CONTENTS

INTRODUCTION 6
1 LIFE CYCLES 30
2 TO EAT AND BE EATEN 58
3 DEFENSES 94
4 SOCIALITY 120
5 PARASITOIDS AND PARASITES 156
6 QUID PRO QUO 182
INSECTS IN A CHANGING WORLD 206
FAQs 212
GLOSSARY 218
INDEX 220
ACKNOWLEDGMENTS 223

INTRODUCTION

I MIGHT BE BIASED, but insects are the most fascinating animals with which we share this planet. From my first tottering steps I was spellbound, which was bad news for the various small beasts in my yard and wider neighborhood. Small, grubby fingers ferreting unfortunate beetles and caterpillars from their hiding places and incarcerating them in plastic tubs, often together and often in pretty squalid conditions. In my defense, it was the early 1980s, I was young and I didn't know any better. My favorite was a violet ground beetle. At the time, I had no real idea what it was. All I knew was that it was big, metallic purple, and that it deserved a stint in a tub. This is probably how it begins for all insect-botherers.

When you take time to find and observe these animals, you begin to understand their fabulous diversity. Their appearance is so varied and often so strange that they make sci-fi monsters look a bit lame. Then there are the ways in which they live. From microscopic, incestuous wasps that live their whole life in the eggs of other insects, caterpillars that fool ants into believing they are their sisters, and beetles that lure flies to their doom using stinky secretions. If you want sex, violence, and intrigue, insects have all of this and much more besides.

Their lives are so juicy that you could easily fill ten meaty tomes with what insects get up to, yet we have only scratched the surface of understanding how they live. To date, just over one million species of insect have been described, but there are still millions more out there awaiting description. Our knowledge of even the described species is generally very poor. For the vast majority of insect species, we know next to nothing about the ins and outs of their lives. Insects tend to get overlooked because of their generally small size. As well as being overlooked, they are generally maligned animals because a few species nibble our crops, run amok in our homes, or transmit diseases to us, our pets, and livestock.

We are all familiar with insects, but what are they? Let's begin at the beginning. Insects are animals. You, a scuttling beetle, and a sea anemone all share a common ancestor that lived probably one billion years ago. I've lost count of the times I've read or heard "animals and insects." If you see or hear this then it is your duty to correct it. Within the animals, insects are a type of arthropod.

What Is an Arthropod?

Arthropods are the animals we commonly call "bugs" or in even more derisory terms, "creepy crawlies." This is the largest group of animals by far (1.25 million known species and counting), way bigger than all the other animal groups
© Copyright Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
\checkmark This phylogenetic tree shows
how the different groups of arthropods are related. This reveals that insects are crustaceans.
combined. The arthropods are the insects, springtails, and their relatives, crustaceans, arachnids, horseshoe crabs, sea spiders, centipedes, millipedes, and their relatives. This is a mind-bogglingly diverse group of animals, but they all share the following features:

- Jointed limbs
- An exoskeleton made of chitin, often reinforced with calcium carbonate
- The exoskeleton must be periodically shed for the animal to grow
- A segmented body; each segment often has a pair of appendages.

From an evolutionary point of view, the insects are terrestrial crustaceans. Their closest living relatives are two enigmatic groups of crustaceans-the remipedes and the cephalocarids. The former are rarely seen denizens of flooded caves and the latter are tiny animals that inhabit marine sediments. Insects also go back a very, very long way, with their likely origins some 480 million years ago in the early Ordovician Period. Between then and now planet Earth has been many different worlds, but the insects took to a life on land and made it their own.
 relationships of these orders is a fascinating part of entomology. For example, termites are actually social cockroaches, and fleas are parasitic scorpion flies.

What Is an Insect?

In insects, the general arthropod body-plan has been tweaked and they all share the following features:

- A three-part body: head, thorax, and abdomen
- Compound eyes and often simple eyes, too
- One pair of antennae
- Wings (secondarily lost in some insects).

During the long history of these animals, this form has been fine tuned by time and the environment into the extraordinary diversity of forms we see in living insects today.

By any measure, insects are among the most successful land animals there have ever been. They exist in such numbers and live in such bewildering ways that they pull at every single thread of the terrestrial domain. What are the secrets to this success?

© Copyright Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
< Aquatic insects have a smooth
exoskeleton and paddle-like limbs.
$>$ Top: Adapting to life among running
water has led to the evolution of flattened,
hydrodynamic forms, such as this mayfly
nymph shown here.
Bottom: Halobates water striders live on the surface of the open ocean. Their exoskeleton is exceedingly water repellent.

First, is the exoskeleton. This is so much more than a suit of strong, light armor. It is the insect's skeleton, composed of chitin, and so it must provide anchor points for all the animal's muscles, which it does via tiny, inward projections. It must keep the insides in and the outside out. Crucially, it needs to prevent undue water loss as dehydration is the ultimate challenge for all terrestrial beings. A waxy layer prevents the insect from becoming a dried-out husk. Insect exoskeletons range from the incredibly delicate, such as that sported by ephemeral beings like mayflies, to the almost impregnable, such as those of the aptly named ironclad beetles and some weevils. The exoskeleton and the efficient musculature beneath made life on land possible for the first insects, but it also has one major flaw. It's not very elastic. So, when an insect needs to grow it has to escape its old exoskeleton and make a new one. This sounds rather straightforward, a bit like a snake shedding its skin, but it is so much more complicated. For starters, the

[^0]

< The limbs of insects come in a bewildering array of forms, such as the rear legs of Calodromus mellyi, which are used in defense and perhaps courtship.

へ The exoskeleton is most armor-like in the beetles, such as this Leptochirus rove beetle.
exoskeleton extends down the insect's throat to line its foregut and up through the anus to line the hindgut. The exoskeleton also lines the vanishingly tiny tubes that transport gases to and from all the insect's tissues. All this has to be replaced too for the insect to grow. The whole process is a remarkable natural phenomenon precisely controlled by a symphony of hormones. The new exoskeleton has to be synthesized and ready before the old one is cast off, and the physical process of leaving the old exoskeleton is fraught with danger. Not only that, but when the insect is finally free of its old covering, the new one is still soft and pliable, leaving the animal acutely vulnerable. Considering all of this, it's a wonder that any animal with an outer layer like this could ever be more than just a footnote in the history of life on Earth, but its downsides are more than made up for by the protection and opportunities it provides an insect.

If you have a good look at a range of insects you'll be struck by their colors. They come in a staggering variety of hues, from the vivid red of a lily beetle to the deep, metallic iridescence of a
long-legged fly. These colors can be formed by pigments, but in those insects with metallic iridescence the colors are due to the scattering of light by the crystalline structure of the exoskeleton. To our eyes, lots of insects look like living jewels.

The exoskeleton is also festooned with all manner of outgrowths that appear as hairs, bristles, and scales. These structures are multifunctional. The wings of butterflies are covered in huge numbers of scales that give the wings their colors and patterns. These scales can be rather fur-like providing their owners with insulation and protection from predators. Many beetles are dusted with scales of every hue that are easily dislodged.

The exoskeleton also sheathes the jointed appendages of the insect, which come in every shape and size. The appendages of the head have been modified into all manner of shears, syringes, and saws for making short work of food. Alongside these mouthparts are delicate little limbs called palps that mainly taste and manipulate food. Emanating from the head are a single pair of antennae. In some insects these are almost invisible, but in others they're fantastically elaborate and bristling with sensory pits for detecting food and members of the opposite sex. The limbs of insects have the same basic structure, the segments of which are named after the structures of vertebrate legs, so they have a coxa, trochanter,
\checkmark Outgrowths on the exoskeleton include all manner of bristles and scales, such as the fur-like covering of many moths (Deilephila elpenor).

femur, tibia, and tarsus. The tarsus is normally tipped with a pair of claws. Natural selection has worked wonders on this basic limb form. For example, you can see lots of unrelated insects equipped with raptorial legs for snatching prey.

In others, such as the mole crickets, the legs are beautifully adapted for digging, while others have beefy rear legs that power prodigious jumping abilities. Some leaf hoppers are even equipped with cogs on the upper parts of their legs that keep the legs perfectly in time when they jump. If you've ever seen a flea beetle or one of these leaf hoppers in action you'll understand that insects are the undisputed champions of jumping.

Wings and Flight

The most significant extension of the insect exoskeleton and the innovation that makes these animals so remarkable is the wing. Have a good look at an insect wing-under a microscope if you can. They're one of the most elegant structures in nature. Watch a hoverfly in the summer months and marvel at what they do with these wings-they make other flying animals look a bit clumsy. The level of precision that goes into their flying far outstrips that of most larger flying animals.

Wings appeared very early in the evolution of the insects, probably around 400 million years ago, which is at least 170 million years before vertebrates ever took to the air. The origins of the insect wing are hotly debated, although recent research suggests they evolved from legs. Regardless of their origin, this innovation completely transformed the fortunes of the insects. As the wings and their musculature became ever more fine tuned it opened up all sorts of possibilities. Flight enabled insects to better evade their enemies, to hunt prey, and to seek out mates and new areas of habitat. The ability to fly long distances is not something we normally attribute to the insects, but lots of butterflies, moths, hoverflies, beetles, and many more insects undertake enormous migrations every yearborne aloft on their wings-a true wonder of nature.

The singular flying abilities of insects, such as hoverflies, relies on an extremely efficient, ingenious system that combines the brute force of the wing muscles with the elasticity of the wing and that of the thorax that houses the muscles. In the most proficient flying insects, when the muscles in the thorax contract to bring up the wings, the thorax is distorted. Muscles that join the front and back of the thorax then contract, the springy thorax goes back to its original shape and the wings pivot downward.

< The delicate hind wings of an earwig are normally out of sight-intricately folded beneath the short, tough first pair of wings.
^ True flies owe much of their aeronautical abilities to their halteres-one of which can be seen here (circled).

Insects that can beat their wings extremely rapidly also have a special type of muscle that is unique to insects-the so-called asynchronous muscle. Normal muscles need an electrical signal from the nerves for every contraction, but asynchronous muscle can contract multiple times with each nerve signal. This allows extremely rapid wing beats. In some midges this can be more than 1,000 beats per second! Indeed, true flies, such as hoverflies and midges, are the real experts when it comes to flying. In these insects, the second pair of wings has been reduced to mere stubs-the halteres. These tiny, inconspicuous structures are crucial to the flying abilities of the true flies as they beat along with the wings and act like tiny gyroscopes. The fly uses the information from the halteres to fine tune its position in flight and precisely control the muscles that power the wings and stabilize the head.

In beetles it is the first pair of wings that have been greatly modified to form a tough, protective shield over the abdomen, called the elytra. Elytra are key to the success of beetles, since they allow the otherwise soft abdomen to be better protected, and they enable beetles to live in places where soft-bodied animals would otherwise be squashed, such as the tight spaces between tree bark.

Miniaturization

We overlook insects because they're generally tiny animals, but this small stature is another reason they are so successful. A smaller body is less "expensive" to produce and maintain, especially in terms of the various systems that are needed to get around the problems of ventilation, nutrient distribution, and excretion. Small animals can also exploit niches that are completely inaccessible to larger animals.

Insects might be small, but they are also incredibly complex. Remember that these animals have tissues, organs, and organ systems. The brain of a honey bee has around 850,000 neurons and it is capable of complex behaviors, so we mustn't equate small with simple.

Insects, like few other animals, have embraced miniaturization by squeezing enormous biological complexity into a tiny space. The champions of miniaturization have to be the staggeringly varied parasitoid wasps. These wasps are probably the most diverse of all the insects, but it's difficult to estimate just how many species there might be because they're so poorly studied. Some of them are so tiny-much smaller than some single-celled beings-that the full stop at the end of the last sentence could comfortably contain several of them. How is this possible? How can a body of tens of thousands of cells be so tiny? Inside the head of a fairy wasp there is a brain, which reaches out to the rest of the body via nerve cords and nerves. In some of the smallest wasps, this brain is composed of only 4,600 neurons, but they process the information streaming in from the senses to control complex behaviors, such as flying, walking, finding a mate, and seeking out hosts. In addition, these microscopic bodies contain muscles, a complex gut, the insect equivalent of kidneys, and lots more besides.

To become very small, these microscopic insects have simplified some of their organ systems, but a cell can only get so small until more drastic modifications are needed. One way of shrinking cells is to get rid of the nucleus. This happens in the central nervous system of these miniature marvels and allows more cells to fit in each space. The nerve fibers of these insects are so thin that they shouldn't be able to work in the normal way, and it has been suggested that their nervous system may in fact be mechanical rather than electrical.

The tiny size of these wasps enables them to exploit the smallest niches with many of them completing their development within the eggs of other insects. In the smallest fairy wasps, the eyeless, wingless males remain within the host egg and mate with all their sisters before they disperse.

^ This fairy wasp (L) is about 0.03 in (0.8 mm) long, which is quite big compared to many of its relatives (Mymar pulchellum). In order to show just how tiny this wasp is, here it is photographed next to a one pence coin for scale (R).

Metamorphosis

There can be few phenomena in nature that are as marvelous as metamorphosis. To see an insect change from a larva into a pupa and finally into an adult takes some beating. When you look at a caterpillar or a maggot and then the moth, butterfly, or bluebottle fly that they become, it is difficult to grasp how these wildly different animals are related at all, let alone the same animal. The process of metamorphosis has captivated people for thousands of years and is another reason these animals are so successful. The most diverse groups of insects-the beetles, flies, wasps, bees, ants, butterflies, and moths-all go through metamorphosis. Some even go through what is known as hypermetamorphosis, where an active, hatchling larva turns into a grub-like larva that grows and pupates into the adult.

Generally, insect larvae look like soft targets. They're mainly soft-bodied and slow moving. It's true to say that a good proportion of insect larva get picked off by pathogens, parasitoids, and predators, but these shortcomings are more than compensated for by the very process of change from one form into another. Crucially, a separate larval stage and adult stage allow a division of labor in the life of an insect. The larval stage is an eating machine-dedicated solely to growth-while the adult gets all the fun and can spend its time mating and finding new areas of habitat. The other masterstroke of this strategy is that because the larva and adult are so different and typically live in different places they won't compete for resources.

The pupa was once thought to be a resting stage in the life cycle of insects, but it is anything but. The pupa's calm exterior belies an incredible amount of activity. In a series of beautifully choreographed, hormone-controlled steps, the body of the larva is dismantled and the adult form assembled.
© Copyright Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
\checkmark Metamorphosis is a truly remarkable phenomenon that allows one animal to be two things. This image shows the larval stages, pupa, and adult of a jewel beetle.

There's still a huge amount to learn about this remarkable phenomenon. It was once thought that all the larva's tissues were broken down during pupation to create a "soup," but new research has shown this is not the case. Some of the tissue is broken down and new structures develop from clusters of cells known as imaginal discs, (for example, the muscles), but others are retained and remodeled (for example, the gut, trachea, and some parts of the nervous system). The imaginal discs can even be active before pupation. Indeed, memories formed by the larva (yes, insects have memories) are retained in the adult insect, so the connections between nerve cells must be maintained during this transformation.

Senses

The senses of insects are as refined as those of much larger animals, but their small size means that we overlook their complexity. The sensory structures of insects are often invisible to the naked eye. Look closely at an insect, perhaps through a microscope and you'll see it's furnished with an array of senses-the acuity of which contributes to their success.

There are sensory cells on the surface and within their body that sense stretching, bending, compression, and vibration. Many of these are used to sense the environment, such as the minuscule movements of air that might indicate the proximity of prey or predator, while others provide information on the position or orientation of the body. In cave-dwelling insects where eyes are of no use because of the darkness, they often have long sensory setae (sensory, hair-like structures) for detecting the movement of prey. In some beetles and true bugs, sensory cells have even been modified to detect infrared. The offspring of these insects can only develop in the wood of burnt trees, and their remarkable heat sensors enable them to find freshly charred trees.

Not all insects can detect sounds in the way that mammals do, i.e. by picking up movements of the air via a drum-like membrane. Receptors that pick up the tiniest vibrations traveling through the substrate are common. Some insects do have organs with a drum-like membrane and they provide some of the sharpest hearing in the animal world. In some true bugs these ears are located on the thorax. Grasshoppers, cicadas, and moths have ears on their abdomen, whereas you must look to the front legs to find the ears of crickets and katydids.

The most sensitive known ears among the insects belong to a parasitoid fly (Ormia ochracea) that has to pinpoint the location of its hosts-crickets-by their song. Depending on where the sound of the singing male cricket is emanating from, the tiny ear drums will reverberate at slightly different times. This difference may be as little as 50 billionths of a second, but it is enough to allow the fly to directly home in on a singing male cricket. It doesn't have to stop and cup its ears; it just precisely identifies the source of the sound. Even if the cricket stops singing, mid-homing, the fly can approximate its position from the last sound it made.

The ability to detect chemicals, i.e. taste and smell, is extremely acute in insects. You won't find a nose on an insect, well not one that you see on the face of a mammal, but they are bristling with all manner of receptors for detecting chemicals. These are normally concentrated on the mouthparts, but they can also be found on the antennae of some insects, as well as the feet and ovipositor of others. The life cycle of many insects hinges on being able to detect mates and food from afar, so their ability to sense individual molecules in the air is remarkable. Flies and beetles that need decaying animal remains for their larvae can detect the chemical signatures of death from many miles away. The adult lives of insects are often very fleeting (sometimes a couple of hours) and the window in which to detect a receptive mate is tiny, so males must be able to detect the

merest whiff of a female on the breeze. For this reason, male insects often have elaborate antennae for just this job. The ornate, often branching antennae of male insects are effectively molecular sieves able to screen individual molecules from the air. By following the increasing concentration of these molecules, the male will eventually be led to a potential mate, unless he's beaten to it.

Insects have very snazzy eyes. Often, they have more than one type of eyecompound eyes and so-called simple eyes. Simple eyes aren't exactly simple. They're exquisite, tiny structures for sensing light, and one type-the lateral ocellus-can probably resolve outlines of nearby objects. The other type of simple eye-the dorsal ocellus-is only ever found with compound eyes and it is thought they may be important in tweaking the sensitivity of the compound eyes to light intensity.

Compound eyes can be relatively enormous and in some insects the head is little more than eye. Every compound eye is made of individual, tightly packed units called ommatidia. Each ommatidium has a lens and associated cells that detect light, so each ommatidium captures an image that is relayed to the brain. Up until recently it was assumed that this arrangement could only provide relatively low-resolution images. However, the photoreceptor cells underneath the lenses of the compound eye move rapidly and automatically in and out of focus, which

^ Owlfly compound eyes are split into two parts. The top part is exclusively UV sensitive. The lower part has more sensitivity in the blue-green wavelength range. This probably helps them to pick out prey against the sky.
provides a view of the world that is much sharper than previously thought. As well as giving insects a sharp view of the world, these compound eyes also have a very wide angle of view and are second to none when it comes to detecting movement. Many insects can also detect light that is invisible to humans.

Reproductive Potential

Phrases such as "to breed like flies" do have a basis. Indeed, insects generally are synonymous with fecundity. Many female insects lay lots of eggs, often hundreds. Insects such as oil beetles, which have strange, convoluted life cycles, must produce thousands of eggs to off-set the low chances of any one offspring reaching adulthood. Some of the supreme egg layers though are the queen ants and termites. A termite queen may produce more than ten million offspring in her long life, but even this is meager compared with some leafcutter ant queens who can produce 150 million young in their lifetime.

Most of the eggs laid by a female insect will hatch, and in several types of insect the generation time is very short. Aphids in particular are renowned for the short generation times and in some species, this is as little as five days. Unbound and in
perfect conditions the populations of the most fecund insects can explode. Large numbers of eggs and short generation times are not the only secrets to the reproductive success of these animals. Female insects can store sperm from a single mating and make it last a lifetime-enough to fertilize all the eggs they will ever produce. In any given population of an insect, females often outnumber the males, as a few of the latter can more than meet the sperm demands of the females. In aphids, thrips, stick insects and many other insects, this trend has reached its ultimate conclusion, as males only feature in part of the life cycle, are very rare or have been erased completely leaving parthenogenetic females pumping out clones of themselves. This is how mass gatherings of aphids can appear on plants, seemingly out of nowhere.

All these factors combined mean that, as a rule, insects are very good at making more insects. Perhaps the most important aspect of this rampant reproduction is that it churns out mutations, a tiny proportion of which will be beneficial and allow the owners to adapt to a continually changing world. This is perhaps most easily understood when we think about insecticide resistance in the insects that we want to get rid of. When we douse the environment with a new insecticide the initial results are dramatic. The targets are seemingly vanquished, but there will
\checkmark Without the need for sexual reproduction
for part of their life cycle, aphids can establish
enormous populations with alarming speed.

< The ability of a caddisfly larva to construct this case from silk, snail shells, and plant debris is completely innate.
^ A female spider-hunting wasp with her prey.
The ability to find and dispatch prey in a very specific way and provision a nest for her offspring is hard wired in her brain (Auplopus carbonarius).
always be some survivors, a small proportion of individuals that have a chance mutation that renders them immune to the insecticide. These resistant individuals go on to breed, passing this resistance to their offspring. In a relatively short amount of time, all the insects in a population will be resistant to the insecticide. This is evolution in action and the same process applies to every aspect of an insect's life. There will always be the genetic resources out there that allow adaptation to the challenges that life throws their way.

Complex Behaviors

The behavioral repertoire of insects is immense. From the intricacies of their life cycles, through to the finding of food and mates, and the evasion of their many enemies, insects do some remarkable things. Much of what they do is innate, in other words the behavior we see is encoded in their DNA. This includes very elaborate actions. When we watch a caddisfly making its remarkable case or a hunting wasp diligently snipping the legs from its spider prey before it transports the victim back to its nest, it's hard to believe that these complex actions aren't learned. The truth is that the caddisfly and the wasp don't need to learn these things-they're hard wired-somehow this knowledge is encoded in their DNA.

Although innate behaviors account for much of what we see insects doing, some of them can change their behavior because of experience. In other words, they can learn. As an example of how elaborate this learning can be you only need to look at honey bees. When returning from a successful foraging sortie, a worker honey bee will do a strange dance-the waggle dance. This has been known about for a long time, probably for as long as people have been keeping bees, but it took the genius of the ethologist Karl von Frisch (1886-1982) to figure out what it meant. Far from being a celebratory jig, this "dance" is the worker using symbolic language to teach her sisters about the location of food, water, and new nesting spots. The fact that these small animals can memorize and relay this information to others of their kind to learn is something to marvel at.

Dance performed on vertical honeycomb inside the hive.

If food is directly in line with the sun, the bee dances straight upward.
^ The honey bee's waggle dance is among the most impressive pieces of animal communication ever discovered and evidence that at least some insects are capable of complex feats of learning.

Other more recent studies on insects have found that bees can count and that they can discern whether two symbols are the same or different. Not only that, but social wasps have also been shown to recognize the faces of other wasps. These examples show that some insects are capable of impressive cognitive feats.

There's still an awful lot to discover about the learning ability of insects and we've only just scratched the surface. Of the more than one million species of insects that have been described, only a handful have been studied to test whether they are capable of learning. Most of the insights so far come from social insects and it's not really a surprise these animals are capable of learning because they live in large, complex groups where there's ceaseless interaction between individuals conveying information about many things, such as food and threats.

About this Book

In this book we explore the lives of insects. Within the confines of 40,000 words I had to be very selective in what examples I used in each chapter, and I have focused on the bizarre and remarkable. Bear in mind that the insects are an enormous group of animals, with many more species than all the other animal groups combined. Even though only a small proportion of insect species are well studied, these "known" ways of life are still stunningly diverse. Even among the well-known species there are still discoveries to be made and just think about all the other insect species out there. The ones that have been described by taxonomists, but the lives of which are a mystery, and the millions of species that are still to be collected and described. It would take an army of biologists thousands of years to understand exactly how all these insects live. You can reflect on all those species, the ways in which they might live, and the web of interactions they have with other living things. The complexity is mind-bending.

The facts in this book about how certain species live and why they do the things they do, were gleaned by patient observation, often over many years and sometimes over whole careers. The curiosity, patience, and dedication of these naturalists and scientists is sometimes as remarkable as the insights to which they led. The drive to ask questions, and understand more about life on Earth, is what makes us who we are, and it's something we should all celebrate and nurture. The great thing is that anyone can help to fill in these blanks-there's enormous scope for exploration and discovery within entomology. Watching and studying insects can take you to some amazing places, but equally, discoveries can be made in your own backyard. All you need to do is get out there and look. Hopefully, this book will give you a taste of the remarkable lives of insects, help you to make sense of some of the things you might see if you watch them, and encourage you to look more closely at these endlessly fascinating animals.

INDEX

Achias rothschildi 41
Adetomyrma 134
Allomerus 204
decemarticulatus 202-3
Amblyopinus 205
ambush predators 73-9
Anabrus simplex 44
ant-decapitating flies
164-5
antennae 8, 13, 23, 166
antlions 73, 78
ants $49,54,106,117,143$
army ants 136
and blue butterflies
154-5
bullet ants 144, 204
Dracula ants 134
driver ants 136
eggs 24
eusociality 123,124 , $125,128,130-41$, 144, 148-50
fire ants 144
flying ants 139
and fungi 132,136 , 186, 202-3
leafcutter ants 24, 53, 93, 125, 130, 132, 136-7, 186
lemon ants 195
Maricopa harvester ants 144
plant mutualisms 195-204
pollination 69
raspberry crazy ants 144
red ants 154-5
sap sucking insects 201
slave-making ants 141
trap-jaw ants 144
wood ants 134, 135, 140, 144
aphids $24-5,32,37,63$, $64,123,124,126-7$, 134, 201, 212
Aphomia sociella 99
Apis mellifera 146
aposematic coloration $62,116,117$
appendages $6,8,13,15$
aquatic insects 61, 86, 215
Arachnocampa luminosa 74
Argentine ants 140
army ants 136
Ascalaphidae 73
assassin bugs 75, 105, 117, 194
asynchronous muscle 17
Attelabidae 50
Austroplatypus incompertus 185
bacteria 192-3, 199
bark beetles 185
Batesian mimicry 107
bats, and moths 97
beaded lacewings 87
bed bugs 46-7
bee flies 32, 36
bee-grabber flies 49
bees $36,54,117,162,178$
cuckoo bees 103
eusociality 123,124 ,
128, 145, 148
pollination 68,69
solitary $36,45,214$
sweat bees 212-13
see also honey bees
beetles 6, 10, 13, 21, 63, 89, 149-50
ambush predators 74 bark beetles 185 bombardier beetles 118, 150
burying beetles 54, 89
carrion beetles 117
click beetles 74
colors 102
courtship 39
decaying wood 91
diversity 213
dung beetles 52-3,
70, 87, 90, 92-3
eggs 49
elytra 18
Epomis 76-7
eusociality 123, 124
fungi farming 185-6
fungus beetles 54
ironclad beetles 111
jewel beetles 102
leaf beetles 63, 104
leaf miners 65
lily beetles 12,104
longhorn beetles 112, 117, 119
mandibles 112
oil beetles 24,36
parasitoids 161
parental care 50-4
pollination 69
reed beetles 61
rove beetles 39-40,
75, 78, 109, 117,
149, 152, 205
ship-timber beetles 186
snail predation 87
telephone-pole
beetles 32, 37
tiger beetles 74, 82
tortoise beetles 50-1, 104
water beetles 114
beewolf 54-7, 103, 192
bella moths 44
Beltian bodies 134, 199
biomass decline 206-7
Bledius 51-2
blow flies 89
blue butterflies 148, 153-5
body size 215
bombardier beetles 118, 150
bone-house wasps 105
bone-skipper flies 89
bot flies 49, 176, 177
brain 18, 80, 132, 165, 168, 214
breathing 215
bullet ants 144, 204
bull horn acacias 198-9
burying beetles 54, 89
butterflies 13, 15, 19, 100, 148
blue butterflies 148, 153-5
cabbage white butterflies 43,47
clearwing swallowtails 47
decline 206-7
mating 47
moth difference 213
pollination 69
red postman
butterflies 47
scales 114
cabbage white
butterflies 43,47
caddisflies 27,112
Calleremites subornata 100
Calyptra 180
calyx 191
camouflage 73, 76, 100-2
carnivores 72-87
carrion beetles 117
Cassidinae 50-1
castes 135-8
caterpillars 6, 19, 63, 79,
89, 126, 170-1
blue butterflies 153-5
fecal mimicry 104
mimicry 106
parasitoids 161
spines 112
chemicals 105, 149-50,
155
communication 125
mimicry 103
plant defenses 62-3, 65, 115-16, 166
repellent smells 116-17
slave-making ants 141
stenusin 109
toxic semen 44, 47
toxic vapors 87
warning colors 102
weapons 115-19, 142, 143
see also venom
chemoreceptors 22-3
Chrysopidae 49
cicadas 22, 38, 161
Cimex 46-7
claws 112
clearwing swallowtails 47
click beetles 74
climate change 209
clones 25, 37, 126,
172-3
cockroaches 49, 168-9
color 12-13
aposematic 62,116 , 117
disguise 102
compound eyes 8,23-4
Conopidae 49,162
conopid flies 49, 162
convergent evolution
$66,73,78,83,108,124$
Coprophanaeus lancifer 53
Cordia trees 204
courtship 38-40, 42-3,
75, 99
coxa 13
Cressida cressida 47
cricket flies 99
crickets $15,22,39,44$,
99, 106, 202-3
cuckoo bees 103
cuckoo wasps 103
damselflies 45, 78
Dasymutilla gloriosa 108
deer flies 175
Dermatobia hominis 49
Deuteragenia ossarium 105
dormancy 214
Dracula ants 134
dragonflies 45,78
driver ants 136
Drosophila melanogaster 47
dung beetles 52-3,70, 87, 90, 92-3
ears 22
earwigs 50
echolocation 49, 97, 166
eggs 24-5, 32-3, 35-6, 46, 49
eusocial insects 135-6
parasitoids 160, 164, 166-7, 169-71, 172, 191
parental care 50-7
elytra 18
emerald cockroach
wasps 168
Epomis beetles 76-7
Eucoeliodes mirabilis 104-5
eumenid wasps 171
Eupithecia 79
European honey bees 146
eusociality 120-55, 185
castes 135-8
colony defense 142-6
evolution 40, 41, 99
convergent 66, 73,78 , $83,108,124$
counteradaptations
47, 63, 119
wings 15
exoskeleton 6, 8, 10,
12-13, 34, 111-14, 215
extinction threat 206-9, 216
eyes 8,23-4, 212
eye stalks 41
fairy wasps 18-19
feces 49, 90, 162, 200
defense 51, 104, 143
mimicry 104-5
see also dung beetles
femur 15
fig wasps 35
fire ants 144
fireflies 74-5
flea beetles 15, 109
fleas 109, 175-6, 205
flies 17, 63, 89, 92-3, 152
ant-decapitating flies 164-5
bee flies 32,36
blow flies 89
bone-skipper flies 89
bot flies 49, 176, 177
colors 102
conopid flies 49, 162
cricket flies 99
decaying wood 91
deer flies 175
fruitflies 47
horse flies 175
hoverflies 15,17
leaf miners 65
life spans 212
owlflies 73
parasites 174-7
pollination 69
small-headed flies 162
tachinid 166,171
timber flies 91
tsetse flies 50
warble flies 176-7
flight 15-18, 109
flying ants 139
tandem flying 45
flying ants 139
Formica 135
yessensis 140
formic acid 144, 195
fruitflies 47
fungi 91,127
ant farming 132, 136, 186
beetle farming 185-6
trap ants 202-3
fungus beetles 54
fungus gnats 74
fungus weevils 41
galls 63, 66-7, 126-7
giant honey bees 145
Girault, A. A. 159
glowworms 39
grasshoppers 22, 38-9,
63,100
griffinflies 215
growth 10, 12
habitat loss 208-9
halteres 17
hearing 22
Hedychrum rutilans 103
Heliconius erato 47
hemolymph 15, 34, 134,

170, 188, 190
herbivores 61-7
Hirtella 204-5
physophora 203
Homoeocera albizonata 114
honey bees 18,55-7,
135, 138, 145-6
eusociality 123
waggle dance 28
honeydew 64, 134, 175, 201, 204
hornets 146, 152
horse flies 175
horsehair worms 177
host manipulation
162-3, 168-9
hoverflies 15,17
hunting 80-7
hypermetamorphosis 19
hyperparasitoids 159
ichneumon wasps 159, 171
imaginal discs 21
inchworms 79
infrared detection 21
insecticide resistance
25, 27
ironclad beetles 111
Japanese honey bees 146
Japanese hornets 146
jewel beetles 102
jumping 109
katydids 22, 99, 100
lacewings 49, 87, 105, 106
ladybirds 116,163
larvae $63,105,138,162$, 169, 170, 212
ambush predators

$$
73-4,77-8
$$

aquatic hunters 86
beewolf 193
caddisfly 112
decaying wood 91
leaf miners 65
life spans 212
metamorphosis 19
© Copyright Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
parasitoids 164-5, 172, 192
parental care 50-7
ship-timber beetles 186
solitary wasps 188-9
Strepsiptera 178-9
telephone-pole beetles 37
see also caterpillars maggots
leaf beetles 63,104
leafcutter ants 24,53 , 93, 125, 130, 132, 136-7, 186
leaf hoppers 15, 109, 201
leaf-miners 63,65
leaf-rolling weevils 50
learning 27-9
Leistotrophus versicolor 39-40
lekking 42
lemon ants 195
Leptanilla japonica 134
lesser water boatman 39
lichen katydids 100
life spans 212
lily beetles 12,104
Linepithema humile 140
Lithinus rufopenicillatus 100
Lobocraspis griseifusa 180
Lomamyia latipennis 87
longhorn beetles 112, 117, 119
long-tailed moon moths 97
Lymexylidae 186
maggots 89,177
mandibles 112
mantises 49
orchid mantises 75-6
praying mantises 78
mantisflies 78
Maricopa harvester ants 144
Markia hystrix 100
mate guarding 45
mate selection 39-40,42
mating 45-7
matricide 37
Mayr, Emst 216
Megalopta genalis 212-13

Meganeura monyi 215
Meganeuropsis permiana 215
metamorphosis 19-21
microbes 64
Micromalthus debilis 37
midges 17, 66
migrations 15
millipedes 91
mimicry 100-8, 149
acoustic 103
chemical 103
fecal 104-5
other animals 106-7
miniaturization 18-19
mites 188-90, 205
mole crickets 15
molt 10, 12, 37
mormon crickets 44
mosquitoes 49, 174, 175
moss-mimic stick
insects 100
moths 15, 19, 22, 89
acoustic mimicry 103
and bats 97
bella moths 44
butterfly difference 213
camouflage 100
fecal mimicry 104
leaf miners 65
long-tailed moon moths 97
parasites 175, 180-1
parasitoids 161
pollination 69
scales 97, 114
silk 112-13
tiger moths 97, 114
wax moths 99
Müllerian mimicry 107
multi-wasps 172-3
Myrmecodia 197
Myrmeleontidae 73
Myrmica 154-5
navigation $54,81,93,212$
Nemopteridae 78
nervous system 18,21, 214
nuptial gifts 43-4
Nylanderia fulva 144
nymphs 33-4, 78, 97,
105, 161, 212
oil beetles 24,36
ommatidia 23
ootheca 49
orchid mantises 75-6
Ormia ochracea 22, 99
owlflies 73
Paederus 117
pain 212
palps 13
Pameridea roridula 194
parasites 148-50, 154-5, 174-81
parasitoid flies 22,136 , 162, 164-6
parasitoids 156-81
parasitoid wasps 18-19, 49, 62, 159-60, 166-73
host manipulation 163
and viruses 191-2
parental care 50-7
parthenogenesis 25
pederine 117
Perisceptis carnivora 79
pesticides 209
Phasmatodea 49
Phengaris 153
arion 155
pheromones $15,38,42$,
45, 47, 146
Philanthus 55-6
Phoreticovelia disparata 44
photoreceptors 23
phragmosis 143
Pieris rapae 47
pitcher plants 200
planthoppers 109, 161
plants
defenses 62, 65, 115-16, 166
insect herbivores 61-7
insect mutualisms 194-205
see also pollination
pollination 35,46 , 68-71, 93, 184
polyembryonic development 172-3
polygerm 172
praying mantises 78
predators 72-87
Psychopsis mimica 106
pupa 21,34
pupation 112-13

Quedius dilatatus 152
raspberry crazy ants 144
red ants 154-5
red postman butterflies 47
reed beetles 61
Regimbartia attenuata 114
reproduction 24-7, 32-3, 35-6
bark beetles 185
eusocial insects 135-6
life cycles 30-57
mate selection
39-40, 42
mating 45-7
parasitoids 162-71
ship-timber beetles 186
solitary wasps 188-90
resilin 109
resin assassin bugs 75
ritual combat 41
Roridula 194
rove beetles 39-40,75,78,
109, 117, 149, 152, 205
sand wasps 108
sawflies 63, 65, 170-1
scale insects 201, 204
scales $13,97,114,155$
scavengers 88-93
screwworms 177
seaweed 91
seed dispersal 70,92
senses 21-4
sensory cells 21
setae 21
shield bugs 51
ship-timber beetles 186
shore earwigs 117
silk 112-13
simple eyes 8,23
slave-making ants 141
sleep 214
small-headed flies 162
smell 22-3, 38
blue butterflies 154, 155
repellent 116-17
snail predators 87
'sneaky males' 39-40
Solenopsis 144
solitary bees $36,45,214$ means without prior written permission of the publisher.
solitary wasps 54, 69, 124, 128, 214
and microbes 192-3
and mites 188-90
song 38-9, 99
species, definition 216
spermatophores 43-4
spines 161
spittlebugs 97
spongeflies 86
Stenus 78, 109
stenusin 109
Sthenauge parasiticus 161
stick insects 49, 100
stink bugs 116-17
stone grasshoppers 100
Strepsiptera 177, 178-9
stridulation 39,44
supercolonies 140-1
superorganisms 125
swarms 42
sweat bees 212-13
symbiosis
insects and fungi 132, 136, 185-6, 202-3
microbes 64,117, 175, 191-3
tachinid flies 166, 171
tandem flying 45
tannins 62
tarsus 15
taste 22,38
Teleogryllus oceanicus 99
telephone-pole beetles 32,37
Temnothorax 132
teneral state 34
termites 74,87
eggs 24
eusociality 123,124 , 125, 130, 135-6, 138, 142-3, 148-9
microbiota 193
thermoregulation 108 thrips $25,123,124,126-7$ thynnine wasps 45-6
Thyreophora cynophile 89 tibia 15
tiger beetles 74, 82
tiger moths 97, 114
timber flies 91
tortoise beetles 50-1, 104
Trachypetrella 100
trap-jaw ants 144
traumatic insemination 46-7
treehoppers 100, 104, 201 trigonalid wasps 170-1 triungulins 36-7 trochanter 13
true bugs 21, 22, 106
Trychopeplus laciniatus 100 tsetse flies 50

Utetheisa ornatrix 44
velvet ants 108
venom 117, 144, 167, 168-9
Vespa 152
crabro 152
mandarinia 146
viruses 167, 191-2
Volucella inanis 152
von Frisch, Karl 28
waggle dance 28
Waitomo Caves 74
warble flies 176-7
warning colors see
aposematic coloration
wasps $27,54,117,178-9$
bone-house wasps 105
clones 172-3
cognition 28
cuckoo wasps 103
emerald cockroach wasps 168
eumenid wasps 171
eusociality 123,124 , $128,145,148,152$
fairy wasps 18-19
fig wasps 35
galls 66
ichneumon wasps 159, 171
mimicry of 107
point of 213
pollination 69
sand wasps 108
sweet attraction 213
thynnine wasps 45-6
trigonalid wasps 170-1
see also parasitoid wasps;
solitary wasps
water beetles 114
water bugs 78
wax moths 99
web spinners 113
weevils 100, 104-5
armor 111
fungus 41
leaf-rolling 50
wings $8,13,15-18,42$,
109, 176
wood ants 134,135,
140, 144
wood decay 90-1
worm-lions 73
Zeus bugs 44
Zopherus nodulosus 111

ACKNOWLEDGEMENTS

First and foremost, a huge thank you to my editor and picture researcher, Natalia Price-Cabrera, for pulling all of this together and resisting my demands to include every single photo of insects I could get my hands on. Thank you to commissioning editor, Kate Shanahan, and publisher, Nigel Browning at UniPress Books for commissioning me in the first place. Thanks also to my family for giving me the time to work on this alongside my other commitments in what has been the strangest of years and continues to be. Thanks to the entomological community on Twitter for providing input in one way or another, Zenobia Lewis, illustrator Sarah Skeate, book designer Paul Palmer-Edwards, and all of the
contributors who have provided images and been so generous with their time and knowledge. Each one of the images in this book has a story and when you look at them, spare a thought for the patience and skill that goes into finding the subject and photographing it. Let me also give a big shout-out to all the scientists and naturalists, past and present, who have dedicated years, decades, and whole careers to understanding insects and their complex lives.
You can find more about my work and the incredible lives of insects at:
https://www.rosspiper.net/
© Copyright Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

PICTURE CREDITS

Every effort has been made to trace copyright holders and acknowledge the images. The publishers welcome further information regarding any unintentional omissions.
All images are courtesy of the author, Dr Ross Piper, unless otherwise indicated below:
p2: Courtesy of tcareob72/Shutterstock. p4-5: Courtesy of Uditha Wickramanayaka/Shutterstock. p7: Reproduced and modified with permission from Gonzalo Giribet and Greg Edgecombe. p8-9: Courtesy of Protasov AN/Shutterstock. p10 (top), p11: Courtesy of Takuya Morihisa. p10 (bottom): Courtesy of Melvyn Yeo. p12 (bottom): Courtesy of Udo Schmidt (CC BY-SA 2.0). p16: Courtesy of Hans Pohl. p20: Courtesy of Protasov AN/Shutterstock. p30-31: Courtesy of Paul Bertner. p32: Courtesy of Melvyn Yeo. p33: Courtesy of Eric Isselee/Shutterstock. p34: Courtesy of Böhringer Friedrich, edited by Fir0002 (CC BY-SA 2.5). p36: Courtesy of ozgur kerem bulur/Shutterstock. p38 (left): Courtesy of Sarefo (CC BY-SA 2.0); (right): Courtesy of ExaVolt (CC BY-SA 4.0). p39: Courtesy of WUT. ANUNAI/Shutterstock. p41 (top): Courtesy of Melvyn Yeo; (bottom): Courtesy of Worraket/Shutterstock. p42: Courtesy of Mladen Mitrinovic/Shutterstock. p43 (top): Courtesy of Paul Bertner; (bottom): Courtesy of Vinicius R. Souza/Shutterstock. p44 (bottom left): Courtesy of Dan Olsen/Shutterstock; (centre right): Courtesy of Dan Johnson. p45: Courtesy of YOSHIZAWA Kazunori. p46: Courtesy of Melvyn Yeo. p47: Courtesy of Greg Hume (CC BY-SA 3.0). p48 (bottom): Courtesy of Victor Engel. p52: Courtesy of Melvyn Yeo. p53 (bottom): Courtesy of Nick Royle. p54 (right): Courtesy of Will Hawkes. p56: Courtesy of thatmacroguy/ Shutterstock. p57: Courtesy of Prof. Dr. Martin Kaltenpoth. p60, 62: Courtesy of Cathy Keifer/Shutterstock. p63: Courtesy of Frank Canon. p64: Courtesy of Melvyn Yeo. p65: Courtesy of Protasov AN/ Shutterstock. p66 (left): Courtesy of D. Kucharski K. Kucharska/ Shutterstock; (right) Courtesy of colin robert varndell/Shutterstock. p67 (bottom): Courtesy of D. Kucharski K. Kucharska/Shutterstock. p69: Photo by Hannier Pulido, courtesy of the De Moraes and Mescher Laboratories. p70: Courtesy of Michael \& Patricia Fogden/ Minden Pictures/Alamy Stock Photo. p71: With thanks to Prof. Jeremy J. Midgley and Dr Joseph DM White/Photo @ Dr Joseph DM White/Midgley et al. 2015. p72: Courtesy of Marcio Cabral/ BIOSPHOTO/Alamy Stock Photo. p74: Courtesy of Peter Yeeles/ Shutterstock. p75: Courtesy of Melvyn Yeo. p76: Courtesy of Kawin Jiaranaisakul/Shutterstock. p77: Courtesy of Alex Shlagman. p81: Courtesy of Melvyn Yeo. p82: Courtesy of Lyle Buss. p85: Courtesy of Matt Bertone. p86 (left): Courtesy of Jam Hamrsky; (right): Courtesy of Henri Koskinen/Shutterstock. P87: Courtesy of Paul Bertner. p88: Courtesy of 7th Son Studio/Shutterstock. p90: Courtesy of Paul Bertner. p92: Courtesy of Rudmer Zwerver/Shutterstock. p93: Courtesy of Márcio Araújo. P94-95, 96: Courtesy of Paul Bertner. p97: Courtesy of Thomas R. Neil. p98: Courtesy of Matee Nuserm/ Shutterstock. p99 (top): Courtesy of Jpaur (CC BY-SA 3.0). p100: Courtesy of Ragnhild\&Neil Crawford (CC BY-SA 2.0). p101 (top): Courtesy of Paul Bertner; (bottom) Courtesy of Melvyn Yeo. p102: Courtesy of Andy Murray. p103 (top right): Courtesy of Melvyn Yeo. p104: Courtesy of Larry Minden/Minden Pictures/Alamy Stock Photo. p105 (top): Courtesy of Tyler Fox/Shutterstock. p106: Courtesy of Jay Ondreicka/Shutterstock. p108 (top): Courtesy of Joseph Wilson; (bottom) Courtesy of Melvyn Yeo. p109: Courtesy of Udo Schmidt (CC BY-SA 2.0). p112, 113 (top): Courtesy of Andy Murray. p113 (bottom): Courtesy of Melvyn Yeo. P119 (top): Courtesy of Bernard Dupont (CC BY-SA 2.0); (bottom) Courtesy of Arthur V. Evans. p120-121: Courtesy of Stastny_Pavel/Shutterstock. p122: Courtesy of Paul Bertner. p123: Courtesy of RAMLAN BIN ABDUL JALIL/Shutterstock. p125 (left): Courtesy of Pavel Krasensky/ Shutterstock; (right) Courtesy of Noah Elhardt (CC BY-SA 4.0).
p126: Courtesy of Mayako Kutsukake. p127: Courtesy of Dr. Harunobu Shibao. P128-129 (bottom): (c) Heather Holm/www. pollinatorsnativeplants.com. p131: Courtesy of Michael Siluk/ Shutterstock. p133: Photo taken by M. Bollazzi; from Bollazzi et al., Insectes Sociax (2012) 59:487-498/Courtesy of Prof. Dr. Flavio Roces. p134: Courtesy of Piotr Naskrecki/Minden Pictures Contributor: Minden Pictures/Alamy Stock Photo. p135: Courtesy of Matt Bertone. p136: Courtesy of Dr Morley Read/Shutterstock. p137 (top): Courtesy of Paul Bertner; (bottom) Courtesy of nikjuzaili/ Shutterstock. p138: Courtesy of Mirko Graul/Shutterstock. p139 (left): Courtesy of Jeremy Christensen/Shutterstock; (right) Courtesy of Dragomir Radovanovic/Shutterstock. p141 (left): Courtesy of Adrian A. Smith (CC BY 2.5); (right) Courtesy of James C. Trager (CC BY-SA 3.0). p142: Courtesy of Paul Bertner. p144 (left): Courtesy of Minsoo Dong (CC BY-SA); (right) Courtesy of Smartse (CC BY-SA 3.0). p145: Courtesy of Nireekshit (CC BY-SA 4.0). p147 (top): Courtesy of Takahashi (CC BY-SA 3.0); (bottom) Courtesy of Yasunori Koide (CC BY-SA 4.0). p148: Courtesy of Bruce Blake (CC BY-SA 4.0). p149 (top left): Courtesy of Taisuke KANAO; (bottom left): Courtesy of Andy Murray (CC BY-SA 2.0); (bottom right) Courtesy of KAKIZOE Showtaro. p150, p151 (top): Courtesy of Taisuke KANAO. p151 (bottom): Courtesy of Dr. Takashi Komatsu. p152 (top): Courtesy of Gail Hampshire (CC BY 2.0); (bottom) Courtesy of Udo Schmidt (CC BY-SA 2.0). p153: Courtesy of Charles J Sharp (CC BY-SA 4.0). p156-157: Courtesy of Young Swee Ming/ Shutterstock. p158: Courtesy of Beatriz Moisset (CC BY-SA 4.0). p159: Courtesy of Vitalii Hulai/Shutterstock. p160 (top), p161: Courtesy of Melvyn Yeo. p164: Courtesy of Dr. Takashi Komatsu. p165: Courtesy of S.D. Porter, USDA-ARS. p166 (left): Courtesy of Tristram Brelstaff (CC BY 3.0); (right) Courtesy of Beatriz Moisset (CC BY-SA 4.0). p167 (top): Courtesy of Takahashi (Wiki Commons/ Public Domain); (bottom): Courtesy of Wellcome Images/Andrew Polaszek/Natural History Museum/Attribution 4.0 International (CC BY 4.0). p169: Courtesy of P.F.Mayer/Shutterstock. p171: Courtesy of Kristi Ellingsen. p175: Courtesy of Jim Gathany/Centers for Disease Control and Prevention's Public Health Image Library. p177: Courtesy of KAISARMUDA/Shutterstock. p178, p179 (bottom right): Courtesy of Hans Pohl. p181 (top): Courtesy of Leandro Moreas; (bottom): Courtesy of Dumi (CC BY-SA 3.0). p182-183: Courtesy of Somyot Mali-ngam/Shutterstock. p184: Courtesy of Dejen Mengis/USGS Bee Inventory and Monitoring Lab from Beltsville, Maryland, USA. p185: Courtesy of Nikolas_profoto/ Shutterstock. p186 (top): Courtesy of wjarek/Shutterstock; (bottom): Courtesy of Ivan Azimov 007/Shutterstock. p189: Courtesy of Wen-Chi Yeh. p190: Courtesy of Syuan-Jyun Sun (CC BY-SA 4.0). p192 (top): Courtesy of Prof. Dr. Martin Kaltenpoth and Johannes Kroiss; (bottom): Courtesy of Erhard Strohm. P194: Courtesy of Jan Thomas Johansson. P195: Courtesy of Erutuon (CC BY-SA 2.0). p196: Courtesy of Morley Read/Alamy Stock Photo. p197 (top): Courtesy of Vojtěch Zavadil (CC BY-SA 3.0). p198: Courtesy of Dan Perlman/EcoLibrary.org. p199: Courtesy of kafka4prez (CC BY-SA 2.0). p200: Courtesy of D. Magdalena Sorger. p201: Courtesy of Melvyn Yeo. p203: Courtesy of Alain Dejean and Jerome Orivel/ Photo @ Alain Dejean. p204: Courtesy of Paul Bertner. p209: Courtesy of John McColgan, Bureau of Land Management, Alaska Fire Service/Photo by John McColgan/USDA. p211: Courtesy of NASA. p213: Courtesy of Bugboy52.40 (CC BY-SA 3.0). p217: Courtesy of Jesse Allen and Robert Simmon/NASA Earth Observatory.

[^0]: \checkmark The earwig on the left has just shed its
 exoskeleton. The new exoskeleton is pale and soft.

