∈O(U) is complex
analytic in U: In every disk D(p, r)⊂U there is a power series representation

f (z)=
∞∑
n=0

an (z− p)n

where the coefficients {an} are given by

(1.20) an= f (n)(p)
n! =

1
2π i

∫
T(p,s)

f (ζ )
(ζ − p)n+1

dζ

for any 0< s< r.
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Proof. Fix 0< s< r and a point z ∈D(p, s). For any ζ ∈T(p, s),

1
ζ − z

= 1

(ζ − p)
[
1−

(
z− p
ζ − p

)] = 1
ζ − p

∞∑
n=0

(
z− p
ζ − p

)n
.

Here the geometric series converges uniformly in ζ since its general term has absolute
value |z− p|/s< 1 independent of ζ . Thus, we can integrate this series term-by-term
on the circle T(p, s). By Theorem 1.36, we obtain

f (z)= 1
2π i

∫
T(p,s)

∞∑
n=0

f (ζ )(z− p)n

(ζ − p)n+1
dζ =

∞∑
n=0

an (z− p)n,

where the an are given by (1.20). This proves that f can be represented by the power
series

∑∞
n=0 an (z− p)n in D(p, s). Since this holds for every s< r, Theorem 1.20(iii)

shows that the power series with the same coefficients must converge to f (z) for all
z ∈D(p, r).

It follows from Theorem 1.20 that

COROLLARY 1.38. If f ∈O(U), then f ′ ∈O(U). Therefore, the k-th derivative f (k) exists
and belongs to O(U) for every k≥ 1.

In particular, by Theorem 1.7, a differentiable map f :U→R2 which satisfies the
Cauchy-Riemann equation fz̄= 0 throughout U is automatically C∞-smooth.

The following converse of Theorem 1.32 is a useful criterion for deciding when a
continuous function is holomorphic:

THEOREM 1.39 (Morera, 1886). Suppose f :U→C is continuous and
∫
∂T f (z) dz= 0

for every closed triangle T⊂U. Then f ∈O(U).

Giacinto Morera
(1856–1909)

Proof. Let D⊂U be a disk. By Theorem 1.31, f has a primitive F in D. Since
F ∈O(D) and since the derivative of a holomorphic function is holomorphic by
Corollary 1.38, it follows that f = F′ ∈O(D). As this holds for every disk D⊂U, we
conclude that f ∈O(U).

EXAMPLE 1.40 (Lines are removable). LetU⊂C be open and L be a straight linewhich intersects
U. Suppose f :U→C is a continuous function which is holomorphic in U r L. We prove that f is
holomorphic in U by showing that

∫
∂T f (z) dz= 0 for every triangle T⊂U. First assume that the

interior of T is disjoint from L. Then, by moving the vertices of T slightly, we can find a triangle
T′⊂U r L, arbitrarily close to T. By Goursat’s Theorem 1.32,

∫
∂T′ f (z) dz= 0. Since the integral

along the boundary of a triangle depends continuously on vertices by Lemma 1.27, we must have∫
∂T f (z) dz= 0. If the interior of T meets L, write T as the union of at most three triangles with
pairwise disjoint interiors, each meeting L along a vertex or an edge, and reduce to the previous
case.
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This shows in particular that points are removable: If f is continuous in U and holomorphic
inU r {p}, then f ∈O(U). More general removability results are discussed in Theorem 3.5 and in
chapter 10.

REMARK 1.41. Morera’s theorem holds if we replace triangles with other special fami-
lies of closed sets with nice boundaries. A typical example, which turns out to bemore
convenient in some situations, is the family of closed rectangles, or even squares. See
problem 25.

THEOREM 1.42 (Cauchy’s estimates, 1835). Suppose f is continuous on D(p, r) and
holomorphic in D(p, r). Then,

(1.21) | f (n)(p)| ≤ n!
rn

sup
|z−p|=r

| f (z)| (n≥ 0).

The example f (z)= zn in the unit diskD shows that the bound in (1.21) is optimal
for each n.

Proof. Take 0< s< r and represent f by a power series
∑∞

n=0 an (z− p)n in
D(p, s). By (1.20),

| f (n)(p)| = n! |an| = n!
2π

∣∣∣∣∣
∫

T(p,s)

f (z)
(z− p)n+1

dz

∣∣∣∣∣ ,
which by theML-inequality implies

| f (n)(p)| ≤ n!
2π
· sup
|z−p|=s

| f (z)|
|z− p|n+1 · 2πs=

n!
sn

sup
|z−p|=s

| f (z)|.

Letting s→ r, we obtain (1.21).

Cauchy’s estimates lead to various quantitative results on holomorphic functions
which have no counterpart in the smooth category. Here we prove two basic but
important statements of this type.

THEOREM 1.43. If a holomorphic function f maps the diskD(p, r) into the diskD(q,R),
then | f ′(p)| ≤R/r.

Note thatwehavenot assumed q= f (p). In particular, if f :D→D is holomorphic,
then | f ′(0)| ≤ 1. This is a basic version of the so-called “Schwarz lemma” which has
deep applications and will be discussed at length in chapters 4, 11, and 13.

Proof. Take 0< s< r and apply (1.21) to the function g= f − q:

| f ′(p)| = |g′(p)| ≤ 1
s

sup
|z−p|=s

|g(z)| ≤ R
s
.

Letting s→ r proves the result.
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THEOREM 1.44 (Liouville, 1847). Every bounded entire function is constant.Liouville’s theorem was
known to Cauchy in 1844.

Proof. Let f ∈O(C) and | f (z)|<M for all z ∈C. Then f maps any disk D(p, r)
intoD(0,M), so by Theorem 1.43, | f ′(p)| ≤M/r. Letting r→+∞, we obtain f ′(p)=
0. Since this holds for every p∈C, f must be constant.

EXAMPLE 1.45 (The fundamental theorem of algebra). Let P :C→C be a polynomial of degree
d≥ 1, so limz→∞ P(z)=∞. If P(z) 6= 0 for all z, then f (z)= 1/P(z) is entire and limz→∞ f (z)= 0.
Hence there is an R> 0 such that | f (z)| ≤ 1 whenever |z| ≥R. Since by continuity f is bounded
on the closed disk D(0,R), it follows that f is bounded on the plane. Liouville’s theorem then
implies that f is constant, which is a contradiction. Thus, P has at least one root z1 and we can
write P(z)= (z− z1)P1(z) for some polynomial P1 of degree d− 1. If d− 1= 0 so P1 is constant,
stop. Otherwise repeat the argument with P1 in place of P to find a root z2 of P1, and so on.
This process stops after d steps and shows that P factors as P(z)= a(z− z1)(z− z2) · · · (z− zd) for
some a, z1, . . . , zd ∈C. Thus, every complex polynomial of degree d≥ 1 has precisely d roots counting
multiplicities.

We end this section with a useful theorem which, roughly speaking, says that

Joseph Liouville
(1809–1882)

the integral of a function which depends holomorphically on a parameter is a holo-
morphic function of that parameter, and differentiation under the integral sign is
legitimate. We formulate a simple version of the theorem which will be sufficient for
our purposes. One should note, however, that the result holds in much more general
settings (see problem 27).

THEOREM 1.46. Let U⊂C be open and ϕ :U×[a, b]→C be a continuous function
such that for each t ∈ [a, b], z 7→ϕ(z, t) is holomorphic in U with derivative ϕ′(z, t).
Then, the function f :U→C defined by

f (z)=
∫ b

a
ϕ(z, t) dt

is holomorphic and we can differentiate under the integral sign:

f ′(z)=
∫ b

a
ϕ′(z, t) dt for all z ∈U.

Proof. Fix p∈U and take r> 0 such that D(p, r)⊂U. Let 0< |z− p|< r/2. By
Theorem 1.36,

ϕ(z, t)−ϕ(p, t)= 1
2π i

∫
T(p,r)

ϕ(ζ , t)
(

1
ζ − z

− 1
ζ − p

)
dζ ,

so
ϕ(z, t)−ϕ(p, t)

z− p
= 1

2π i

∫
T(p,r)

ϕ(ζ , t)
(ζ − z)(ζ − p)

dζ .
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Since |ζ − z|> r/2 whenever |ζ − p| = r, we obtain the following estimate using the
ML-inequality: ∣∣∣∣ϕ(z, t)−ϕ(p, t)z− p

∣∣∣∣≤ 1
2π
·M · 2

r2
· 2πr= 2M

r
.

Here M is the supremum of |ϕ| on the compact set D(p, r)×[a, b]. If {zn} is any
sequence in U r {p} which tends to p, then

gn(t)= ϕ(zn, t)−ϕ(p, t)zn− p

is a sequence of continuous functions on [a, b] which converges pointwise to ϕ′(p, t)
and is bounded by 2M/r for all large n. Hence, by Lebesgue’s dominated convergence
theorem, the function t 7→ϕ′(p, t) is integrable on [a, b] and

lim
n→∞

f (zn)− f (p)
zn− p

= lim
n→∞

∫ b

a
gn(t) dt=

∫ b

a
ϕ′(p, t) dt.

Since this holds for every sequence zn→ p, we conclude that f ′(p) exists and equals∫ b
a ϕ
′(p, t) dt.

REMARK 1.47. Under the assumptions of the above theorem, the derivative (z, t) 7→
ϕ′(z, t) is in fact continuous on U×[a, b] (see problem 26). Thus, the result holds
when ϕ(z, t) is replaced with ϕ′(z, t), and a simple induction proves the formula

f (n)(z)=
∫ b

a
ϕ(n)(z, t) dt for all z ∈U,

where ϕ(n)(z, t) is the n-th derivative of ϕ(z, t) with respect to z.

The following corollary of the above theorem will be used repeatedly:

COROLLARY 1.48. Let γ : [0, 1]→C be a piecewise C1 curve and g : |γ |→C be a
continuous function. Then, for each integer n≥ 1, the function

f (z)=
∫
γ

g(ζ )
(ζ − z)n

dζ

is holomorphic in C r |γ |, and

f ′(z)= n
∫
γ

g(ζ )
(ζ − z)n+1

dζ for all z ∈C r |γ |.

Proof. This follows from Theorem 1.46 applied to ϕ : (C r |γ |)×[0, 1]→C
defined by

ϕ(z, t)= g(γ (t)) γ ′(t)
(γ (t)− z)n

.
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(Technically, we need to break up [0, 1] into finitely many intervals in which γ ′ is
continuous and add up the corresponding integrals, but that is a trivial matter.)

EXAMPLE 1.49 (Cauchy’s integral formula for higher derivatives). A special case of the above
corollary is Cauchy’s integral formula. If f ∈O(U) and D(p, r)⊂U, then

1
2π i

∫
T(p,r)

f (ζ )
ζ − z

dζ

defines a holomorphic function in C r T(p, r). By Theorem 1.36, this function coincides with f
inside the disk D(p, r). Differentiation under the integral sign then gives

f ′(z)= 1
2π i

∫
T(p,r)

f (ζ )
(ζ − z)2

dζ for z ∈D(p, r).

It follows by induction that for every n≥ 0,

f (n)(z)= n!
2π i

∫
T(p,r)

f (ζ )
(ζ − z)n+1

dζ for z ∈D(p, r).

Observe that for z= p this is the formula (1.20) that we derived earlier.

1.5 Mapping properties of holomorphic functions

DEFINITION 1.50. Suppose f ∈O(U) and f is not identically zero in the disk
D(p, r)⊂U. Let f (z)=∑∞n=0 an (z− p)n be the power series representation of
f in D(p, r). The smallest integerm with the property am 6= 0 is called the order
of p and is denoted by ord( f , p). Thus, ord( f , p)≥ 1 if and only if f (p)= 0. We
call p a simple zero of f if ord( f , p)= 1.

Alternatively, ord( f , p) can be described as the unique integerm≥ 0 for which f
can be factored as

f (z)= (z− p)m f1(z)

with f1 ∈O(U) and f1(p) 6= 0. The function f1 is given by (z− p)−mf (z) inU r {p}. It
is holomorphic in U since it is represented by the power series

∑∞
n=m an (z− p)n−m

in D(p, r).

EXAMPLE 1.51 (Holomorphic L’Hôpital’s rule). Suppose f and g are holomorphic in some
neighborhood of p, with ord( f , p)= ord(g, p)=m≥ 1. Write f (z)= (z− p)m f1(z) and g(z)=
(z− p)m g1(z), where f1 and g1 are non-zero and holomorphic near p. Since
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f1(p)= f (m)(p)
m! and g1(p)= g(m)(p)

m! ,

it follows that

lim
z→p

f (z)
g(z)
= f1(p)

g1(p)
= f (m)(p)

g(m)(p)
.

Let us call U⊂C a domain if U is non-empty, open, and connected.

LEMMA 1.52. Suppose U⊂C is a domain and f ∈O(U). If the zero-set f−1(0)={z ∈
U : f (z)= 0} has an accumulation point in U, then f = 0 everywhere in U.

Connectivity of U is essential here: If U is the disjoint union of non-empty open
sets U1 and U2, and if f = 0 in U1 and f = 1 in U2, then f ∈O(U) and f−1(0)=U1
has accumulation points in U, but f is not identically zero in U.

Proof. Let E be the non-empty set of accumulation points of f−1(0) in U. Then
E is closed in U, and E⊂ f−1(0) by continuity of f . Suppose p∈E and there is a disk
D(p, r)⊂U in which f is not identically zero. Then we can write f (z)= (z− p)mf1(z),
where m= ord( f , p)≥ 1, f1 ∈O(U), and f1(p) 6= 0. By continuity, f1 does not vanish
in some neighborhood of p. It follows that p is the only zero of f in this neighbor-
hood, contradicting the fact that p∈E. Thus, if D(p, r)⊂U, then f is identically zero
in D(p, r) and therefore D(p, r)⊂E. This shows that E is an open set. Since U is
connected, we must have E= f−1(0)=U.

Since every domain U⊂C is a countable union of open disks, it is clear that
every uncountable subset ofU must have an accumulation point inU. It follows from
the above lemma that a non-constant holomorphic function in a domain has at most
countably many zeros, all of which are isolated. Another immediate corollary is

THEOREM 1.53 (The identity theorem). Suppose U⊂C is a domain, f , g ∈O(U), and
the set {z ∈U : f (z)= g(z)} has an accumulation point in U. Then f = g everywhere
in U.

EXAMPLE 1.54. The complex cosine and sine are the entire functions defined by

cos z= 1
2
(eiz + e−iz)=

∞∑
n=0

(−1)n
(2n)! z

2n

sin z= 1
2i
(eiz − e−iz)=

∞∑
n=0

(−1)n
(2n+ 1)! z

2n+1.

They extend the usual cosine and sine functions defined on the real line. It follows from Theo-
rem 1.53 that any trigonometric identity between cosine and sine that holds on R must continue
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to hold in C. For example, the identities cos2 z+ sin2 z= 1, sin(2z)= 2 sin z cos z, and cos(2z)=
cos2 z− sin2 z remain valid for all z ∈C.

EXAMPLE 1.55. Suppose f ∈O(C) has the power series representation f (z)=∑∞n=0 an zn. If
every coefficient an is real, then clearly f (R)⊂R. Conversely, suppose f (R)⊂R and consider the
entire function

g(z)= f (z̄)=
∞∑
n=0

an zn.

Since f (z) is real when z is real, we have g= f on the real line. By Theorem 1.53, g= f everywhere
in C. Uniqueness of power series then shows that every an is real.

Our next goal is to prove the fundamental fact that the image of a domain under a
non-constant holomorphic function is open (Theorem 1.62). This will follow from a
much stronger result on the local behavior of holomorphic functions (Theorem 1.59).

LEMMA 1.56. If f ∈O(U), the function g :U×U→C defined by

g(ζ , z)=

f (ζ )− f (z)
ζ − z

ζ 6= z

f ′(z) ζ = z

is continuous.

Proof. Clearly g is continuous off the diagonal {(z, z) : z ∈U}, so it is enough
to check continuity of g at a diagonal point (p, p). Let ε > 0 be given. Since f ′ is
continuous at p, there is an r> 0 such that

(1.22) | f ′(z)− f ′(p)|<ε whenever z ∈D(p, r).

Let ζ , z ∈D(p, r). If ζ = z, then |g(ζ , z)− g(p, p)| = | f ′(z)− f ′(p)|<ε. If ζ 6= z, then

f (ζ )− f (z)
ζ − z

= 1
ζ − z

∫
[z,ζ ]

f ′(w) dw=
∫ 1

0
f ′(γ (t)) dt,

where γ (t)= (1− t)z+ tζ . Hence,

|g(ζ , z)− g(p, p)| =
∣∣∣∣ f (ζ )− f (z)

ζ − z
− f ′(p)

∣∣∣∣= ∣∣∣∣∫ 1

0
[ f ′(γ (t))− f ′(p) ] dt

∣∣∣∣
≤
∫ 1

0
| f ′(γ (t))− f ′(p)| dt≤ ε,

where the last inequality holds since by (1.22), | f ′(γ (t))− f ′(p)|<ε for every t ∈
[0, 1].

THEOREM 1.57 (Holomorphic inverse function theorem). Suppose f ∈O(U), p∈U,
and f ′(p) 6= 0. Then, there exist open neighborhoodsV ⊂U of p andW⊂C of f (p) such

(continued...)
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