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Chapter One

Introduction

1.1 PREVIOUS CONSTRUCTIONS AND KATZ’S THEORY OF
p-ADIC MODULAR FORMS ON THE ORDINARY LOCUS

Let us start by giving a brief account of Katz ([34], [33] and [35]) and Bertolini-
Darmon-Prasanna’s ([5]) construction of p-adic L-functions over imaginary
quadratic fields K in which p splits in K. The splitting assumption of Katz
allows one to make use of his theory of p-adic modular forms in order to construct
his and Bertolini-Darmon-Prasanna/Liu-Zhang-Zhang’s p-adic L-functions, now
colloquially known as the Katz and BDP p-adic L-functions, respectively. The
former is also constructed for CM extensions K/L (i.e., where L/Q is totally
real and K/L is imaginary quadratic) for which all primes of L above p split
in K, and the latter was generalized by Liu-Zhang-Zhang ([46]) to the case
of CM fields and weight 2 newforms. Namely, the p-adic L-functions over K
which Katz, Bertolini-Darmon-Prasanna and Liu-Zhang-Zhang construct are
linear functionals on the space of (p-adic) modular forms, which are obtained
by evaluating p-adic differential operators applied to modular forms at ordinary
CM points associated with K. This means the CM points belong to the ordinary
locus
Yord c va

which is the affinoid subdomain of (the rigid analytification of) Y obtained by
removing all points which reduce to supersingular points on the special fiber
(this latter locus being isomorphic to a finite union of rigid analytic open unit
discs). Here, the ordinariness assumption is crucial in order to establish nice
analytic properties of the p-adic L-function, namely that (p-adic) modular forms
have local coordinates in neighborhoods of CM points with respect to which the
differential operators alluded to above have a nice, clearly analytic expression.
In Katz’s setting, one views p-adic modular forms as functions on a proétale
cover called the Igusa tower

Ylgéyord
using an explicit trivialization of the Hodge bundle (by a so-called canoni-

cal differential). Then on Y8 he defines a differential operator 6 called the
Atkin-Serre operator, which sends p-adic modular forms of weight k£ to forms of
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weight k + 2, and the nice coordinates are provided by Serre-Tate coordinates.
One can express

d
Oag = (1 +T)ﬁ

in terms of the Serre-Tate coordinate T', and using this expression one can show
easily that the family

{Phsf iz,

for a given p-adic modular form f gives rise to a “nearly-analytic” function of
Jj: after applying a certain Hecke operator known as p-stabilization to f (which
corresponds to removing an Euler factor in the p-adic L-function), one can show
that

QJASJC(P)7

where f(P) denotes the p-stabilization, is an analytic function (valued in the
space of p-adic modular forms) of j € Z,.

One could also use coordinates provided by g-expansions, if one compactifies
all modular curves under our consideration; we stick to the open modular curve
in this article in order to avoid boundary issues occurring at cusps, which present
bigger technical issues when defining the proétale topology later.

The key property of Y& — Y°'4 which allows one to construct the differential
operator fag is the existence of the unit root splitting of the Hodge filtration on
Y'8. Namely, one can find sections of the relative de Rham cohomology

HcliR(A)‘YIg
which are horizontal with respect to the algebraic Gauss-Manin connection
Vi Hig (A) = Hir(A) @0y Qy

(here a section « being horizontal means that V(«a)=0), and which are also
eigenvectors for the canonical (Frobenius-linear) Frobenius endomorphism

F:Yeyls

over W. (The reason for the terminology “unit root” is because one of the
eigenvalues for F' is a p-adic unit, i.e., a section of Oélg, since we restrict to a
covering of the ordinary locus Y°'4.) The unit root splitting is a functorial, F-
equivariant splitting of the Hodge filtration, which allows one to then define the
differential operator as. This uses a standard formalism of Katz which produces
such a differential (weight-raising) operator, whenever a splitting of the Hodge

filtration with nice properties (e.g., Gal(Y'8/Y°'d)_equivariance) exists.
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Another key property of the unit root splitting is that for CM elliptic curves
A, which by the theory of complex multiplication always have models over Q,
it is induced by the splitting of Hlz(A) defined over Q given by the eigen-
decomposition under the CM action. This CM splitting over Q also gives rise
to the real analytic Hodge decomposition over C from classical Hodge theory,
which in that setting gives rise to the real analytic Maass-Shimura operator 0
sending nearly holomorphic modular forms of weight £ to nearly holomorphic
forms of weight k£ + 2. The consequence is that after normalizing by appropriate

“canonical” periods
Q, and (.,

one can show that given an algebraic modular form w of weight k, the values
rsw(y) /T and vw(y)/Q5

at ordinary CM points y € Y°'! belong to Q and coincide. This observation
of Katz is essential to establishing interpolation properties of the Katz and
BDP/LZZ p-adic L-functions, i.e., to relate them to critical values of complex
L-functions in the interpolation (Panchishkin) range. This is because such crit-
ical L-values can be expressed as period integrals over the CM torus (or finite
sums over orbits of CM points) of 3/w, and hence by the above discussion these
can be related to such p-adic period sums of 6 qw over CM points, which them-
selves give rise to the Katz and BDP/LZZ p-adic L-functions.

Let us elaborate on Serre-Tate coordinates and Katz’s notion of p-adic mod-
ular forms, and expound on the above discussion. To fix ideas, suppose that a
modular curve Y represents a fine moduli space (for example, if its topological
fundamental group as an analytic space over C is neat in the sense that it has
no torsion), and so it admits a universal object

T A=Y

The Hodge bundle is then defined as

1
w:zw*QA/Y

and weight k£ modular forms can be identified with sections of w®*. Katz’s theory
of modular forms arises by constructing a nonvanishing section known as the
canonical differential

Wean " Ew(Y'),

and using the induced trivialization

W|y1g = Oylg
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to view modular forms on Y as functions on Y'® transforming by some weight
character under the action of

Gal(Y'8/yord) = 7.x.

To obtain the trivialization of w, Katz uses the simple structure of the

p-divisible groups of ordinary elliptic curves, namely that they are isomor-
phic to

fipoe X Qp/Zy.
By the Weil pairing (or Cartier duality), such a trivialization for a given p-divi-

sible group A[p™] of an ordinary elliptic curve A is determined by fixing an
isomorphism

A=) =Qp/Z,-
In fact, Y8 is exactly the cover of Y°'4 defined over W =W (F,) parametrizing
such trivializations
a:Q,/Z, = A[p™]¢,
or equivalently (by the previous discussion), trivializations

Q' fipe X Qp/Z, = A[p™]

of the entire p-divisible group.
Let Ao/FF, be an elliptic curve corresponding to a closed geometric point yo
on the special fiber

Yoord _ Yord Qw Ep?
and let A/W denote any lift of Ay, i.e., with
Aow F,= Ay,

corresponding to a point y on Y°ord, Formally completing Y8 along 3 hence gives
the formal moduli space D(yo) of deformations of Ay (with some level structure,
which we will suppress for brevity). Since there is a canonical isomorphism

Ap™] = Ag[p™](F,),
then a choice of trivialization

ao: Qp/Zy = Ag[p™] (Ep)
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© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

INTRODUCTION 5

fixes A[p>]¢" in the formal neighborhood D(o) of §o=(Ag, ap) in Y& Hence
D(jo) is parametrized exactly by the connected component A[p>]° of A[p*],
and so there is an (in fact, canonical) isomorphism

The canonical coordinate T" on the torus gives rise to the Serre-Tate coordinate,
also denoted by T', on

D(:&O)a
and on the associated residue disc

D(50) @w W[1/p]

(viewed as the rigid analytic generic fiber of D(Yp)).

Katz uses the above description of formal neighborhoods on Y™ around
closed points of the special fiber as being canonically isomorphic to G in
order to construct the canonical differential we,, mentioned before; in terms
of the Serre-Tate coordinate on a residue disc D, the canonical differential is
just given by

wiatz) ) — qT/T.
Using tensorial powers of the canonical differential, modular forms, viewed as
sections of powers w®* of the Hodge bundle w restricted to Y°'4, can be identified
as functions on Y8, Since the canonical differential transforms by

* Katz Katz
d Wean _dwcan

for
~ 1 ord
de 7y =Cal(Y™s/yord),

then we can even identify a modular form of weight k, i.e., a section of we&
w®k(yord)  as a function f of weight k on Y& via

K k
wlYIE :f'wca?fz’@) )
where weight k € Z means that f transforms as

d&f=d*f (1.1)

for
I rd
dEZ;:Gal(Yg/YO ).
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Katz also uses this viewpoint to generalize modular forms to p-adic modular

forms of weight k € Z), which are functions on Y'® which have weight k € Zy

in the same way as defined above.

1.2 OUTLINE OF OUR THEORY OF p-ADIC ANALYSIS ON
THE SUPERSINGULAR LOCUS AND CONSTRUCTION
OF p-ADIC L-FUNCTIONS

The key question addressed by this article is that of developing a satisfactory
theory of p-adic analysis of modular forms on the supersingular locus of modular
curves, and subsequently to construct “supersingular” p-adic L-functions for
Rankin-Selberg families V of twist families of automorphic representations

(7711))]( X Xil

for anticyclotomic characters x over an imaginary quadratic field K/Q, where
Tl

is the automorphic representation of GL2(Ag) attached to a normalized new
eigenform w (i.e., a newform or Eisenstein series),

('/Tw)K

denotes its base change to an automorphic representation of GL2(Ak), and
x varies through a family of anticyclotomic Hecke characters over K. Here,
“supersingular” means that we assume that p is inert or ramified in K. This is
analogous, outside the splitting assumption on p, to the “ordinary” setting in
which Katz and Bertolini-Darmon-Prasanna/Liu-Zhang-Zhang construct their
one-variable p-adic L-functions. In fact our theory addresses the ordinary and
supersingular settings uniformly by working on an affinoid subdomain

Ve CY

of the p-adic universal cover
y—=Y

(defined below); in fact, ), contains a natural cover
Ve y'le,

and restricting our theory to Y8 allows one to recover the one-variable p-adic
L-functions in the ordinary case, as well as Katz’s theory of p-adic modular
forms on Y8,

For general queries, contact webmaster@press.princeton.edu
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One motivation for the construction of supersingular Rankin-Selberg p-adic
L-functions is to develop special value formulas in the same style as those of
Katz and Bertolini-Darmon-Prasanna, where in the former case a special value
of the Katz p-adic L-function is related to the p-adic logarithm of elliptic units
attached to K, and in the latter case the special value formula is a “p-adic
Waldspurger formula” (following the terminology of [46]) involving the p-adic
formal logarithm of a Heegner point attached to K (when a Heegner hypothesis
holds for K and level N of w). Indeed, we succeed in proving such a formula in
the case pt N in Section 9, though in future work we expect to remove both pt N
as well as relax the Heegner hypothesis on N, which would simply necessitate
considering more general quaternionic Shimura curves than modular curves.

We seek to develop a satisfactory theory of p-adic analysis on the super-
singular locus, namely a notion of p-adic modular forms on the supersingular
locus

YSS_Y \ Yord

which “behaves well” with respect to some differential operator d; more precisely,
this means there is some notion of “weight” which is raised by 2 under the action
of d, and given a p-adic modular form f,

& f

or some stabilization

(d f)

gives rise to some p-adic analytically well-behaved family. To do this, there are
several technical difficulties which must be overcome. One of which is that there
is no obvious canonical differential with which to trivialize w over a cover in order
to view modular forms as functions on the cover (in the same way as wX2% does
so for w on Y8 = Y°rd) Tt is also a difficulty that there is no “canonical line”

in the p-divisible group of a supersingular curve as there is for
Hpoe C A[poo]

when A is ordinary. Hence there is no natural splitting of the Hodge filtration
with which to define a differential operator d analogous to the Atkin-Serre oper-
ator in the ordinary setting, and even if one were to construct such an operator,
there is no obvious analogue of the Serre-Tate coordinate under which to locally
express p-adic modular forms f and study the analytic properties of d7 f.
Another difficulty with defining a satisfactory p-adic Maass-Shimura opera-
tor on Y* comes from the lack of unit root splitting, whose construction comes
from a horizontal basis for the Gauss-Manin connection defined as sections of the
relative étale cohomology H}, (A) over Y8 which are eigenvectors of the canon-
ical Frobenius. This unit root splitting in the ordinary case gives a splitting of

For general queries, contact webmaster@press.princeton.edu
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the Hodge filtration
0— W‘Yord — HcliR(A) |Yord — wfl |Y0rd —0

as an exact sequence of Oyora-modules, where Oy denote the rigid analytic
structure sheaf on Y. It is this functorial splitting, which is algebraically defined
and coincides with the real analytic Hodge splitting at CM points, which gives
rise to the ordinary p-adic Maass-Shimura operator s with the desired alge-
braicity properties. Note that unlike in the complex analytic setting, we do not
have to extend the sheaf of rigid functions (the analogue of holomorphic func-
tions) to a large sheaf (of “real analytic functions”) in order to obtain the Hodge
decomposition, as long as we restrict to Yo' C Y.

To overcome these difficulties, we generalize the strategy of Katz and in some
sense emulate the construction of the complex analytic Maass-Shimura operator
by working on the full p-adic universal cover

y—-Y

and by extending our coefficients from the structure sheaf to some larger sheaf
of periods containing it (viewing this as analogous with extending holomorphic
functions to real analytic functions).

Let us elaborate a little on the motivation of this strategy and how it works.
As no unit root basis of the de Rham cohomology exists outside of Y™, we
instead consider the moduli space of all horizontal bases of étale cohomology.
This moduli space is representable by the p-adic universal cover Y —Y (which
we define more explicitly in the next paragraph), and with universal object being
given by

(A, ao) =Y

where a, is the universal full p>°-level structure. We then use a relative p-adic de
Rham comparison theorem to view a, as a universal horizontal basis for relative
de Rham cohomology; unlike in the ordinary case, this comparison involves
extending the structure sheaf to a certain period sheaf OBIR,Y (where this is
really a sheaf on the proétale site Y},;0¢t) first constructed by Scholze in [56]. From
this horizontal “framing” of the relative de Rham cohomology Hlig (A), we get
a “Hodge-de Rham period” measuring the position of the Hodge filtration and
the “Hodge-Tate period” measuring the position of the Hodge-Tate filtration, as
considered by Scholze in loc. cit., and use these periods to construct a relative
Hodge decomposition which we use as a substitute for the unit root splitting.
This splitting is in fact defined over an “intermediate period sheaf”

On := OB /(1),
equipped with natural connection

VIOA%OA(@OJ;Q}V
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which is B y/(t)-linear, induced by the natural connection
V:0B, 5 — OBlg » ®0y, )
which is ]B:{R’y—linear. Moreover, there is a natural map

mod t
Oy C OB;FRQ, - Oa

which is in fact an inclusion compatible with connections, and such that its
composition with the natural map

0:0p — Oy
where @y is the p-adically completed structure sheaf on ) is the natural map
Oy — Oy.
Here 6 is induced by the natural relative analogue
0: OB, — Oy
of Fontaine’s map 6: B(J{R — C,,. Here,

te BIR,Y )

is a global analogue of Fontaine’s “27i” and is a global section of a period sheaf
IB(TRQ, on ), which is itself a relative version of Fontaine’s ring of periods B;R.
We call Oa “intermediate” because it, in the sense above, lies in between Oy
and OIB:{RJ. In analogy with having to extend from holomorphic to real analytic
functions on the complex universal cover H in order to define the complex ana-
lytic Hodge decomposition, we view Oa as a sheaf of “p-adic nearly holomorphic
(or rigid) functions on the p-adic universal cover ).”

Let us go into more detail on the construction of ). On geometric points, it
has a moduli-theoretic interpretation moduli space parametrizing elliptic curves
with full p>°-level structure represented by a GLo(Z,)-profinite-étale cover Y
of Y (viewing the latter as an adic space over Spa(Q,,Zy)) called the p-adic
universal cover (or infinite-level modular curve)

y=lmY(p"),

as considered by Scholze in [56] and Scholze-Weinstein in [62]. Here Y (p?) is the
modular curve obtained by adding full p-level structure to the moduli space

represented by Y, and Y is an adic space over Spa(Qp,Z,) which is an object
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in the proétale site Y 04t. Here, the full universal p>°-level structure o is just
a trivialization of the Tate module of A

N
Qg - Z;‘?’y —>Tpu4|y7

here Zp,y is the “constant sheaf” on ) associated with Z,, except that sec-
tions are continuous functions into Z, where the latter has the p-adic (and not
discrete) topology. Now let Oy denote the proétale structure sheaf on Yjoct.
Using the Hodge-de Rham comparison theorem of Scholze ([57]), we then have
a natural inclusion

LdR
Hir(A) ®oy OB 3 C He(A) 7, v OBg y

on Y06t compatible with filtrations (on the left, the convolution of the Hodge
filtration on #}g (A) and the natural filtration on OBy |-, and on the right is

just the filtration on (’)IB%CTR y) and connections (on the left, the convolution of
the Gauss-Manin connection on H} (A) and the natural connection on C’)IEB(J{R y

via the Leibniz rule, and on the right is just the connection on OB(J{R y)- Pulling
back to ), we then have

L a;ol _
Hir(A) ®oy OBlg yly = Hi(A) @y | OBy yly —= (OBjg 5 -t~ 1)
(1.2)
where the last isomorphism uses the universal p>°-level structure a., and the

isomorphism

He(A)=T,A(-1)

given by the Weil pairing. We also use the fact that there is a natural isomor-
phism

Zpy(*l) = Zp,)} : tilv

as t is a period for the cyclotomic character.
‘We note that there is a natural sublocus

Ye={z=c0lCy

which parametrizes ordinary elliptic curves A together with a trivialization « :
Zgﬂ =5 T, A of their Tate modules T, A and with

oz, @0y Lp 2 T,A° CT,A
trivializing the canonical line in T}, A, viewed as arithmetic p*>-level structures

a:Z,(1) D Z, = THA,
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together with a trivialization
Zp(1) = Zy,

and it is clear that these two data are equivalent to a full p°°-level structure
a:Zy® Ly~ THA.

Thus,
Ve yle

is a natural Z,, x Z, -cover of the Igusa tower Y8 and a B-cover of Y°' where

B C GLy(Z,) denotes the subgroup of upper triangular matrices.
Using (1.2), one sees that

oo 1 :zaoo|zpy${0} and Qoo 2= O‘oo|{o}@2p,y

form a horizontal basis for the connection V. Moreover, upon making the iden-
tification (via the Weil pairing)

T, A= Hom(A[p™], 1),

we get a natural map
Ladr
HTA:TPA®Zpy(’)y—>w, ar o T

where dT'/T is the canonical invariant differential on p,e<. (It is also sometimes
customary to denote HT 4 =dlog, as dlogT =dT/T.) We then define the fake
Hasse invariant as

5= HT_A(CVOO’Q)7
and in fact we have that on the restriction to V'8 ,

5|ylg :WgahtZ'ng. (1.3)
Consider the affinoid subdomain

Vo={s#£0}C ).
We note that s € w(),) is a nonvanishing global section, i.e., a generator. Then
let s71 €w™1(),) the generator corresponding to s under Poincaré duality. The

trivialization
w | Yig = Oylg
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induced by (1.3), along with the universal level structure on '8 given by a| Yle,
gives rise to a p-adic differential operator (the Atkin-Serre operator)

HAS : Ong — Ong

with nice p-adic analytic properties, as seen using Serre-Tate coordinates. The
key to these nice p-adic properties is the identity (see [34, Main Theorem 3.7.2])

o(wBat2®2) — glog T
where T is the Serre-Tate coordinate, and
o:w® 50l (1.4)

is the Kodaira-Spencer isomorphism.

By the above discussion, s seems like a natural candidate to extend Katz’s
idea of viewing p-adic modular forms (sections of w) as functions to the (non-
Galois) covering ), — Y. However, unlike in Katz’s situation on V'8, in our
situation the splitting of (a lift of) the Hodge filtration which we define and
use will require extending coefficients from Oy, to a larger sheaf Oa y, (which
can be viewed as “the sheaf of nearly rigid functions,” in analogy to extending
coefficients from the sheaf of real analytic functions to the sheaf of nearly holo-
morphic functions in order to define the Hodge decomposition in the complex
analytic situation), and with respect to this splitting s will not be the most
convenient choice for trivializing w ®o, Oa.y,. Instead, we will trivialize using
the generator

5
Wean := — € (w Koy OA,yz)(yz)
Ydr

where yar € Oa,y, (V)™ is a certain p-adic period associated with s. Hence this
induces a trivialization
w®oy Oay, =04y,

One can show that yqgr = 1 on the sublocus Y'® C Y, and so we have

Wcan|ylg :wgitz|ylg. (15)
In analogy with (1.4), we also have

U(w?;f) = dZdR (].6)

where zqr =2zqr (mod t) for the fundamental de Rham period z4g, which we

describe in more detail below. We note that the analogy between (1.4) and (1.6),
along with (1.5), suggests that zgg provides the correct analogue of log T'. It is
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this observation which later leads to our notion of the gqr =exp(zdr — Zdr)-
coordinate as an analogue (and extension) for the Serre-Tate coordinate T', and
gar-expansions as analogues (and extensions) of Serre-Tate T-expansions.

We can also use wca, to generalize Katz’s notion of p-adic modular forms.
Let U C Y, be a subadic space, let A: Y — Y denote the natural projection, and
let A(U) =U. Then letting

I'=Gal(U/U) C Gal(Y/Y)=GLa(Zy),
we have a natural map

A* Wi
Wy (U) S 0Py (U) = (W @0y Oap, ) U) =2 Oa,p, [u ).

In fact, the image under this map consists of sections f € Oa y, /(1) such that

( “ Z) f=(ad—bc) " (czar +a)* f (1.7)

c

for any ( CCL Z ) €T'. In this situation, we say that f has weight k for T" on U.

We note that when I/ = Y'¢ and so U =Y, and
I'=BC GLy(Z,)

the subgroup of upper triangular matrices, and then (1.7) becomes

< g Z )*fdkf. (1.8)

In particular, f descends to a section in Oy (Y'8) and we recover Katz’s notion
(1.1) of a p-adic modular form of weight k. Our main interest, which is defining
a satisfactory notion of p-adic modular form on the supersingular locus, will
involve the case Y =YY%, U =YY" and I'=GLy(Z,).

Let us now elaborate on the construction of our splitting of (a lift of) the
Hodge filtration alluded to above, which is crucial to the construction of the
p-adic Maass-Shimura operator and its algebraicity properties. Unlike in Katz’s
theory, outside of V'8, o 1 and a0 2 do not generate either the Hodge or Hodge-
Tate filtrations, and instead we are led to consider certain relative periods

ZdR € OB;Ryy(yx)vi € @Y(yx)v
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where Oy = OY:[1/p] and where
Of =lim Of /p" € Oy = (Im OF /p™)[1/7]
denotes the p-adic completion integral structure sheaf
O C Oy =0 [1/p).

Both of the above periods can be viewed as sections of an ambient period
presheaf
OBIR,Y = OBIR,Y ®oy Oy,

where OBXR,Y is the usual de Rham period sheaf as considered in [57]. The

Hodge—-de Rham period z4r € OBIR,Y(:))T) measures the position of the Hodge
filtration

LdR

wly, =5 Oy, C Hir(A) ®o, @BIR,ym S H(A) @ @BXR,yx

p,Y

—1 .
aO: (OBIR,J;I .tfl)éBZ.

The Hodge-Tate period z € Oy (V,) C OIB%IR’Y()JQE) measures the position of the
Hodge-Tate filtration

A A -1 A
Wy, =51 Oy, CHE(A) ®, |, OBl 3, == (OBY, 5, -+7)%2.

Y

Using these periods, and recalling our notation Oa y, = (’)BXR’),I /(t) and defin-
ing @Ayym =04y, oy, @ym, one can construct a Hodge decomposition

T,A®; | Oay, = (W0, Oay.)® (W™ ®oy, Oay, 1) (1.9)

where the projection onto the first factor is given by HT 4 (i.e., the inclusion
of the first factor is a section of HT4), and so this gives a splitting of the
Hodge-Tate filtration.

However, for the purposes of using this splitting to construct a differential
operator, there is a technical issue that there is no natural way to define a
connection on @B;R’Y, precisely because it contains a copy of the p-adically
completed structure sheaf Oy: the pullback @y is (essentially) the structure
sheaf of the perfectoid space 37 ~ Y associated with ), and there are no nontrivial
differentials on perfectoid spaces since differentials are infinitely divisible, and
hence 0 in the p-adic completion.
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There are two ways to remedy this. One is to instead replace (1.9) with
another splitting

T,A®; |, Oay, = (w®0y Oay,) ®L, (1.10)

where L is a free Oay,-module of rank 1. This splitting is constructed by using
the natural “horizontal” embedding z € Oy, C Oa.y,- Now the projection onto
the first factor is not given by HT 4, but instead its kernel is horizontal in the
sense that

Vw(L)CTL

for any section w of 2}, ®o, O y,. Moreover, (1.10) recovers the usual Hodge-
Tate decomposition upon applying the natural map

9 . OA’yw —» @yx,

where Oy, denotes the p-adically completed structure sheaf (and 0 is analogous
to Fontaine’s universal cover 6 : Bj — C,)

TA®; | Oy, = (w®oy Oy,) ® (&y,(1)). (1.11)

The other approach is to instead construct intermediate period sheaves of
“nearly holomorphic coefficients”

Ony, CORy, COL,, COny,,

where OTA contains the Hodge-Tate period z and so is large enough to con-
struct a Hodge splitting (essentially one just adjoins a few sections in @A’yz
to Oa.y,), and on which one can also extend the natural connection on Oa
(namely by declaring that V(z) =0, and showing that this gives rise to a well-
defined connection on O, 4, since z is transcendental over Oa). One can then

define a splitting like (1.10) using (’)TA -y, and consequently construct a p-adic

Maass-Shimura operator with coefficients in (’) Ay, One can even show that this
differential operator is defined over the smaller sheaf of coefficients A,yw-
Both approaches have their virtues: while the first approach stays within the
smaller period sheaf Oa y,, it requires the use of Fontaine’s map 6 in order to
recover a true Hodge-Tate decomposition, whereas the second requires enlarging
(slightly) to OR y, but then does not require the use of 6. While the p-adic
Maass-Shimura operators arising from each approach are different, they satisfy
the same algebraicity properties at CM points and are both equal in value (after
normalizing by a p-adic period) to the value of the complex Maass-Shimura
operator (normalized by a complex period) at CM points. Hence, either Maass-
Shimura operator can be used in order to construct our p-adic L-function.
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We will follow the first approach in this outline in the introduction. Now
we can define a p-adic Maass-Shimura operator d with respect to the splitting
(1.10). Since (1.11) recovers the relative Hodge-Tate decomposition, it is induced
at CM points by the algebraic CM splitting, and so as in Katz’s theory one can
show (using the horizontalness of (1.10)) that for an algebraic modular form
w € w®k(Y), writing

wly, = f-w&, f€OAy, (Vo), F - (2midz)®%, F € OM (1),

where O"! denotes the sheaf of (complex) holomorphic function and H+ —Y
the complex universal cover (i.e., the complex upper half-plane), we have that
the value

(Bod)f(y)/Qp(y) T

at a CM point y € ), is an algebraic number for an appropriate p-adic period
Q,(y) (depending on y), and in fact is equal (in Q) to the algebraic number

VF(y)/ Qoo ()™

at the same CM point y € Y, for an appropriate complex period Q. (y) (only
depending on the image of y under the natural projection Y —Y):

(00d)f(y)/Qp(y)™ 7 =07 F(y) /Qoo (). (1.12)

The key fact for proving this algebraicity is that the fiber O y, (y) contains a
unique copy of Q, by Hensel’s lemma, and so composition

_ 9
Qp, COay,(y) > Cp
is the natural inclusion. Then since the specialization z(y) E@p, we have

0(z(y)) = 2(y),

and so

(Bod)f(y)=0(d f(y)=d f(y),

and this latter value is equal (after normalizing by periods) to

o f(y)

since both (1.10) and the complex analytic Hodge decomposition are both
induced by the CM splitting at y.

It is the algebraicity of § o d? at CM points, and moreover the fact that it is
equal in value to complex Maass-Shimura derivatives, which makes it applicable
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to questions regarding interpolation of critical L-values and hence construction
of p-adic L-functions. Ultimately, for the construction of the latter, it is necessary
to understand the analytic behavior of

(Ood)f

around CM points y, and here the framework for understanding such analytic
properties is provided by gqr-expansions of modular forms, given by a q4gr-
expansion map

UJ®k

%k
can

k w k qdR —€XP A can k
Wy, = ydrO0y, = Oy, laar —1] C Oay, = w0 @0, Oay, -

(1.13)

A key fact is that on the supersingular locus Y C Y, (1.13) coincides with the
natural inclusion

mod
Wlyss = W ®O, OB(TR,))SS —Ot>w ®0Oy OA,J]SS, (].14)
which is induced by the composition
mod t

which turns out to be an inclusion. In fact, recalling that Oy denotes the p-adic
completion of the structure sheaf Oy, we have a natural inclusion

@y[[qdR — 1]] C OA

which is compatible with the natural connections on each sheaf, and which is in
fact an equality on Y%°:

@yss [[qdR — ].]] = OA73}SS.

Hence we see that, at least on the supersingular locus ), qqr provides the
correct coordinate when viewing a rigid modular form

W@
w €W (V) C (w0, On,y=) (V™) =225 Op ye= (V)

¢

as a “nearly rigid function.” The coordinate

qar € Oa,y, (V2)

plays the role analogous to that of the Serre-Tate coordinate, and in fact the gqr-
expansion of a modular form recovers the Serre-Tate expansion upon restricting
to V'8 (due to the fact that wean|yre = wia?).

can
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In fact, one can write down an explicit formula for fod? in terms of gqr-
coordinates

eodj:i:G) (j”z_l)z’! (—e(é‘m))ieo@‘;ﬁ)j_i. (1.15)

=0

On V'8, as we noted before, 2= 0o and so we have

Bod e —0o (LY | _gopi _gi
(fod”)|yw =00 dqan lyts =000)g =03g

where the last equality follows from the fact that

dgar
qddr

|y1g = dZdR|ng = dT|ng

and that ,
Oy, COay, — Oy,

is the natural completion map. Hence, again restricting to V' C )., we recover
Katz’s theory.
In order to construct the p-adic L-function, we consider the image of a mod-
ular form
wew®F(Y)

under the gqr-expansion map (1.13), and study the growth of the coefficients of
its gqr-expansion around supersingular CM points y:

— A stalk at A A b
w®k\ys,< M} Oyss [[qdR — 1]] M} Oyssw [[qdR — 1]] - Oyss,y[[qé/Rp — 1]]

for any b € Q, where the last equality is just a formal change of variables. By the
remarks above involving (1.13) and (1.14), since y € Y, we see that the above
map coincides with the natural map

stalk at y
®k

k k
yos w0, Op ys W @0, Op =y

W

and hence is compatible with the natural connections on all sheaves; in partic-
ular, this compatibility shows that the formula (1.15) gives the action of the
p-adic Maass-Shimura operator 67 od’. One of the main results of Section 6 is
that for appropriate

be@Q
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(a priori depending on y, but we later show that b is the same for all y in a certain
CM orbit), in fact we have that the above map factors through

A~ b
¥y = O lagt = 11[1/p]- (1.16)

w

b
Proving the integrality of the q(lﬂ/{p -expansion involves the consideration of

another Lubin-Tate period zyr coming from the Rapoport-Zink uniformization
of the infinite-level supersingular locus LT, — Y by the Lubin-Tate space
LT, at infinite level. This aforementioned period comes from the Grothendieck-
Messing crystalline period map LT,, — P! associated to this Rapoport-Zink
space. Viewing LT, as an object in the proétale site of Y, one can in fact show
that there is a canonical isomorphism

Oa 11, ZOrr [2ir — Z17], (1.17)

where Zpr denotes zr viewed as a section in Orr_, which in turn has a natural
(horizontal) embedding into Oa 1., . From the above isomorphism, one can
show another natural isomorphism

A ~ b
On yes = Oyes[qar — 1] = Oy [qF —1]. (1.18)

Using a variant of the Dieudonné-Dwork lemma for integrality of power series,
one can show that integrality of coefficients (at certain geometric stalks) of

the power series expansion (1.17) transfer to integrality in the qclu/{’ b-expansion
(1.18).
Given
wew®(Y),

we can construct the p-adic L-function associated with w by considering sums
of the images

1 b
w(qd/Rp )y

of w under (1.16), where the subscript y denotes the stalks at various orbits of
CM points y on Y*, then applying the normalized Maass-Shimura operators

P00 d!
using the formula (1.15). By the formula, we see that as long as p-adic valuations

lyar ()], [2(y)]

of the specializations
yar(y), 2(y)
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of the p-adic periods
YdRr; Z

satisfy certain bounds, then images in the stalks
. . 1 b
P (0o dj)w(qdl/{p )y

“converge” to some p-adic continuous function in j€Z/(p—1) X Z,, in a sense
we now make more precise. Define the stabilization by

1=
1 1 1
(ngp )y =w( qdép Jy— = w( ngp )y- (1.19)
p =0
We also denote I J
1 1
(qdRp )y = fb (qdRp )y - w?!fl,y (1.20)

One can show directly from (1.15) that

P (00 d)w’ (glfF"),

is a p-adic continuous function of j € Z/(p — 1) X Z,. Then for any jo € Z>¢ we
have

lim pb(jo+p’”(p—1))(9Odjo+p"‘(p—1))w(qégpb)y:pbjo(godjo) (qcll/RP )y (1.21)

m—o0

Roughly, summing
b (0 o d? 1/p°
p?(Ood )w (qdR )y

against anticyclotomic Hecke characters y evaluated at ideals corresponding to y
for y over an appropriate CM orbit (associated with an order O of an imaginary
quadratic field K) gives the construction of our p-adic continuous L-function.
In reality, we will be able to bound the p-adic periods at CM points ¢’ which
are related to the natural CM points y associated with O via

s (10 _
y 0 q _y7
1/q

where g=p if p>2 and ¢=_8 if p=2. As a consequence, the g ;'-expansions at
the O-orbit of 3 are well-behaved, and we then construct our p-adic L-function
by summing
1
(qdl/qq)
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against anticyclotomic Hecke characters evaluated at an O orbit of 3, where

w( 0 )*<qj<0odj>wb>

is a certain Hecke translate of the Maass-Shimura derivatives, which allows us
to relate our p-adic L-function to period sums over CM orbits of y, and hence
obtain our interpolation property using the algebraicity theorem (1.12). Namely,
values of the p-adic L-function in a certain range are equal to certain algebraic
normalizations of central critical L-values associated with the Rankin-Selberg
family (w, x).

We end this outline with a few remarks on how we obtain the p-adic Wald-
spurger formula in Section 9, focusing on the case when k=2. A key property
of the p-adic Maass-Shimura operator ¢’ is that it sends p-adic modular forms
of weight k in the sense of (1.7) to modular forms of weight k + 2j. Hence the
limit

lim pt" ®-1) (9o dpm(pfl))wb(qdR)y

m— o0

converges to a p-adic modular form of weight 0 on some small affinoid neighbor-
hood of y, for some subgroup

I'c GLy(Z,).

Let K, denote the p-adic completion of K with respect to a fixed embedding
Q=Q,.

In fact, one can show that on some affinoid

us>y®uc,
where C C Y is a locus of CM points associated with K such that

Gal(C/C) (’)IX(p C GLy(Z,)

(induced by some embedding

Ky, — M>(Z,);
the subadic space C itself does not depend on this choice of embedding), the

limit
G:= lim p" "V (@od )’ (qar)|u (1.22)

m—r oo
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converges to a p-adic modular form of weight 0 on U for some I' with

BCT CGLy(Z).

In particular, by restriction it induces a rigid function on Y'® Lit/, which is of
weight 0 for B on V' and of weight 0 for I on /. This means that G descends
to a section G on an affinoid open

vcy’
for some finite étale cover

Y' =Y,
here we use the fact that while

Vecy

is not affinoid open, its image on any finite cover is isomorphic to a copy of the

ordinary locus
d
Yoy,

which, being the complement of a finite union of residue discs (the supersingular
locus), is an (admissible) affinoid open. In particular, G is rigid on U, and one
can show using Coleman’s theory of integration that on

Uny’erd,
G is in fact equal to the formal logarithm

lngb | UNY ’ord

for some p-stabilization w® of the newform w. (Here p-stabilization denotes
the image of w under some explicit Hecke operator at p.) Then the rigidity
of G on U implies that dG is a rigid 1-form on U, and so by the theory of
Coleman integration the rigid primitive G on I/ is unique up to constant, which
implies

G=log,» |u- (1.23)

Since the relevant special value of our p-adic L-function corresponds to evaluat-
ing (1.22) on an orbit of the CM point y, one sees that we arrive at our p-adic
Waldspurger formula by evaluating (1.23) at an appropriate Heegner point.
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1.3 MAIN RESULTS

We now finally state our main results. We adopt the notation of Chapter 8, and
the reader should refer to there for precise definitions and assumptions.

Fix an algebraic closure Q of Q, and view all number fields as embedded
in Q. Let p denote a prime number. Fix an algebraic closure @p of Qp, and fix
embeddings

io:Q=C, i1 Q—=Q,.

Fix an imaginary quadratic extension K/Q. Now suppose the prime p is inert
or ramified in K, and let w be a new eigenform (i.e., a newform or Eisenstein
series) of weight k > 2 for I'; (V) and nebentype €,,, where pf N, N > 4. Let a,(w)
denote the Hecke eigenvalue of T},. Suppose that

1. kis even or p>2, and
2. N satisfies the Heegner hypothesis, i.e., that each prime ¢|N splits or ramifies
in K, and if /2| N then /¢ splits in K.

Let A be a fixed elliptic curve with CM by an order O, C Ok of conductor pfc
also with (¢, Ndg) =1, let
(07 OKP l) TpA

be a choice of full p>°-level structure as in Choice 8.6, let
y=(A,a)eC(K,, O%,)

and let Q,(y) and Qo (y) be the associated periods as in Definition 5.45, and
also let
wly+ = F - (2midz)®*.

Then for Hecke characters x € X, in the notation of Chapter 8, Section 8.2,
we have that the values L(F,x1,0) are central critical. On a certain subset
Y+ CX, characters satisfy root number conditions so that these central critical
L-values are nonvanishing, and so present as candidates for interpolation. Given
an algebraic Hecke character x, let ¥ denote its p-adic avatar, and let Ny : A —

C* denote the norm character, which has infinity type (1,1). We let ¥ denote
the p-adic closure of the p-adic avatar i]+ (in the space of functions on A?(m) ,
equipped with the uniform convergence topology) of ¥ : we note that one can
naturally view 3 C ¥. Finally, suppose (4, t, ) is a suitable CM point on infinite
level (see Choice 8.6), let

0(2)(A,t,a) €C)

be the period as in Definition 5.45 (see also Propositions 7.3 and 7.7), so that
denoting by p the prime of K above p, #x=#0O/p the order of the residue field
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at p, and e the ramification index of K,/Q, (=1 if p is inert in K, =2 if p is
ramified in K'), we have

10(2) (A, t, )| = |2|pﬁ*m _ |2\p; pinert in K
[2|pZ*-D  pramified in K.

Let B
QA1) eQ”

be the period as in Definition 8.10. We collect our results into one Main Theorem.
Theorem 1.1 (Theorems 8.9, 8.14, 9.10). There is a p-adic continuous function
Lpa(w,-): 34 =Cp

that satisfies the following interpolation property. Let q=p if p>2 and ¢=8 if
p=2. Then for all x € ¥, when w is a newform we have

a k+2j
»Cp,oz(wv X) = (qe(ngz((i, ?)J )> ’ . :p(w, X) . .p (Lalg(F, X_l, O)) (124)

]

and when w is an Fisenstein series (F:E;f“wz, see Definition 8.3) we have

(g0() (A, t, ))k+2d
Q(A,t)I

‘Cpﬂ(w? X) = . Ep(w7 X) : 7;17 (Lalg(E;cphwz?X_l? O)) ’ (125)

where L¥&(F,x~1,0) and Lalg(E;fl’wQ,Xfl,O) are certain algebraic normaliza-
tions of square roots of the Rankin-Selberg central L-value L((my)r x X1, 1/2)
and Hecke central L-value Lalg"(E;fl’wz7X_l7 0) as defined in Definition 8.5, and

- 1—ay(w)’x ' (p) By — 2 pinert in K
:‘P(w7X) - »

—1 1
D2

L—ay(w)x ' (p) 5+ — 2= pramified in K.

We have the following “p-adic Waldspurger formula”: For any x € % _ C§+
of infinity type (k— (j+1),j+1) where 0<j<r:=k—2, that

q0(,) (A t,a) k—2(j+1) _ Y L
( I;))((A t)(])Jrl) ‘:"P(wa X) : TAJF(AXN;(I)(M /\w]AOnAOJ)a

‘Cp’a(wv 5() =
ATp(A ) (w Ay )

—1
K
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18 the p-adic Abel-Jacobi image of a specific generalized Heegner cycle as defined
in Chapter 10, Section 9.2 (which depends on some fized elliptic curve Ag
with CM by Ok ). In particular, we have the following application toward the
Beilinson-Bloch conjecture. Let x take values in E. In particular, if

Lp.a(w,X) #0, (1.26)

then .
ewefozleN}l € Ewl Nt CHS+1(XT)(F)§NK

s nontrivial, where the right-hand side denotes the EwE Nt -1so0typic component
of an appropriate Chow group for the underlying (Chow) motive attached to
(w,x~1).

When k=2, we have a simpler statement. Let H. denote the ring class field
associated with the order O.. For any character x :CL(O,.) —>@; with Ngx €

> C§+, we have
Ep,a(w7 NKX) = Q(Aa t)Ep(wa NkX) ’ logw P (X)

where Pk (x) € Jac(Y1(N))(H.) is the Heegner point as defined in Section 9.
In particular, if 5
Ep,a (w7 NKX) 7é Oa

then Pk (x) projects via a modular parametrization to a mon-torsion point in
Ay (H )X, where A, /Q is the GLo-type abelian variety associated uniquely up
to isogeny with w. Then by the Gross-Zagier formula and Kolyvagin, we have

rankz A, (H.)* =dimg A, = ords=1 L(Aw, X, 5).

1.4 SOME REMARKS ON OTHER WORKS IN
SUPERSINGULAR IWASAWA THEORY

Finally, we point out that there has been much groundbreaking work done in
supersingular Iwasawa theory by many other authors. We give a brief summary
of some of these results. In our setting of Iwasawa theory for imaginary quadratic
fields in which p is inert or ramified, Rubin ([54]), following methods of Katz
and invoking the machinery of Coleman power series, succeeded in construct-
ing l-variable continuous p-adic L-functions in the Lubin-Tate direction (i.e.,
for characters of type (k,0) and varying k€Z/(p—1) x Z,). In [53], he also
formulated analogues of supersingular main conjectures assuming certain con-
jectures on the structure of the Iwasawa module of universal norms of local
units. Agboola-Howard ([1]) also developed anticyclotomic main conjectures
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for imaginary quadratic fields, assuming the aforementioned conjecture on the
structure of local units (though even with this assumption, they did not con-
struct an analytic anticyclotomic p-adic L-function, as we do in this book).
Schneider-Teitelbaum ([63]), using their p-adic Fourier theory and Coleman
power series, also constructed distributions interpolating Hecke L-values over
imaginary quadratic fields in which p is inert or ramified.

In the GLs-setting, particularly for newforms attached to elliptic curves,
there has also been great progress, although not directly related to our situa-
tion. Previous works have mainly addressed the Iwasawa theory of families of
twists V ® x where the weight of V' is greater than the weight of the characters
x. In this case the Galois representations in consideration are supersingular at
p exactly when V itself is supersingular at p, since the Hodge-Tate weights of V'
dominate those of x. In contrast, we address the case where the weight of the x’s
is at least the weight of V', and hence the twists are supersingular precisely when
the character x is supersingular at p (i.e., p is inert or ramified in K), since the
Hodge-Tate weights of x dominate those of V. The former situation, however,
already has potent applications to the Birch and Swinnerton-Dyer conjecture.
For V attached to elliptic curves over Q, see the fundamental work of Pol-
lack ([50]) who introduced “+/—" constructions in order to produce 1l-variable
(cyclotomic) measures from the classical distributions attached to elliptic curves
with good supersingular reduction at p (the construction of which is due to Visik
[66], Amice-Vélu [2], and Mazur-Tate-Teitelbaum [47]). Kobayashi, soon after
Pollack, gave an algebraic construction of these “+/—" p-adic L-functions (see
[39]) by defining a suitable “4-/—" Coleman map and evaluating on Kato’s Euler
system (see [32]). Later, Sprung ([65]) extended this to the a,#0 case by con-
structing an appropriate generalization of the “+/—" Coleman map. From their
algebraic constructions of p-adic L-functions, Kobayashi and Sprung were also
able to formulate appropriate “+/—" cyclotomic main conjectures in the non-
CM case, and use Kato’s Euler system to prove one divisibility of these main
conjectures. Pollack-Rubin soon afterward formulated and proved the CM ana-
logue of this main conjecture ([51]), building on Kobayashi’s construction and
Rubin’s previous work on the Euler system of elliptic units ([55]). Kim was also
able to generalize Kobayashi’s constructions to 2 variables in certain height 1 set-
tings ([38]). In more general settings, for elliptic curves there is also the work of
Wan ([67]), who proved the supersingular analogue of Skinner-Urban’s G Ly main
conjecture ([64]), and of Castella-Wan ([11]), who formulated and proved +/—
analogues of Perrin-Riou’s main conjecture on Heegner points ([49]). See also
the works addressing more general settings such as that of Lei-Loeffler-Zerbes
([45]), Biiytikboduk-Lei ([7]), and Castella-Ciperiani-Skinner-Sprung ([10]), who
also addressed the setting of a general elliptic modular form.
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