Contents

Preface xi
Chapter 1. Rudiments of complex analysis 1
1.1 What is a holomorphic function? 2
1.2 Complex analytic functions. 10
1.3 Complex integration 13
1.4 Cauchy's theory in a disk. 19
1.5 Mapping properties of holomorphic functions 28
Problems 35
Chapter 2. Topological aspects of Cauchy's theory 42
2.1 Homotopy of curves 42
2.2 Covering properties of the exponential map 47
2.3 The winding number 53
2.4 Cycles and homology 61
2.5 The homology version of Cauchy's theorem 67
Problems 71
Chapter 3. Meromorphic functions 75
3.1 Isolated singularities 75
3.2 The Riemann sphere 78
3.3 Laurent series 82
3.4 Residues 87
3.5 The argument principle 93
Problems 98
Chapter 4. Möbius maps and the Schwarz lemma 103
4.1 The Möbius group 103
4.2 Three automorphism groups 110
4.3 Dynamics of Möbius maps 115
4.4 Conformal metrics 121
4.5 The hyperbolic metric 126
Problems 130
Chapter 5. Convergence and normality 135
5.1 Compact convergence 135
5.2 Convergence in the space of holomorphic functions 140
5.3 Normal families of meromorphic functions 147
Problems 155
Chapter 6. Conformal maps 158
6.1 The Riemann mapping theorem 158
6.2 Schlicht functions 161
6.3 Boundary behavior of Riemann maps 173
Problems 184
Chapter 7. Harmonic functions 189
7.1 Elementary properties of harmonic functions 189
7.2 Poisson's formula in a disk 198
7.3 Some applications of Poisson's formula 204
7.4 Boundary behavior of harmonic functions 208
7.5 Harmonic measure on the circle 216
Problems 221
Chapter 8. Zeros of holomorphic functions 228
8.1 Infinite products 228
8.2 Weierstrass's theory of elementary factors 236
8.3 Jensen's formula and its applications 241
8.4 Entire functions of finite order 246
Problems 259
Chapter 9. Interpolation and approximation theorems 265
9.1 Mittag-Leffler's theorem 265
9.2 Elliptic functions 271
9.3 Rational approximation 280
9.4 Finitely connected domains 287
Problems 293
Chapter 10. The holomorphic extension problem 301
10.1 Regular and singular points 301
10.2 Analytic continuation 305
10.3 Analytic arcs and reflections 309
10.4 Two removability results 321
Problems 330
Chapter 11. Ranges of holomorphic functions 335
11.1 Bloch's theorem 335
11.2 Picard's theorems 339
11.3 A rescaling approach to Picard and Montel 345
11.4 Ahlfors's generalization of the Schwarz-Pick lemma 349
Problems 356
Chapter 12. Holomorphic (branched) covering maps 358
12.1 Covering spaces 358
12.2 Holomorphic coverings and inverse branches 369
12.3 Proper maps and branched coverings 373
12.4 The Riemann-Hurwitz formula 378
Problems 383
Chapter 13. Uniformization of spherical domains 388
13.1 The modular group and thrice punctured spheres 388
13.2 The uniformization theorem 397
13.3 Hyperbolic domains 400
13.4 Conformal geometry of topological annuli 408
Problems 412
Bibliography 419
Image credits 421
Index 425

CHAPTER

Rudiments of complex analysis

We begin by recalling some standard definitions and notations. Throughout this book the complex plane will be denoted by \mathbb{C}. Every $z \in \mathbb{C}$ has a unique representation of the form $z=x+i y$ in which $x, y \in \mathbb{R}$ and i is the imaginary unit, so $i^{2}=-1$. We call x and y the real and imaginary parts of z and we write

$$
x=\operatorname{Re}(z) \quad \text { and } \quad y=\operatorname{Im}(z)
$$

The complex conjugate of z is the complex number defined by

$$
\bar{z}=x-i y .
$$

The relations

$$
\operatorname{Re}(z)=\frac{1}{2}(z+\bar{z}) \quad \text { and } \quad \operatorname{Im}(z)=\frac{1}{2 i}(z-\bar{z})
$$

are easily verified. Note that $z \in \mathbb{R}$ if and only if $z=\bar{z}$.
The absolute value (or modulus) of $z=x+i y$ is the non-negative number

$$
|z|=\sqrt{x^{2}+y^{2}}
$$

Evidently $|z|>0$ if and only if $z \neq 0$, and the relation

$$
|z|^{2}=z \bar{z}
$$

holds.
If $z \neq 0$, the complex number $z /|z|$ has absolute value 1 and can be represented by the complex exponential $e^{i \theta}=\cos \theta+i \sin \theta$ for some $\theta \in \mathbb{R}$, called an argument of z, which is unique up to addition of an integer multiple of 2π. The expression

$$
z=|z| e^{i \theta}
$$

is called the polar representation of z.
We will reserve the following notations for the open disk of radius r centered at p and the unit disk centered at the origin:

$$
\mathbb{D}(p, r)=\{z \in \mathbb{C}:|z-p|<r\} \quad \mathbb{D}=\mathbb{D}(0,1) .
$$

Unless otherwise stated, when we write $z=x+$ iy we mean x, y are real, so $x=\operatorname{Re}(z)$ and $y=\operatorname{Im}(z)$. Similarly, for a complex-valued function f, when we write $f=u+i v$ we mean u, v are real-valued, so $u=\operatorname{Re}(f)$ and $v=\operatorname{Im}(f)$.

1.1 What is a holomorphic function?

Our point of departure is the notion of complex differentiability which is fundamental to everything that follows.

DEFINITION 1.1. Suppose f is a complex-valued function defined in an open neighborhood of some $p \in \mathbb{C}$. We say f is (complex) differentiable at p if the limit

$$
f^{\prime}(p)=\lim _{z \rightarrow p} \frac{f(z)-f(p)}{z-p}
$$

exists. The number $f^{\prime}(p)$ is called the (complex) derivative of f at p.

As usual, differentiability implies continuity. In other words, if $f^{\prime}(p)$ exists, then f is continuous at p :

$$
\lim _{z \rightarrow p} f(z)-f(p)=\lim _{z \rightarrow p} \frac{f(z)-f(p)}{z-p}(z-p)=f^{\prime}(p) \cdot 0=0
$$

The basic rules of differentiation that we learn in calculus hold for complex derivatives.

THEOREM 1.2.

(i) Suppose f and g are differentiable at p. Then the sum $f+g$ and the product $f g$ are differentiable at p and

$$
\begin{aligned}
(f+g)^{\prime}(p) & =f^{\prime}(p)+g^{\prime}(p) \\
(f g)^{\prime}(p) & =f^{\prime}(p) g(p)+f(p) g^{\prime}(p)
\end{aligned}
$$

Moreover, if $g(p) \neq 0$, the quotient f / g is differentiable at p and

$$
\left(\frac{f}{g}\right)^{\prime}(p)=\frac{f^{\prime}(p) g(p)-f(p) g^{\prime}(p)}{(g(p))^{2}}
$$

(ii) Suppose g is differentiable at p and f is differentiable at $g(p)$. Then the composition $f \circ g$ is differentiable at p and the "chain rule" holds:

$$
(f \circ g)^{\prime}(p)=f^{\prime}(g(p)) g^{\prime}(p)
$$

The assumption $g(p) \neq 0$ in (i) combined with continuity of g at p implies that g is non-zero in an open neighborhood of p, so the quotient f / g is well defined in that neighborhood.

Proof. (i) The results for the sum and product are easy to prove. For the quotient rule, first consider the special case where $f=1$ everywhere. Writing

$$
\frac{\frac{1}{g(z)}-\frac{1}{g(p)}}{z-p}=-\frac{g(z)-g(p)}{z-p} \cdot \frac{1}{g(z) g(p)}
$$

letting $z \rightarrow p$, and using continuity of g at p, we obtain $(1 / g)^{\prime}(p)=-g^{\prime}(p) /(g(p))^{2}$. The quotient rule now follows from this and the product rule applied to $f / g=f \cdot 1 / g$.
(ii) Define

$$
\varepsilon(w)= \begin{cases}\frac{f(w)-f(g(p))}{w-g(p)}-f^{\prime}(g(p)) & w \neq g(p) \\ 0 & w=g(p)\end{cases}
$$

Then ε is continuous at $g(p)$ and the relation

$$
f(w)-f(g(p))=\left(f^{\prime}(g(p))+\varepsilon(w)\right)(w-g(p))
$$

holds throughout an open neighborhood of $g(p)$. Setting $w=g(z)$, it follows that

$$
\frac{(f \circ g)(z)-(f \circ g)(p)}{z-p}=\left(f^{\prime}(g(p))+\varepsilon(g(z))\right) \frac{g(z)-g(p)}{z-p} .
$$

As $z \rightarrow p, g(z) \rightarrow g(p)$ by continuity, so $\varepsilon(g(z)) \rightarrow 0$. Hence the right side tends to $f^{\prime}(g(p)) g^{\prime}(p)$.

EXAMPLE 1.3 (Polynomials). It is immediate from the definition that the identity function $f(z)=z$ is differentiable everywhere and $f^{\prime}(z)=1$ for all z. By repeated application of Theorem $1.2(\mathrm{i})$, it follows that every polynomial $f(z)=\sum_{n=0}^{d} a_{n} z^{n}$ is differentiable everywhere and $f^{\prime}(z)=\sum_{n=1}^{d} n a_{n} z^{n-1}$ for all z.

EXAMPLE 1.4. The smooth function $f(z)=z \bar{z}=|z|^{2}$ is complex differentiable only at the origin. In fact, for $z \neq 0$,

$$
\frac{f(p+z)-f(p)}{z}=\frac{(p+z)(\bar{p}+\bar{z})-p \bar{p}}{z}=p \frac{\bar{z}}{z}+\bar{p}+\bar{z} .
$$

But \bar{z} / z does not have a limit as $z \rightarrow 0$, since $\bar{z} / z=1$ if z is real while $\bar{z} / z=-1$ if z is purely imaginary. It follows that the right side of the above equation has a limit as $z \rightarrow 0$ if and only if $p=0$, and that $f^{\prime}(0)=0$.

Under the canonical isomorphism $\mathbb{C} \rightarrow \mathbb{R}^{2}$ given by $z=x+i y \mapsto(x, y)$, every complex-valued function $f=u+i v$ can be identified with the map into the plane
\mathbb{R}^{2} given by $f(x, y)=(u(x, y), v(x, y))$. To understand the relation between the complex derivative of f as defined above and the real derivative of f as a map into the plane, let us first introduce a few useful notations. The partial differentiation operators $\partial / \partial x$ and $\partial / \partial y$ acting on smooth real-valued functions can be naturally extended to complex-valued functions. Explicitly, if $f=u+i v$, we set

$$
\begin{equation*}
\frac{\partial f}{\partial x}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \quad \frac{\partial f}{\partial y}=\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y} . \tag{1.1}
\end{equation*}
$$

For complex-variable computations, it will be convenient to introduce two new differential operators defined by

$$
\begin{equation*}
\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right) \quad \frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right), \tag{1.2}
\end{equation*}
$$

so

$$
\begin{equation*}
\frac{\partial f}{\partial x}=\frac{\partial f}{\partial z}+\frac{\partial f}{\partial \bar{z}} \quad \frac{\partial f}{\partial y}=i\left(\frac{\partial f}{\partial z}-\frac{\partial f}{\partial \bar{z}}\right) . \tag{1.3}
\end{equation*}
$$

It is important to keep in mind that the operators $\partial / \partial z$ and $\partial / \partial \bar{z}$ are not defined as partial differentiation with respect to z and \bar{z}. After all, z and \bar{z} are not independent variables!

EXAMPLE 1.5. By the definition (1.2),

$$
\begin{array}{ll}
\frac{\partial}{\partial z}(z)=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)(x+i y)=1 & \frac{\partial}{\partial z}(\bar{z})=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)(x-i y)=0 \\
\frac{\partial}{\partial \bar{z}}(z)=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)(x+i y)=0 & \frac{\partial}{\partial \bar{z}}(\bar{z})=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)(x-i y)=1 .
\end{array}
$$

Since it is easy to verify the product rule for $\partial / \partial z$ and $\partial / \partial \bar{z}$ (see problem 3), it follows that these linear operators act on polynomials in z and \bar{z} in the following way:

$$
\frac{\partial}{\partial z}\left(\sum_{j, k} a_{j k} j^{j} \bar{z}^{k}\right)=\sum_{j, k} j a_{j k} z^{j-1} \bar{z}^{k} \quad \frac{\partial}{\partial \bar{z}}\left(\sum_{j, k} a_{j k} z^{j} \bar{z}^{k}\right)=\sum_{j, k} k a_{j k} z^{j} \bar{z}^{k-1} .
$$

Observe that these are the answers we would have obtained if we had taken "partial derivatives" with respect to z and \bar{z}.

EXAMPLE 1.6. The operators $\partial / \partial z$ and $\partial / \partial \bar{z}$ act on $\log |z|$ as follows:

$$
\begin{gathered}
\frac{\partial}{\partial z} \log |z|=\frac{1}{4}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) \log \left(x^{2}+y^{2}\right)=\frac{1}{2} \frac{x-i y}{x^{2}+y^{2}}=\frac{1}{2 z}, \\
\frac{\partial}{\partial \bar{z}} \log |z|=\frac{1}{4}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) \log \left(x^{2}+y^{2}\right)=\frac{1}{2} \frac{x+i y}{x^{2}+y^{2}}=\frac{1}{2 \bar{z}} .
\end{gathered}
$$

If we write $\log |z|$ as $\frac{1}{2} \log (z \bar{z})$ and take "partial derivatives" with respect to z and \bar{z}, we obtain

$$
\frac{\partial f}{\partial z}=\frac{1}{2} \frac{\bar{z}}{z \bar{z}}=\frac{1}{2 z} \quad \frac{\partial f}{\partial \bar{z}}=\frac{1}{2} \frac{z}{z \bar{z}}=\frac{1}{2 \bar{z}}
$$

which agree with the previous computations.

In both of the above examples, we could formally consider z and \bar{z} as independent variables and compute $\partial f / \partial z$ and $\partial f / \partial \bar{z}$ by "partial differentiation" with respect to the corresponding variable, pretending the other is fixed. Such formal computations are not totally meaningless and in fact there are practical situations where their legitimacy can be justified. We will provide such a justification at the end of this section.

We continue identifying $f=u+i v$ with the map into the plane given by $f(x, y)=$ $(u(x, y), v(x, y))$. By definition, this map is real differentiable at p if there is a necessarily unique linear map $D f(p): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, called the real derivative of f at p, such that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\|f(p+(x, y))-f(p)-D f(p)(x, y)\|}{\|(x, y)\|}=0 .
$$

Here $\|(x, y)\|=\sqrt{x^{2}+y^{2}}$ is the Euclidean norm which agrees with the absolute value of $x+i y$ as a complex number. Equivalently, we can express this condition as the first-order Taylor approximation formula: For all $(x, y) \in \mathbb{R}^{2}$ sufficiently close to the origin $(0,0)$,

$$
\begin{equation*}
f(p+(x, y))=f(p)+D f(p)(x, y)+\varepsilon(x, y) \tag{1.4}
\end{equation*}
$$

where the "error term" $\varepsilon(x, y)$ satisfies $\|\varepsilon(x, y)\| /\|(x, y)\| \rightarrow 0$ as $(x, y) \rightarrow(0,0)$. It is easy to see that in the standard basis of \mathbb{R}^{2}, the linear map $\operatorname{Df}(p)$ is represented by the 2×2 matrix of partial derivatives

$$
D f(p)=\left[\begin{array}{ll}
\frac{\partial u}{\partial x}(p) & \frac{\partial u}{\partial y}(p) \tag{1.5}\\
\frac{\partial v}{\partial x}(p) & \frac{\partial v}{\partial y}(p)
\end{array}\right]
$$

For convenience, let us use the subscript notation for our differential operators. Thus,

$$
f_{x}=\frac{\partial f}{\partial x}, \quad f_{y}=\frac{\partial f}{\partial y}, \quad f_{z}=\frac{\partial f}{\partial z}, \quad f_{\bar{z}}=\frac{\partial f}{\partial \bar{z}} .
$$

Suppose f has a real derivative at p so (1.4) holds. Using the matrix (1.5) for $D f(p)$, we see that

$$
D f(p)(x, y)=\left[\begin{array}{ll}
u_{x}(p) & u_{y}(p) \\
v_{x}(p) & v_{y}(p)
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x u_{x}(p)+y u_{y}(p) \\
x v_{x}(p)+y v_{y}(p)
\end{array}\right],
$$

which by (1.1) and (1.3) can be identified with the complex number

$$
\begin{aligned}
\left(x u_{x}(p)+y u_{y}(p)\right) & +i\left(x v_{x}(p)+y v_{y}(p)\right)=x f_{x}(p)+y f_{y}(p) \\
& =\frac{1}{2}(z+\bar{z})\left(f_{z}(p)+f_{\bar{z}}(p)\right)+\frac{1}{2}(z-\bar{z})\left(f_{z}(p)-f_{\bar{z}}(p)\right) \\
& =z f_{z}(p)+\bar{z} f_{\bar{z}}(p) .
\end{aligned}
$$

Hence, in our complex-variable notation the Taylor formula (1.4) reads

$$
\begin{equation*}
f(p+z)=f(p)+z f_{z}(p)+\bar{z} f_{\bar{z}}(p)+\varepsilon(z), \tag{1.6}
\end{equation*}
$$

where $\varepsilon(z) / z \rightarrow 0$ as $z \rightarrow 0$. If $f_{\bar{z}}(p)=0$, we obtain

$$
\frac{f(p+z)-f(p)}{z}=f_{z}(p)+\frac{\varepsilon(z)}{z} .
$$

Letting $z \rightarrow 0$, it follows that the complex derivative $f^{\prime}(p)$ exists and is equal to $f_{z}(p)$.
Conversely, suppose $f^{\prime}(p)$ exists, so

$$
f(p+z)=f(p)+f^{\prime}(p) z+\varepsilon(z)
$$

where $\varepsilon(z) / z \rightarrow 0$ as $z \rightarrow 0$. Then the complex multiplication $z \mapsto f^{\prime}(p) z$, viewed as a linear map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, satisfies the condition (1.4). Hence the real derivative $D f(p)$ exists and $D f(p)(x, y)$ can be identified with $f^{\prime}(p) \cdot(x+i y)$. If $f^{\prime}(p)=\alpha+i \beta$, we have

$$
f^{\prime}(p) \cdot(x+i y)=(\alpha x-\beta y)+i(\beta x+\alpha y)
$$

which shows $D f(p)$ is represented by the matrix

$$
D f(p)=\left[\begin{array}{cc}
\alpha & -\beta \tag{1.7}\\
\beta & \alpha
\end{array}\right]
$$

Comparing with (1.5), we see that $\alpha=u_{x}(p)=v_{y}(p)$ and $\beta=-u_{y}(p)=v_{x}(p)$. In particular,

$$
f_{\bar{z}}(p)=\frac{1}{2}\left(f_{x}(p)+i f_{y}(p)\right)=\frac{1}{2}((\alpha+i \beta)+i(-\beta+i \alpha))=0 .
$$

Let us summarize our findings in the following

THEOREM 1.7. For a given complex-valued function $f=u+i v$ defined in an open neighborhood of $p \in \mathbb{C}$, the following conditions are equivalent:
(i) The complex derivative $f^{\prime}(p)$ exists.
(ii) The real derivative $D f(p)$ exists and

$$
f_{\bar{z}}(p)=0 .
$$

(iii) The real derivative $\operatorname{Df}(p)$ exists and

$$
u_{x}(p)=v_{y}(p) \quad u_{y}(p)=-v_{x}(p) .
$$

Under any of these conditions, we have

$$
f^{\prime}(p)=f_{z}(p)=f_{x}(p)=-i f_{y}(p) .
$$

EXAMPLE 1.8. The polynomial $f(z)=z^{2}=\left(x^{2}-y^{2}\right)+i(2 x y)$ has the complex derivative $f^{\prime}(z)=$ $2 z$ for all z. Furthermore,

$$
\begin{array}{ll}
f_{x}=2 x+i 2 y=2 z & f_{y}=-2 y+i 2 x=i 2 z \\
f_{z}=2 z & f_{\bar{z}}=0,
\end{array}
$$

which are consistent with Theorem 1.7.

EXAMPLE 1.9. Consider the continuous function $f: \mathbb{C} \rightarrow \mathbb{C}$ defined by $f(z)=z^{5} /|z|^{4}$ for $z \neq 0$ and $f(0)=0$. Write $f=u+i v$, where for $(x, y) \neq(0,0)$

$$
u(x, y)=\frac{x^{5}-10 x^{3} y^{2}+5 x y^{4}}{\left(x^{2}+y^{2}\right)^{2}} \quad \text { and } \quad v(x, y)=\frac{y^{5}-10 x^{2} y^{3}+5 x^{4} y}{\left(x^{2}+y^{2}\right)^{2}}
$$

and $u(0,0)=v(0,0)=0$. Thus

$$
u_{x}(0,0)=\lim _{x \rightarrow 0} \frac{u(x, 0)}{x}=1 \quad \text { and } \quad v_{y}(0,0)=\lim _{y \rightarrow 0} \frac{v(0, y)}{y}=1
$$

and similarly

$$
u_{y}(0,0)=\lim _{y \rightarrow 0} \frac{u(0, y)}{y}=0 \quad \text { and } \quad v_{x}(0,0)=\lim _{x \rightarrow 0} \frac{v(x, 0)}{x}=0,
$$

so the pair of conditions in Theorem 1.7(iii) holds. However, the complex derivative $f^{\prime}(0)$ does not exist since

$$
\frac{f(z)}{z}=\left(\frac{z}{|z|}\right)^{4}
$$

does not have a limit as $z \rightarrow 0$. For example, this quotient tends to 1 when z tends to 0 along the real line, while it tends to -1 when z tends to 0 along the $\operatorname{line} \operatorname{Re}(z)=\operatorname{Im}(z)$. Note that this example does not contradict Theorem 1.7 since $D f(0)$ does not exist.

Here is another important observation: Suppose $f^{\prime}(p)=\alpha+i \beta$ so $D f(p)$ has the matrix form (1.7). If $f^{\prime}(p) \neq 0$, then $\operatorname{det}(D f(p))=\alpha^{2}+\beta^{2}>0$, which means $D f(p)$ is orientation-preserving. Moreover, the matrix (1.7) can be decomposed as

$$
D f(p)=\left[\begin{array}{cc}
\sqrt{\alpha^{2}+\beta^{2}} & 0 \\
0 & \sqrt{\alpha^{2}+\beta^{2}}
\end{array}\right]\left[\begin{array}{cc}
\frac{\alpha}{\sqrt{\alpha^{2}+\beta^{2}}} & \frac{-\beta}{\sqrt{\alpha^{2}+\beta^{2}}} \\
\frac{\beta}{\sqrt{\alpha^{2}+\beta^{2}}} & \frac{\alpha}{\sqrt{\alpha^{2}+\beta^{2}}}
\end{array}\right] .
$$

Geometrically, this is a rotation by the angle $\arccos \left(\alpha / \sqrt{\alpha^{2}+\beta^{2}}\right)$ about the origin, followed by a dilation by the factor $\sqrt{\alpha^{2}+\beta^{2}}$. Alternatively, the action of $D f(p)$ can be identified with the complex multiplication by $f^{\prime}(p)$, which amounts to a rotation

Coined by Cauchy's students C. A. Briot and J. C. Bouquet, "holomorphic" comes from the Greek ó $\lambda 0 \varsigma$ (whole) and $\mu о \rho \varphi \eta$ (form). According to R. Remmert, the widespread adoption of the notation \mathscr{O} for holomorphic appears to have been purely accidental.

The Cauchy-Riemann equations had been studied earlier in the 18th century by d'Alembert and Euler.
by the argument of $f^{\prime}(p)$ followed by a dilation by the factor $\left|f^{\prime}(p)\right|$. This geometric description shows that $D f(p)$ is an angle-preserving linear transformation in the sense that the angle between any two non-zero vectors v_{1}, v_{2} is the same as the angle between their images $D f(p) v_{1}, D f(p) v_{2}$. Such linear maps are often called conformal because they preserve shapes (but not necessarily scales).

COROLLARY 1.10. Suppose f has a non-zero complex derivative at $p \in \mathbb{C}$. Then the real derivative $D f(p): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is an orientation-preserving conformal linear transformation.

For several alternative characterizations of conformal linear transformations in dimension 2, see problem 9. We will return to the issue of angle preservation in chapters 4 and 6.

DEFINITION 1.11. Let $U \subset \mathbb{C}$ be non-empty and open. A function $f: U \rightarrow \mathbb{C}$ is called holomorphic in U if $f^{\prime}(p)$ exists for every $p \in U$. The set of all holomorphic functions in U is denoted by $\mathscr{O}(U)$. Elements of $\mathscr{O}(\mathbb{C})$ are called entirefunctions.

It follows from Theorem 1.2 that sums, products, and compositions of holomorphic functions are holomorphic. In particular, pointwise addition and multiplication of functions make $\mathscr{O}(U)$ into a commutative ring with identity.

EXAMPLE 1.12 (Ratios). By Theorem 1.2(i), if $f, g \in \mathscr{O}(U)$ and $g \neq 0$ in U, then $f / g \in \mathscr{O}(U)$. An important example is provided by rational functions: If f and g are polynomials in z, g not identically zero, and if p_{1}, \ldots, p_{n} are all the roots of the polynomial equation $g(z)=0$, then the rational function f / g is holomorphic in $\mathbb{C} \backslash\left\{p_{1}, \ldots, p_{n}\right\}$.

The following is an immediate corollary of Theorem 1.7:
THEOREM 1.13. Suppose $f=u+i v$ is real differentiable as a map $U \rightarrow \mathbb{R}^{2}$. Then $f \in$ $\mathscr{O}(U)$ if and only if

$$
\begin{equation*}
f_{\bar{z}}=0 \tag{1.8}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
u_{x}=v_{y} \quad \text { and } \quad u_{y}=-v_{x} \tag{1.9}
\end{equation*}
$$

throughout U. In this case,

$$
f^{\prime}=f_{z}=f_{x}=-i f_{y}
$$

The pair of equations (1.9) are classically known as the Cauchy-Riemann equations. The equivalent form (1.8) is called the complex Cauchy-Riemann equation.

EXAMPLE 1.14. The exponential function $\exp : \mathbb{C} \rightarrow \mathbb{C}$ defined by

$$
\exp (z)=e^{z}=e^{x} e^{i y}=e^{x}(\cos y+i \sin y)
$$

is entire. In fact,

$$
\frac{\partial}{\partial x} \exp =e^{x} e^{i y} \quad \text { and } \quad \frac{\partial}{\partial y} \exp =i e^{x} e^{i y}, \quad \text { so } \quad \frac{\partial}{\partial \bar{z}} \exp =0 .
$$

It follows that

$$
\exp ^{\prime}=\frac{\partial}{\partial z} \exp =\exp
$$

The basic identity

$$
\exp (z+w)=\exp (z) \exp (w) \quad \text { for } z, w \in \mathbb{C}
$$

can be proved as follows: Fix w and $\operatorname{set} f(z)=\exp (z+w)$. By the chain rule, $f^{\prime}(z)=\exp (z+w)=$ $f(z)$. Since $\exp \neq 0$, the ratio $g=f / \exp$ is entire and $g^{\prime}=0$ everywhere by the quotient rule. It follows that g is a constant function (this can be seen, for example, by noting that $g^{\prime}=0$ implies that the real and imaginary parts of g have vanishing partial derivatives in the plane, hence are constant). Since $g(0)=\exp (w)$, we conclude that $g(z)=\exp (z+w) / \exp (z)=\exp (w)$ for all z, as required.

EXAMPLE 1.15. Let $\varphi:[0,1] \rightarrow[0,1]$ be a Cantor function, i.e., a continuous non-decreasing function which satisfies $\varphi(0)=0, \varphi(1)=1$, and $\varphi^{\prime}=0$ a.e. (the graph of such φ is often called a "devil's staircase"). Extend φ to a map $\mathbb{R} \rightarrow \mathbb{R}$ by setting $\varphi(x+n)=\varphi(x)+n$ for $0 \leq x \leq 1$ and $n \in \mathbb{Z}$. Define $f: \mathbb{C} \rightarrow \mathbb{C}$ by

$$
f(x+i y)=x+i(y+\varphi(x)) .
$$

Then f is a homeomorphism, with $f_{x}=1$ and $f_{y}=i$; hence $f_{z}=1$ and $f_{\bar{z}}=0$ a.e. on \mathbb{C}. However, f is not holomorphic since φ^{\prime}, and hence f_{z}, fails to exist everywhere. This does not contradict Theorem 1.13 because f is not real differentiable.

REMARK 1.16. The implication $f_{\bar{z}}=0 \Longrightarrow f \in \mathscr{O}(U)$ holds under much weaker conditions than real differentiability in Theorem 1.13. For example, a generalization of a classical theorem of Looman and Menshov asserts that if $f: U \rightarrow \mathbb{C}$ is continuous, f_{z} and $f_{\bar{z}}$ exist outside a countable set in U, and $f_{\bar{z}}=0$ a.e. in U, then $f \in \mathscr{O}(U)$ [GM]. Another well-known result of the same flavor is "Weyl's lemma" which is important in the theory of quasiconformal maps (see [A3]).

We end this section with a brief justification for computing f_{z} and $f_{\bar{z}}$ as partial derivatives. Suppose $F(z, w)$ is holomorphic in each variable near a point $(p, \bar{p}) \in$ $\mathbb{C} \times \mathbb{C}$. This means there is an $r>0$ such that $z \mapsto F(z, w)$ is holomorphic in $\mathbb{D}(p, r)$ for each fixed $w \in \mathbb{D}(\bar{p}, r)$ and $w \mapsto F(z, w)$ is holomorphic in $\mathbb{D}(\bar{p}, r)$ for each fixed $z \in \mathbb{D}(p, r)$. Set $z=x+i y$ and $w=s+i t$. Then F, viewed as a function of the four real variables (x, y, s, t), can be shown to be real differentiable. Consider the function $f(z)=F(z, \bar{z})=F(x, y, x,-y)$ which is defined in some neighborhood of p. Using the symbol D_{j} for partial differentiation with respect to the j-th variable, we apply the

As is customary, "a.e." is
short for "almost everywhere," that is, outside a set of Lebesgue measure zero.
chain rule to obtain

$$
f_{x}=D_{1} F+D_{3} F \quad \text { and } \quad f_{y}=D_{2} F-D_{4} F,
$$

where the left sides of these equations are evaluated at z and the right sides are evaluated at $(z, \bar{z})=(x, y, x,-y)$. This gives

$$
\begin{aligned}
& f_{z}=\frac{1}{2}\left(f_{x}-i f_{y}\right)=\frac{1}{2}\left(D_{1} F-i D_{2} F\right)+\frac{1}{2}\left(D_{3} F+i D_{4} F\right) \\
& f_{\bar{z}}=\frac{1}{2}\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(D_{1} F+i D_{2} F\right)+\frac{1}{2}\left(D_{3} F-i D_{4} F\right) .
\end{aligned}
$$

Denote by $D_{z} F$ and $D_{w} F$ the complex derivatives of F with respect to each variable when the other is kept fixed. Then $\left(D_{1} F-i D_{2} F\right) / 2=D_{z} F$ and $D_{3} F+i D_{4} F=0$ since F is holomorphic in w. Similarly, $\left(D_{3} F-i D_{4} F\right) / 2=D_{w} F$ and $D_{1} F+i D_{2} F=0$ since F is holomorphic in z. It follows that

$$
f_{z}=D_{z} F \quad \text { and } \quad f_{\bar{z}}=D_{w} F
$$

This means f_{z} and $f_{\bar{z}}$ are obtained by taking the partial derivatives of $F(z, w)$ with respect to z and w, respectively, and then substituting $w=\bar{z}$.

In Example 1.5, this result can be applied to the polynomial function $F(z, w)=$ $\sum_{j, k} a_{j k} z^{j} w^{k}$ to justify the given formulas. In Example 1.6, it can be applied to $F(z, w)=\log (z w)$ which, as we will see in chapter 2 , has well-defined holomorphic branches in each variable in a small neighborhood of (p, \bar{p}) provided that $p \neq 0$.

1.2 Complex analytic functions

For every $p \in \mathbb{C}$ and every sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ of complex numbers, we can form the power series

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}(z-p)^{n} \tag{1.10}
\end{equation*}
$$

in the complex variable z. Such series provide an abundance of examples of holomorphic functions and play a central role in complex analysis, especially the classical function theory according to Weierstrass. For now, the basic fact that we need to know (or remember) is that each power series (1.10) has a disk of convergence about p characterized by the property that it converges within this disk and diverges outside of it. Moreover, we can effectively compute the radius of this disk once we know the coefficients a_{n} or merely their asymptotic behavior as $n \rightarrow \infty$. This fact is stated more precisely in the following

THEOREM 1.17 (Cauchy, 1821). Consider the power series (1.10) and define

$$
\begin{equation*}
R=\frac{1}{\lim \sup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}} \in[0,+\infty] . \tag{1.11}
\end{equation*}
$$

Then (1.10) converges absolutely and uniformly in the disk $\mathbb{D}(p, r)$ for every $r<R$ and diverges at every point z with $|z-p|>R$.

The number R is called the radius of convergence of the power series (1.10). Observe that the possibilities $R=0$ or $R=+\infty$ have not been excluded.

Proof. First consider the power series inside the disk of radius R. If $R=0$ there is nothing to prove, so assume $R>0$ and let $0<r<s<R$. The definition of R shows that there is an integer $N \geq 1$ such that $\left|a_{n}\right| s^{n}<1$ for all $n \geq N$. If $|z-p|<r$, then

$$
\sum_{n=N}^{\infty}\left|a_{n}\right||z-p|^{n} \leq \sum_{n=N}^{\infty}\left|a_{n}\right| r^{n}=\sum_{n=N}^{\infty}\left|a_{n}\right| s^{n}\left(\frac{r}{s}\right)^{n} \leq \sum_{n=N}^{\infty}\binom{r}{s}^{n}
$$

Since $r / s<1$, the far right geometric series converges, which proves that the power series converges absolutely and uniformly in $\mathbb{D}(p, r)$.

Now consider the power series outside the disk of radius R. If $R=+\infty$ there is nothing to prove, so assume $R<+\infty$ and let $r>s>R$. The definition of R shows that there is an increasing sequence S of positive integers such that $\left|a_{n}\right| s^{n}>1$ for all $n \in S$. If $|z-p|=r$, then

$$
\left|a_{n}\right||z-p|^{n}=\left|a_{n}\right| s^{n}\binom{r}{\frac{r}{s}}^{n}>\binom{r}{s}^{n}
$$

whenever $n \in S$. Since $r / s>1$, it follows that the power series diverges since its general term fails to converge to zero.

The behavior of power series on the circle of convergence $|z-p|=R$ is much more subtle. In fact, no general statement similar to Theorem 1.17 can be made for what should be happening on this circle.

EXAMPLE 1.18. The power series

$$
\sum_{n=0}^{\infty} z^{n} \quad \sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}} \quad \sum_{n=1}^{\infty} \frac{z^{n}}{n}
$$

all have a radius of convergence of 1 . The first diverges everywhere on the unit circle $\partial \mathbb{D}$ since its general term z^{n} does not tend to zero when $|z|=1$. The second converges uniformly on $\partial \mathbb{D}$ since it is dominated by the convergent series $\sum 1 / n^{2}$. The third converges at every point of $\partial \mathbb{D}$ other than 1 (see problem 13).

More on the behavior of power series on the circle of convergence will be discussed in chapter 10.

DEFINITION 1.19. Let $U \subset \mathbb{C}$ be non-empty and open. We call a function f : $U \rightarrow \mathbb{C}$ complex analytic if for every disk $\mathbb{D}(p, r) \subset U$ there exists a power series $\sum_{n=0}^{\infty} a_{n}(z-p)^{n}$ which converges to $f(z)$ whenever $z \in \mathbb{D}(p, r)$.

This result is also attributed to Hadamard who rediscovered it in 1888.

It is a fundamental fact that a function is complex analytic in U if and only if it is holomorphic in U. The following theorem proves the "only if" part of this statement. The "if" part, which is more difficult, will be proved in Theorem 1.37.

THEOREM 1.20. Let $f: U \rightarrow \mathbb{C}$ be complex analytic. Then
(i) $f \in \mathscr{O}(U)$ and f^{\prime} is also complex analytic in U.
(ii) All higher derivatives $f^{(k)}$ for $k \geq 1$ exist and are complex analytic in U. Moreover, the power series representation of the higher derivatives are obtained by term-by-term differentiation of that of f, that is, if $\mathbb{D}(p, r) \subset U$ and

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n}(z-p)^{n} \quad \text { for } z \in \mathbb{D}(p, r) \tag{1.12}
\end{equation*}
$$

then the representation

$$
f^{(k)}(z)=\sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) a_{n}(z-p)^{n-k}
$$

holds in $\mathbb{D}(p, r)$.
(iii) The coefficients $\left\{a_{n}\right\}$ of the power series (1.12) are given by

$$
\begin{equation*}
a_{n}=\frac{f^{(n)}(p)}{n!} \quad(n \geq 0) \tag{1.13}
\end{equation*}
$$

In particular, $\left\{a_{n}\right\}$ is uniquely determined by f, so any power series in $z-p$ which converges to f in some disk in U centered at p must coincide with (1.12).

Proof. Define $g(z)=\sum_{n=1}^{\infty} n a_{n}(z-p)^{n-1}$. Note that by $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$ and the formula (1.11), the power series with coefficients $\left\{n a_{n}\right\}$ has the same radius of convergence as the power series with coefficients $\left\{a_{n}\right\}$, so g converges in $\mathbb{D}(p, r)$. We will show that for every $z_{0} \in \mathbb{D}(p, r), f^{\prime}\left(z_{0}\right)$ exists and is equal to $g\left(z_{0}\right)$. This will prove (i). Evidently, (ii) follows by induction from (i), and (iii) follows from (ii).

After replacing $z-p$ by z, we may assume $p=0$. Fix $z_{0} \in \mathbb{D}(0, r)$ and take any $\varepsilon>0$. Choose s such that $\left|z_{0}\right|<s<r$. Since the power series of g converges absolutely in $\mathbb{D}(0, r)$, we can find an integer $N \geq 2$ such that

$$
\sum_{n=N+1}^{\infty} n\left|a_{n}\right| s^{n-1}<\varepsilon
$$

For $z \neq z_{0}$ in $\mathbb{D}(0, r)$, write

$$
\begin{aligned}
\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} & -g\left(z_{0}\right)=\sum_{n=2}^{\infty} a_{n}\left(\frac{z^{n}-z_{0}^{n}}{z-z_{0}}-n z_{0}^{n-1}\right) \\
& =\left(\sum_{n=2}^{N}+\sum_{n=N+1}^{\infty}\right) a_{n}\left(z^{n-1}+z^{n-2} z_{0}+\cdots+z_{0}^{n-1}-n z_{0}^{n-1}\right) .
\end{aligned}
$$

The first (finite) sum tends to 0 as $z \rightarrow z_{0}$. The second sum has its absolute value bounded above by $\sum_{n=N+1}^{\infty} 2 n\left|a_{n}\right| s^{n-1}<2 \varepsilon$ if $|z|<s$. Hence,

$$
\limsup _{z \rightarrow z_{0}}\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}-g\left(z_{0}\right)\right| \leq 2 \varepsilon
$$

Since ε was arbitrary, it follows that $\lim _{z \rightarrow z_{0}}\left(f(z)-f\left(z_{0}\right)\right) /\left(z-z_{0}\right)$ exists and is equal to $g\left(z_{0}\right)$.

EXAMPLE 1.21. The radius of convergence of the power series $f(z)=\sum_{n=0}^{\infty} z^{n}$ is 1 , hence $f \in$ $\mathscr{O}(\mathbb{D})$. The formula for the sum of a geometric series shows that in fact $f(z)=1 /(1-z)$. Term-byterm differentiation of this power series, which is legitimate by Theorem 1.20, yields other useful formulas. For example, it follows that

$$
\sum_{n=1}^{\infty} n z^{n-1}=\left(\frac{1}{1-z}\right)^{\prime}=\frac{1}{(1-z)^{2}}
$$

so

$$
\sum_{n=1}^{\infty} n z^{n}=\frac{z}{(1-z)^{2}} \quad \text { for }|z|<1
$$

Differentiating once more, we obtain

$$
\sum_{n=1}^{\infty} n^{2} z^{n-1}=\left(\frac{z}{(1-z)^{2}}\right)^{\prime}=\frac{1+z}{(1-z)^{3}},
$$

so

$$
\sum_{n=1}^{\infty} n^{2} z^{n}=\frac{z(1+z)}{(1-z)^{3}} \quad \text { for }|z|<1
$$

Continuing inductively, we can find closed expressions (as rational functions in z) for the power series $\sum_{n=1}^{\infty} n^{p} z^{n}$ in the unit disk for every positive integer p.

EXAMPLE 1.22. Since $\lim _{n \rightarrow \infty} 1 / \sqrt[n]{n!}$ is easily seen to be 0 , the radius of convergence of the power series $f(z)=\sum_{n=0}^{\infty} z^{n} / n!$ is $+\infty$. Hence, by Theorem 1.20, f is an entire function with $f(0)=1$, and term-by-term differentiation gives $f^{\prime}=f$. The exponential function exp defined in example 1.14 also satisfies $\exp (0)=1$ and $\exp ^{\prime}=\exp$. It follows that the ratio $g=f / \exp$ is entire, $g(0)=1$, and $g^{\prime}=0$ everywhere by the quotient rule, which shows g is the constant function 1 . Thus, we arrive at the following alternative formula for the exponential function:

$$
\exp (z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \quad \text { for all } z \in \mathbb{C}
$$

1.3 Complex integration

We now turn to integration of complex-valued functions along curves. Our standing assumption in this section is that all curves are piecewise smooth. This regularity assumption greatly simplifies the arguments but it is not essential, as one can fashion
a definition to allow more general curves such as those that are merely rectifiable. However, such generalizations are not worth the extra effort: The integration theory we are about to develop will be applied almost exclusively to holomorphic functions and such integrals, as we will see in chapter 2, depend only on the "homology class" of the curve. This means the integral along an arbitrary curve (rectifiable or not) can be defined as the integral along any piecewise smooth curve in the same homology class. Thus, one can ultimately arrive at the most general definition using only the special case treated here.

Let $U \subset \mathbb{C}$ be a non-empty open set. A curve in U is a continuous map γ : $[a, b] \rightarrow U$, where $[a, b]=\{t \in \mathbb{R}: a \leq t \leq b\}$. We call $\gamma(a)$ the initial point and $\gamma(b)$ the end point of γ. For simplicity we often say that γ is a curve from $\gamma(a)$ to $\gamma(b)$. γ is a closed curve if $\gamma(a)=\gamma(b)$. We denote by $|\gamma|$ the image of γ as a subset of \mathbb{C}, that is, $|\gamma|=\{\gamma(t): t \in[a, b]\}$. We say γ is piecewise C^{1} if there is a partition $a=t_{0}<t_{1}<\cdots<t_{n}=b$ such that for each $1 \leq k \leq n, \gamma$ is continuously differentiable in the open interval $\left(t_{k-1}, t_{k}\right)$, and the one-sided limits $\lim _{t \rightarrow t_{k-1}^{+}} \gamma^{\prime}(t)$ and $\lim _{t \rightarrow t_{k}^{-}} \gamma^{\prime}(t)$ exist.

Throughout this section we will assume that all curves are piecewise C^{1}, even if it is not explicitly mentioned.

DEFINITION 1.23. Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a curve and $f:|\gamma| \rightarrow \mathbb{C}$ be a continuous function. The integral off along γ is the complex number defined by

$$
\begin{equation*}
\int_{\gamma} f(z) d z=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t \tag{1.14}
\end{equation*}
$$

Here $\gamma^{\prime}=d \gamma / d t$ is defined at all but finitely many points of $[a, b]$.

By writing $f=u+i v$ and $\gamma(t)=x(t)+i y(t)$, and separating the real and imaginary parts, we see that the integral in (1.14) can be written in terms of a pair of classical "line integrals" along γ :

$$
\begin{equation*}
\int_{\gamma} f(z) d z=\int_{\gamma}(u d x-v d y)+i \int_{\gamma}(v d x+u d y) . \tag{1.15}
\end{equation*}
$$

It is easy to see that the right side of (1.14) remains unchanged if we reparametrize γ. In fact, if $\varphi:[c, d] \rightarrow[a, b]$ is a C^{1} orientation-preserving homeomorphism and $\eta=\gamma \circ \varphi$, then by the change of variable formula in calculus,

$$
\begin{aligned}
\int_{c}^{d} f(\eta(t)) \eta^{\prime}(t) d t & =\int_{c}^{d} f(\gamma(\varphi(t))) \gamma^{\prime}(\varphi(t)) \varphi^{\prime}(t) d t \\
& =\int_{a}^{b} f(\gamma(s)) \gamma^{\prime}(s) d s .
\end{aligned}
$$

In particular, the domain of γ can always be chosen to be the unit interval $[0,1]$ by precomposing it with an affine map, namely by considering the reparametrized curve $t \mapsto \gamma((1-t) a+t b)$ instead.

Given $\gamma:[0,1] \rightarrow \mathbb{C}$, the reverse curve $\gamma^{-}:[0,1] \rightarrow \mathbb{C}$ is defined by $\gamma^{-}(t)=$ $\gamma(1-t)$. Since

$$
\begin{aligned}
\int_{0}^{1} f\left(\gamma^{-}(t)\right)\left(\gamma^{-}\right)^{\prime}(t) d t & =-\int_{0}^{1} f(\gamma(1-t)) \gamma^{\prime}(1-t) d t \\
& =-\int_{0}^{1} f(\gamma(t)) \gamma^{\prime}(t) d t
\end{aligned}
$$

we see that

$$
\int_{\gamma^{-}} f(z) d z=-\int_{\gamma} f(z) d z
$$

There is an obvious way of combining two curves whenever the end point of one is the initial point of the other: If $\gamma, \eta:[0,1] \rightarrow U$ are curves such that $\gamma(1)=\eta(0)$, we can define the product $\gamma \cdot \eta:[0,1] \rightarrow U$ by

$$
(\gamma \cdot \eta)(t)= \begin{cases}\gamma(2 t) & t \in[0,1 / 2] \\ \eta(2 t-1) & t \in[1 / 2,1]\end{cases}
$$

This amounts to first traveling along γ and then along η, both with twice the usual speed so as to finish the journey in unit time. The additivity property of the integral shows that the relation

$$
\begin{equation*}
\int_{\gamma \cdot \eta} f(z) d z=\int_{\gamma} f(z) d z+\int_{\eta} f(z) d z \tag{1.16}
\end{equation*}
$$

holds for every continuous function $f:|\gamma| \cup|\eta| \rightarrow \mathbb{C}$.
Closely related to the complex integral is the notion of the line integral of $f: U \rightarrow \mathbb{C}$, viewed as a scalar function, as one learns in calculus:

$$
\begin{equation*}
\int_{\gamma} f(z)|d z|=\int_{0}^{1} f(\gamma(t))\left|\gamma^{\prime}(t)\right| d t . \tag{1.17}
\end{equation*}
$$

For example, the case $f=1$ gives

$$
\int_{\gamma}|d z|=\int_{0}^{1}\left|\gamma^{\prime}(t)\right| d t
$$

This is by definition the length of γ for which we use the notation length (γ). It is evident that

$$
\left|\int_{\gamma} f(z) d z\right| \leq \int_{\gamma}|f(z)||d z|
$$

∂T

Figure 1.1. Three basic curves that frequently arise in complex integration. From left to right: an oriented segment, the oriented boundary of a triangle, and an oriented circle.

This proves the following useful inequality which we will frequently invoke when estimating integrals:

$$
\begin{equation*}
\left|\int_{\gamma} f(z) d z\right| \leq \sup _{z \in|\gamma|}|f(z)| \cdot \text { length }(\gamma) . \tag{1.18}
\end{equation*}
$$

If we denote the supremum of $|f|$ on $|\gamma|$ by M and the length of γ by L, then (1.18) reads $\left|\int_{\gamma} f(z) d z\right| \leq M L$. This is why (1.18) is informally referred to as the ML-inequality.

EXAMPLE 1.24 (Oriented segments). For $p, q \in \mathbb{C}$, let $[p, q]$ denote the oriented line segment traversed once from p to q (see Fig. 1.1 left). We take $\gamma:[0,1] \rightarrow \mathbb{C}$ defined by $\gamma(t)=(1-t)$ $p+t q$ as the standard parametrization of $[p, q]$. In the interest of simplifying our notations, we often denote the image $|\gamma|$ by $[p, q]$ as well. Thus, for any continuous function $f:[p, q] \rightarrow \mathbb{C}$,

$$
\int_{[p, q]} f(z) d z=(q-p) \int_{0}^{1} f((1-t) p+t q) d t .
$$

Note that $\int_{[q, p]} f(z) d z=-\int_{[p, q]} f(z) d z$ since $[q, p]$ is the reverse of $[p, q]$.

EXAMPLE 1.25 (Oriented triangle boundaries). Let T be the closed triangle with vertices a, b, c labeled counterclockwise. We use the notation $T=\Delta a b c$, so $\Delta a b c=\Delta b c a=\Delta c a b$. By definition, the oriented boundary ∂T is the product $([a, b] \cdot[b, c]) \cdot[c, a]$, that is, the closed curve obtained from the segment $[a, b]$, followed by $[b, c]$, followed by $[c, a]$ (see Fig. 1.1 middle). Again, to simplify notations, we denote the corresponding subset of the plane by ∂T as well. By (1.16), for any continuous function $f: \partial T \rightarrow \mathbb{C}$,

$$
\int_{\partial T} f(z) d z=\int_{[a, b]} f(z) d z+\int_{[b, c]} f(z) d z+\int_{[c, a]} f(z) d z .
$$

EXAMPLE 1.26 (Oriented circles). For $p \in \mathbb{C}$ and $r>0$, let $\mathbb{T}(p, r)$ denote the oriented circle $\mid z-$ $p \mid=r$ traversed once in the counterclockwise direction (see Fig. 1.1 right). We take $\gamma:[0,2 \pi] \rightarrow \mathbb{C}$ defined by $\gamma(t)=p+r e^{i t}$ as the standard parametrization of $\mathbb{T}(p, r)$, and often denote the image $|\gamma|=\{z \in \mathbb{C}:|z-p|=r\}$ by $\mathbb{T}(p, r)$ as well (the distinction is easily understood from the context).

Evidently, for any continuous function $f: \mathbb{T}(p, r) \rightarrow \mathbb{C}$,

$$
\int_{\mathbb{T}(p, r)} f(z) d z=i r \int_{0}^{2 \pi} f\left(p+r e^{i t}\right) e^{i t} d t .
$$

As a special case, consider a continuous complex-valued function f defined on the unit circle $\mathbb{T}=\mathbb{T}(0,1)$. The integral of f as a scalar function can be expressed as a complex integral:

$$
\int_{0}^{2 \pi} f\left(e^{i t}\right) d t=\int_{\mathbb{T}} f(z) \frac{d z}{i z} .
$$

More generally, the Fourier coefficients of f, defined by

$$
\hat{f}(n)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i t}\right) e^{-i n t} d t \quad(n \in \mathbb{Z})
$$

can be expressed as the complex integrals

$$
\hat{f}(n)=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f(z)}{z^{n+1}} d z .
$$

The following elementary observation will be useful:
LEMMA 1.27 (Continuous dependence on vertices). Let $f: U \rightarrow \mathbb{C}$ be continuous and $T=\triangle a b c$ be a closed triangle in U. Then, for every $\varepsilon>0$ there exists a $\delta>0$ such that if $\left|a-a^{\prime}\right|,\left|b-b^{\prime}\right|$, and $\left|c-c^{\prime}\right|$ are all less than δ, then $T^{\prime}=\triangle a^{\prime} b^{\prime} c^{\prime} \subset U$ and

$$
\left|\int_{\partial T} f(z) d z-\int_{\partial T^{\prime}} f(z) d z\right|<\varepsilon .
$$

Proof. Since the integral along the oriented boundary of a triangle is the sum of three integrals along oriented segments, it suffices to prove continuous dependence for oriented segments. Fix $[a, b] \subset U$ and let V be any open neighborhood of $[a, b]$ whose closure \bar{V} is a compact subset of U. Given $\varepsilon>0$, use uniform continuity of f on V to find $0<\delta<\varepsilon$ such that $|f(z)-f(w)|<\varepsilon$ whenever $z, w \in V$ and $|z-w|<\delta$. We can also arrange that $\left[a^{\prime}, b^{\prime}\right] \subset V$ whenever $\left|a-a^{\prime}\right|<\delta$ and $\left|b-b^{\prime}\right|<\delta$. Let $\left[a^{\prime}, b^{\prime}\right]$ be any such segment and note that if $\gamma(t)=(1-t) a+t b$ and $\eta(t)=(1-t) a^{\prime}+t b^{\prime}$, then

$$
\begin{aligned}
|\gamma(t)-\eta(t)| & \leq(1-t)\left|a-a^{\prime}\right|+t\left|b-b^{\prime}\right|<\delta, \\
\left|\gamma^{\prime}(t)-\eta^{\prime}(t)\right| & =\left|(b-a)-\left(b^{\prime}-a^{\prime}\right)\right| \leq\left|b-b^{\prime}\right|+\left|a-a^{\prime}\right|<2 \delta
\end{aligned}
$$

for all $0 \leq t \leq 1$. Hence,

$$
\begin{aligned}
& \left|\int_{[a, b]} f(z) d z-\int_{\left[a^{\prime}, b^{\prime}\right]} f(z) d z\right|=\left|\int_{0}^{1}\left[f(\gamma(t)) \gamma^{\prime}(t)-f(\eta(t)) \eta^{\prime}(t)\right] d t\right| \\
& \quad=\left|\int_{0}^{1}\left[(f(\gamma(t))-f(\eta(t))) \gamma^{\prime}(t)+f(\eta(t))\left(\gamma^{\prime}(t)-\eta^{\prime}(t)\right)\right] d t\right|
\end{aligned}
$$

A primitive is what students of calculus call "antidetrivative."

$$
\begin{aligned}
& \leq \int_{0}^{1}|f(\gamma(t))-f(\eta(t))|\left|\gamma^{\prime}(t)\right| d t+\int_{0}^{1}|f(\eta(t))|\left|\gamma^{\prime}(t)-\eta^{\prime}(t)\right| d t \\
& \leq|b-a| \int_{0}^{1}|f(\gamma(t))-f(\eta(t))| d t+2 \delta \int_{0}^{1}|f(\eta(t))| d t \\
& \leq|b-a| \varepsilon+2 \delta \sup _{z \in V}|f(z)| \leq\left(|b-a|+2 \sup _{z \in V}|f(z)|\right) \varepsilon,
\end{aligned}
$$

which proves the asserted continuity.

DEFINITION 1.28. A function $F \in \mathscr{O}(U)$ is called a primitive of a continuous function $f: U \rightarrow \mathbb{C}$ if $F^{\prime}(z)=f(z)$ for all $z \in U$.

Suppose F is a primitive of f and $\gamma:[0,1] \rightarrow U$ is a piecewise C^{1} curve. By the chain rule, the relation $(F \circ \gamma)^{\prime}(t)=F^{\prime}(\gamma(t)) \gamma^{\prime}(t)$ holds for all but finitely many $t \in$ [0,1] (see problem 6). Since $F^{\prime}(\gamma(t)) \gamma^{\prime}(t)$ is piecewise continuous on [0, 1] with at worst jump discontinuities, the fundamental theorem of calculus shows that

$$
\begin{aligned}
\int_{\gamma} f(z) d z & =\int_{0}^{1} f(\gamma(t)) \gamma^{\prime}(t) d t=\int_{0}^{1} F^{\prime}(\gamma(t)) \gamma^{\prime}(t) d t \\
& =\int_{0}^{1}(F \circ \gamma)^{\prime}(t) d t=F(\gamma(1))-F(\gamma(0))
\end{aligned}
$$

THEOREM 1.29. A continuous function $f: U \rightarrow \mathbb{C}$ has a primitive in U if and only if $\int_{\gamma} f(z) d z=0$ for every closed curve γ in U.

Proof. First suppose f has a primitive F. If $\gamma:[0,1] \rightarrow U$ is a closed curve, then $\gamma(0)=\gamma(1)$, so

$$
\int_{\gamma} f(z) d z=F(\gamma(1))-F(\gamma(0))=0 .
$$

Conversely, suppose f integrates to zero along every closed curve in U. To show f has a primitive, it suffices to consider the case when U is connected (and therefore path-connected); the general case follows by applying this case to each connected component of U. If γ, η are two curves in U with the same initial and end points, then the product $\gamma \cdot \eta^{-}$is a closed curve. Hence, by additivity (1.16) and our assumption,

$$
\int_{\gamma} f(\zeta) d \zeta-\int_{\eta} f(\zeta) d \zeta=\int_{\gamma} f(\zeta) d \zeta+\int_{\eta^{-}} f(\zeta) d \zeta=\int_{\gamma \cdot \eta^{-}} f(\zeta) d \zeta=0
$$

Now fix a point $p \in U$. For any $z \in U$ use path-connectivity of U to find a curve γ in U from p to z and define

$$
F(z)=\int_{\gamma} f(\zeta) d \zeta
$$

By the above remark, the right-hand side is independent of the choice of γ and yields a well-defined function $F: U \rightarrow \mathbb{C}$. Let us show that F is a primitive of f. Fix $z_{0} \in U$ and choose $r>0$ small enough so that $\mathbb{D}\left(z_{0}, r\right) \subset U$. Let $z \in \mathbb{D}\left(z_{0}, r\right)$ and let γ be any curve in U from p to z_{0}. The product $\gamma \cdot\left[z_{0}, z\right]$ is then a curve in U from p to z. By additivity,

$$
F(z)-F\left(z_{0}\right)=\int_{\gamma \cdot\left[z_{0}, z\right]} f(\zeta) d \zeta-\int_{\gamma} f(\zeta) d \zeta=\int_{\left[z_{0}, z\right]} f(\zeta) d \zeta
$$

so if $z \neq z_{0}$,

$$
\begin{equation*}
\frac{F(z)-F\left(z_{0}\right)}{z-z_{0}}-f\left(z_{0}\right)=\frac{1}{z-z_{0}} \int_{\left[z_{0}, z\right]}\left(f(\zeta)-f\left(z_{0}\right)\right) d \zeta . \tag{1.19}
\end{equation*}
$$

Since f is continuous at z_{0}, for each $\varepsilon>0$ we can find a $0<\delta<r$ such that $\mid f(\zeta)-$ $f\left(z_{0}\right) \mid<\varepsilon$ whenever $\left|\zeta-z_{0}\right|<\delta$. Since $\left|z-z_{0}\right|<\delta$ implies $\left|\zeta-z_{0}\right|<\delta$ for every $\zeta \in$ [$\left.z_{0}, z\right]$, the $M L$-inequality (1.18) applied to the right side of (1.19) gives

$$
\left|\frac{F(z)-F\left(z_{0}\right)}{z-z_{0}}-f\left(z_{0}\right)\right| \leq \frac{1}{\left|z-z_{0}\right|} \cdot \varepsilon \cdot \text { length }\left(\left[z_{0}, z\right]\right)=\varepsilon
$$

whenever $0<\left|z-z_{0}\right|<\delta$. Thus, $F^{\prime}\left(z_{0}\right)$ exists and is equal to $f\left(z_{0}\right)$. Since $z_{0} \in U$ was arbitrary, we conclude that F is a primitive of f in U.

EXAMPLE 1.30. For every integer $n \neq-1$, the power function $f(z)=z^{n}$ has a primitive $F(z)=$ $z^{n+1} /(n+1)$. It follows from Theorem 1.29 that $\int_{\gamma} z^{n} d z=0$ if γ is any closed curve in the punctured plane $\mathbb{C} \backslash\{0\}$ and $n \neq-1$, or if γ is any closed curve in \mathbb{C} and $n \geq 0$.

The case $n=-1$ is completely different: For any $r>0$,

$$
\int_{\mathbb{T}(0, r)} \frac{1}{z} d z=\int_{0}^{2 \pi} \frac{1}{r e^{i t}} r i e^{i t} d t=2 \pi i \neq 0 .
$$

Note that the result is independent of the radius r. It follows from Theorem 1.29 that the function $z \mapsto 1 / z$ does not have a primitive in any punctured neighborhood of 0 .

1.4 Cauchy's theory in a disk

Our primary goal in this section is to prove that every holomorphic function in a disk has a primitive. Somewhat surprisingly, all the local properties of holomorphic functions are consequences of this central fact of Cauchy's theory. The special case of a disk will be enough for our purposes here; general domains and global issues will be dealt with in chapter 2 .

According to Theorem 1.29, the existence of a primitive is equivalent to having vanishing integrals along all closed curves. Convexity of the disk allows us to replace the latter with something far simpler in terms of triangles.

THEOREM 1.31. Let $D \subset \mathbb{C}$ be an open disk and $f: D \rightarrow \mathbb{C}$ be continuous. Suppose $\int_{\partial T} f(z) d z=0$ for every closed triangle $T \subset D$. Then f has a primitive in D.

Proof. Let p be the center of D and define

$$
F(z)=\int_{[p, z]} f(\zeta) d \zeta \quad \text { for } z \in D
$$

We show that F is a primitive of f. Take distinct points $z_{0}, z \in D$ and apply the condition $\int_{\partial T} f(\zeta) d \zeta=0$ to the closed triangle T with vertices p, z, z_{0} to obtain

$$
F(z)-F\left(z_{0}\right)=\int_{[p, z]} f(\zeta) d \zeta-\int_{\left[p, z_{0}\right]} f(\zeta) d \zeta=\int_{\left[z_{0}, z\right]} f(\zeta) d \zeta
$$

The rest of the argument, that is, dividing by $z-z_{0}$ and letting $z \rightarrow z_{0}$ to show that $F^{\prime}\left(z_{0}\right)=f\left(z_{0}\right)$, is identical to the proof of Theorem 1.29.

The problem of constructing primitives in D is thus reduced to showing that every $f \in \mathscr{O}(D)$ satisfies the triangle condition of Theorem 1.31. If we knew that the derivative f^{\prime} is continuous (which is true but we have not yet proved it), this would be an easy consequence of Green's theorem. To see this, suppose $f \in \mathscr{O}(D)$ and assume f^{\prime} is continuous in D. Then the partial derivatives of $u=\operatorname{Re}(f)$ and $v=\operatorname{Im}(f)$ are continuous in D and Green's theorem together with the Cauchy-Riemann equations $u_{x}=v_{y}, u_{y}=-v_{x}$ shows that for every closed triangle $T \subset D$,

$$
\int_{\partial T}(u d x-v d y)=\iint_{T}\left(-v_{x}-u_{y}\right) d x d y=0
$$

and

$$
\int_{\partial T}(v d x+u d y)=\iint_{T}\left(u_{x}-v_{y}\right) d x d y=0 .
$$

Hence, by (1.15), $\int_{\partial T} f(z) d z=0$.
It was Goursat's key observation that the triangle condition for a holomorphic function can be proved directly without any reference to Green's theorem and continuity of the derivative.

Goursat's formulation of Theorem 1.32 was in fact more complicated. It was A. Pringsheim who in 1901 realized it suffices to consider triangles.

THEOREM 1.32 (Goursat, 1900). If $f \in \mathscr{O}(U)$, then $\int_{\partial T} f(z) d z=0$ for every closed triangle $T \subset U$.

Proof. Fix a closed triangle $T \subset U$ and set $I=\int_{\partial T} f(z) d z$. Connect the midpoints of the edges of T to form four congruent triangles, each having half the diameter of T. It is easy to see that I is the sum of the integrals of f along the oriented boundaries of these four triangles (see Fig. 1.2). Hence, one of these triangles, which we call T_{1}, satisfies

$$
\left|\int_{\partial T_{1}} f(z) d z\right| \geq \frac{1}{4}|I| .
$$

Figure 1.2. The integral along the oriented boundary of the large triangle is equal to the sum of the integrals along the oriented boundaries of the four smaller ones because each internal edge is traversed twice in opposite directions, so its net contribution to the integral is zero.

Replacing T by T_{1} in the above construction and continuing inductively, we obtain a nested sequence $T \supset T_{1} \supset T_{2} \supset T_{3} \supset \cdots$ of closed triangles with the properties

$$
\operatorname{diam}\left(T_{n}\right)=2^{-n} \operatorname{diam}(T) \quad \text { and } \quad\left|\int_{\partial T_{n}} f(z) d z\right| \geq 4^{-n}|I| .
$$

Here "diam" denotes the Euclidean diameter.
The nested intersection $\bigcap_{n=1}^{\infty} T_{n}$ is a single point $p \in U$. By the assumption, $f^{\prime}(p)$ exists, so given any $\varepsilon>0$ there exists a $\delta>0$ such that

$$
\left|f(z)-f(p)-f^{\prime}(p)(z-p)\right| \leq \varepsilon|z-p| \quad \text { whenever } \quad|z-p|<\delta
$$

Choose n large enough that $\operatorname{diam}\left(T_{n}\right)<\delta$. If $z \in \partial T_{n}$, then $|z-p| \leq \operatorname{diam}\left(T_{n}\right)$, so

$$
\left|f(z)-f(p)-f^{\prime}(p)(z-p)\right| \leq \varepsilon \operatorname{diam}\left(T_{n}\right)
$$

Observe that by Theorem 1.29,

$$
\int_{\partial T_{n}}\left(f(p)+f^{\prime}(p)(z-p)\right) d z=0
$$

since the integrand has a primitive $f(p) z+(1 / 2) f^{\prime}(p)(z-p)^{2}$. Hence, by the MLinequality (1.18),

$$
\begin{aligned}
4^{-n}|I| \leq\left|\int_{\partial T_{n}} f(z) d z\right| & =\left|\int_{\partial T_{n}}\left(f(z)-f(p)-f^{\prime}(p)(z-p)\right) d z\right| \\
& \leq \varepsilon \operatorname{diam}\left(T_{n}\right) \text { length }\left(\partial T_{n}\right) \\
& =\varepsilon 2^{-n} \operatorname{diam}(T) \cdot 2^{-n} \text { length }(\partial T),
\end{aligned}
$$

which implies

$$
|I| \leq \varepsilon \operatorname{diam}(T) \text { length }(\partial T) .
$$

Since this is true for every $\varepsilon>0$, we must have $I=0$.
Theorems 1.31 and 1.32 put together now imply the following
THEOREM 1.33. Let $D \subset \mathbb{C}$ be an open disk and $f \in \mathscr{O}(D)$. Then f has a primitive in D.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Combining Theorem 1.29 and Theorem 1.33, we arrive at

THEOREM 1.34 (Cauchy's theorem in a disk, 1825). Let $D \subset \mathbb{C}$ be an open disk and $f \in \mathscr{O}(D)$. Then for every closed curve γ in D,

$$
\int_{\gamma} f(z) d z=0
$$

REMARK 1.35. Here is a minor technical point that will be exploited in the next result: Cauchy's Theorem 1.34 remains true under the apparently weaker assumption that f is continuous in D and holomorphic in $D \backslash\{p\}$ for some $p \in D$. To see this, it suffices to show that $\int_{\partial T} f(z) d z=0$ for every closed triangle $T \subset D$. If $T \subset D \backslash\{p\}$, this follows from Theorem 1.32, so assume $p \in T$. First consider the case where p is on the boundary of T. By slightly moving a vertex of T, we can find a triangle T^{\prime}, arbitrarily close to T, for which $p \notin T^{\prime}$. Since $\int_{\partial T^{\prime}} f(z) d z=0$ and since by Lemma 1.27 the integral along the boundary of a triangle depends continuously on vertices, we conclude that $\int_{\partial T} f(z) d z=0$. If p belongs to the interior of $T=\triangle a b c$, write $\int_{\partial T} f(z) d z$ as the sum of the integrals along the boundaries of $\triangle a b p, \Delta b c p$, and $\triangle c a p$, and reduce to the previous case.

Later we will see that such a point p is not really exceptional, so under the above assumptions $f \in \mathscr{O}(D)$ (compare Example 1.40 or Theorem 3.5).

THEOREM 1.36 (Cauchy's integral formula in a disk). Let $D \subset \mathbb{C}$ be an open disk and $f \in \mathscr{O}(D)$. If $\overline{\mathbb{D}}(p, r) \subset D$, then

$$
f(z)=\frac{1}{2 \pi i} \int_{\mathbb{T}(p, r)} \frac{f(\zeta)}{\zeta-z} d \zeta \quad \text { for } z \in \mathbb{D}(p, r)
$$

In particular, the values of f on the circle $\mathbb{T}(p, r)$ uniquely determine the values of f inside the disk $\mathbb{D}(p, r)$.

Proof. Fix $z \in \mathbb{D}(p, r)$ and define $g: D \rightarrow \mathbb{C}$ by

$$
g(\zeta)= \begin{cases}\frac{f(\zeta)-f(z)}{\zeta-z} & \zeta \neq z \\ f^{\prime}(z) & \zeta=z\end{cases}
$$

Evidently g is continuous in D and holomorphic in $D \backslash\{z\}$. Hence by Remark 1.35, $\int_{\mathbb{T}(p, r)} g(\zeta) d \zeta=0$. This gives

$$
\frac{1}{2 \pi i} \int_{\mathbb{T}(p, r)} \frac{f(\zeta)}{\zeta-z} d \zeta=f(z) \cdot \frac{1}{2 \pi i} \int_{\mathbb{T}(p, r)} \frac{1}{\zeta-z} d \zeta .
$$

To finish the proof, we need to show that the integral on the right is $2 \pi i$. Take the parametrization of $\mathbb{T}(p, r)$ defined by $\gamma(t)=z+\rho(t) e^{i t}$ for $t \in[0,2 \pi]$, where $\rho(t)$ is

Figure 1.3. Parametrizing the oriented circle $\mathbb{T}(p, r)$ as seen from an off-center point z, used in the proof of Theorem 1.36.
the unique positive number which satisfies $\left|z+\rho(t) e^{i t}-p\right|=r$ (see Fig. 1.3). It is easy to check that $t \mapsto \rho(t)$ is continuously differentiable. Hence

$$
\begin{aligned}
\int_{\mathbb{T}(p, r)} \frac{1}{\zeta-z} d \zeta & =\int_{0}^{2 \pi} \frac{\gamma^{\prime}(t)}{\gamma(t)-z} d t=\int_{0}^{2 \pi} \frac{\left(\rho^{\prime}(t)+i \rho(t)\right) e^{i t}}{\rho(t) e^{i t}} d t \\
& =\int_{0}^{2 \pi} \frac{\rho^{\prime}(t)}{\rho(t)} d t+2 \pi i \\
& =\log (\rho(2 \pi))-\log (\rho(0))+2 \pi i=2 \pi i,
\end{aligned}
$$

where the last equality holds since $\rho(2 \pi)=\rho(0)$.

More general versions of Theorems 1.34 and 1.36 will be proved in chapter 2. For now, let us collect some corollaries of these basic results. The first one is the converse of Theorem 1.20:

THEOREM 1.37 (Holomorphic implies complex analytic). Every $f \in \mathscr{O}(U)$ is complex analytic in U : In every disk $\mathbb{D}(p, r) \subset U$ there is a power series representation

$$
f(z)=\sum_{n=0}^{\infty} a_{n}(z-p)^{n}
$$

where the coefficients $\left\{a_{n}\right\}$ are given by

$$
\begin{equation*}
a_{n}=\frac{f^{(n)}(p)}{n!}=\frac{1}{2 \pi i} \int_{\mathbb{T}(p, s)} \frac{f(\zeta)}{(\zeta-p)^{n+1}} d \zeta \tag{1.20}
\end{equation*}
$$

for any $0<s<r$.

Proof. Fix $0<s<r$ and a point $z \in \mathbb{D}(p, s)$. For any $\zeta \in \mathbb{T}(p, s)$,

$$
\frac{1}{\zeta-z}=\frac{1}{(\zeta-p)\left[1-\left(\frac{z-p}{\zeta-p}\right)\right]}=\frac{1}{\zeta-p} \sum_{n=0}^{\infty}\left(\frac{z-p}{\zeta-p}\right)^{n}
$$

Here the geometric series converges uniformly in ζ since its general term has absolute value $|z-p| / s<1$ independent of ζ. Thus, we can integrate this series term-by-term on the circle $\mathbb{T}(p, s)$. By Theorem 1.36 , we obtain

$$
f(z)=\frac{1}{2 \pi i} \int_{\mathbb{T}(p, s)} \sum_{n=0}^{\infty} \frac{f(\zeta)(z-p)^{n}}{(\zeta-p)^{n+1}} d \zeta=\sum_{n=0}^{\infty} a_{n}(z-p)^{n},
$$

where the a_{n} are given by (1.20). This proves that f can be represented by the power series $\sum_{n=0}^{\infty} a_{n}(z-p)^{n}$ in $\mathbb{D}(p, s)$. Since this holds for every $s<r$, Theorem 1.20(iii) shows that the power series with the same coefficients must converge to $f(z)$ for all $z \in \mathbb{D}(p, r)$.

It follows from Theorem 1.20 that

COROLLARY 1.38. Iff $\in \mathscr{O}(U)$, then $f^{\prime} \in \mathscr{O}(U)$. Therefore, the k-th derivative ${ }^{(k)}$ exists and belongs to $\mathscr{O}(U)$ for every $k \geq 1$.

In particular, by Theorem 1.7, a differentiable map $f: U \rightarrow \mathbb{R}^{2}$ which satisfies the

Giacinto Morera (1856-1909) Cauchy-Riemann equation $f_{\bar{z}}=0$ throughout U is automatically C^{∞}-smooth.

The following converse of Theorem 1.32 is a useful criterion for deciding when a continuous function is holomorphic:

THEOREM 1.39 (Morera, 1886). Suppose $f: U \rightarrow \mathbb{C}$ is continuous and $\int_{\partial T} f(z) d z=0$ for every closed triangle $T \subset U$. Then $f \in \mathscr{O}(U)$.

Proof. Let $D \subset U$ be a disk. By Theorem 1.31, f has a primitive F in D. Since $F \in \mathscr{O}(D)$ and since the derivative of a holomorphic function is holomorphic by Corollary 1.38, it follows that $f=F^{\prime} \in \mathscr{O}(D)$. As this holds for every disk $D \subset U$, we conclude that $f \in \mathscr{O}(U)$.

EXAMPLE 1.40 (Lines are removable). Let $U \subset \mathbb{C}$ be open and L be a straight line which intersects U. Suppose $f: U \rightarrow \mathbb{C}$ is a continuous function which is holomorphic in $U \backslash L$. We prove that f is holomorphic in U by showing that $\int_{\partial T} f(z) d z=0$ for every triangle $T \subset U$. First assume that the interior of T is disjoint from L. Then, by moving the vertices of T slightly, we can find a triangle $T^{\prime} \subset U \backslash L$, arbitrarily close to T. By Goursat's Theorem $1.32, \int_{\partial T^{\prime}} f(z) d z=0$. Since the integral along the boundary of a triangle depends continuously on vertices by Lemma 1.27, we must have $\int_{\partial T} f(z) d z=0$. If the interior of T meets L, write T as the union of at most three triangles with pairwise disjoint interiors, each meeting L along a vertex or an edge, and reduce to the previous case.

This shows in particular that points are removable: If f is continuous in U and holomorphic in $U \backslash\{p\}$, then $f \in \mathscr{O}(U)$. More general removability results are discussed in Theorem 3.5 and in chapter 10 .

REMARK 1.41. Morera's theorem holds if we replace triangles with other special families of closed sets with nice boundaries. A typical example, which turns out to be more convenient in some situations, is the family of closed rectangles, or even squares. See problem 25.

THEOREM 1.42 (Cauchy's estimates, 1835). Suppose f is continuous on $\overline{\mathbb{D}}(p, r)$ and holomorphic in $\mathbb{D}(p, r)$. Then,

$$
\begin{equation*}
\left|f^{(n)}(p)\right| \leq \frac{n!}{r^{n}} \sup _{|z-p|=r}|f(z)| \quad(n \geq 0) . \tag{1.21}
\end{equation*}
$$

The example $f(z)=z^{n}$ in the unit disk \mathbb{D} shows that the bound in (1.21) is optimal for each n.

Proof. Take $0<s<r$ and represent f by a power series $\sum_{n=0}^{\infty} a_{n}(z-p)^{n}$ in $\mathbb{D}(p, s)$. By (1.20),

$$
\left|f^{(n)}(p)\right|=n!\left|a_{n}\right|=\frac{n!}{2 \pi}\left|\int_{\mathbb{T}(p, s)} \frac{f(z)}{(z-p)^{n+1}} d z\right|,
$$

which by the $M L$-inequality implies

$$
\left|f^{(n)}(p)\right| \leq \frac{n!}{2 \pi} \cdot \sup _{|z-p|=s} \frac{|f(z)|}{|z-p|^{n+1}} \cdot 2 \pi s=\frac{n!}{s^{n}} \sup _{|z-p|=s}|f(z)| .
$$

Letting $s \rightarrow r$, we obtain (1.21).
Cauchy's estimates lead to various quantitative results on holomorphic functions which have no counterpart in the smooth category. Here we prove two basic but important statements of this type.

THEOREM 1.43. If a holomorphic function f maps the disk $\mathbb{D}(p, r)$ into the disk $\mathbb{D}(q, R)$, then $\left|f^{\prime}(p)\right| \leq R / r$.

Note that we have not assumed $q=f(p)$. In particular, if $f: \mathbb{D} \rightarrow \mathbb{D}$ is holomorphic, then $\left|f^{\prime}(0)\right| \leq 1$. This is a basic version of the so-called "Schwarz lemma" which has deep applications and will be discussed at length in chapters 4,11 , and 13.

Proof. Take $0<s<r$ and apply (1.21) to the function $g=f-q$:

$$
\left|f^{\prime}(p)\right|=\left|g^{\prime}(p)\right| \leq \frac{1}{s} \sup _{|z-p|=s}|g(z)| \leq \frac{R}{s} .
$$

Letting $s \rightarrow r$ proves the result.

THEOREM 1.44 (Liouville, 1847). Every bounded entire function is constant.

Proof. Let $f \in \mathscr{O}(\mathbb{C})$ and $|f(z)|<M$ for all $z \in \mathbb{C}$. Then f maps any disk $\mathbb{D}(p, r)$ into $\mathbb{D}(0, M)$, so by Theorem $1.43,\left|f^{\prime}(p)\right| \leq M / r$. Letting $r \rightarrow+\infty$, we obtain $f^{\prime}(p)=$ 0 . Since this holds for every $p \in \mathbb{C}, f$ must be constant.

EXAMPLE 1.45 (The fundamental theorem of algebra). Let $P: \mathbb{C} \rightarrow \mathbb{C}$ be a polynomial of degree $d \geq 1$, so $\lim _{z \rightarrow \infty} P(z)=\infty$. If $P(z) \neq 0$ for all z, then $f(z)=1 / P(z)$ is entire and $\lim _{z \rightarrow \infty} f(z)=0$. Hence there is an $R>0$ such that $|f(z)| \leq 1$ whenever $|z| \geq R$. Since by continuity f is bounded on the closed disk $\overline{\mathbb{D}}(0, R)$, it follows that f is bounded on the plane. Liouville's theorem then implies that f is constant, which is a contradiction. Thus, P has at least one root z_{1} and we can write $P(z)=\left(z-z_{1}\right) P_{1}(z)$ for some polynomial P_{1} of degree $d-1$. If $d-1=0$ so P_{1} is constant, stop. Otherwise repeat the argument with P_{1} in place of P to find a root z_{2} of P_{1}, and so on. This process stops after d steps and shows that P factors as $P(z)=a\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{d}\right)$ for some $a, z_{1}, \ldots, z_{d} \in \mathbb{C}$. Thus, every complex polynomial of degree $d \geq 1$ has precisely d roots counting multiplicities.

We end this section with a useful theorem which, roughly speaking, says that the integral of a function which depends holomorphically on a parameter is a holomorphic function of that parameter, and differentiation under the integral sign is legitimate. We formulate a simple version of the theorem which will be sufficient for our purposes. One should note, however, that the result holds in much more general settings (see problem 27).

THEOREM 1.46. Let $U \subset \mathbb{C}$ be open and $\varphi: U \times[a, b] \rightarrow \mathbb{C}$ be a continuous function such that for each $t \in[a, b], z \mapsto \varphi(z, t)$ is holomorphic in U with derivative $\varphi^{\prime}(z, t)$. Then, the function $f: U \rightarrow \mathbb{C}$ defined by

$$
f(z)=\int_{a}^{b} \varphi(z, t) d t
$$

is holomorphic and we can differentiate under the integral sign:

$$
f^{\prime}(z)=\int_{a}^{b} \varphi^{\prime}(z, t) d t \quad \text { for all } z \in U
$$

Proof. Fix $p \in U$ and take $r>0$ such that $\overline{\mathbb{D}}(p, r) \subset U$. Let $0<|z-p|<r / 2$. By Theorem 1.36,

$$
\varphi(z, t)-\varphi(p, t)=\frac{1}{2 \pi i} \int_{\mathbb{T}(p, r)} \varphi(\zeta, t)\left(\frac{1}{\zeta-z}-\frac{1}{\zeta-p}\right) d \zeta,
$$

so

$$
\frac{\varphi(z, t)-\varphi(p, t)}{z-p}=\frac{1}{2 \pi i} \int_{\mathbb{T}(p, r)} \frac{\varphi(\zeta, t)}{(\zeta-z)(\zeta-p)} d \zeta .
$$

Since $|\zeta-z|>r / 2$ whenever $|\zeta-p|=r$, we obtain the following estimate using the $M L$-inequality:

$$
\left|\frac{\varphi(z, t)-\varphi(p, t)}{z-p}\right| \leq \frac{1}{2 \pi} \cdot M \cdot \frac{2}{r^{2}} \cdot 2 \pi r=\frac{2 M}{r} .
$$

Here M is the supremum of $|\varphi|$ on the compact set $\overline{\mathbb{D}}(p, r) \times[a, b]$. If $\left\{z_{n}\right\}$ is any sequence in $U \backslash\{p\}$ which tends to p, then

$$
g_{n}(t)=\frac{\varphi\left(z_{n}, t\right)-\varphi(p, t)}{z_{n}-p}
$$

is a sequence of continuous functions on $[a, b]$ which converges pointwise to $\varphi^{\prime}(p, t)$ and is bounded by $2 M / r$ for all large n. Hence, by Lebesgue's dominated convergence theorem, the function $t \mapsto \varphi^{\prime}(p, t)$ is integrable on $[a, b]$ and

$$
\lim _{n \rightarrow \infty} \frac{f\left(z_{n}\right)-f(p)}{z_{n}-p}=\lim _{n \rightarrow \infty} \int_{a}^{b} g_{n}(t) d t=\int_{a}^{b} \varphi^{\prime}(p, t) d t
$$

Since this holds for every sequence $z_{n} \rightarrow p$, we conclude that $f^{\prime}(p)$ exists and equals $\int_{a}^{b} \varphi^{\prime}(p, t) d t$.

REMARK 1.47. Under the assumptions of the above theorem, the derivative $(z, t) \mapsto$ $\varphi^{\prime}(z, t)$ is in fact continuous on $U \times[a, b]$ (see problem 26). Thus, the result holds when $\varphi(z, t)$ is replaced with $\varphi^{\prime}(z, t)$, and a simple induction proves the formula

$$
f^{(n)}(z)=\int_{a}^{b} \varphi^{(n)}(z, t) d t \quad \text { for all } z \in U
$$

where $\varphi^{(n)}(z, t)$ is the n-th derivative of $\varphi(z, t)$ with respect to z.
The following corollary of the above theorem will be used repeatedly:
COROLLARY 1.48. Let $\gamma:[0,1] \rightarrow \mathbb{C}$ be a piecewise C^{1} curve and $g:|\gamma| \rightarrow \mathbb{C}$ be a continuous function. Then, for each integer $n \geq 1$, the function

$$
f(z)=\int_{\gamma} \frac{g(\zeta)}{(\zeta-z)^{n}} d \zeta
$$

is holomorphic in $\mathbb{C} \backslash|\gamma|$, and

$$
f^{\prime}(z)=n \int_{\gamma} \frac{g(\zeta)}{(\zeta-z)^{n+1}} d \zeta \quad \text { for all } z \in \mathbb{C} \backslash|\gamma|
$$

Proof. This follows from Theorem 1.46 applied to $\varphi:(\mathbb{C} \backslash|\gamma|) \times[0,1] \rightarrow \mathbb{C}$ defined by

$$
\varphi(z, t)=\frac{g(\gamma(t)) \gamma^{\prime}(t)}{(\gamma(t)-z)^{n}} .
$$

(Technically, we need to break up [0, 1] into finitely many intervals in which γ^{\prime} is continuous and add up the corresponding integrals, but that is a trivial matter.)

EXAMPLE 1.49 (Cauchy's integral formula for higher derivatives). A special case of the above corollary is Cauchy's integral formula. If $f \in \mathscr{O}(U)$ and $\overline{\mathbb{D}}(p, r) \subset U$, then

$$
\frac{1}{2 \pi i} \int_{\mathbb{T}(p, r)} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

defines a holomorphic function in $\mathbb{C} \backslash \mathbb{T}(p, r)$. By Theorem 1.36 , this function coincides with f inside the disk $\mathbb{D}(p, r)$. Differentiation under the integral sign then gives

$$
f^{\prime}(z)=\frac{1}{2 \pi i} \int_{\mathbb{T}(p, r)} \frac{f(\zeta)}{(\zeta-z)^{2}} d \zeta \quad \text { for } z \in \mathbb{D}(p, r) .
$$

It follows by induction that for every $n \geq 0$,

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{\mathbb{T}(p, r)} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d \zeta \quad \text { for } z \in \mathbb{D}(p, r) .
$$

Observe that for $z=p$ this is the formula (1.20) that we derived earlier.

1.5 Mapping properties of holomorphic functions

DEFINITION 1.50. Suppose $f \in \mathscr{O}(U)$ and f is not identically zero in the disk $\mathbb{D}(p, r) \subset U$. Let $f(z)=\sum_{n=0}^{\infty} a_{n}(z-p)^{n}$ be the power series representation of f in $\mathbb{D}(p, r)$. The smallest integer m with the property $a_{m} \neq 0$ is called the order of p and is denoted by $\operatorname{ord}(f, p)$. Thus, ord $(f, p) \geq 1$ if and only if $f(p)=0$. We call p a simple zero of f if $\operatorname{ord}(f, p)=1$.

Alternatively, $\operatorname{ord}(f, p)$ can be described as the unique integer $m \geq 0$ for which f can be factored as

$$
f(z)=(z-p)^{m} f_{1}(z)
$$

with $f_{1} \in \mathscr{O}(U)$ and $f_{1}(p) \neq 0$. The function f_{1} is given by $(z-p)^{-m} f(z)$ in $U \backslash\{p\}$. It is holomorphic in U since it is represented by the power series $\sum_{n=m}^{\infty} a_{n}(z-p)^{n-m}$ in $\mathbb{D}(p, r)$.

EXAMPLE 1.51 (Holomorphic L'Hôpital's rule). Suppose f and g are holomorphic in some neighborhood of p, with $\operatorname{ord}(f, p)=\operatorname{ord}(g, p)=m \geq 1$. Write $f(z)=(z-p)^{m} f_{1}(z)$ and $g(z)=$ $(z-p)^{m} g_{1}(z)$, where f_{1} and g_{1} are non-zero and holomorphic near p. Since

$$
f_{1}(p)=\frac{f^{(m)}(p)}{m!} \quad \text { and } \quad g_{1}(p)=\frac{g^{(m)}(p)}{m!},
$$

it follows that

$$
\lim _{z \rightarrow p} \frac{f(z)}{g(z)}=\frac{f_{1}(p)}{g_{1}(p)}=\frac{f^{(m)}(p)}{g^{(m)}(p)} .
$$

Let us call $U \subset \mathbb{C}$ a domain if U is non-empty, open, and connected.
LEMMA 1.52. Suppose $U \subset \mathbb{C}$ is a domain and $f \in \mathscr{O}(U)$. If the zero-set $f^{-1}(0)=\{z \in$ $U: f(z)=0\}$ has an accumulation point in U, then $f=0$ everywhere in U.

Connectivity of U is essential here: If U is the disjoint union of non-empty open sets U_{1} and U_{2}, and if $f=0$ in U_{1} and $f=1$ in U_{2}, then $f \in \mathscr{O}(U)$ and $f^{-1}(0)=U_{1}$ has accumulation points in U, but f is not identically zero in U.

Proof. Let E be the non-empty set of accumulation points of $f^{-1}(0)$ in U. Then E is closed in U, and $E \subset f^{-1}(0)$ by continuity of f. Suppose $p \in E$ and there is a disk $\mathbb{D}(p, r) \subset U$ in which f is not identically zero. Then we can write $f(z)=(z-p)^{m} f_{1}(z)$, where $m=\operatorname{ord}(f, p) \geq 1, f_{1} \in \mathscr{O}(U)$, and $f_{1}(p) \neq 0$. By continuity, f_{1} does not vanish in some neighborhood of p. It follows that p is the only zero of f in this neighborhood, contradicting the fact that $p \in E$. Thus, if $\mathbb{D}(p, r) \subset U$, then f is identically zero in $\mathbb{D}(p, r)$ and therefore $\mathbb{D}(p, r) \subset E$. This shows that E is an open set. Since U is connected, we must have $E=f^{-1}(0)=U$.

Since every domain $U \subset \mathbb{C}$ is a countable union of open disks, it is clear that every uncountable subset of U must have an accumulation point in U. It follows from the above lemma that a non-constant holomorphic function in a domain has at most countably many zeros, all of which are isolated. Another immediate corollary is

THEOREM 1.53 (The identity theorem). Suppose $U \subset \mathbb{C}$ is a domain, $f, g \in \mathscr{O}(U)$, and the set $\{z \in U: f(z)=g(z)\}$ has an accumulation point in U. Then $f=g$ everywhere in U.

EXAMPLE 1.54. The complex cosine and sine are the entire functions defined by

$$
\begin{aligned}
& \cos z=\frac{1}{2}\left(e^{i z}+e^{-i z}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} z^{2 n} \\
& \sin z=\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} z^{2 n+1} .
\end{aligned}
$$

They extend the usual cosine and sine functions defined on the real line. It follows from Theorem 1.53 that any trigonometric identity between cosine and sine that holds on \mathbb{R} must continue
to hold in \mathbb{C}. For example, the identities $\cos ^{2} z+\sin ^{2} z=1, \sin (2 z)=2 \sin z \cos z$, and $\cos (2 z)=$ $\cos ^{2} z-\sin ^{2} z$ remain valid for all $z \in \mathbb{C}$.

EXAMPLE 1.55. Suppose $f \in \mathscr{O}(\mathbb{C})$ has the power series representation $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. If every coefficient a_{n} is real, then clearly $f(\mathbb{R}) \subset \mathbb{R}$. Conversely, suppose $f(\mathbb{R}) \subset \mathbb{R}$ and consider the entire function

$$
g(z)=\overline{f(\bar{z})}=\sum_{n=0}^{\infty} \overline{a_{n}} z^{n} .
$$

Since $f(z)$ is real when z is real, we have $g=f$ on the real line. By Theorem 1.53, $g=f$ everywhere in \mathbb{C}. Uniqueness of power series then shows that every a_{n} is real.

Our next goal is to prove the fundamental fact that the image of a domain under a non-constant holomorphic function is open (Theorem 1.62). This will follow from a much stronger result on the local behavior of holomorphic functions (Theorem 1.59).

LEMMA 1.56. If $f \in \mathscr{O}(U)$, the function $g: U \times U \rightarrow \mathbb{C}$ defined by

$$
g(\zeta, z)= \begin{cases}\frac{f(\zeta)-f(z)}{\zeta-z} & \zeta \neq z \\ f^{\prime}(z) & \zeta=z\end{cases}
$$

is continuous.
Proof. Clearly g is continuous off the diagonal $\{(z, z): z \in U\}$, so it is enough to check continuity of g at a diagonal point (p, p). Let $\varepsilon>0$ be given. Since f^{\prime} is continuous at p, there is an $r>0$ such that

$$
\begin{equation*}
\left|f^{\prime}(z)-f^{\prime}(p)\right|<\varepsilon \quad \text { whenever } z \in \mathbb{D}(p, r) \tag{1.22}
\end{equation*}
$$

Let $\zeta, z \in \mathbb{D}(p, r)$. If $\zeta=z$, then $|g(\zeta, z)-g(p, p)|=\left|f^{\prime}(z)-f^{\prime}(p)\right|<\varepsilon$. If $\zeta \neq z$, then

$$
\frac{f(\zeta)-f(z)}{\zeta-z}=\frac{1}{\zeta-z} \int_{[z, \zeta]} f^{\prime}(w) d w=\int_{0}^{1} f^{\prime}(\gamma(t)) d t
$$

where $\gamma(t)=(1-t) z+t \zeta$. Hence,

$$
\begin{aligned}
|g(\zeta, z)-g(p, p)| & =\left|\frac{f(\zeta)-f(z)}{\zeta-z}-f^{\prime}(p)\right|=\left|\int_{0}^{1}\left[f^{\prime}(\gamma(t))-f^{\prime}(p)\right] d t\right| \\
& \leq \int_{0}^{1}\left|f^{\prime}(\gamma(t))-f^{\prime}(p)\right| d t \leq \varepsilon
\end{aligned}
$$

where the last inequality holds since by (1.22), $\left|f^{\prime}(\gamma(t))-f^{\prime}(p)\right|<\varepsilon$ for every $t \in$ [0, 1].

THEOREM 1.57 (Holomorphic inverse function theorem). Suppose $f \in \mathscr{O}(U), p \in U$, and $f^{\prime}(p) \neq 0$. Then, there exist open neighborhoods $V \subset U$ of p and $W \subset \mathbb{C}$ of $f(p)$ such

Index

$\operatorname{Aut}(U), 110$
Abel, N., 273
action
free, 367
properly discontinuous, 367
simply 2 -transitive, 111
simply 3-transitive, 104
simply transitive, 367
Ahlfors function of a domain, 383
Ahlfors's theorem, 351
Ahlfors, L., 9, 64, 130, 184, 336, 343, 351, 383, 397, 407, 419
Ahlfors-Grunsky conjecture, 336
analytic arc, 318
canonical reflection, 320
coordinate function, 319
coordinate neighborhood, 319
analytic content, 299
analytic continuation
along a curve, 306
direct, 305
homotopy lifting property, 307
analytic Jordan curve, 290, 333
angle preservation, 106
anharmonic group, 114
anti-holomorphic function, 36, 190, 320
argument principle, 95
generalized, 101
Artin, E., 64, 65
Arzelà-Ascoli theorem, 139
asymptotic value, 363
automorphism group, 110
of $\mathbb{C}, 111$
of $\widehat{\mathbb{C}}, 110$
of $\mathbb{C}^{*}, 132$
of $\mathbb{D}, 113$
of $\mathbb{H}, 113$
of punctured spheres, 114
$B_{f}, 335$
$\mathfrak{B}, 335$
Bernstein, S., 188
Bers, L., 41
Berteloot, F., 348, 419
Beurling, A., 184
Bieberbach's conjecture, 171
Bieberbach's inequality, 166
Bieberbach, L., 167, 171
biholomorphism, 31
Blaschke product
finite, 133, 218, 242, 373
infinite, 245

Blaschke, W., 219
Bloch's constant, 335
Bloch's principle, 348
Bloch's theorem, 335
Boas, R., 260, 419
Borel-Carathéodory inequality, 255
Bouquet, J. C., 8
branch point, 375
branched covering, 375
Briot, C. A., 8
Brouwer, L. E. J., 31, 54, 74
$\mathbb{C}, 1$
$\mathscr{C}(U, X), 135$
$\mathbb{C}, 79$
$\mathbb{C}^{*}, 47$
$\chi(U), 379$
$\chi(z, w), 148$
canonical products, 239
order, 253
Cantor set, 286
Carathéodory, C., 111, 158, 178
Carathéodory's extension theorem, 174
Cartan, H., 185
Casorati, F., 77
Casorati-Weierstrass theorem, 76
Cauchy transform of a measure, 40
Cauchy's estimates, 25
Cauchy's integral formula for higher derivatives, 28 in a disk, 22
Cauchy's theorem
homology version, 67 in a disk, 22
Cauchy, A. L., 10, 67, 87
Cauchy-Pompeiu formula, 73
Cauchy-Riemann equations, 8
Cayley map, 107
chain (analytic continuation), 306
chain (homology), 62
chain rule, 2
Chebyshev polynomials, 188
chordal distance, 148
Christoffel, E. B., 317
Clairaut, A., 189
compact convergence, 136 topology, 135
compactly bounded family, 144
complex analytic function, 11
complex conjugation, $36,299,309,388$
complex derivative, 2
complex differentiability, 2
complex Green's theorem, 73
conformal linear map, 8,37
conformal map, 158
conformal metric, 121
density function, 121
pull-back, 122
conformal radius, 185
conformally isomorphic, 158
covering map, 358
branched, 375
Galois, 384
universal, 366
covering space, 358
isomorphism, 358
critical point, 33
critical value, 33
cross ratio, 108
alternative formulas, 110
basic properties, 108
cocycle relation, 131
hyperbolic distance formula, 134
projective invariance, 132
cross-cut, 178
curvature, 350
conformal invariance, 350
curve, 14,42
closed, 14, 42
constant, 43
end point, 14, 42
image, 14,42
initial point, 14,42
null-homotopic, 45
piecewise $C^{1}, 14$
reverse, 15,43
curve lifting property, 49, 359
cycle, 62
null-homologous, 64
$\mathbb{D}, 1$
$\mathbb{D}(p, r), 1$
$\Delta, 36,189$
$\mathbb{D}^{*}, 100$
$\mathbb{D}^{*}(p, r), 76$
$\operatorname{deg}(f), 273,359,376$
$\operatorname{deg}(f, p), 33,78,375$
$\operatorname{dim}_{H}, 324$
dist $_{\sigma}, 148$
dist $_{g}, 122$
$\mathbf{d}(f, g), 137$
d'Alembert, J., 8
de Branges' theorem, 171
de Branges, L., 171, 419
degree
of a branched covering, 376
of a covering, 359
of a rational map, 378
of an elliptic function, 273
derivative norm, 123
spherical, 153
devil's staircase, 9
Dieudonné, J., 186, 419
Dirichlet integral, 226
Dirichlet problem in the disk, 204
L^{∞} version, 213
Dixon, J., 68, 419
do Carmo, M., 122, 419
dog-on-a-leash lemma, 96
domain, 29
finitely connected, 290
doubly periodic, 39,272
Duval, J., 348, 419
dyadic square, 325
$E_{d}, 236$
$\operatorname{ext}(\gamma), 57$
Eisenstein series, 277
elliptic function, 271
elliptic modular function, 396
entire function, 8
equicontinuous family, 138
escaping
curve, 363
sequence, 174
Escher, M. C., 118
Euler characteristic, 379
Euler's product formula, 259, 260
Euler, L., 8, 189
evenly covered neighborhood, 47, 358
exhaustion by compact sets, 136
nice, 285
exponent of convergence, 253
exponential function, 9
ubiquity of, 348
$\varphi_{p}, 112$
$f^{\#}, 153$
Falconer, K., 323, 419
family
compactly bounded, 144
equicontinuous, 138
normal, 152
pointwise bounded, 140
precompact, 137
Farey
neighbors, 394, 415
sum, 394, 415
Farey, J., 394
Fatou's radial limit theorem, 182, 213
Fatou, P., 215, 378
Fejér, L., 158

Fermat equation
holomorphic solutions, 341
meromorphic solutions, 341
fiber, 359
finitely connected domain, 290
first homology group, 65
Fisher, Y., 398, 419
fixed point
index, 91
multiplicity, 91
simple, 91
Fomenko, O., 171, 419
Ford circles, 415
Forster, O., 361, 419
Fourier coefficients, 17, 85
Fourier series, 85
freely homotopic, 46
full compact set, 280
Fulton, W., 57, 66, 368, 380, 419
function element, 305
fundamental group, 45
fundamental parallelogram, 271
fundamental theorem of algebra, 26, 35, 242
$g_{2}, g_{3}, 278$
$g_{U}, 401$
$g_{\mathbb{D}}, 127$
Gårding, L., 419
Galois covering, 384
Gamelin, T., 297, 419
Garnett, J., 419
Gauss-Lucas theorem, 35
genus of an entire function, 263
Glicksberg, I., 102, 419
Goursat's theorem, 20
Goursat, E., 21
Grönwall's area theorem, 164
Grönwall, T. H., 165
Grötzsch, H., 184
Gray, J., 9, 419
Green's first identity, 226
Green's second identity, 226
$H_{1}(U), 65$
H, 107
Hölder condition, 140
Hadamard's 3-circles theorem, 243
Hadamard's factorization theorem, 256
Hadamard's gap theorem, 304
Hadamard, J., 11, 255
harmonic conjugate, 224
harmonic extension by reflection, 205
harmonic function, 190
periods, 193, 292
harmonic measure, 216
Harnack distance, 225
Harnack's inequalities, 206
Harnack, A., 207
Hartogs-Rosenthal theorem, 299

Hatcher, A., 66, 368, 419
Hausdorff dimension, 324
Hausdorff measure, 322
Hausdorff, F., 324
Hawaiian earring, 383
holomorphic branch of arbitrary powers, 53
of the n-th root, 52
of the logarithm, 52
holomorphic function, 8
holomorphic implicit function theorem, 101
holomorphic inverse function theorem, 30
holomorphically removable set, 321
for bounded functions, 333
homologous cycles, 64
homology class of a cycle, 64
homotopic curves, 42
homotopy, 42 free, 46
homotopy class of a curve, 44
Hubbard, J., 398, 419
Hurwitz's theorem, 143
Hurwitz, A., 143
hyperbolic domain, 352
characterization, 354, 400
hyperbolic geodesics, 128
hyperbolic metric
of $\mathbb{D}, 127$
of $\mathbb{H}, 127$
of a hyperbolic domain, 401
of a round annulus, 402
of a strip, 402
of the punctured disk, 402
$\operatorname{ind}(f, p), 91$
$\operatorname{int}(\gamma), 57$
ı, 81, 104
ideal triangle, 390
identity theorem, 29
for harmonic functions, 192
index at a fixed point, 91
infinite product
absolutely convergent, 232
compactly convergent, 233
convergent, 228
integral along a curve, 14
invariance of domain theorem, 31, 74
invariants of a lattice, 278
isometric circle, 131
Jacobian, 36
Jensen's formula, 241
Jensen, J., 241
Jordan curve, 57
exterior, 57
interior, 57
Jordan curve theorem, 57
Jordan, C., 57, 59
jump principle
for Cauchy transforms, 73
for the winding number, 57
$K_{g}, 350$
$\kappa, 36,309$
Kirchhoff's law, 62
Koebe function, 161
Koebe's 1/4-theorem, 171
Koebe's circle domain theorem, 291
Koebe's distortion bounds, 171
Koebe, P., 145, 158, 172, 291, 397, 419
Krantz, S., 353, 419
Kraus, W., 188
Kuz'mina, G., 171, 419
$\Lambda_{\alpha}, 322$
$\ell, 216$
length $_{g}, 122$
L'Hôpital's rule, 28
lacunary power series, 304
Lambert W-function, 372
Landau, E., 256, 336
Laplace operator, 36, 189
Laplace transform, 39
Laplace, P., 189
Lattès map, 296
Laurent series, 83
Laurent, P., 83
Lebesgue number of a cover, 49
Lebesgue point, 210
lift, 48, 359
uniqueness, 49, 359
Lindelöf's maximum principle, 225
Liouville's theorem
for entire functions, 26
for harmonic functions, 207
hyperbolic version, 352
Liouville, J., 25
Lipschitz function, 333
local degree, 33, 375
local isometry, 123
local mean value property, 195
locally compact space, 140
locally connected, 174
characterizations, 175
locally path-connected, 51
locally powerlike map, 375
locally simply connected, 363
logarithmic differentiation, 235
Looman-Menshov theorem, 9
$\mathscr{M}(U), 78$
$\mathscr{M}(\mathbb{C}, \Lambda), 271$
Möb, 103
$\bmod (\cdot), 183,187,314,333,409$
$\mathrm{M}_{f}(r), 243$

Möb, 103
Möbius group, 103
Möbius map, 103
elliptic, 119
fixed point multipliers, 116
fixed points, 116
hyperbolic, 119
invariant curves, 118
loxodromic, 119
parabolic, 119
trace-squared, 119
Möbius, A., 105
Marty's theorem, 153
Marty, F., 153
Mattila, P., 419
maximum principle
for harmonic functions, 196, 197
for holomorphic funcions, 34
for open maps, 34
Lindelöf's, 225
McKean, H., 271, 279, 397, 419
McMullen, C., 398, 419
mean value property, 195
Mergelyan's theorem, 287
Mergelyan, S., 287
meromorphic function, 78
Milnor, J., 93, 115, 241, 419
minimal geodesic, 122, 403
Mittag-Leffler's theorem
for open sets, 269
for the plane, 265
Mittag-Leffler, G., 240, 265
ML-inequality, 16
modular group, 393
level 2 congruence subgroup, 413
modulus
of a rectangle, 183, 314
of a topological annulus, 409
of an annulus, 187, 333
Moll, V., 271, 279, 397, 419
monodromy theorem, 308, 370
Montel's theorem
basic version, 145
general version, 344, 397
Montel, P., 145
Morera's theorem, 24
Morera, G., 24
Morris, S., 9, 419
$\nu(f), 253$
$\mathrm{N}_{f}(\mathrm{D}, q), 95$
$\mathrm{N}_{f}(r), 243$
natural boundary, 302
Nevanlinna, R., 419
non-degenerate continuum, 290
non-tangential limit, 227
normal derivative, 226
normal family, 152
normalizer subgroup, 416
$\mathscr{O}(U), 8$
$\omega(z, E), 216$
$\omega_{z}, 217$
$\operatorname{ord}(f, p), 28,77$
omitted value, 339
one-point compactification, 385
open mapping theorem, 33
order
of a pole, 77
of a canonical product, 253
of a power series, 250
of a zero, 28
of an elementary factor, 249
of an entire function, 247
Osgood, W., 156, 158, 175
Ostrowski pair, 303
Ostrowski's theorem, 303
Ostrowski, A., 303
over-convergence phenomenon, 303
$P(\zeta, z), 199$
$\Pi_{p}, 271$
$\pi_{1}(X, p), 45$
§, 267, 274
P[•], 202
$\mathrm{PSL}_{2}(\mathbb{C}), 104$
$\operatorname{PSL}_{2}(\mathbb{R}), 113$
$\operatorname{PSL}_{2}(\mathbb{Z}), 393$
Pólya, G., 188, 419
Paatero, V., 419
Painlevé's theorem, 327
Painlevé, P., 327
Parseval's formula, 39, 214
path-connected, 45
periodic point, 116
Picard's great theorem, 343
Picard's little theorem, 339, 397
Picard, E., 240, 343
Pick's theorem, 129
Pick, G., 129
Poincaré, H., 45, 358, 397
Poincaré-Hurewicz theorem, 66
Poisson integral, 202
radial limits, 210
Poisson integral formula, 198
Poisson kernel, 199
basic properties, 200
Schwarz's interpretation, 223
Poisson, S. D., 198
Poisson-Jensen formula, 262
Pommerenke, C., 186, 323, 419
Porter, M. B., 146
power series, 10
order, 250
radius of convergence, 11
recursive coefficients, 38
powerlike map, 375
precompact, 137
primitive, 18
principal branch of the logarithm, 52 , 231
principal part, 77
Pringsheim, A., 20, 331
product of two curves, 15,43
proper map, 373
Ptolemy's theorem, 106
$R_{\alpha}, 388$
Ref, 388
$\operatorname{Ref}(\mathbb{D}), 389$
$\operatorname{res}(f, p), 87$
$\rho(f), 247$
Radó, T., 378
radial limit
of bounded harmonic functions, 213
of conformal maps, 182
ramified neighborhood, 375
rational fixed point formula, 92
real analytic function, 311
real derivative, 5
real symmetric domain, 311
rectifiable arc, 324
reflection
across an analytic arc, 320
in a circle, 388
reflection group, 388
regular point, 301
Remmert, R., 8, 41, 337, 339, 341, 419
residue, 87
at infinity, 90
fractional, 100
residue theorem, 88
Riemann map, 160
normalized, 160
of a semidisk, 160
Riemann mapping theorem, 158
Riemann sphere, 79
Riemann's removable singularity theorem, 76
Riemann's zeta function, 142
Riemann, B., 159, 358
Riemann-Hurwitz formula, 380
Riesz brothers theorem, 246
Riesz, F., 158
Roth, A., 299
Rouchés theorem, 97
symmetric version, 102
Rouché, E., 97
Rudin, W., 140, 156, 210, 212, 262, 287, 419

Runge's theorem
for compact sets, 280
for open sets, 286
Runge, C., 280
$S_{f}, 187$
$\mathscr{S}, 161$
$\hat{\mathscr{S}}, 163$
$\sigma, 126,147$
σ-compact space, 140
Schönflies theorem, 289
Schönflies, A. M., 290
schlicht functions, 161
compactness, 168
universal bounds, 168
Schottky's theorem, 341
Schottky, F. H., 341
Schwarz lemma
Ahlfors's version, 351
basic version, 111
for hyperbolic domains, 405
Pick's version, 129
Schwarz reflection principle, 181, 313
Schwarz's interpretation of Poisson kernel, 223

Schwarz, H. A., 112, 158, 189, 199, 203, 223
Schwarz-Christoffel formula, 317
Schwarzian derivative, 187
Seifert, H., 358, 419
separable space, 140
simple pole, 77
simple zero, 28
simply connected, 45
characterizations, 288
singular point, 301
singularity
essential, 76
isolated, 75
pole, 76
removable, 75
slit, 380
spherical derivative norm, 153
spherical metric, 126, 147
square root trick, 159,400
star-shaped domain, 46
Steinmetz, N., 379, 419
stereographic projection, 79, 130,

147

Stirling's formula, 251
Stone-Weierstrass theorem, 287
subordination principle, 184
Swiss cheese set, 299
Szegö, G., 188, 419
$\mathbb{T}, 17$
$\mathbb{T}(p, r), 16$
$\tau(f), 119$
Taylor, E., 175
tessellation by ideal triangles, 391
Threlfall, W., 358, 419
tile, 390
generation, 392
reflection group, 390
Titchmarsh, E., 256, 419
topological annulus, 408
degenerate hyperbolic, 409
Euclidean, 408
non-degenerate hyperbolic, 409
transcendental entire function, 247
uniformization theorem, 397
universal covering, 366
unramified disk, 335

Valiron, G., 338
Veech, W., 420
Veita's formula, 261
Vitali, G., 146
Vitali-Porter theorem, 146
$\mathrm{W}(\gamma, p), 54$
Wall, C. T. C., 57,420
Wallis's formula, 261
Weierstrass σ-function, 294
Weierstrass \wp-function, 267, 274
basic properties, 275
critical values, 278
differential equation, 276, 278
Laurent series, 277
Weierstrass M-test, 141
Weierstrass convergence theorem, 140
Weierstrass elementary factors, 236 order, 249
Weierstrass factorization theorem, 239
Weierstrass product theorem
for open sets, 240
for the plane, 238
Weierstrass, K., 141
Weyl, H., 358
winding number, 54
jump principle for, 57
Wittner, B., 398, 419
Zalcman's theorem, 345
Zalcman, L., 175, 331, 345, 348, 420
Zhukovskii map, 163, 166, 188, 382
Zhukovskii, N. E., 163

