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CHAPTER 1

Motivation

Stochastic thermodynamics has become an established branch of nonequilibrium sta-
tistical physics. On the theoretical side, it has been discovered that the behavior of
mesoscopic systems is governed by surprisingly general relations. Rapid advances
in experimental techniques are leading to tests of these relations by manipulating
mesoscopic physical systems.

Perhaps as a consequence of this fast development, some aspects of stochastic
thermodynamics might seem obscure to noninitiates. Key results in stochastic thermo-
dynamics, such as fluctuation relations, are so general that one might wonder what the
underlying physical assumptions really are. In a broader perspective, itmight be difficult
to understand how the simplicity of stochastic thermodynamics relates to the daunt-
ing complexity of traditional nonequilibrium statistical physics. Preliminary answers to
these questions are presented in this chapter.We conclude the chapter with an overview
of the book structure.

1.1 What is stochastic thermodynamics?

In its simplest form, stochastic thermodynamics is a thermodynamic theory for
mesoscopic, nonequilibrium physical systems interacting with equilibrium heat reser-
voirs.

It is useful to dissect this definition:

• Thermodynamic theory. As the name suggests, stochastic thermodynamics
draws a correspondence between mesoscopic stochastic dynamics and macro-
scopic thermodynamics. This correspondence is sketched in fig. 1.1.

• Mesoscopic, nonequilibrium physical systems. Stochastic thermodynamics deals
with mesoscopic systems. For our aims, a mesoscopic system is a physical
system characterized by energy differences among its states on the order of
the thermal energy kBT, where kB is the Boltzmann constant and T is the
temperature. Prominent examples of mesoscopic systems are colloidal parti-
cles, macromolecules, nanodevices, or systems of chemical reactions at very
low densities. Mesoscopic systems can be driven out of equilibrium by an
external manipulation, for example, by varying in time the temperature or
by controlling them with optical tweezers. More generally, all physical sys-
tems that can be described by stochastic evolution equations, where the noise

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



2 Chapter 1
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Figure 1.1. Relation between statistical mechanics, coarse-graining techniques, and
stochastic thermodynamics. (Inspired by Sekimoto [153].)

models interactions with a heat reservoir, fall into the scope of stochastic
thermodynamics.

• Interacting. The stochasticity of mesoscopic systems results from interactions
with one or multiple reservoirs. Often one does not know the details of these
interactions, and the functional form of the noise is dictated by general physical
assumptions. Importantly, we always neglect the interaction energy between
the system and the bath.

• Equilibrium heat reservoirs. We assume that reservoirs relax very quickly to
equilibrium compared to the timescales of mesoscopic systems. Therefore, on
these timescales, reservoirs are effectively always at equilibrium. This timescale
separation is key to the simplicity of stochastic thermodynamics. In many
cases, this assumption can be justified by a coarse-graining procedure.

Provocatively, one could say that Einstein’s paper on Brownian motion was the first
paper in history complying with our definition of stochastic thermodynamics. Indeed,
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Motivation 3

Einstein considered the stochastic dynamics of amesoscopic colloid and used it to draw
far-reaching conclusions for the thermodynamics of general nonequilibrium systems.

1.2 Why does it work and why is it useful?

Stochastic thermodynamics associates thermodynamic quantities with mesoscopic
physical systems, whose evolution is described by stochastic dynamics, and pre-
dicts their properties. This task is considerably simpler than the general problem in
nonequilibrium statistical physics, i.e., that of deriving macroscopic dynamics from a
“fundamental” microscopic description.

In particular, several fundamental problems that arise in nonequilibrium statistical
physics do not even appear in stochastic thermodynamics. One example is understand-
ing how the irreversible nature of macroscopic thermodynamics systems emerges from
microscopic dynamics. This conceptual issue is known as Loschmidt’s paradox and has
puzzled physicists since the dawn of thermodynamics. After all, macroscopic systems
are made of a large number of elementary particles, and these particles evolve accord-
ing to microscopic equations that are time-reversible. It is nowadays established that
the solution to the Loschmidt paradox originates from the large number of degrees
of freedom of thermodynamic systems. However, a rigorous derivation of irreversible
macroscopic dynamics starting from reversible microscopic dynamics has proved to
be rather difficult and has been carried out without simplifying assumptions only for
a limited number of idealized systems. This difficulty does not arise in stochastic ther-
modynamics, since the stochastic equations that constitute its starting point are already
irreversible.

At this point, one might wonder whether stochastic thermodynamics might be too
simple to be really interesting. In particular, one question is, In which approxima-
tion do real mesoscopic physical systems satisfy the hypotheses of stochastic ther-
modynamics? Although theoretical arguments can partially answer this question, an
ultimate response can only come from experiments. Stochastic thermodynamics has
been successfully employed to measure equilibrium free energies from nonequilibrium
measurements, and the range of mesoscopic physical systems that are experimentally
controllable keeps growing. It is our hope that these experiments will clarify how safe it
is to apply stochastic thermodynamics to genericmesoscopic systems andwhich aspects
have to be treated with special care.

Due to its simplifying assumptions, stochastic thermodynamics circumvents many
technical subtleties of kinetic theory. In this respect, it might appear that it provides less
interesting challenges for mathematical physics. However, stochastic thermodynamics
has proved to be an interesting playground for advanced mathematical tools to analyze
stochastic processes, including control theory, large deviations, and probability mea-
sures in the space of trajectories. As shown in this book, these tools are precious to shed
light on the nature of nonequilibrium mesoscopic processes.

1.3 Plan of the work

The main goal of this book is to provide a pedagogical introduction to stochas-
tic thermodynamics for graduate students in physics. Our book is structured so that
it can be used as a textbook for a graduate course or for independent study. To this
aim, we mark those sections of the book that contain more advanced material with the

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



4 Chapter 1

notation (∗). These sections can be skipped to ease a first reading or to use the book for
a course covering basic concepts only.

Relevant bibliography is collected in the “Further reading” sections at the end of
each chapter. These sections refer to works where results discussed in the chapter were
originally presented, along with other useful references to deepen the study of specific
topics.

One of the best ways to learn a subject is by problem solving. Following this phi-
losophy, we have included an exercise section to complement most chapters. Some
of these exercises are meant to be solved with paper and pen, whereas others require
computer simulations. These latter exercises assume that the reader is familiar with
basic computer programming (in any language). For reasons of space, we do not intro-
duce numerical algorithms other than particularly relevant ones, such as the Gillespie
algorithm. As with sections, some exercises are marked with a (∗), to warn the reader
that their solution is particularly challenging or that it requires concepts from a starred
section.

Chapter 2 provides a brief overview of the theories upon which stochastic ther-
modynamics is built: thermodynamics, statistical mechanics, the theory of stochastic
processes, and information theory. This overview is far from exhaustive due to rea-
sons of space. We focus on aspects of these theories of more relevance for stochastic
thermodynamics. To avoid overburdening the book with the complexities of stochastic
calculus, we mainly focus on physical systems with discrete states that can be described
by master equations. Throughout the book, sections requiring knowledge of stochastic
processes with continuous state space are always starred.

Chapter 3 introduces the basic concepts of stochastic thermodynamics. We dis-
cuss how work, heat, and entropy can be consistently introduced at the level of single
stochastic trajectories of systems described by master equations. We show that these
quantities satisfy relations that are analogous to the first and second laws of traditional
thermodynamics. Particular emphasis is given to the physical interpretation of these
quantities.

Chapter 4 is devoted to fluctuation relations, which are perhaps the most celebrated
results in stochastic thermodynamics. The connection between entropy production and
statistical irreversibility is the core concept of this chapter. We exploit this connection
to introduce fluctuation relations in a unified framework.

Chapter 5 discusses manipulation of information at the mesoscopic level. In the first
part of the chapter, we introduce counterintuitive physical aspects of information pro-
cessing, such as Maxwell demons and the Landauer cost of erasing information. In the
rest of the chapter, we show how stochastic thermodynamics clarifies these concepts,
both in general and in the context of concrete examples.

Chapter 6 is devoted to large deviation theory. Once confined to pure mathematics
and statistics, large deviation theory has risen as a fundamental tool in statistical physics
and beyond. Many current developments in stochastic thermodynamics heavily rely on
large deviation theory. In this chapter, we introduce the theory and discuss its main
applications in stochastic thermodynamics.

Chapter 7 presents key experimental results in stochastic thermodynamics. A focus
of this chapter is how fluctuation theorems allow for estimating equilibrium free
energy from nonequilibrium measurements. We also discuss other groundbreaking
experiments that have tested manipulation of information at the mesoscopic level.
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Motivation 5

Chapter 8 presents a collection of developments of stochastic thermodynamics in
several directions. Sections of this chapter are rather independent of each other and
provide an introduction to more recent research topics. We have not marked with a
(∗) sections and exercises of this chapter; however, most of the material should be
considered as advanced.

Chapter 9 presents perspectives on open issues and future directions.
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CHAPTER 2

Basics

The prerequisites for stochastic thermodynamics are laid down in this chapter. In par-
ticular, we briefly review the thermodynamics of macroscopic systems, the statistical
description of their behavior, both static and dynamic, and some basic concepts of infor-
mation theory. We take advantage of this preliminary material to introduce most of the
notation used in the rest of the book.

2.1 Thermodynamics

Stochastic thermodynamics describes thermodynamic processes taking place in
small systems in contact with reservoirs. Before going any further, we need to specify
what we mean by “thermodynamic processes” and “reservoirs,” and to introduce other
main concepts in traditional thermodynamics.

In its basic form, thermodynamics deals with systems that are made up of a very
large number of particles and are in thermodynamic equilibrium, in the sense that
their macroscopically observable properties, like density, pressure, etc., do not change
with time. It is a common observation that many materials, kept isolated from the
environment, reach sooner or later a state characterized by constant values of macro-
scopic properties. Importantly, systems that reach such an equilibrium state by different
manipulations behave from then on in the same way, from the point of view of ther-
modynamics. Thermodynamic equilibrium wipes out previous history. For example, the
thermodynamic behavior of two glasses of water with the same density at the same pres-
sure does not depend on whether one of the two has been prepared by melting an ice
cube in a glass of water at a higher temperature, while the other has simply kept the
state it had when flowing out of the tap. There are exceptions to this rule: some systems,
such as structural glasses, keep memory of past manipulations. Their thermodynamic
behavior is more complex (and controversial). We do not deal with them.

The state of a thermodynamic system is characterized by a judiciously chosen, small
set of macroscopically observed properties: its composition, its mass, its volume, the
pressure acting on it, etc. In thermodynamics, knowledge of the values of these quan-
tities in a given equilibrium state is sufficient to predict their values after the system
undergoes a thermodynamic transformation. In this sense, traditional thermodynamics
is deterministic.

For example, we consider a cylinder closed by a piston, holding a simple fluid, i.e., a
fluid composed of a single chemical species. For such a system, the number n of moles
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Basics 7

of the fluid (or the number of particles N= nNA, where NA≈ 6.02 · 1023 is Avogadro’s
number), the volume V of the cylinder, and the pressure P applied by the piston are a
complete set of thermodynamic observables.

Thermodynamics deals with two main kinds of transformations:

Adiabatic transformations. In adiabatic transformations, energy is exchanged be-
tween the system and the environment only in the form of work. This means that the
system is thermally isolated, i.e., enclosed by walls that do not allow the exchange
of heat. Values of observables like pressure, volume, etc. can bemechanically altered.
In our example, this means that the walls of the cylinder do not allow any uncon-
trolled interaction with the surroundings, and only the position of the piston can
be changed. We then let the piston rest in the new position, and we wait until the
system reaches a new equilibrium state. The motion of the piston can be very slow
(quasi-static transformation) or abrupt, meaning that the intermediate states are not
necessarily equilibrium states. In either case, the transformation brings the system
from one equilibrium state to a new equilibrium state, whose properties depend on
the details of the transformation.

Heat exchange. In the case of heat exchange, the system interacts in an uncontrolled
way with another thermodynamic system, for example, a similar container with
nonisolating walls. We say that the two systems are put “in contact.” This interaction
in general involves energy exchange between the two systems. In this case, we must
specify which macroscopic variables are kept constant, because it is not possible in
general to keep, e.g., both the volume and the pressure constant.

Any transformation can be decomposed into a succession of (possibly infinitesimal)
adiabatic transformations and heat exchanges.

We now consider two systems S1 and S2 that are put in contact with a much larger
system S0, one after the other, in such a way that they both reach equilibrium. We
assume that S0 is so large that its thermodynamic state is not significantly affected by
being put in contact with either S1 or S2, whereas the thermodynamic states of S1 or
S2 may in principle change. Experience shows that if, after this procedure, S1 and S2
are put in contact with each other, their thermodynamic states remain unaltered. This
observation is summarized by the zeroth law of thermodynamics:

Two systems, each in thermodynamic equilibrium with a third one, are in equi-
librium with each other.

The zeroth law of thermodynamics allows us to define a quantity � that assumes the
same value in systems in thermodynamic equilibrium with one another. This quantity
can bemade observable if we put these systems in touchwith a reference systemT, small
enough not to perturb their equilibrium state, and thenmeasure amacroscopic quantity
(e.g., the volume) of T. The system T is called thermometer, and � is an “empirical
temperature.” We call the large system S0 a heat reservoir characterized by a given
value of�.

In general, there are multiple ways to perform a thermodynamic transformation
from one equilibrium state to another. For example, we can increase the pressure of
a fluid with a fixed value of V by putting it in contact with a heat reservoir at an empir-
ical temperature �, or by letting an electrical current go through a resistor immersed
in it, until a thermometer reads the same value of �. According to our postulates, the
system reaches the same equilibrium state in all these cases. In particular, the energy
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8 Chapter 2

contained in the system (its internal energy) is the same. In an adiabatic transfor-
mation, conservation of energy imposes that the change �E in the internal energy
between the initial and the final state must be equal to the work Wad performed on
the system:

�E=Ef −E0=Wad. (2.1)

We use in this book the convention that work is considered positive if it is per-
formed on the system and negative if it is performed by the system. In macro-
scopic thermodynamic systems, the internal energy E is extensive, i.e., it is propor-
tional to the size of the system (as measured by V or N, as long as the density is
fixed).

In a nonadiabatic transformation between two equilibrium states, the workW per-
formed on the system is in general different from Wad. Therefore, a certain amount
of energy exchanged by interactions between the system and its surroundings is not
taken into account in W. We identify this energy Q with the heat exchanged in the
transformation. We thus have

Q=W−�E. (2.2)

With this convention,Q is positive if it is released by the system and negative if it is pro-
vided to the system. Equation (2.2) embodies the first law of thermodynamics, which
may be expressed as follows:

The change of the internal energy of a system is equal to the difference between
the work done on it and the heat released by it.

Our sign convention for work and heat is the opposite of that commonly used
in traditional thermodynamics, but it turns out to be the most natural in stochas-
tic thermodynamics. The reason is that, historically, thermodynamics originated from
the study of thermal engines, and the emphasis was on the conversion of heat into
work. Conversely, in stochastic thermodynamics, one is usually interested in describing
dissipative systems, which convert work into heat.

The internal energy E is one of the macroscopic observables. For a simple fluid,
knowledge of n, P, and V allows one to evaluate E. It is possible to invert this relation
to express, e.g., P or� as a function of n, V , and E.

Given an equilibrium state E0 of a thermodynamic system, there are states E that
cannot be reached from E0 via an adiabatic transformation, while the inverse transfor-
mation E −→ E0 is possible. In this sense, thermodynamic systems possess an intrinsic
irreversibility. Amain goal of thermodynamics is to characterize the set of states that can
be reached from a given state by an arbitrary combination of adiabatic transformations
and heat exchanges.

The irreversibility of thermodynamic transformations is characterized by the con-
cept of entropy. The entropy S is a function of the thermodynamic state of an
equilibrium system. The irreversibility of thermodynamic transformations is captured
by the second law of thermodynamics:

The total entropy of a thermally isolated system cannot decrease.

The entropy S has the following properties:

Additivity. If a system is made up of several subsystems S1, . . . ,Sk, . . . , each at equi-
librium, the entropy of the total system is equal to the sum of the entropies of the
subsystems:
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S
(⋃

Sk
)
=

∑
k

S(Sk). (2.3)

As a consequence of additivity, the entropy of a homogeneous system is extensive, i.e.,
it is proportional to the system size. This implies that, upon rescaling the other exten-
sive observables, such as the number of particles, the volume, the internal energy,
etc., by a factor λ> 0, one has

S(λE, λV , λN)= λS(E,V ,N). (2.4)

Monotonicity. S increases as E increases when all other variables are kept constant.
This property holds for the vast majority of practical cases. There exist some intrigu-
ing systems where S can decrease with E, but we do not deal with them in this
book.

Concavity. Entropy is a concave function. This means that, given two equilibrium
states E0= (N,V0,E0) and E1= (N,V1,E1) of the same system and any real num-
ber α between 0 and 1, the intermediate state Eα characterized by (N, (1−α)V0+
αV1, (1−α)E0+αE1) satisfies

S(Eα)≥ (1−α)S(E0)+αS(E1), 0≤α≤ 1. (2.5)

Properties of concave and convex functions are summarized in appendix A.1.

The second law of thermodynamics also implies several important properties of
thermodynamic systems:

Temperature. Systems in thermal equilibrium with each other share the same value of
the quantity

1
T
= ∂S
∂E

, (2.6)

if the other extensive quantities (N,V , etc.) are kept constant. To prove this result, we
consider two systems S1 and S2 in contact with each other and adiabatically insu-
lated from their surroundings. Their total energy E=E1+E2 is fixed. If they are in
mutual equilibrium, their total entropy cannot grow upon exchanging energy in the
form of heat. Thus, at equilibrium, we have

∂(S1(E1)+ S2(E−E1))
∂E1

= 1
T1
− 1

T2
= 0. (2.7)

Therefore, T acts as the empirical temperature � that we defined before. The
monotonicity of S implies that T cannot be negative for the cases we consider.

Heat exchange. If two systems in contact with each other do not exchange work, the
system with a larger value of T provides heat to the system with a smaller value of T.
We call E1 and E2 the initial internal energies of the two systems and T1 and T2 their
initial temperatures. After being in contact for some time, they reach equilibrium at
energy values E′1 and E′2. The total entropy is given by
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10 Chapter 2

S= S1(E′1)+ S2(E′2)≤ S1(E1)+ E′1−E1
T1

+ S2(E2)+ E′2−E2
T2

= S1(E1)+ S2(E2)+
(
E′1−E1

) (
1
T1
− 1

T2

)
,

(2.8)

where we use the concavity of S and the fact that E1+E2=E′1+E′2. The second law
imposes that

S1(E′1)+ S2(E′2)≥ S1(E1)+ S2(E2) (2.9)

and therefore (
E′1−E1

) (
1
T1
− 1

T2

)
≥ 0. (2.10)

Thus, if E′1−E1> 0, we have 1/T1> 1/T2, which corresponds to T1<T2: the body
with higher T releases energy to that with lower T. This means that T behaves as
a temperature scale: hotter bodies are characterized by larger values of T, and heat
flows naturally from them to colder bodies. This fact is summarized by theClausius
statement of the second law of thermodynamics:

Heat can never pass from a colder to a warmer body without some other
change, connected therewith, occurring at the same time.

In fact, T defined in this way coincides with the absolute temperature scale and is
called the temperature from now on.

As an illustration of these ideas, we consider a cylinder containing n moles of an
ideal gas. An ideal gas is a fluid in which the pressure P, the volume V , the number of
particles N, and the temperature T satisfy the equation of state

P= N kBT
V

. (2.11)

We change the volume of the gas by an infinitesimal quantity dV by performing on it
an infinitesimal amount of work

dW=−P dV . (2.12)

If the gas is thermally isolated, we have dE=−P dV . It turns out that the internal energy
of an ideal gas depends only on its temperature T. Thus we obtain

∂E
∂V

)
T
= ∂E
∂V

)
S
+ ∂E
∂S

)
V

∂S
∂V

)
T
= 0, (2.13)

where ∂X/∂Y)Z is the partial derivative of X with respect to Y , taken at constant Z. By
combining eqs. (2.12) and (2.6), we obtain

∂E
∂V

)
S
=−P; ∂E

∂S

)
V
=T. (2.14)
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Therefore,
∂S
∂V

)
T
= P

T
. (2.15)

If the volume V of the system changes from V0 to Vf at constant T, its entropy S chan-
ges by

�S=
∫ Vf

V0

dV
P
T
=NkB

∫ Vf

V0

dV
V
=N kB ln

Vf
V0

. (2.16)

Therefore, if Vf >V0, the transformation V0−→Vf , but not its reverse, can take place
in a thermally isolated system.

Another facet of these postulates is the Kelvin-Planck statement of the second law:

It is impossible to devise a cyclically operating heat engine, the only effect of which
is to absorb energy in the form of heat from a single thermal reservoir and to
deliver an equivalent amount of work.

Indeed, such a device would produce negative entropy during a cycle. To show that, we
imagine enclosing the device and the reservoir with a wall, so that the entire system is
thermally isolated. During the cycle, the device transfers a positive amountW of work
to the environment and reduces the internal energy of the reservoir by the same amount.
Since the entropy of the device does not change and the entire system is isolated, the
total entropy change is Sres=−W/T< 0, in contradiction with the second law.

2.2 Thermodynamic efficiency

An important application of thermodynamics is the study of engines and their effi-
ciency. We generally call an engine a physical machine that operates cyclically and
converts one form of energy into another. Historically, the most important example
is heat engines, i.e., machines that cyclically convert heat into work. The Kelvin state-
ment of the second law of thermodynamics implies that heat engines must necessarily
operate using at least two heat reservoirs at different temperatures Thot and Tcold, with
Thot>Tcold.

We consider a heat engine that is alternately put in contact with two heat reservoirs.
During each cycle, the system receives an amount of energy Ehot from the hot reservoir
and releases an amount of energy Ecold to the cold one. At the end of the cycle, the
engine returns to the same state it had at the beginning of the cycle. Therefore, the
workW=Ecold−Ehot performed on the engine in a cycle is equal to the net total heat
released to the reservoirs (remember our sign convention!). The total change in entropy
in a cycle, Stot, is given by the change�Ssys of the entropy of the system plus the entropy
change Sres of the reservoirs:

Stot=�Ssys+ Sres. (2.17)

Here and in the following we denote with �X the change of a state function X. The
entropy change of the reservoir Sres is not a state function, since the internal energy and
thus the energy of a reservoir can change without altering its temperature. Therefore,
neither is Stot a state function. In a cycle, �Ssys vanishes, whereas the entropy of the
reservoirs changes by

Sres=−Ehot
Thot
+ Ecold

Tcold
≥ 0. (2.18)
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The extractedwork attains itsmaximumwhen the entropy increase Scold of the reservoir
at lower temperature is the opposite of the entropy decrease Shot of the reservoir at
higher temperature:

Scold= Ecold
Tcold

≥−Shot= Ehot
Thot

. (2.19)

This condition implies

−W≤Ehot
(
1− Tcold

Thot

)
. (2.20)

Traditionally, the thermal efficiency ηth of a heat engine is defined as the ratio between
the extracted work and the energy absorbed from the hot reservoir:

ηth=− W
Ehot

. (2.21)

Equation (2.20) implies that the maximal thermal efficiency is determined by the
temperatures of the hot and cold reservoirs, independent of the amount of energy
exchanged during a cycle:

ηth≤ ηthC = 1− Tcold
Thot

, (2.22)

where ηthC is the thermal Carnot efficiency.
It is interesting to consider more general engines whose energy currencies are not

limited to work and heat. This is especially true in stochastic thermodynamics, where
information can also be exchanged for work. To deal with these more general engines,
we define the efficiency ηS in terms of entropy rather than energy. To this aim, we con-
sider an engine operating between two arbitrary reservoirs. During a cycle, the engine
extracts an amount Sin of entropy from a reservoir and releases an amount Sout of
entropy to another reservoir. In this framework, we define the efficiency as

ηS=− Sin

Sout
. (2.23)

With this definition of efficiency, eq. (2.22) becomes

ηS≤ ηC, (2.24)

where in this case the Carnot efficiency is simply

ηC= 1. (2.25)

This definition of efficiency allows us to characterize engines operating between two
arbitrary reservoirs.

2.3 Free energy and nonequilibrium free energy

The thermodynamic behavior of a system is identified once we know the expres-
sion of the internal energy E as a function of entropy S, particle number N, volume
V , and other thermodynamically relevant observables. If the system is put in contact
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with a heat reservoir at temperature T, its internal energy E and entropy S are deter-
mined by the interaction with the reservoir. In this case, it is convenient to express the
thermodynamic properties in terms of T rather than S. Since T= ∂E/∂S (where the
other thermodynamic observables are kept constant), this change of variable can be
achieved via a Legendre transformation. Properties of the Legendre transformation are
summarized in appendixA.2. The free energy is defined as the opposite of the Legendre
transform of the internal energy:

F(T,N,V)=E(S,N,V , . . .)−T S, (2.26)

where S is expressed as a function of T and of the other observables as the solution of
the equation

∂E
∂S

)
N,V ,...

=T, (2.27)

and the dots stand for possible other thermodynamic observables. In the following, for
simplicity, we limit ourselves to the basic observables S, V , and N. Given F(T,N,V),
the entropy S is given by

S(T,N,V)=− ∂F
∂T

)
N,V

, (2.28)

whereas the pressure is given by

P=− ∂F
∂V

)
T,N

. (2.29)

Therefore, the free energy fully describes the thermodynamic state, in the sense that it
permits us to reconstruct all thermodynamic observables. Functions with this property
are called thermodynamic potentials. Applying the symmetry of partial derivatives
of F to relations like eqs. (2.28) and (2.29), we obtain other useful relations between
thermodynamic quantities, such as

∂2F
∂V ∂T

)
N
=− ∂S

∂V

)
T
= ∂2F
∂T ∂V

)
N
=− ∂P

∂T

)
V
. (2.30)

Such equalities are known as Maxwell relations. In particular, one can use these rela-
tions to show that the equation of state of an ideal gas implies that its entropy depends
on T and V in the form S(T,V)=NkB lnV + S0(T), where S0(T) does not depend
on V .

We now consider a system initially at equilibrium with values S, N, and V of the
thermodynamic observables that is brought to a new equilibrium by putting it in touch
with a heat reservoir at temperature T. In the new equilibrium state, the free energy
has the value F(T,N,V) and the value of the entropy satisfies eq. (2.28). During equi-
libration, energy is exchanged as heat with the reservoir and as work with the external
environment. We wish to characterize this exchange.

By the second law, the total entropy change of the system plus the reservoir cannot
be negative:

Stot=�Ssys+ Sres≥ 0. (2.31)
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We callW the work performed on the system and Q the heat released to the reservoir.
The first law imposes that

�E=W−Q=W−T Sres, (2.32)

where we use the fact that the heat reservoir is always at equilibrium at temperature T.
As a consequence of eqs. (2.31) and (2.32), we obtain

W≥�E−T�Ssys. (2.33)

Therefore, the equilibrium state can be identified as the one in which the expression
E−T S attains its minimum. Evaluating the equilibrium value S of the system entropy
at this minimum, we retrieve the condition given by eq. (2.27). The value of E−T S
at its minimum is equal to the free energy F at temperature T. Mathematically, this
result descends from the fact that Legendre transforms satisfy a variational principle
(cf. eq. (A.29)). These results justify defining the nonequilibrium free energy by

Fneq(T, S,N,V)=E(S,N,V)−T S (2.34)

for arbitrary values S of the entropy. The equilibrium free energy F is then obtained by
the variational principle

F(T,N,V)=min
S

Fneq(T, S,N,V). (2.35)

Thenonequilibrium free energy is not a thermodynamic potential.One reason is that
it simultaneously depends on some quantities characterizing the system (such as S) and
others that characterize the reservoir (such as T). We defined Fneq for a system initially
at equilibrium, for which S is thermodynamically defined and which is brought out
of equilibrium by allowing its contact with a heat reservoir. We discuss in section 5.2
a generalization of nonequilibrium free energy to mesoscopic systems prepared in an
arbitrary nonequilibrium state.

There exist thermodynamic potentials other than the free energy. They differ in the
thermodynamic quantities that are kept fixed by external reservoirs. For example, the
appropriate thermodynamic potential for a system in contact with a heat reservoir and
kept at a fixed pressure P is the Gibbs free energy

G(T, P,N)=E+ PV −TS, (2.36)

where E, V , and S are expressed as functions of T, P,N. Beyond heat reservoirs, we can
also consider particle reservoirs, which are able to exchange with the system an unlim-
ited amount of particles of a given chemical species without changing their properties
and while remaining at thermodynamic equilibrium. They are characterized by the val-
ues T of their absolute temperature and μ of their chemical potential. The chemical
potential μ of a system with free energy F that can exchange a single chemical species
is given by

μ= ∂F
∂N

)
T,V

, (2.37)
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whereN is the number of molecules of the considered species. For a system containing
a single chemical species at fixed temperature T and pressure P, the chemical potential
is equal to the Gibbs free energy per particle:

μ(T, P)= G(T, P,N)
N

. (2.38)

For systems exchanging multiple chemical species, a distinct chemical potential can be
assigned to each one of them. Each chemical potential is defined by a formula similar
to eq. (2.37) in which we keep constant the number of molecules of all exchangeable
species but one, and take the derivative with respect to that one. By the same reasoning
we followed for the free energy, it can be shown that equilibrium in the presence of
particle reservoirs corresponds to the minimum of

�(E,T,V ,μ1,N1,μ2,N2, . . .)= E−TS−
∑
i
μiNi, (2.39)

where the sum runs over all exchanged chemical species.

2.4 Statistical mechanics

Statistical mechanics links the microscopic description of a macroscopic system at
equilibrium to its thermodynamic behavior. We consider a macroscopic system and
assume for simplicity that its microscopic states ξ (also called microstates) are dis-
crete, ξ ∈ {1, 2, . . .}. Macroscopically, the thermodynamic equilibrium state is identified
by the values of macroscopic observables, like the internal energy E, the volume V ,
the number of particles N, etc. At the microscopic level, the system incessantly and
rapidly changes its microstate according to its dynamics. Therefore, we cannot do bet-
ter than assign it a statistical state, i.e., a probability distribution over the microstates.
We denote by pξ the probability of a discrete microstate ξ . If the variables ξ are con-
tinuous, the probability density is denoted by p(ξ). In either case, we denote by

〈
f (ξ)

〉
the expectation of the function f (ξ) over the probability distribution of ξ . We also use
the notations peqξ and

〈
f (ξ)

〉eq whenever we want to stress that a probability distribu-
tion corresponds to thermodynamic equilibrium. We briefly review the properties of
probability distributions in appendix A.3.

The fundamental postulate of statistical mechanics stipulates that an isolated sys-
tem at thermodynamic equilibrium can be found with equal probability in any of the
microstates ξ compatible with given values of the thermodynamic observables, and that
the thermodynamic entropy S is related to the numberW of themicrostates that satisfy
this condition by the relation

S= kB lnW . (2.40)

Here kB is the Boltzmann constant:

kB≈ 1.384 · 10−23 J/K. (2.41)

This probability distribution over the microstates is known as themicrocanonical dis-
tribution (or microcanonical ensemble). The term ensemble is used to stress that we
are effectively replacing a single system and its detailed dynamical behavior with a
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large collection of statistically identical systems, such that their distribution over the
microstates is constant in time—in agreement with thermodynamic equilibrium at
the macroscopic level. This change of description is appropriate if the system is large
enough. This condition is formalized by the thermodynamic limit, in which one imag-
ines the size of the system (measured by the number of particles N) to go to infinity,
keeping constant the ratios V/N, E/N, . . . , of extensive variables.

Starting from the microcanonical distribution, one can show that the equilibrium
state of a system in equilibrium with a reservoir at temperature T is described by the
Maxwell-Boltzmann (or canonical) distribution (or canonical ensemble)

peqξ =
e−εξ /kBT

Z
, (2.42)

where εξ is the energy of microstate ξ and the denominator is the partition function

Z=
∑
ξ

e−εξ /kBT . (2.43)

The partition function is related to the free energy F by

F=−kBT lnZ. (2.44)

This relation allows us to write the equilibrium distribution peq in the form

peqξ = e(F−εξ )/kBT . (2.45)

One of the simplest thermodynamic systems is the ideal gas. An ideal gas is made
ofN point-like particles of massm that interact weakly, so that their potential energy is
negligible compared to their kinetic energy. The state of a particle i is identified by its
momentum �pr,i and its position �ri. In evaluating the partition function, we have to take
into account that the particles are not distinguishable. Thus the partition functionmust
be multiplied by a factor 1/N!, because configurations that differ only by the exchange
of particles should not be considered different. In order to make the expression of Z
dimensionless, we introduce an elementary phase-space volume h for each degree of
freedom, where h is Planck’s constant. This value is chosen to make a connection with
the behavior of quantum systems. Using Stirling’s approximation for the factorial, we
obtain

F=−kBT lnZ=−kBT ln
1
N!

∫ N∏
i=1

[
d�ri d�pr,i

h3
exp

(
− p2r,i
2mkBT

)]

=NkBT ln

[
N
eV

(
h2

2πmkBT

)3/2]
,

(2.46)

where e= 2.7818 . . . is the basis of natural logarithms. The chemical potential μ is
obtained by taking the derivative of F with respect to N, as shown in eq. (2.37):
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μ= ∂F
∂N

)
T,V
= kBT ln

N
V
+μ(0), (2.47)

where μ(0) denotes terms that are independent of the concentration.
Values of thermodynamic observables can be obtained by taking appropriate deriva-

tives of the partition function. For example, the equation of state is obtained by taking
the derivative of F, as expressed by eq. (2.46), with respect to V :

P=− ∂F
∂V

)
T,N
= kBT

∂ lnZ
∂V

)
T,N
= N kBT

V
. (2.48)

Similarly, defining Z(β)=∑
ξ e−βεξ , we have

∂ lnZ
∂β

∣∣∣∣
β=1/kBT

=− 1
Z

∑
ξ

εξ e−εξ /kBT =−〈ε〉eq . (2.49)

We identify the average 〈ε〉eq with the thermodynamic value E of the internal energy.
On the one hand, taking a further derivative, we obtain

∂2 lnZ(β)
∂β2

∣∣∣∣
β=1/kBT

= 〈
ε2

〉eq− (〈ε〉eq)2≥ 0. (2.50)

On the other hand, an explicit evaluation of the derivatives yields

∂2 lnZ(β)
∂β2

∣∣∣∣
β=1/kBT

= kBT2 ∂ 〈ε〉eq
∂T

)
N,V ,...

. (2.51)

Comparing eqs. (2.50) and (2.51), we obtain

kBT2 ∂ 〈ε〉eq
∂T

)
N,V ,...

= 〈
ε2

〉eq− (〈ε〉eq)2 . (2.52)

This relation expresses a thermodynamic derivative (on the left-hand side) in terms
of a microscopic fluctuation (on the right-hand side). It is an elementary example of
relations that are collectively known as fluctuation-dissipation relations. Importantly,
eq. (2.52) tells us that the variance of the distribution of ε grows proportionally to its
average, and therefore to the system size. Therefore, the relative uncertainty on the
energy

√〈
ε2

〉eq− (〈ε〉eq)2
〈ε〉eq =

√
kBT2(〈ε〉eq)2

∂ 〈ε〉eq
∂T

)
N,V ,...

(2.53)

scales like the inverse square root of the system size. As a consequence, also taking into
account the smallness of kB, energy fluctuations are negligible for macroscopic systems.
Thus, although statistical mechanics describes systems with probability distributions at
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the microscopic level, its predictions are deterministic at the macroscopic level. This is
also true for macroscopic systems out of equilibrium.

If a system is in contact with reservoirs exchanging extensive quantities other than
energy, averages and fluctuations of these other quantities can be evaluated following
a similar strategy. We consider, for example, a system exchanging energy and parti-
cles with a reservoir characterized by a temperature T and a chemical potential μ. The
equilibrium distribution of such a system is given by the grand canonical ensemble

peqξ =
1
Zgc e

−(εξ−μNξ )/kBT , (2.54)

where we define the grand canonical partition function as a function of α and β

Zgc=
∑
ξ

eαNξ−βεξ , (2.55)

with β = 1/kBT and α=μ/kBT. The derivatives of the logarithm of the partition func-
tion return averages and variances of thermodynamic observables in this case too:

∂ lnZgc

∂α

∣∣∣∣
α=μ/kBT,β=1/kBT

=〈N〉eq ; (2.56a)

∂ lnZgc

∂β

∣∣∣∣
α=μ/kBT,β=1/kBT

=−〈ε〉eq ; (2.56b)

and

∂2 lnZgc

∂α2

∣∣∣∣
α=μ/kBT,β=1/kBT

= 〈
N2〉eq− (〈N〉eq)2 ; (2.57a)

− ∂2 lnZgc

∂α ∂β

∣∣∣∣
α=μ/kBT,β=1/kBT

=〈N ε〉eq−〈N〉eq 〈ε〉eq ; (2.57b)

∂2 lnZgc

∂β2

∣∣∣∣
α=μ/kBT,β=1/kBT

= 〈
ε2

〉eq− (〈ε〉eq)2 . (2.57c)

These relations allow us to estimate relative fluctuations of thermodynamic observ-
ables. The symmetry of thermodynamic derivatives yielding theMaxwell relation (2.30)
corresponds to the symmetry of the covariance of fluctuations, as in the example of
eq. (2.57).

In the canonical ensemble, the internal energy E is a fluctuating quantity. Its distri-
bution can be evaluated by means of the so-called Boltzmann-Einstein principle. To
introduce it, we first associate each value of the internal energy with the entropy of the
corresponding microcanonical ensemble:

S(E)= kB lnW(E)= kB ln
∑
ξ

δ(εξ −E), (2.58)
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where δ(x) is the Dirac delta function.We substitute this result in the expression for the
probability of E in the canonical ensemble:

peq(E)=
∑
ξ

peqξ δ(εξ −E)= e(F−E)/kBT
∑
ξ

δ(εξ −E)

= exp
[
−E−TS(E)− F

kBT

]
.

(2.59)

The argument of the exponential on the right-hand side of eq. (2.59) is the differ-
ence between the nonequilibrium free energy Fneq with the given value of E and the
equilibrium free energy F. This reasoning can be extended to multiple observables.
For example, if we look for the joint probability distribution of E and an arbitrary
macroscopic observable A, we obtain

peq(E,A)= exp
[
−E−TS(E,A)− F

kBT

]
, (2.60)

where
S(E,A)= kB ln

∑
ξ

δ(εξ −E) δ(aξ −A) (2.61)

is the entropy of a constrained microcanonical ensemble in which the values of E and
of A are both fixed. In this way, the evaluation of entropy can be used to estimate
probabilities.

2.5 Stochastic dynamics

In stochastic thermodynamics, we study the dynamics of mesoscopic physical sys-
tems subject to random interactions with a heat reservoir. Because of this source of
randomness, at a given time t a system can be found in a given discrete state x with
probability px(t). If the variable x is continuous, we denote by p(x; t) the probability
density of finding the system in x at time t.

The distribution px(t) is just one way of describing the dynamics. Another way is to
study trajectories of the system:

x= (x(t)). (2.62)

This notationmeans thatx in boldface (the trajectory) identifies thewhole function x(t)
over a given time interval. In the following, we often use this notation to distinguish the
whole function x from its instantaneous value x(t). Trajectories of a stochastic system
are characterized by some degree of randomness.We refer to the dynamics of a stochas-
tic system, described either in terms of time-dependent probability distributions or in
terms of trajectories, as a stochastic process.

Many stochastic processes of physical interest possess a useful simplifying prop-
erty called the Markov property. A Markov process is a stochastic process that has
a finite memory, i.e., one in which knowledge of the recent past fully determines the
statistics of the system in the present. Given an increasing sequence of time instants
(t0, t1, . . . , tn, t), we denote by px;t|xn;tn,xn−1;tn−1,...,x1;t1,x0;t0 the conditional probability
that the system is in a discrete state x at time t, given that it was in state xn at time
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tn, in state xn−1 at time tn−1, . . . , and in state x0 at time t0. For any increasing sequence
of time instants, a Markov process satisfies the condition

px;t|xn;tn,xn−1;tn−1,...,x1;t1,x0;t0 = px;t|xn;tn . (2.63)

This means that, in a Markov process, given the value of x at a given time tn, the evo-
lution of the system at a later time is independent of events that occurred at earlier
times. The same definition of a Markov process holds if x is continuous. The condi-
tional probability density px;t|xn;tn of a Markov process satisfies a simple relation. We
pick an intermediate time t′ such that t0< t′< t. By the law of total probabilities (A.35)
and by the Markov property (2.63), we obtain

px;t|x0;t0 =
∑
x′

px;t|x′;t′ px′;t′|x0;t0 . (2.64)

Equation (2.64) is called the Chapman-Kolmogorov equation. Therefore, the knowl-
edge of px;t|x′;t′ and of the distribution px(t0) at an initial time t0 allows one to evaluate
the distribution px(t) at arbitrary times t> t0. The conditional probability px;t|x′;t′ is also
called the propagator or Green function of the process. Conservation of probability
requires ∑

x
px;t|x′;t′ = 1, ∀x′ and ∀t′ ≤ t. (2.65)

Applying the Chapman-Kolmogorov equation (2.64) to a time interval of infinitesi-
mal duration dt, we obtain

px(t+ dt)=
∑
x′

px;t+dt|x′;t px′(t), (2.66)

where px;t+dt|x′;t can be written in the form

px;t+dt|x′;t = δKxx′ + dt Lxx′(t), (2.67)

where δKxx′ is the Kronecker delta and Lxx′(t) is a matrix that satisfies

Lxx′(t)≥ 0, if x �= x′;

Lxx(t)=−
∑

x′ (�=x)
Lx′x, ∀x. (2.68)

The matrix Lxx′ is called the generator of the process. Thus px(t) satisfies an evolution
equation of the form

dpx(t)
dt
=

∑
x′

Lxx′(t) px′(t), (2.69)

which has the solution
px(t)=

∑
x′

Gxx′(t, t′) px′(t′), (2.70)
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where the Green function is obtained by formally integrating eq. (2.69) with the initial
condition Gxx′(t′, t′)= δKxx′ :

Gxx′(t, t′)= px;t|x′;t′ =
(
T e

∫ t
t′ dt′′ L(t′′)

)
xx′

. (2.71)

Here (expression)xx′ denotes thematrix element of expression, andT denotes the time-
ordered product:

(
T e

∫ t
t′ dt′′ L(t′′)

)
xx′
= δKxx′ +

∫ t

t′
dt0 Lxx′(t0)

+
∫ t

t0
dt1

∫ t

t′
dt0

∑
x0

Lxx0(t1)Lx0x′(t0)+ · · · .
(2.72)

In the case where the generator does not depend on time, the Green function depends
only on the time difference (t− t′).

Markov processes with continuous state space are also defined by the condition
(2.63). In this case, we denote the propagator by p(x; t|x′; t′), and the Chapman-
Kolmogorov equation takes the form

p(x; t|x0; t0)=
∫

dx′ p(x; t|x′; t′) p(x′; t′|x0; t0). (2.73)

The evolution equation now reads

∂

∂t
p=L p, (2.74)

where the generator L is a linear operator that in general includes derivatives with
respect to x. In the next three sections, we discuss separately, and inmore detail,Markov
processes with discrete and continuous state space.

2.6 Master equations

Master equations describe the evolution of Markov processes in continuous time
with discrete states. A master equation is defined by the jump rates kxx′ from discrete
state x′ to x. The jump rate is proportional to the conditional probability that a jump
x′ −→ x takes place in an infinitesimal time interval (t, t+ dt), given that the system
is in state x′ at time t. Specifically, the jump rates (or simply rates) are related to the
propagator by

px;t+dt|x′;t = kxx′ dt, x �= x′. (2.75)

The rates can in principle depend on time. Because of the normalization condition,
eq. (2.65), the probability of remaining in a given state x in an infinitesimal time interval
must be equal to 1− dt

∑
x′ kx′x= 1− dt koutx , where we define the escape rate from

state x:
koutx =

∑
x′

kx′x. (2.76)
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Figure 2.1. Jump network of a system
with three states. k21
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Given the rates, we construct the evolution equation for the probability px(t) by eval-
uating the net probability flow reaching the state x. A state x receives an inflow of
probability from other states at rate

∑
x′ (�=x) kxx′px′(t), and returns an outflow at rate∑

x′ (�=x) kx′xpx(t). The net probability flow is given by the inflow minus the outflow,
leading to themaster equation

d
dt
px(t)=

∑
x′ (�=x)

[
kxx′ px′(t)− kx′x px(t)

]
. (2.77)

We now assume that the rates kxx′ are independent of time, and look at the behav-
ior of the probability distribution px(t) for t→∞. A stationary distribution pstx is a
probability distribution that satisfies

∑
x′ (�=x)

[
kxx′ pstx′ − kx′x pstx

]= 0, ∀x, (2.78)

and that is therefore a solution of the master equation (2.77) constant in time.
It is useful to represent a master equation via a jump network, where the nodes

represent the states x and the arrows x′ −→ x′ represent possible jumps, i.e., jumps with
nonvanishing rates. We draw two opposite arrows between a pair of states if jumps in
both directions are possible. An example of a jump network with three states is shown
in fig. 2.1, where each arrow x′ −→ x is associated with a nonzero rate kxx′ .

We say that a jump network is connected if any states x can be reached from any
other state x′ by means of a sequence of jumps with nonvanishing rates. In the follow-
ing, we always assume that this property holds, since disconnected master equations
represent multiple noninteracting physical systems that can be studied independently.
Under such assumptions, and provided that the number of states is finite, the Perron-
Frobenius theorem asserts that the leading eigenvalue, i.e., the eigenvalue with the
largest real part, is purely real and nondegenerate. Moreover, its associated eigenvec-
tor can be chosen to have strictly positive entries. In the case of master equations with
a finite number of states, the leading eigenvalue must be zero, otherwise the equation
would not preserve normalization. The normalized eigenvector can therefore be inter-
preted as the stationary probability distribution. If the number of states is infinite, the
stationary distributionmay not exist: this is the case, for example, of a particle diffusing
on an infinite line, when the rates of jumps to the left or to the right are independent
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of its position. If the number of states is finite, the real parts of all eigenvalues except
the leading one are negative, and therefore the stationary distribution is approached
exponentially fast in time:

lim
t→∞ px(t)= pstx , ∀x. (2.79)

The Perron-Frobenius theorem is not limited to generators ofMarkov processes. In par-
ticular, it does not require the generator to preserve normalization, i.e., that its columns
sum to one. An elementary proof of these properties that does not explicitly rely on the
Perron-Frobenius theorem is reported in appendix A.5.

The master equation can be seen as a continuity equation for the probability. This
interpretation becomes more transparent by introducing the probability current

Jxx′(t)= kxx′px′(t)− kx′xpx(t), x �= x′, (2.80)

which quantifies the net probability flow from state x′ to state x at time t. In terms of
the probability currents, the master equation can be rewritten in the compact form

d
dt
px(t)=

∑
x′ (�=x)

Jxx′(t). (2.81)

Equation (2.81) states that, at any given time, the rate change of the probability of being
in a state x is given by the total net flow to state x from all other states x′. If the probability
distribution p is the stationary one, we have

∑
x′ (�=x)

Jxx′ = 0, ∀x. (2.82)

If for any allowed jump x−→ x′ (i.e., such that kx′x> 0) the reverse jump is also allowed
(kxx′ > 0), the system exhibits microscopic reversibility. Most of the systems studied
in stochastic thermodynamics possess this property. In this case, we often represent the
jump network by a graph in which each possible jump between two states is represented
by an undirected edge between the corresponding nodes.We discuss in section 8.5 how
to handle microscopically irreversible systems.

If the stationary distribution satisfies, beyond eq. (2.78), the stronger condition

kxx′pstx′ = kx′xpstx , ∀x �= x′, (2.83)

then in the stationary state the probability current Jxx′ vanishes for each pair (x, x′) of
different states. The condition in eq. (2.83) is known as the detailed balance condition.
If it is satisfied, the stationary distribution is called the equilibrium distribution and
we denote it by peq. A master equation admits an equilibrium distribution if, for any
sequence (x0, x1, . . . , xn) of states all different from one another, we have

kx0x1kx1x2 · · · kxnx0 = kx0xnkxnxn−1 · · · kx1x0 . (2.84)

This condition requires in particular that microscopic reversibility is satisfied. The con-
dition of eq. (2.84) might seem obscure at first, but it becomes clearer in the context of a
specific jump network as in fig. 2.1. Because of the conservation of probability, the sum
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of currents arriving at each node must vanish in the stationary state; see eq. (2.82). This
implies that nonvanishing stationary currents can only flow in loops. This requires in
particular that the jump network contains a sequence of distinct nodes, each of them
connected to the previous one by an edge, and where an edge connects the last one
to the first. This sequence defines a cycle in the network. A nonvanishing current in
a cycle can only be sustained if the rates “pushing” the currents clockwise and coun-
terclockwise do not balance. The balance conditions for the rates along each cycle of
the network are indeed given by eq. (2.84). This also means that, if there are no cycles
(e.g., if the network is linear or treelike), then the stationary solution always satisfies
detailed balance conditions, provided that microscopic reversibility holds. When the
condition (2.84) is not satisfied for some cycles, the probability currents along these
cycles do not vanish in the stationary state. In this case, the stationary distribution is
also called a nonequilibrium steady state.

In thermodynamic systems, the condition of detailed balance is often associatedwith
thermodynamic equilibrium, and the stationary distribution peqx appearing in eq. (2.83)
is the Boltzmann distribution, eq. (2.42). We further discuss this point in section 3.1.
Then, assuming that kx′x> 0, eq. (2.83) implies that

kxx′
kx′x
= peqx

peqx′
= e−(εx−εx′ )/kBT . (2.85)

Although the master equation (2.77) is linear, solving it explicitly can be difficult
when the number of states is large. To tackle it numerically, it is convenient to sim-
ulate an ensemble of random trajectories rather than integrating the master equation
itself. Trajectories of amaster equation can be very efficiently simulated bymeans of the
Gillespie algorithm, which is briefly described in appendix A.6.

2.7 Trajectories of master equations

During its evolution in a time interval [t0, tf ], a system described by a master equa-
tion visits a sequence x0, x1, . . . , xf of states (fig. 2.2). We call tk the random time at
which the system jumps from state xk−1 to state xk �= xk−1. The system is in state xk
during a time interval tk≤ t< tk+1. Thus the trajectory x in the given time interval is
made of a sequence of dwells, where the system remains in the same state, separated
by jumps, where the system changes state, as shown in fig. 2.2. The whole trajectory x

is then encoded in the sequence

x= ((x0, t0), (x1, t1), . . . , (xf , tn), tf ) . (2.86)

We wish to evaluate the probability density Px of the trajectory x. To this aim, we dis-
cretize the time interval into N intervals of short duration �t=T /N , where T =
tf − t0 is the duration of the whole time interval. We then approximate the trajectory by
the sequence xdsc= (x0, x1, . . . , xN ) of states at the time t�, where t�= t0+ ��t. For
each small interval (t�, t�+�t), the conditional probability that x(t�+�t)= x, given
that x(t�)= x′, is given by px;t+�t|x′;t . The probability of the discrete trajectory is then

Pxdsc|x0 =
N∏
�=1

px�;t�−1+�t|x�−1;t�−1 . (2.87)
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Figure 2.2. Example of a trajectory of a master equation.

From the master equation, we approximate the conditional probability by

px;t+�t|x′;t ≈ δKxx′ +�t Lxx′(t), (2.88)

where Lxx′(t) is the generator. This expression yields conditional probabilities that are
properly normalized. Therefore, the probability of the trajectory x is approximately
equal to

Px|x0 ≈Pxdsc|x0 ≈
N∏
�=1

(
δKx�x�−1 +�t Lx�x�−1(t�−1)

)
. (2.89)

On the one hand, we can explicitly evaluate the products over each dwell:

∏
�∈ dwell

px�;t�−1+dt|x�;t�−1 =
∏
�

(
1− dt� koutx�

)≈ e−
∑
� koutx� (t) dt� ≈ e−

∫
dt koutx(t)(t). (2.90)

On the other hand, the probability that the system undergoes a jump from x′ to x in the
short time interval [t�, t�+ dt] is given by kxx′ dt px′(t�) to first order in dt. Therefore,
the factors contributing to the probability of a trajectory x due to the sequence of dwells
and jumps are

Px = e−
∫ tf
tn dt′ koutxn (t

′)kxnxn−1(tn) e
− ∫ tn−1

tn dt′ koutxn−1 (t
′) · · ·

× e−
∫ t1
t2

dt′ koutx1 (t
′)kx1x0(t1) e

− ∫ t0
t1

dt′ koutx0 (t
′)px0(t0).

(2.91)

This expression includes the probability of the initial state px0(t0). The choice of writing
the factors on the right-hand side of eq. (2.91) in temporal order from right to leftmight
seem awkward for a reader used to writing in the Latin alphabet from left to right.
However, it becomes quite natural when thinking of the probability density as a product
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of matrix elements, one for each infinitesimal time step, acting on the initial probability
px0(t0).

We define the integral over trajectories in the following way:

∫
Dx · · · =

∞∑
n=0

∑
x0,x1,...,xn

∫ t2

t0
dt1

∫ t3

t2
dt2 · · ·

∫ tf

tn−1
dtn · · · . (2.92)

With this definition, the probability density Px satisfies the normalization condition
∫

Dx Px = 1. (2.93)

Indeed, comparing eqs. (2.91) and (2.92) with eqs. (2.71) and (2.72), we obtain
∫

Dx Px =
∑
xfx0

(
T e

∫ tf
t0 dt L(t)

)
xfx0

px0(t0)

=
∑
xfx0

pxf ;tf |x0;t0 px0(t0)= 1.
(2.94)

2.8 Fokker-Planck equation (*)

The stochastic dynamics of systems with continuous state space and continuous
trajectories is described by the Fokker-Planck equation and by stochastic differential
equations. These tools were introduced in physics to investigate Brownian motion.
Einstein described Brownian motion as the phenomenon by which “bodies of micro-
scopically visible size suspended in a liquid perform [random] movements of such
magnitude that they can be easily observed in a microscope.” We follow his line of
reasoning to derive the Fokker-Planck equation.

We consider a particle that moves along a one-dimensional continuous coordinate
x. We call p(x; t) the probability density of the position x of a particle at time t. We first
assume that the particle is immersed in a uniform fluid and is not subject to external
applied forces. Due to random interactions with the fluid particles, during a short time
interval of duration �t, the particle experiences a random displacement �x. If �t is
very small, the displacement �x is largely in the direction of the initial velocity of the
particle due to inertia. However, interactions with the particles of the fluid soon wipe
out this dependence. Therefore, if �t is large enough but still small, we expect this
displacement to be independent in nonoverlapping time intervals. We call ψ(�x) the
probability distribution of �x over these time intervals. In the absence of externally
applied forces, ψ(�x) must be an even function of �x due to symmetry. We express
p(x; t+�t) in terms of p(x; t) and the displacement distribution

p(x; t+�t)=
∫

d�xψ(�x) p(x−�x; t). (2.95)

Since�t is small,�x is also small. We therefore expand p(x−�x; t) in a Taylor series
to second order:
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p(x; t+�t)≈
∫

d�xψ(�x)
[
p(x; t)−�x

∂

∂x
p(x; t)+ 1

2
�x2

∂2

∂x2
p(x; t)

]
. (2.96)

We then perform the integration over �x. Since ψ(�x) is an even function, the term
proportional to�x vanishes upon integration. We thus obtain

p(x; t+�t)− p(x; t)≈ 1
2

〈
�x2

〉 ∂2
∂x2

p(x; t). (2.97)

We now divide eq. (2.97) by�t and take the limit�t→ 0. In taking this limit, we make
the crucial assumption that

lim
�t→0

〈
�x2

〉
2�t

=D, (2.98)

where D is a finite quantity called the diffusion constant. If this assumption holds, we
obtain the diffusion equation:

∂

∂t
p(x; t)=D

∂2

∂x2
p(x; t). (2.99)

Starting from a localized initial condition p(x; t0)= δ(x− x0), the solution of the
diffusion equation is a Gaussian distribution,

p(x; t)= 1√
4π DT

exp
(
− (x− x0)2

4DT

)
, (2.100)

where T = t− t0.
In a more general case, for instance when the particle is subject to forces, the dis-

tribution of the displacements �x might depend on x, t, and might not necessarily be
even. We express it as

p(�x;�t, x, t)= p(x+�x, t+�t|x, t). (2.101)

We assume that the following limits exist and define thedrift anddiffusion coefficients,
respectively, by

v(x, t)= lim
�t→0

〈�x〉x,t
�t

; (2.102a)

D(x, t)= lim
�t→0

〈
�x2

〉
x,t

2�t
. (2.102b)

The averages 〈. . .〉x are taken over the distribution of displacements. Then the dynam-
ics is described by the Fokker-Planck equation (also called the Kolmogorov forward
equation):

∂

∂t
p(x; t)=− ∂

∂x
[
v(x, t) p(x; t)

]+ ∂2

∂x2
[
D(x, t) p(x; t)

]
. (2.103)
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Equation (2.103) is derived in appendix A.7. The first term in eq. (2.103) is the drift and
is associated with the local mean velocity of particles. The second term is the diffusion,
which represents the “random,” unbiased component of the motion.

The Fokker-Planck equation can also be written as a continuity equation,

∂

∂t
p(x; t)=− ∂

∂x
J(x; t), (2.104)

where the probability current is defined by

J(x, t)= v(x, t) p(x; t)− ∂

∂x
[
D(x, t) p(x; t)

]
. (2.105)

The Fokker-Planck equation is a second-order partial differential equation. To solve it,
we need to specify the initial condition, i.e., the distribution p(x; t0), and the bound-
ary conditions. Often the Fokker-Planck equation is studied in the infinite interval x∈
(−∞,∞), for which the boundary conditions are simply that the probability vanishes
as |x|→∞.

The solution p(x; t|x0; t0) of the Fokker-Planck equation with initial condition δ(x−
x0) at t= t0 is the propagator, which expresses the conditional probability density of
finding the particle close to x at time t> t0, given that it was at x0 at time t0. In some
cases, one is interested in the dependence of this probability density on the earlier state
x0 and the earlier time t0. This dependence is governed by the Kolmogorov backward
equation:

− ∂

∂t0
p(x; t|x0; t0)= v(x0, t0)

∂

∂x0
p+D(x0, t0)

∂2

∂x20
p. (2.106)

We derive this equation in appendix A.7.
We now consider cases where the coefficients v(x, t) andD(x, t) of the Fokker-Planck

equation do not depend on time. The stationarity condition reads

∂

∂x
Jst(x)= 0, (2.107)

where the stationary current is

Jst(x)= v(x) pst(x)− ∂

∂x
[
D(x) pst(x)

]
. (2.108)

When considering an infinite interval, the stationary solution does not necessarily exist.
A prominent example is the diffusion equation (2.99), whose solution (2.100) does not
tend to a limiting form as T →∞.

In some cases, the Fokker-Planck equation also admits a stationary solution with a
vanishing stationary current:

Jst(x)= 0, ∀x. (2.109)

Equation (2.109) is the detailed balance condition for Fokker-Planck equations. In gen-
eral, detailed balance is a rather restrictive condition. However, there are physically
relevant scenarios where this property holds, such as many one-dimensional systems
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andmost systems at thermodynamic equilibrium, as discussed at the end of section 2.6.
In the one-dimensional case, when detailed balance holds, the stationary solution is
given by

pst(x)∝ 1
D(x)

exp
(∫ x

x0
dx′ v(x

′)
D(x′)

)
, (2.110)

where x0 is arbitrary and the proportionality constant is determined by the normaliza-
tion condition

∫∞
−∞ dx pst(x)= 1.

2.9 Langevin equation (*)

Trajectories of a Brownian particle with drift coefficient v(x, t) and diffusion coeffi-
cient D(x, t) are solutions of the Langevin equation

dx
dt
= v(x, t)+ σ(x, t) ξ(t), (2.111)

where σ(x, t) is a function related to D(x, t) and ξ(t) is a random quantity. We impose
that this random quantity is unbiased, 〈ξ(t)〉= 0, ∀t. We also assume that displace-
ments in nonoverlapping time intervals are uncorrelated. This amounts to requiring〈
ξ(t) ξ(t′)

〉= 0 for t and t′ sufficiently far apart. Assuming that this holds whenever
t �= t′, we obtain

〈
ξ(t)ξ(t′)

〉∝ δ(t− t′). We set the proportionality constant equal to 1
by suitably defining σ(x, t). A variable ξ(t) satisfying these properties is called white
noise. In the mathematical literature, Langevin equations are an example of stochastic
differential equations.

Equation (2.111) is ill defined as it stands, since the variance of the random quantity
ξ(t) is a delta function in time. The mathematical tools to deal with stochastic differ-
ential equations were developed well after the work of Langevin and are the subject of
the theory of stochastic calculus. Stochastic calculus is nowadays a rather developed
field of mathematics. In this section, we concentrate on the most important and useful
results without going too deep into the mathematical details.

We formally evaluate the time integral of ξ(t):

W(t)=
∫ t

t0
dt′ ξ(t′)=

∫ t

t0
dW. (2.112)

The random processW(t) is called theWiener process. It has vanishing average

〈W(t)〉=
〈∫ t

t0
dt′ ξ(t′)

〉
=

∫ t

t0
dt′

〈
ξ(t′)

〉= 0. (2.113)

Since ξ(t) is unbiased on average, so is its time integral W(t). The second moment of
W(t) is given by

〈
W2(t)

〉=
〈∫ t

t0
dt′

∫ t

t0
dt′′ ξ(t′)ξ(t′′)

〉
=

∫ t

t0
dt′

∫ t

t0
dt′′

〈
ξ(t′)ξ(t′′)

〉

=
∫ t

t0
dt′

∫ t

t0
dt′′ δ(t′ − t′′)=T ,

(2.114)
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where T = t− t0. In general, it can be shown that the distribution ofW(t) is Gaussian:

p(W(t)=w)= 1√
2π T

e−w2/2T . (2.115)

Mathematicians prefer to formally define W(t) as a process whose increments over a
time interval of durationT areGaussian randomvariables with zeromean and variance
T . They allow physicists to use ξ(t) as an ill-defined “derivative” ofW(t).

We now consider a Langevin equation without drift:

dx
dt
= σ ξ(t), (2.116)

where we assume that the coefficient σ is constant. Integrating from t= t0 to a generic
time t, we obtain

x(t)= x0+ σ W(t). (2.117)

Thus the distribution of x(t) is aGaussian centered in x0 andwith varianceσ 2 〈
W2(t)

〉=
σ 2T . By comparing with the diffusion equation, eq. (2.99) and its solution, we conclude
that this Langevin equation describes the trajectories of a diffusion equation with a
diffusion coefficient

D= σ 2/2. (2.118)

By going through the derivation of the Fokker-Planck equation in section 2.8, one
sees that the solution of the Langevin equation (2.111) with constant σ describes a pro-
cess satisfying the Fokker-Planck equation (2.103) with the same drift v(x, t) and with
diffusion coefficient D= σ 2/2.

Processes where σ depends on x are often called Langevin equations with multi-
plicative noise in the physics literature. This term is somewhat misleading as it appears
to be limited to the case in which σ ∝ x. In the presence of multiplicative noise, the
interpretation of eq. (2.111) is mathematically subtle. Depending on its interpretation,
itmay ormay not represent the behavior of the solutions of eq. (2.103). This is due to the
fact that, for short time intervals dt, the typical increments ofW are much larger than
dt, and thus the second term of the Langevin equation dominates over the first one.

Formally, solving a Langevin equation requires the evaluation of stochastic integrals
of the form ∫ tf

t0
dt ξ(t) f (x(t), t)=

∫ tf

t0
dW(t) f (x(t), t), (2.119)

where f (x, t) is a given function. The ambiguity in the interpretation of the Langevin
equation stems from the ill-defined nature of stochastic integrals. There are two major
conventions to resolve this ambiguity and therefore to assign a precise interpretation to
the corresponding Langevin equation:

Ito convention. The Ito convention is defined by the prescription

II= lim
dt→0

N∑
k=0
[W(tk+ dt)−W(tk)] f (x(tk), tk), (2.120)
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where ti= t0+ i dt and the sum runs over the N = (tf − t0)/dt intervals of dura-
tion dt in which we divide the interval [t0, tf ]. In the Ito convention, the function
f (x(t), t) is evaluated at the beginning of each infinitesimal time interval [tk, tk+ dt].
We denote the Ito convention by a dot product symbol:

II=
∫ tf

t0
dW · f (x(t′), t′). (2.121)

Stratonovich convention. The Stratonovich convention is defined by

IS= lim
dt→0

N∑
k=0
[W(tk+ dt)−W(tk)] f

(
x(tk+ dt)+ x(tk)

2
, tk+ dt

2

)

= lim
dt→0

N∑
k=0
[W(tk+ dt)−W(tk)] 12

[
f (x(tk+ dt), tk+ dt)+ f (x(tk), tk)

]
.

(2.122)

In the Stratonovich convention, f (x, t) is evaluated at the midpoint of each infinites-
imal interval [tk, tk+ dt]. We can equivalently evaluate the function f (x, t) as the
average of its values at the boundaries of the interval: the difference between these
two prescriptions vanishes as dt→ 0. We denote the Stratonovich convention by a
circle product symbol:

IS=
∫ tf

t0
dW ◦ f (x(t′), t′). (2.123)

In conventional (nonstochastic) integrals, the choices (2.120) and (2.122) yield the
same result as dt→ 0. This is not necessarily the case for stochastic integrals. Therefore,
a Langevin equation is not fully defined unless one declares whether stochastic integrals
are interpreted according to the discretization of eq. (2.120) or (2.122).

The Langevin equation (2.111) is equivalent to the Fokker-Planck equation (2.103)
under the Ito convention. As shown in appendix A.8, the Fokker-Planck equation
corresponding to the Stratonovich convention looks slightly different:

∂

∂t
p(x; t)=− ∂

∂x
(
v(x, t) p(x; t)

)+ 1
2
∂

∂x

[
σ(x, t)

∂

∂x
(
σ(x, t) p(x; t)

)]
. (2.124)

In this interpretation, the current is defined by

J(x, t)=w(x, t) p(x; t)−D(x, t)
∂

∂x
p(x; t), (2.125)

where the diffusion coefficient is given by D(x, t)= σ 2(x, t)/2 as in the Ito convention,
and

w(x, t)= v(x, t)− 1
2
σ(x, t)

∂

∂x
σ(x, t)= v(x, t)− 1

2
∂

∂x
D(x, t). (2.126)

When σ (orD) does not depend on x, eq. (2.124) reduces to eq. (2.103), confirming the
equivalence of the two interpretations in this special case.
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There are rules for transforming a Langevin equation interpreted in the Ito con-
vention to an equivalent one interpreted in the Stratonovich convention and back. As
shown in appendix A.8, one obtains the rule that

dx
dt
= v(x, t)+ 1

2
σ(x, t)

∂

∂x
σ(x, t)+ σ(x, t) ξ (Ito)

is equivalent to
dx
dt
= v(x, t)+ σ(x, t) ξ (Stratonovich). (2.127)

The extra term necessary to change convention is often called the noise-induced drift.
Which convention is the most appropriate to describe a given natural phenomenon?

The short answer is “it depends.” One can show that, considering a noise source with
a finite correlation time and then taking the limit of vanishing correlation time, the
resulting Langevin equation is of the Stratonovich type. Therefore, Stratonovich is the
correct interpretation for many systems affected by noise characterized by a negligible
but finite correlation time. On the other hand, the evaluation of Stratonovich integrals
requires knowledge of the “future,” i.e., of the value of functions after the initial instant
of each time step; see eq. (2.122). This aspect is unrealistic when the noise is generated
by the physical process itself. In general, when modeling a system with multiplicative
noise, it is safer to derive rigorously the Langevin equation and therefore to make sure
that the interpretation is correct.

Traditionally, most physicists tend to prefer to work with the Stratonovich conven-
tion, whereas mathematicians tend to prefer the Ito convention. It is useful to be aware
of the pros and cons of this choice. The Stratonovich convention has the advantage of
respecting the chain rule, i.e., d[f (x)]/dt= f ′(x) dx/dt, even if x follows a Langevin
equation. In the case of Ito, assuming that x(t) is the solution of eq. (2.111), the
derivative df /dt of f (x(t)) is instead given by

df
dt
= v(x, t) f ′(x)+ 1

2
σ 2(x, t) f ′′(x)+ σ(x, t) f ′(x) ξ . (2.128)

This relation is known as the Ito formula. Therefore, the Ito approach introduces a
complication that is not present in the Stratonovich one. It has however the advantage
that expectations of stochastic integrals, such as

〈∫
dW · f (x)

〉
,

always vanish in the Ito convention. This is in general not true for the Stratonovich
convention, where such integrals must be evaluated on a case-by-case basis.

2.10 Information

It is often useful to quantify the “uncertainty” associated with a certain probability
distribution over the states of a system S . A measure of uncertainty must satisfy three
reasonable properties: it must vanish when the system is known to be in one state, it
must be maximal when the distribution is uniform over all possible states, and, if the
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system is made up of two independent systems, it must be the sum of the two uncer-
tainties. Claude Shannon showed that the only function of the probabilities that satisfies
these three requirements (up to a multiplicative constant) is the Shannon entropy

H(S)=−
∑
x

px ln px, (2.129)

where the sum runs over all the states of system S . The larger H(S), the larger the
uncertainty aboutS , up to amaximumH(S)= lnN when the probability is uniformly
distributed overN states.With a slight abuse of notation, we interchangeably useH(S)
or H(p) to denote the Shannon entropy of a system S having distribution p= (px)
over its states. In the latter case, we use the notation p= (px) to denote by the sym-
bol p the entire vector px. In the simple case of a binary variable (x∈ {0, 1}) with equal
probabilities p0= p1= 1/2, one has

H(S)= ln 2. (2.130)

This quantity is called a bit of information.
If the system S is at thermal equilibrium, its thermodynamic entropy S is propor-

tional to the Shannon entropy of its distribution over the microstates

S= kBH(S)=−kB
∑
ξ

peqξ ln peqξ , (2.131)

where kB is the Boltzmann constant. Indeed, evaluating H(S) with peq given by (2.45)
leads to

H(S)=−
∑
ξ

peqξ
F− εξ
kBT

= 1
kBT

(〈ε〉eq− F
)= S

kB
, (2.132)

since F=〈ε〉eq−TS. Equation (2.131) is known as the Gibbs relation.
The dissimilarity between two probability distributions p= (px) and q= (qx) over

the states of the same system is measured by the Kullback-Leibler divergence (also
called the relative entropy),

DKL(p‖q)=
∑
x

px ln
px
qx

. (2.133)

The Kullback-Leibler divergence has the following properties:

• DKL(p‖q)≥ 0;
• DKL(p‖q)= 0 only if px= qx, ∀x.

To prove these results, we consider that − ln x is a convex function of x and there-
fore satisfies the Jensen inequality 〈− ln x〉≥− ln 〈x〉; see appendix A.1. We therefore
obtain

DKL(p‖q)=−
∑
x

px ln
qx
px
≥− ln

∑
x

px
qx
px
=− ln

∑
x

qx=− ln 1= 0. (2.134)
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In eq. (2.134), equality holds only if qx= px for all x, since − ln x is a strictly convex
function. One has in general DKL(p‖q) �=DKL(q‖p). For instance, if qx> 0, ∀x, while
px= 0 for some x, DKL(p‖q) is finite, but DKL(q‖p) diverges.

We now consider two systems S1 and S2 whose states are respectively denoted
by x and y. The information shared by the two systems is measured by the mutual
information

I(S1 :S2)=
∑
x,y

px,y ln
px,y
pxpy

, (2.135)

where px,y is the joint probability distribution of the two systems and px, py are their
marginal distributions; see appendix A.3. The mutual information can be seen as
the Kullback-Leibler divergence between the joint distribution px,y and the product of
the marginal distributions px and py. Therefore, it is nonnegative and vanishes only
if the two variables x and y are independent. The mutual information is symmetric:
I(S1 :S2)= I(S2 :S1). It can also be expressed in terms of the conditional probability
distribution px|y of the state of S1, given that of S2, by

I(S1 :S2)=
∑
x,y

px,y ln px|y−
∑
x

px ln px. (2.136)

The second term on the right-hand side is the Shannon entropy H(S1) of S1. The first
term is minus the conditional entropy of S1, given S2:

H(S1|S2)=−
∑
x,y

px,y ln px|y. (2.137)

When the two systems are statistically independent, i.e., px,y= pxpy, we have
H(S1|S2)=H(S1), and the mutual information vanishes. We moreover have

I(S1 :S2)=H(S1)−H(S1|S2)=H(S2)−H(S2|S1). (2.138)

The Shannon entropy H(S1,S2) of the joint distribution of the states of S1 and S2 is
called the joint entropy of the two variables. It satisfies the relation

H(S1,S2)=H(S1)+H(S2|S1), (2.139)

which is known as the chain rule. By exploiting (2.138), we also have

H(S1,S2)=H(S1)+H(S2)− I(S1 :S2). (2.140)

Equation (2.140) clarifies that the mutual information quantifies the reduction of the
uncertainty of the pair (S1,S2)due to theirmutual dependence. A similar relation holds
for the Kullback-Leibler divergence:

DKL(p(S1,S2)‖q(S1,S2))=DKL(p(S1)‖q(S1))+DKL(p(S2|S1)‖q(S2‖S1)),
(2.141)

where
DKL(p(S2|S1)‖q(S2‖S1))=

∑
x,y

px,y ln
px|y
qx|y

. (2.142)
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This result can be verified by a direct calculation. An immediate consequence of
eq. (2.141) is that the Kullback-Leibler divergence between two systems cannot increase
if we average out some variables.

Given three systems S1, S2, and S3, whose states are respectively denoted by x, y,
and z, the conditional mutual information between S1 and S2, given S3, is defined by

I(S1 :S2|S3)=
∑
x,y,z

pxyz ln
pxy|z

px|zpy|z
, (2.143)

where px|z and py|z are conditional marginal distributions, i.e.,

py|z=
∑
x

pxy|z; px|z=
∑
y

px,y|z. (2.144)

The conditional mutual information I(S1 :S2|S3) is nonnegative and vanishes only if
the joint conditional probability distribution of x and y, given z, factorizes into the prod-
uct of the conditional marginal distributions. This happens, for instance, if S1 depends
on S2 only via S3. The mutual information also satisfies a chain rule, which reads

I(S1,S2 :S3)= I(S1 :S3)+ I(S2 :S3|S1), (2.145)

where I(S1,S2 :S3) is the mutual information between S1 ∪S2 and S3. Derivation of
eq. (2.145) is left as exercise 2.7.

2.11 Further reading

The aim of this chapter is limited to giving a bird’s-eye perspective on theories that
lie at the foundation of stochastic thermodynamics. Several books explain much more
extensively the main concepts presented in each of the sections of this chapter, and
sometimes choosing among the many classic references might be a matter of personal
taste. Callen [28] and Pippard [130] are established textbooks in thermodynamics.
Feynman’s lectures in physics [54] provide an original introduction to thermodynamics
and statistical mechanics, including ideas that, in hindsight, were seminal for stochas-
tic thermodynamics. De Groot and Mazur [37] is a good reference on “nonstochastic”
nonequilibrium thermodynamics. Landau et al. [95], Chandler [29], and Peliti [125]
are classic references on statistical mechanics.

Equation (2.52) is a basic example of a fluctuation-dissipation relation. These rela-
tions are of paramount importance in nonequilibrium statistical physics, as discussed
throughout this book. Marini Bettolo Marconi et al. [110] provide a comprehensive
review on fluctuation-dissipation relations.

The basic concepts of stochastic processes were introduced into physics by the
pioneering work of Einstein [44] on Brownian motion (English translation in [46]).
Nowadays the theory of stochastic processes is rather well developed, even if it is still
playing a relatively marginal role in many physics curricula. There are many excel-
lent books on stochastic processes that present the theory at different mathematical
levels and with slightly different angles. Berg [15] is a basic introduction that focuses
on the physical concepts rather than on the mathematics. Gardiner [59], van Kam-
pen [171], and Risken [139] are references of a more mathematical nature. Øksendal
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[120] is an excellent, though even more advanced book. Other books focus on specific
aspects of the theory of stochastic processes. One important example is first-passage
time problems, discussed in Redner [138].

The seminal paper by Shannon [154] already contains themain ideas in information
theory. Khinchin [87] provides a more systematic introduction to Shannon’s theory.
Cover and Thomas [32] and MacKay [105] present information theory in a more
modern and extended way.

2.12 Exercises

2.1 Consider a master equation with three states, x∈ {0, 1, 2}, and with constant
rates kxx′ (x �= x′), none of which vanishes. Write down the explicit form of
the master equation. Evaluate the steady-state probability distribution pstx ,
x∈ {0, 1, 2} and the corresponding probability current Jst= kx′xpstx − kxx′pstx′
with x′ = x+ 1 mod 3. Derive the conditions on the rates k such that detailed
balance is satisfied, i.e., such that Jst vanishes.

2.2 Consider a master equation with four states, x∈ {0, 1, 2, 3}, and with rates kxx′
(∀x �= x′), none of which vanishes. Show that if kxx′ = kx′x, then the unique
stationary distribution is p0= p1= p2= p3= 1/4. Show with an example that
this is not necessarily the case if some of the rates vanish.

2.3 A collection of N white balls and N black balls, with N ≥ 3, are randomly dis-
tributed in two urns, so that each contains N balls. At each step t, one ball
is extracted from each urn; the two balls are swapped and put back in the
urns. Denote by xt the number of white balls in the first urn. Show that xt is
a Markov process and express its jump rates kxx′ = p(xt+1= x|xt = x′). Discuss
whether the process satisfies detailed balance. Evaluate the stationary distribu-
tion pstx and the decay rate of the correlation function 〈xtx0〉− 〈x0〉2, where x0
is drawn from the stationary distribution.

2.4 Consider an infinite sequence of independent, identically distributed real-
valued random variables y= (y0, y1, . . .). Another sequence x= (x0, x1,2 , . . .)
is recursively defined by

x0= y0; xn= yn+ a xn−1,

where 0< a< 1.

a. Show that, if the distribution of y� is Gaussian, the distribution of x�
approaches for �→∞ a stationary Gaussian distribution and evaluate
its parameters.

b. Show that, if y� is not Gaussian distributed, the stationary distribution of
x�, if it exists, is not Gaussian.

2.5 A Brownian particle is confined in a one-dimensional potential. Its posi-
tion x(t) satisfies the following Langevin equation in the Stratonovich
representation:
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dx
dt
=−�kx+ σ ξ(t),

where σ > 0 and ξ(t) is Gaussian random white noise, satisfying 〈ξ(t)〉= 0
and

〈
ξ(t) ξ(t′)

〉= δ(t− t′) ∀t, t′. Write the formal solution of the equation
for t≥ 0 as a function of the initial condition x(0)= x0 and of the realization
ξ(t′) (0≤ t′ ≤ t) of the noise. Evaluate 〈x(t)〉 and 〈

(x(t)−〈x(t)〉)2〉 for t→∞.
Assuming that the potential is harmonic, U(x)= 1

2kx
2, find the relation that

� and σ must satisfy for the particle to reach the equilibrium distribution
peq(x)∝ exp(−U(x)/kBT) for t→∞. Write down the Fokker-Planck equa-
tion associated with the Langevin equation and show that the equilibrium
distribution is a solution.

2.6 Prove eq. (2.110) for a system satisfying a one-dimensional Fokker-Planck
equation (2.103), assuming that the detailed balance condition eq. (2.109) is
satisfied.

2.7 Prove the chain rule for the mutual information, eq. (2.145).
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absorbing state, 186
acceptance ratio, 164
action, 86, 87, 225
active matter, 206
activity, 116
adiabatic elimination, 58, 59
affinity, 53, 55, 76, 138, 148
Ampère principle, 84
ancestral distribution, 202
anti-Ito convention, 87, 88
Arrhenius law, 59
asymmetric simple exclusion process, 153
ATP, 134, 146–149
ATP hydrolysis, 40, 44, 149
auxiliary process, 156

backward protocol, 68, 77, 87, 162, 165, 166,
185, 227

Bayes formula, 213, 214
Bennett-Crooks estimator, 226
binomial distribution, 130, 131, 213
bit, 33, 106, 110, 112, 123
Boltzmann distribution, 24, 42, 94
Boltzmann-Einstein principle, 18, 74
boundary condition, 28
Bromwich integral, 215
Brownian motion, 2, 26, 89, 92, 167, 190, 220

Cauchy-Schwarz inequality, 177, 188, 228
central limit theorem, 130–132, 216
chain rule, 34; mutual information, 35, 117
Chapman-Kolmogorov equation, 20, 220, 221
chemical potential, 14, 16, 46
chemical reaction, 53; binary, 54; one-body, 54
chemostat, 46
chord, 52, 147, 224
clone, 151, 153; genetics, 198
cloning, 151, 202
coarse graining, 2, 38, 58–61
coefficient of variation, 176
contraction principle, 154, 173, 231
convexity, 33, 134, 207, 208, 210

core network, 52, 224
correlation function, 57, 189, 190
Cramér function, see rate function 132
Crooks relation, 79, 81, 88, 97, 161, 164
cumulant, 216; scaled, 141
current, 151, 157, 176, 179, 181; empirical, 135
cut, 225
cycle, 24, 52; fundamental, 52, 75, 138, 139, 148, 224

decimation, 58
de Donder relation, 55
detailed balance, 23, 28, 39, 40, 42, 48, 51, 56, 59, 69,

82, 116; generalized, 40, 46, 47, 50, 53, 54, 69, 111,
113, 127, 143, 147, 150

detailed balance relation, 122
device, 107
diffusion, 28; rotational, 167
diffusion coefficient, 27, 31, 221
diffusion equation, 27
discrimination (kinetic and energetic), 115
dissipation length, 188
distance, 135
DNA hairpin, 190
Doob stopping theorem, 192
dragged particle, 71
drift, 27, 28, 221
driving, 39, 41, 42, 44, 47, 70, 75, 82, 113, 114
dud, 112, 149
dwell, 24, 50
dwell time; empirical, 135

edge, 23, 51, 75
effective rate, 59
efficiency, 12, 172, 180; Carnot, 12, 172, 174;

stochastic, 172, 173, 175; thermal, 12; thermal
Carnot, 12, 172

Einstein relation, 62, 89, 92, 226
empirical mean, 215, 227
empirical stationarity, 155
empirical vector, 154
ensemble, 47, 107, 205; canonical, 16, 39; grand

canonical, 18; microcanonical, 15, 19
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entropy; Boltzmann, 205; conditional, 34, 120; Gibbs,
205; joint, 34; nonequilibrium, 47; relative, 33;
Shannon, 33, 34, 47, 105, 107, 123, 168; stochastic,
47, 49, 67; thermodynamic, 8, 106

entropy production, 69, 73, 77, 80, 82, 110, 124, 134,
135, 137, 138, 172, 176, 177, 185; adiabatic, 82, 84,
121; infimum, 194; negative, 70; nonadiabatic, 82,
84, 121

entropy production rate, 51, 53, 60, 61, 64, 114,
137, 149, 173, 179, 183, 195, 231; empirical, 137,
175

equilibrium distribution, 23, 79, 82
eraser, 112, 124, 170
error probability, 114
escape rate; tilted, 151
extensivity, 9

feedback, 122, 123, 126
feedback control, 109, 110, 167, 168
first law; stochastic, 42, 79; thermodynamic, 42–44
first-passage time, 181, 182
fitness, 197, 199; landscape, 199
fixed-point theorem, 219
fluctuation-dissipation relation, 17, 57, 73, 137
fluctuation relation, 1, 4, 67, 71, 83, 87, 88, 109, 121,

125, 199; detailed, 76, 77, 79, 175, 226; asymptotic,
137, 146; integral, 70, 72, 79, 84, 110, 125, 137;
stopping time, 193

Fokker-Planck equation, 26, 27, 30, 31, 62, 89, 221,
223; detailed balance condition, 28; stationary
solution, 28

free energy, 4, 16, 19, 43, 44, 55, 59, 95, 160–162, 164,
166, 226; Gibbs, 14; nonequilibrium, 14, 19, 106,
107, 109, 120

frequency; empirical, 135
fundamental postulate, 15

Gallavotti-Cohen symmetry, 138, 139, 145, 150, 175,
183

Gärtner-Ellis theorem, 133, 137, 174, 201
generalized friction coefficient, 187, 189, 190
generating function, 89, 151, 214–216; conditioned,

140; cumulant, 90, 91, 133, 149, 216 ; scaled, 138;
scaled cumulant, 133, 141, 152, 154, 175, 182–184,
201

generator, 20, 25
Gibbs free energy, 143
Gibbs relation, 33, 106
Gillespie algorithm, 24, 219
Green function, 21

Hamiltonian, 92
Hatano-Sasa relation, 84
heat; calorimetric, 43; excess, 82; housekeeping, 82;

mesoscopic, 43; stochastic, 41, 42, 44, 48, 63, 67, 69,
134

heat engine, 11
heat reservoir, 42, 48, 50, 106

hydrolysis, 75
hysteresis, 162

ideal gas, 10, 16; equation of state, 10; internal energy,
10

implicit function theorem, 141
infimum law, 194
inflow, 22
information copying, 112
information engine, 111, 115
information theory, 4, 104
involution, 76, 77, 79, 175
irreversibility, 3, 67; absolute, 186; full, 186; logical,
106

irreversibility relation, 88, 93
isomerization, 54
Ito convention, 30–32, 63, 64, 87, 88, 195, 222, 223
Ito formula, 32, 196, 223

Jarzynski equality, 79–81, 83, 88, 90, 96, 161, 162, 164,
185; modified, 186

Jensen inequality, 33, 70, 177, 207, 209, 210
jump, 24, 51
jump frequency; empirical, 155
jump network, 22, 45, 51, 71, 75, 147, 217, 224
jump rate, 21, 38, 39, 51; conjugate, 83; empirical, 155;
intrinsic, 39; tilted, 151

kinesin, 146, 147, 180
kinetic coefficients, 75, 139
kinetic theory, 3
Kirchhoff ’s law, 51
Kolmogorov equation; backward, 28, 221; forward, 27
Kramers equation, 92
Kullback-Leibler divergence, 33, 97, 107, 120, 124, 210

Landauer bound, 4, 106, 109, 169, 170
Landauer limit, see Landauer bound 106
Landauer principle, 106, 107, 112, 167
Langevin equation, 29, 30, 62, 86, 87, 89, 93, 190, 222,
223, 225

large deviations, 3, 4, 132; catalysis rate, 144; levels,
154

large deviation principle, 132, 137, 156, 182; level 2.5,
155

Legendre transform, 13, 175; variational principle, 14
Legendre-Fenchel transform, 134, 201
lineage, 198
linear response, 56, 57, 70, 189
Liouville theorem, 96
logsum inequality, 62, 210
loop, 138
Loschmidt paradox, 3

magnetic field, 93
Mandal-Jarzynski model, 110, 111, 115, 122
manipulation, 39, 41, 42, 60, 67, 80, 82, 91, 109, 167,
168, 170, 188, 190
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marginal, 108, 213, 214
marginal distribution, 34
Markov chain, 218
Markov process, 19, 155
martingale, 191–193, 196
mass action law, 53
master equation, 21, 22, 24, 38, 51, 54, 143, 155, 176,

217, 219; conjugate, 83; tilted, 140
Maxwell demon, 4, 104, 107, 111, 112, 167, 168
Maxwell relations, 13, 18
measurement, 106, 108–110, 167
memory, 116
mesoscopic system, 1, 3, 38
mesostate, 38, 42, 43, 60
metric, 188
Michaelis-Menten scheme, 142
microstate, 15, 33, 43
mobility, 62, 190
molecular motor, 44, 146, 149, 172, 180, 181
Moran model, 198
multiplicative noise, 30
mutual information, 34, 110, 117, 118, 123, 126;

conditional, 35, 118; stochastic, 110
myosin, 44

Newton equation, 92
noise-induced drift, 32
nonequilibrium steady state, 24, 51, 74, 77, 82,

121, 122, 137, 138, 148, 149, 176, 193, 196, 229

object, 107
observable, 15, 17; dynamic, 135; extensive, 9, 130,

134; intensive, 130, 134; static, 134, 152
Onsager reciprocity relations, 74, 139
optical tweezers, 1, 39, 160
optimal protocol, 187
outflow, 22

partition function, 16; grand canonical, 18
path, 188; geodesic, 189
Perron-Frobenius theorem, 141
phase-space distribution, 97
phenotype switch, 200, 201
Poisson distribution, 81, 213, 217
population genetics, 197
probability; survival, 186
probability current, 23, 28, 51, 62
probability density, 213; joint, 213
probability distribution, 15, 213; conditional, 213;

joint, 213; marginal, 213
propagator, 28
protocol; backward, 67; forward, 67

quench, 80

random time, 195, 197
rate function, 131, 132, 137, 145, 157, 173–175, 179,

182, 184, 229

reservoir, 2, 18, 63; chemical, 46; heat, 1, 38, 69, 123;
information, 122, 123, 127

response function, 73
retrospective process, 202
reversibility, 3; microscopic, 23, 40, 67, 185
Riccati equation, 90
RNA hairpin, 160–163

Sagawa-Ueda relation, 110, 120, 123, 167
sampling; chronological, 198, 199, 201; retrospective,

198, 199, 201
scalar product, 224, 228, 231
Schnakenberg formula, 51, 115
second law, 8, 104; Clausius statement, 10; Kelvin-

Planck statement, 11, 106; stochastic, 70, 120;
thermodynamic, 10, 167

sensory adaptation system, 116, 120
Shannon entropy, 111, 112
spanning tree, 52, 75, 147, 148
standard deviation, 81
stationary distribution, 22, 218; instantaneous, 82
statistical state, 15, 67
stochastic calculus, 29
stochastic differential equation, 29
stochastic dynamics, 3, 19
stochastic integral, 30
stochastic process, 4, 19
stopping time, 191, 193
Stratonovich convention, 31, 32, 63, 88, 222, 223,

225
Szilard engine, 106, 107, 109, 167

tape, 110, 112, 115, 123, 126
thermal isolation, 7
thermodynamic consistency, 40, 47, 62, 67, 142
thermodynamic equilibrium, 24
thermodynamic integration, 153
thermodynamic limit, 16
tilted average, 153
tilted dynamics, 140, 144, 151; generator, 140, 141,

144, 150, 202
time reversal, 67, 68, 73, 93, 97, 138, 176; even, 84;

odd, 84
timescale separation, 2, 44
trade-off, 112
traffic, 135, 157, 229
trait, 197
trajectory, 4, 19, 24, 38, 41, 42, 47–49, 70, 71, 138, 156,

162, 163, 182, 185, 189, 192, 219, 225; backward, 67,
68, 73, 77, 87, 93, 126; forward, 67; phenotypic, 201;
probability, 3, 86; reversible, 185, 186

two-level system, 48

uncertainty relation, 176, 177, 181; multidimensional,
179, 181

variance, 89, 176, 216; scaled, 133, 137, 175,
177, 183
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weak linear response bound, 180,
183

weight, 151
white noise, 29
Wiener process, 29, 30, 86

work; chemical, 180; dissipated, 79, 96, 97, 188, 191;
driven, 42, 43; manipulated, 42, 43; stochastic, 41,
43, 44, 63, 67, 71, 80, 91, 95, 134

zeroth law, 7
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