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1
Introduction
ANIMALS IN A MICROBIAL WORLD

1.1. What Is An Animal?

We can answer this question in two ways. One answer is relatively straight-
forward and is provided in the following paragraph, and a first attempt at 
the really interesting answer occupies the rest of this book.

The animals are a monophyletic group of eukaryotes with a multicellular 
common ancestor that fed holozoically (i.e., on particulate food) and com-
prised cells that lacked a cell wall and included multiple morphologically 
and functionally different cell types. These traits set animals apart from 
the only other major group of ancestrally multicellular eukaryotes, the 
terrestrial plants, and other eukaryotes with multicellular representatives, 
e.g., the fungi and red algae, which have saprophytic or photosynthetic 
lifestyles and are composed of cells enclosed within a cell wall. Early in 
their diversification, two key innovations evolved in the animals: the gut, 
permitting exploitation of large food items; and the nervous system, laying 
the foundation for the complex behavior displayed by many animals. A 
further defining feature of the animals is that, as a group, they lack key 
metabolic capabilities common to various other organisms, including 
the capacity to photosynthesize, fix nitrogen, synthesize many amino 
acids contributing to protein, and produce various cofactors required 
for the function of enzymes central to metabolism. In other words, many 
animals are morphologically complex and some are clever, but all are 
 metabolically  impoverished.

This description of animals is not incorrect, but it is incomplete. It omits 
1–10% of the biomass and half or more of the cells in the animal body. The 
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missing cells are the microbial communities that live persistently with the 
animal. Most of these microorganisms are bacteria, but they also include 
unicellular eukaryotes; and large animals additionally bear multicellular eu-
karyotes, including mycelial fungi, mites, helminth worms, etc. Traditionally, 
these inhabitants of animals have been ignored unless they are injurious to the 
health of their animal host, and because many are difficult to culture, their 
ubiquity and diversity are grossly underestimated by routine culture-based 
microbiological methods.

The study of microorganisms associated with animals has been trans-
formed by culture-independent methods to identify and study the function 
of microorganisms. The key technology has been high throughput DNA 
sequencing (also known as next generation sequencing), by which all the 
DNA, expressed genes, or specific genomic regions of interest in a sample 
can be sequenced simultaneously. It is now possible to determine the taxa 
in the microbial community and their functional traits, for example from a 
biopsy taken from the lung or intestine of a human patient, from a single 
soil microarthropod, or from the gills of a bivalve mollusk brought up from 
a deep sea hydrothermal vent. These ever-improving technologies have 
supported a decade or more of research on the microbiological natural 
history of animal bodies. It is now apparent that animals are the habitat for 
a previously unsuspected diversity and abundance of microbial residents, 
and this unfolding discovery has empowered experimental science, reveal-
ing that these microorganisms are critical to the health and well-being of 
their animal hosts.

So, what is an animal? It is a multiorganismal entity, comprising animal 
cells and microbial cells. The phenotype of an animal is not the product of 
animal genes, proteins, cells, tissues, and organs alone, but the product of 
the interactions between all of these animal functions with communities 
of microorganisms, whose composition and function vary with the age, 
physiological condition, and genotype of their animal host. Following from 
the growing appreciation of the significance of the microbiology of animals, 
many aspects of animal biology are being rewritten (McFall-Ngai et al., 
2013). The biomedical sciences are increasingly recognizing the pervasive 
effects of resident microorganisms on human health. These effects extend 
beyond local impacts, for example of gut microorganisms on gut health and 
disease, to microbial effects on cardiovascular health, the integrity of the 
circadian rhythm, and psychiatric health. Many evolutionary biologists are 
realizing that the response of animals to selection is influenced by the impact 
of microbial partners on the trait under selection and the heritability of the 
microorganisms. Applied biologists are appreciating that microbes can shape 
the capacity of insects, such as mosquitoes, to vector disease agents (e.g., 
the malaria parasite, dengue virus) and their susceptibility to certain pest 
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control agents. Furthermore, reliable predictions of the impacts of climate 
change on animal distributions will require consideration of the environ-
mental requirements and dispersal capability of the microbial partners as 
well as the animal.

But, before we go any further, we need to address some issues of termi-
nology. As with so many scientific disciplines, multiple terms are being used, 
sometimes interchangeably but often with different shades of meaning that 
can sow confusion and misunderstanding. Section 1.2 provides a guide to how 
some terms are used in this book, as well as why some terms are eschewed.

1.2. Terminology: Dismantling the Tower of Babel

Terms are important not only because they communicate agreed concepts 
within a discipline but also because they can encapsulate an entire concep-
tual framework. In this respect, the term “microbiome,” coined to describe 
the catalog of microorganisms and their genes (Lederberg and McCray, 
2001), is of central importance. The microbiome is a global, all-encompassing 
term for the microbiology of an animal, and is particularly useful where, 
as in shot-gun sequencing, individual genes cannot readily be assigned 
to particular microbial taxa. A related term is “microbiota,” which refers 
specifically to the microbial taxa associated with an animal. The terms 
microbiome and microbiota are sometimes used interchangeably when 
referring to taxa. Alternatively, the microbiome can be used exclusively to 
refer to genes and genomes, with the microbiota as a taxonomic descriptor. 
It is usually obvious from the context how the term microbiome is being 
used. In this book, I will use both terms, with microbiome to describe in-
ventories of genes, especially in relation to function, and microbiota when 
referring to the organisms.

The terms microbiome and microbiota have meaning for a science that is 
founded on molecular biology and genomics. A major driver of microbiome 
research over the last decade has been large consortium projects that have 
generated microbial sequences associated with humans, and their potential 
biomedical importance. However, microbiome research is also founded on 
many decades of pregenomic research on interactions between healthy ani-
mals and their resident microorganisms (Sapp, 1994). Although this research 
endeavor has been largely independent of biomedical science, the melding of 
the terminology of the pregenomic science of animal-microbial interactions 
with the terminology of -omic science has, to a large extent, been successful. 
But there have been some difficulties, and this is has caused some confusion 
and miscommunication.

A key pregenomic term is “symbiosis,” which—as for microbiome—was 
invented to fulfil a scientific need. Symbiosis was coined in the 1870s to 



4 CHAPTER 1

encapsulate the new discovery of multipartner organisms. It was initially used 
by Albert Franck to describe the composite nature of lichens, comprising 
a fungus and alga, and generalized in 1879 by Anton de Bary to describe 
the “living together of different species.” Over the following century, most 
research on interactions between healthy animals and microorganisms fo-
cused on associations that were readily detected morphologically, including 
highly specialized interactions involving single microbial taxa housed in 
specific tissues or organs. These associations were categorized as symbio-
ses (or sometimes endosymbioses), with the animal described as the host 
and microbial partner as the symbiont. The microbial symbionts in these 
“one-host-one-symbiont” or occasionally “one-host-two/three-symbionts” 
associations include the zooxanthellae (dinoflagellate algal cells) in corals, 
luminescent bacteria in the light organs of some fish and squid, and dense 
bacterial aggregations in specialized organs (bacteriomes) of certain insects. 
The text of Buchner (1965), together with two multiauthor volumes (Jennings, 
1975; Nutman and Mosse, 1963), provide a superb overview of premolecular 
research on these associations.

Today, the terms microbiome and microbiota are generally used with 
reference to multitaxon microbial communities, and the microbial partner(s) 
tend to be called symbiont(s) where the interactions are limited to one or 
a few microbial taxa. There is a general presumption that, where the animal 
host is healthy, the terms microbiota and symbionts do not refer to patho-
gens. However, the impact of many microorganisms on the animal host can 
be context-dependent, varying with the developmental age, physiological 
condition, and genotype of the host, as well as environmental conditions. 
This was appreciated by Elie Metchnikoff who, in the early twentieth century, 
coined a further term “dysbiosis” as an antonym of symbiosis, to describe 
a microbial community that is deleterious to host health (Stecher et al., 
2013). In the same vein, individual members of a microbial community that 
display context-dependent pathogenicity are often known as pathobionts 
(Hornef, 2015).

In the biomedical literature, the term “commensal” is widely used to 
describe individual taxa of the microbiota. This term poses some important 
problems. Strictly speaking, the term commensal refers to “eating at the same 
table,” and has come to describe an organism that derives benefit from an 
association with no discernible effect on the fitness of its partner, akin to 
the sparrow feeding on the breadcrumbs dropped from a man’s dining-table. 
The term commensal is not widely used in the symbiosis literature because 
it has all the standard difficulties of a negative definition: if only one used a 
more sensitive assay or studied the association under different conditions, 
perhaps benefit or harm would be detected, and the organism would, no 
longer, be a commensal. Microorganisms associated with the gut and skin 
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of humans used to be called commensals, in the erroneous belief that they 
are of no significance. It is unfortunate that commensal has persisted into 
the era of microbiome research with the full knowledge that these micro-
organisms are crucial to the health of humans and other animals. Needless 
to say, verbal modifiers such as “beneficial commensal” further compound 
the terminological confusion. In the light of the complexities surrounding 
the term commensal, it is preferable to avoid this term. Alternative terms, 
such as microorganisms, microbial communities, etc. are sufficient; where 
it is important to emphasize that pathogens are specifically excluded from 
consideration, the term “nonpathogenic microorganisms” can be used to 
avoid any ambiguity.

There is one further set of terms that needs to be addressed: holobiont 
and hologenome. Lynn Margulis coined new terms for the partners in a 
symbiosis as “bionts” and the association as a “holobiont” (Margulis, 1991) to 
emphasize the evolutionary persistence of the association and how selection 
may operate at the level of the association (or holobiont). This terminology 
has been brought into the -omic era with a further new term, the hologe-
nome, which refers explicitly to the host genome plus microbiome as the 
unit of selection (Rosenberg and Zilber-Rosenberg, 2016). The concept of 
the hologenome is relevant to a very restricted set of associations. In partic-
ular, it does not apply to the complex microbial communities that are the 
focus of much microbiome research, where individual microbial taxa have 
different selective interests from each other and variable selective overlap 
with the host. Strong overlap of selective interest between the partners is 
predicted in some associations involving individual microbial partners that 
are vertically transmitted (and so have a selective interest in the fitness of 
the host offspring), but the residual selective conflict limits the applicability 
of the hologenome concept. Even the most ancient of symbioses, between 
the eukaryotic cell and the mitochondrion, is subject to genomic conflict 
(Perlman et al., 2015) and so cannot be classified as a pure hologenome. 
For these reasons, which are elaborated further by Douglas and Werren 
(2016) and Moran and Sloan (2015), the hologenome concept is not de-
veloped in this book.

1.3. The Microbiology of Animals

Now that the main terms for the discipline are defined, we can consider 
why animals support microbial communities. The functional explana-
tions are twofold: microorganisms provide metabolic capabilities that are 
lacking in animals; and microorganisms modulate the signaling networks 
that regulate animal functions required for sustained animal health and 
vigor (figure 1.1).
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FIG. 1.1. How microorganisms interact with the animal host.

The key metabolic capabilities gained by animals from microbial partners 
are listed in Table 1.1A. Some of these capabilities were absent from the 
lineage giving rise to animals, e.g., photosynthesis, nitrogen fixation, and 
essential amino acid and B vitamin synthesis, and the dietary requirement 
of various animals for carbon, nitrogen, or specific nutrients has been spared 
by symbiotic microorganisms. For example, photosynthetic associations have 
evolved repeatedly in basal animals; some termites possess nitrogen-fixing 
bacteria in their guts, enabling them to thrive on wood of exceptionally low 
nitrogen content; and all animals that feed through the life cycle on vertebrate 
blood, e.g., bedbugs, tsetse flies, leeches, and ticks, are widely believed to 
derive supplementary B vitamins from microbial partners (Douglas, 2015; 
Venn et al., 2008).

Symbiotic microorganisms also complement metabolic deficiencies that 
have evolved in specific animal groups. For example, arthropods cannot 
synthesize sterols, which are essential constituents of membranes and 
various hormones, and some insects living on sterol-poor diets derive most 
of their sterol requirement from yeast symbionts (Douglas, 2015); and, 
because vertebrates cannot degrade cellulose, most herbivorous vertebrates 
depend on cellulolytic microorganisms in their guts. Some metabolic traits 
are mediated either intrinsically (i.e., by the products of animal genes) or 
via microbial partners, varying among animal taxa. Complex patterns of 
intrinsic and  microbial origins of metabolic traits are evident for cellulose 
degradation (Calderon-C ortes et al., 2012). Similarly, animal luminescence 
can be intrinsic or microbial. An inventory of light production in marine 
fish identified 8 independent origins of intrinsic luminescence and 17 origins 
of bacterial luminescence (Davis et al., 2016). This includes the deep-sea 
angler fish that maintain two light organs, one with intrinsic luminescence 
and the other housing symbiotic bacteria. Secondary metabolism, including 
the synthesis and degradation of toxins, is also mixed in origin (Table 1.1A) 

TABLE 1.1. Services Provided by Microbial and Animal Partners

(A) Microbial services Examples

CO2 fixation

—Photosynthesis

—Chemosynthesis

Dinoflagellate algae Symbiodinium in 
shallow- water scleractinian corals

Bacteria in annelid tube worms and various 
bivalve mollusks at hydrothermal vents 
and methane seeps

Nitrogen fixation Various bacteria in some termites

Essential amino acid synthesis Various bacteria in plant sap–feeding 
insects

B vitamin synthesis Various bacteria in insects feeding through 
the life cycle on blood

Degradation of complex polysaccharides Bacteria in anoxic gut regions of vertebrate 
herbivores

Luminescence Vibrio or Photobacterium in light organs of 
some fish and squid

Toxin (e.g., polyketide, antibiotic) synthesis Various bacteria in benthic marine animals, 
e.g., sponges, bryozoans, and insects 
(e.g. Paederus rove beetles, attine ants)

Toxin degradation Various gut bacteria in animals feeding on 
toxic plant tissues, e.g., detoxification 
of plant phenolics ingested by desert 
woodrats, caffeine ingested by the coffee 
berry borer beetle

(B) Animal services Examples

Nutrient supply: selective feeding harvests 
and concentrates nutrient-rich substrates 
that are utilized by microorganisms

Many gut microorganisms

Protection from adverse abiotic conditions, 
e.g., high oxygen tensions, desiccation

Obligately anaerobic microorganisms in 
anoxic fermentation chambers of animal 
guts

Provide enemy-free space by sequestering 
microorganisms and by immune system 
function

Inferred for many intracellular microor-
ganisms

Dispersal, often in nutrient-rich substrate, 
e.g., mucus, fecal material

Inferred for carriage of some microorgan-
isms through the animal gut
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FIG. 1.1. How microorganisms interact with the animal host.

The key metabolic capabilities gained by animals from microbial partners 
are listed in Table 1.1A. Some of these capabilities were absent from the 
lineage giving rise to animals, e.g., photosynthesis, nitrogen fixation, and 
essential amino acid and B vitamin synthesis, and the dietary requirement 
of various animals for carbon, nitrogen, or specific nutrients has been spared 
by symbiotic microorganisms. For example, photosynthetic associations have 
evolved repeatedly in basal animals; some termites possess nitrogen-fixing 
bacteria in their guts, enabling them to thrive on wood of exceptionally low 
nitrogen content; and all animals that feed through the life cycle on vertebrate 
blood, e.g., bedbugs, tsetse flies, leeches, and ticks, are widely believed to 
derive supplementary B vitamins from microbial partners (Douglas, 2015; 
Venn et al., 2008).

Symbiotic microorganisms also complement metabolic deficiencies that 
have evolved in specific animal groups. For example, arthropods cannot 
synthesize sterols, which are essential constituents of membranes and 
various hormones, and some insects living on sterol-poor diets derive most 
of their sterol requirement from yeast symbionts (Douglas, 2015); and, 
because vertebrates cannot degrade cellulose, most herbivorous vertebrates 
depend on cellulolytic microorganisms in their guts. Some metabolic traits 
are mediated either intrinsically (i.e., by the products of animal genes) or 
via microbial partners, varying among animal taxa. Complex patterns of 
intrinsic and  microbial origins of metabolic traits are evident for cellulose 
degradation (Calderon-C ortes et al., 2012). Similarly, animal luminescence 
can be intrinsic or microbial. An inventory of light production in marine 
fish identified 8 independent origins of intrinsic luminescence and 17 origins 
of bacterial luminescence (Davis et al., 2016). This includes the deep-sea 
angler fish that maintain two light organs, one with intrinsic luminescence 
and the other housing symbiotic bacteria. Secondary metabolism, including 
the synthesis and degradation of toxins, is also mixed in origin (Table 1.1A) 

TABLE 1.1. Services Provided by Microbial and Animal Partners

(A) Microbial services Examples

CO2 fixation

—Photosynthesis

—Chemosynthesis

Dinoflagellate algae Symbiodinium in 
shallow- water scleractinian corals

Bacteria in annelid tube worms and various 
bivalve mollusks at hydrothermal vents 
and methane seeps

Nitrogen fixation Various bacteria in some termites

Essential amino acid synthesis Various bacteria in plant sap–feeding 
insects

B vitamin synthesis Various bacteria in insects feeding through 
the life cycle on blood

Degradation of complex polysaccharides Bacteria in anoxic gut regions of vertebrate 
herbivores

Luminescence Vibrio or Photobacterium in light organs of 
some fish and squid

Toxin (e.g., polyketide, antibiotic) synthesis Various bacteria in benthic marine animals, 
e.g., sponges, bryozoans, and insects 
(e.g. Paederus rove beetles, attine ants)

Toxin degradation Various gut bacteria in animals feeding on 
toxic plant tissues, e.g., detoxification 
of plant phenolics ingested by desert 
woodrats, caffeine ingested by the coffee 
berry borer beetle

(B) Animal services Examples

Nutrient supply: selective feeding harvests 
and concentrates nutrient-rich substrates 
that are utilized by microorganisms

Many gut microorganisms

Protection from adverse abiotic conditions, 
e.g., high oxygen tensions, desiccation

Obligately anaerobic microorganisms in 
anoxic fermentation chambers of animal 
guts

Provide enemy-free space by sequestering 
microorganisms and by immune system 
function

Inferred for many intracellular microor-
ganisms

Dispersal, often in nutrient-rich substrate, 
e.g., mucus, fecal material

Inferred for carriage of some microorgan-
isms through the animal gut

although, as the microbiology of more animals is investigated (e.g., Ceja- 
Navarro et al., 2015; Florez et al., 2015; Kohl and Dearing, 2016), many 
more instances of microbial-mediated secondary compound metabolism 
may be revealed. The evolutionary and ecological factors that determine 
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why some traits can be either intrinsic or microbial origin have not been 
investigated systematically.

The many examples of animals that gain access to metabolic capabilities 
through associations with microorganisms can be explained in terms of an 
inherited predisposition of animals to associate with microorganisms, es-
pecially bacteria. This evolutionary predisposition appears to be common 
to all eukaryotes. The common ancestor of all modern eukaryotes bore an 
intracellular Rickettsia-like bacterium that evolved into the mitochondrion; 
unicellular eukaryotes (protists), where investigated, are routinely colonized 
by bacteria or other microorganisms; the plant microbiome is a very active 
area of current research (Bai et al., 2015; Lundberg et al., 2012); and discovery 
of additional fungal or bacterial partners in lichenized and mycorrhizal fungi 
illustrates how fungi also have a propensity to form associations (Bonfante 
and Anca, 2009; Spribille et al., 2016). This microbio-philia of animals ap-
pears to be matched by advantages to the microorganisms of colonizing the 
animal, including access to nutrients, protection from natural enemies or 
harsh abiotic conditions, as well as dispersal (Table 1.1B).

These considerations bring us to the second reason why animals are asso-
ciated with microorganisms. Because animals originated and diversified in the 
context of a long evolutionary history of relationships with microorganisms, 
the key physiological systems of animals, together with the signaling networks 
that regulate these systems, all evolved in the context of preexisting and 
ongoing interactions with microorganisms. In other words, the microbiome 
is expected to play a role, directly or indirectly, in the development and 
function of the animal nervous system, immune system, endocrinal system, 
gut physiology, respiratory physiology, and so on. This reasoning takes us 
beyond the predictions that microorganisms confer various metabolic services, 
as outlined in Table 1.1A, to the additional prediction that the presence and 
activities of microorganisms influence many, possibly all, aspects of animal 
function (figure 1.1B).

Just as the role of microorganisms as a source of metabolic capabilities 
(figure 1.1A) has been appreciated for many years, the predicted integration 
of microorganisms into all aspects of animal function also has a strong 
historical basis. It was Louis Pasteur, the architect of the germ theory of 
disease, who first addressed the significance of microorganisms for animals, 
arguing that microorganisms are essential for animal life (Pasteur, 1885). 
We now know that this is not true, and that some animal species can be 
maintained under microbiologically sterile conditions; they are known 
as “axenic” or “germ-free” animals. The viability of germ-free animals 
was first demonstrated for Calliphora blow flies (Wollman, 1911), and the 
subsequent elucidation of the nutritional requirements of Drosophila was 
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founded on methods devised to eliminate all microorganisms from the fly 
cultures (Sang, 1956). Today, the production and distribution of germ-free 
laboratory mice (Smith et al., 2007) is a commercial enterprise. These germ-
free mice display many symptoms of ill-health, including stunted growth, 
depressed fertility, and reduced metabolic rate, commonly accompanied 
by specific abnormalities of various organs. These multiple deficiencies and 
abnormalities are the basis for the fundamental role of microorganisms 
in animal health and well-being. In other words, we can only understand 
animal function by integrating the microbiology of animals into our expla-
nations of animal biology.

1.4. Scope of This Book

The realization that every animal is colonized by microorganisms that can 
shape its health and well-being is transforming our understanding of animal 
biology. The purpose of this book is to provide some initial explanations and 
hypotheses of the underlying animal-microbial interactions. For this, we need 
multiple disciplinary perspectives.

We start with evolutionary history in chapter 2. The propensity of animals 
to associate with microorganisms has ancient roots, derived from both the 
predisposition of all eukaryotes to participate in associations and, likewise, 
the tendency of many bacteria to interact with different organisms, often 
to mutual benefit. Chapter 2 outlines the patterns of these interactions, es-
pecially in taxa related to animals and basal animal groups. Interactions are 
mediated by chemical exchange, enhancing access to energy and nutrients 
and providing chemical information that enables the interacting organisms 
to anticipate and respond adaptively to environmental conditions. Many of 
these core interactions were firmly established in the ancestor of animals. 
The multicellular condition of animals, sophisticated immunological function 
of even basal animals, and key animal innovations, including the polarized 
epithelium and the gut, play important roles in shaping the pattern of animal- 
microbial interactions.

Although all animals are associated with microorganisms, we know more 
about the microbiome of humans than any other animal. Chapter 3 addresses 
current understanding of the role of the microbiome in human health. Studies 
of the microbiology of humans combined with experimental analyses of model 
animals are revealing complex problems—and some solutions. The complexity 
lies in the great diversity of microorganisms within each individual human, as 
well as considerable among-individual variation; and the importance of the 
microbiome is reinforced by the increasing evidence for microbial involve-
ment in some diseases, especially metabolic and immunological dysfunctions. 
Western lifestyles, including diet and antibiotic treatment, have been argued 
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to contribute to the incidence of microbiome-associated diseases, with op-
portunities for microbiological restoration by microbial therapies.

Our understanding of interactions between animals and the microbiome 
is most developed in relation to the immune system, and this is the focus of 
chapter 4. It is now apparent that animal immune system is a key regulator 
of the abundance and composition of the microbiota, and that immunolog-
ical function is strongly regulated by the composition and activities of the 
microbiome. The immune system cannot be understood fully except in the 
context of the microbiology of the animal. Furthermore, this highly interac-
tive system is overlain by microbial-mediated protective functions, essentially 
comprising a second immune system.

Chapter 5 investigates the role of the microbiome in shaping animal, in-
cluding human, behavior. It has long been known that pathogens can drive 
animal behavior, and there is now increasing evidence that resident micro-
organisms can have similar, although often more subtle, effects. Research 
has focused primarily on three aspects of animal behavior: feeding behavior, 
chemical communication among animals, especially in relation to social 
interactions, and the mental well-being of mammals, including humans. As 
chapter 5 makes clear, this topic has attracted tremendous levels of interest, 
but fewer definitive data.

The impacts of animal-associated microorganisms on host health and 
their interactions with the immune system and nervous system of animals 
( chapters  3–5) have one overriding theme in common: that these interac-
tions are complex, with multiple interacting variables. This complexity can 
often appear to defy comprehension. Chapter 6 discusses the ecological 
approaches that have the potential to solve many of these problems of com-
plexity. Treating the animal as an ecosystem, we can ask multiple questions: 
what are the ecological processes that shape the composition and diversity of 
microbial communities, and how do these properties of the microbial com-
munities influence overall function of the ecosystem? Research on complex 
microbiomes, especially in the animal gut, as well as one-host-one-symbiont 
systems are revealing the role of interactions among microorganisms and 
interactions between the microorganisms and host in shaping the diversity 
of the microbiome. Furthermore, the response of individual taxa and inter-
actions can influence the stability of communities to external perturbations, 
ranging from the bleaching susceptibility of shallow-water corals to the gut 
microbiota composition of humans administered with antibiotics.

In chapter 7, the evolutionary consequences of animal-microbial asso-
ciations are considered. There is a general expectation that the fitness of 
both animal and microbial partners is enhanced by these associations largely 
through the reciprocal exchange of services. Nevertheless, hosts can exploit 
their microbial partners, and there are indications that animals can be addicted 



ANIMALS IN A MICROBIAL WORLD 11

to their microbial partners. At a broader scale, this chapter investigates how 
these associations affect the rate and pattern of evolutionary diversification of 
the microbial and animal partners. In addition to evidence for coevolutionary 
interactions and facilitation of horizontal gene transfer, various studies point 
to a direct role of microbiota in interrupting gene flow and speciation by 
both prezygotic and postzygotic processes.

Finally, chapter 8 addresses the implications of the microbiology of animals 
and some key priorities for future research. It is now abundantly clear that 
the microbiome has pervasive effects on the physiological and developmen-
tal systems of animals and the resultant animal phenotype. One of the big 
biological questions in the life sciences today concerns how the phenotype 
of an animal maps onto its genotype and the underlying physiological and 
developmental mechanisms. The answers to this question will require the 
integration of the microbiome with the traditional animal-only explanations 
of animal function. As this book illustrates, the technologies and concepts to 
achieve this intellectual transformation of animal biology are largely in place. 
Why is this integration of disciplines needed? Beyond the fundamental priority 
to understand and explain, the microbiome offers important, but currently 
untapped, routes to promote human health and to mitigate and manage some 
of the damaging effects of human activities on our environment.
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