
CONTENTS

List of Boxes xiii

Preface xv

Contents of Modern Classical Physics, volumes 1–5 xxi

19 Magnetohydrodynamics 943

19.1 Overview 943
19.2 Basic Equations of MHD 944

19.2.1 Maxwell’s Equations in the MHD Approximation 946
19.2.2 Momentum and Energy Conservation 950
19.2.3 Boundary Conditions 953
19.2.4 Magnetic Field and Vorticity 957

19.3 Magnetostatic Equilibria 958
19.3.1 Controlled Thermonuclear Fusion 958
19.3.2 Z-Pinch 960
19.3.3 �-Pinch 962
19.3.4 Tokamak 963

19.4 Hydromagnetic Flows 965
19.5 Stability of Magnetostatic Equilibria 971

19.5.1 Linear Perturbation Theory 971
19.5.2 Z-Pinch: Sausage and Kink Instabilities 975
19.5.3 The�-Pinch and Its Toroidal Analog; Flute Instability; Motivation

for Tokamak 978
19.5.4 Energy Principle and Virial Theorems 980

19.6 Dynamos and Reconnection of Magnetic Field Lines 984
19.6.1 Cowling’s Theorem 984
19.6.2 Kinematic Dynamos 985
19.6.3 Magnetic Reconnection 986

Track Two; see page xvi

vii

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



19.7 Magnetosonic Waves and the Scattering of Cosmic Rays 988
19.7.1 Cosmic Rays 988
19.7.2 Magnetosonic Dispersion Relation 989
19.7.3 Scattering of Cosmic Rays by Alfvén Waves 992

Bibliographic Note 993

PART VI PLASMA PHYSICS 995

20 The Particle Kinetics of Plasma 997

20.1 Overview 997
20.2 Examples of Plasmas and Their Density-Temperature Regimes 998

20.2.1 Ionization Boundary 998
20.2.2 Degeneracy Boundary 1000
20.2.3 Relativistic Boundary 1000
20.2.4 Pair-Production Boundary 1001
20.2.5 Examples of Natural and Human-Made Plasmas 1001

20.3 Collective Effects in Plasmas—Debye Shielding and Plasma Oscillations 1003
20.3.1 Debye Shielding 1003
20.3.2 Collective Behavior 1004
20.3.3 Plasma Oscillations and Plasma Frequency 1005

20.4 Coulomb Collisions 1006
20.4.1 Collision Frequency 1006
20.4.2 The Coulomb Logarithm 1008
20.4.3 Thermal Equilibration Rates in a Plasma 1010
20.4.4 Discussion 1012

20.5 Transport Coefficients 1015
20.5.1 Coulomb Collisions 1015
20.5.2 Anomalous Resistivity and Anomalous Equilibration 1016

20.6 Magnetic Field 1019
20.6.1 Cyclotron Frequency and Larmor Radius 1019
20.6.2 Validity of the Fluid Approximation 1020
20.6.3 Conductivity Tensor 1022

20.7 Particle Motion and Adiabatic Invariants 1024
20.7.1 Homogeneous, Time-Independent Magnetic Field and No Electric Field 1025
20.7.2 Homogeneous, Time-Independent Electric and Magnetic Fields 1025
20.7.3 Inhomogeneous, Time-Independent Magnetic Field 1026
20.7.4 A Slowly Time-Varying Magnetic Field 1029
20.7.5 Failure of Adiabatic Invariants; Chaotic Orbits 1030

Bibliographic Note 1032

viii Contents

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



21 Waves in Cold Plasmas: Two-Fluid Formalism 1033

21.1 Overview 1033
21.2 Dielectric Tensor, Wave Equation, and General Dispersion Relation 1035
21.3 Two-Fluid Formalism 1037
21.4 Wave Modes in an Unmagnetized Plasma 1040

21.4.1 Dielectric Tensor and Dispersion Relation for a Cold, Unmagnetized Plasma 1040
21.4.2 Plasma Electromagnetic Modes 1042
21.4.3 Langmuir Waves and Ion-Acoustic Waves in Warm Plasmas 1044
21.4.4 Cutoffs and Resonances 1049

21.5 Wave Modes in a Cold, Magnetized Plasma 1050
21.5.1 Dielectric Tensor and Dispersion Relation 1050
21.5.2 Parallel Propagation 1052
21.5.3 Perpendicular Propagation 1057
21.5.4 Propagation of Radio Waves in the Ionosphere; Magnetoionic Theory 1058
21.5.5 CMA Diagram for Wave Modes in a Cold, Magnetized Plasma 1062

21.6 Two-Stream Instability 1065
Bibliographic Note 1068

22 Kinetic Theory of Warm Plasmas 1069

22.1 Overview 1069
22.2 Basic Concepts of Kinetic Theory and Its Relationship to Two-Fluid Theory 1070

22.2.1 Distribution Function and Vlasov Equation 1070
22.2.2 Relation of Kinetic Theory to Two-Fluid Theory 1073
22.2.3 Jeans’ Theorem 1074

22.3 Electrostatic Waves in an Unmagnetized Plasma: Landau Damping 1077
22.3.1 Formal Dispersion Relation 1077
22.3.2 Two-Stream Instability 1079
22.3.3 The Landau Contour 1080
22.3.4 Dispersion Relation for Weakly Damped or Growing Waves 1085
22.3.5 Langmuir Waves and Their Landau Damping 1086
22.3.6 Ion-Acoustic Waves and Conditions for Their Landau Damping to Be Weak 1088

22.4 Stability of Electrostatic Waves in Unmagnetized Plasmas 1090
22.4.1 Nyquist’s Method 1091
22.4.2 Penrose’s Instability Criterion 1091

22.5 Particle Trapping 1098
22.6 N-Particle Distribution Function 1102

22.6.1 BBGKY Hierarchy 1103
22.6.2 Two-Point Correlation Function 1104
22.6.3 Coulomb Correction to Plasma Pressure 1107

Bibliographic Note 1108

Contents ix

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



23 Nonlinear Dynamics of Plasmas 1111

23.1 Overview 1111
23.2 Quasilinear Theory in Classical Language 1113

23.2.1 Classical Derivation of the Theory 1113
23.2.2 Summary of Quasilinear Theory 1120
23.2.3 Conservation Laws 1121
23.2.4 Generalization to 3 Dimensions 1122

23.3 Quasilinear Theory in Quantum Mechanical Language 1123
23.3.1 Plasmon Occupation Number η 1123
23.3.2 Evolution of η for Plasmons via Interaction with Electrons 1124
23.3.3 Evolution of f for Electrons via Interaction with Plasmons 1129
23.3.4 Emission of Plasmons by Particles in the Presence of a Magnetic Field 1131
23.3.5 Relationship between Classical and Quantum Mechanical Formalisms 1131
23.3.6 Evolution of η via Three-Wave Mixing 1132

23.4 Quasilinear Evolution of Unstable Distribution Functions—A Bump in the Tail 1136
23.4.1 Instability of Streaming Cosmic Rays 1138

23.5 Parametric Instabilities; Laser Fusion 1140
23.6 Solitons and Collisionless Shock Waves 1142

Bibliographic Note 1149

App. A Evolution of Vorticity 1151

14.2 Vorticity, Circulation, and Their Evolution 1151
14.2.1 Vorticity Evolution 1153
14.2.2 Barotropic, Inviscid, Compressible Flows: Vortex Lines Frozen into Fluid 1156

App. B Geometric Optics 1159

7.2 Waves in a Homogeneous Medium 1159
7.2.1 Monochromatic Plane Waves; Dispersion Relation 1159
7.2.2 Wave Packets 1161

7.3 Waves in an Inhomogeneous, Time-Varying Medium: The Eikonal Approximation and
Geometric Optics 1164

7.3.1 Geometric Optics for a Prototypical Wave Equation 1165
7.3.2 Connection of Geometric Optics to Quantum Theory 1169
7.3.3 Geometric Optics for a General Wave 1173
7.3.4 Examples of Geometric-Optics Wave Propagation 1175
7.3.5 Relation to Wave Packets; Limitations of the Eikonal Approximation

and Geometric Optics 1176
7.3.6 Fermat’s Principle 1178

x Contents

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



App. C Distribution Function and Mean Occupation Number 1183

3.2 Phase Space and Distribution Function 1183
3.2.1 Newtonian Number Density in Phase Space, N 1183
3.2.3 Distribution Function f (x , v , t) for Particles in a Plasma 1185
3.2.5 Mean Occupation Number η 1185

References 1189

Name Index 1193

Subject Index 1195

Contents of the Unified Work, Modern Classical Physics 1203

Preface to Modern Classical Physics 1211

Acknowledgments for Modern Classical Physics 1219

Contents xi

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



19CHAPTER NINETEEN

Magnetohydrodynamics
. . . it is only the plasma itself which does not ‘understand’ how beautiful the theories are

and absolutely refuses to obey them.
HANNES ALFVÉN (1970)

19.119.1 Overview

In preceding chapters we have described the consequences of incorporating viscosity
and thermal conductivity into the description of a fluid. We now turn to our final
embellishment of fluid mechanics, in which the fluid is electrically conducting and
moves in a magnetic field. The study of flows of this type is known as magnetohydro-
dynamics, or MHD for short. In our discussion, we eschew full generality and with
one exception just use the basic Euler equation (no viscosity, no heat diffusion,
etc.) augmented by magnetic terms. This approach suffices to highlight peculiarly
magnetic effects and is adequate for many applications.

The simplest example of an electrically conducting fluid is a liquid metal, for
example, mercury or liquid sodium. However, the major application of MHD is in
plasma physics—discussed in Part VI. (A plasma is a hot, ionized gas containing free
electrons and ions.) It is by no means obvious that plasmas can be regarded as fluids,
since the mean free paths for Coulomb-force collisions between a plasma’s electrons
and ions are macroscopically long. However, as we shall learn in Sec. 20.5, collective
interactions between large numbers of plasma particles can isotropize the particles’
velocity distributions in some local mean reference frame, thereby making it sensible
to describe the plasma macroscopically by a mean density, velocity, and pressure.
These mean quantities can then be shown to obey the same conservation laws of
mass, momentum, and energy as we derived for fluids in Chap. 13. As a result, a
fluid description of a plasma is often reasonably accurate. We defer to Part VI further
discussion of this point, asking the reader to take it on trust for the moment. In MHD,
we also implicitly assume that the average velocity of the ions is nearly the same as
the average velocity of the electrons. This is usually a good approximation; if it were
not so, then the plasma would carry an unreasonably large current density.

Two serious technological applications of MHD may become very important in the
future. In the first, strong magnetic fields are used to confine rings or columns of hot
plasma that (it is hoped) will be held in place long enough for thermonuclear fusion
to occur and for net power to be generated. In the second, which is directed toward a
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BOX 19.1. READERS’ GUIDE

. This chapter relies heavily on Chap. 13 and somewhat on the
treatment of vorticity transport in Sec. 14.2.

. Part VI, Plasma Physics (Chaps. 20–23), relies heavily on this chapter.

similar goal, liquid metals or plasmas are driven through a magnetic field to generate
electricity. The study of magnetohydrodynamics is also motivated by its widespread
application to the description of space (in the solar system) and astrophysical plasmas
(beyond the solar system). We illustrate the principles of MHD using examples drawn
from all these areas.

After deriving the basic equations of MHD (Sec. 19.2), we elucidate magnetostatic
(also called “hydromagnetic”) equilibria by describing a tokamak (Sec. 19.3). This is
currently the most popular scheme for the magnetic confinement of hot plasma. In
our second application (Sec. 19.4) we describe the flow of conducting liquid metals or
plasma along magnetized ducts and outline its potential as a practical means of elec-
trical power generation and spacecraft propulsion. We then return to the question
of magnetostatic confinement of hot plasma and focus on the stability of equilibria
(Sec. 19.5). This issue of stability has occupied a central place in our development of
fluid mechanics, and it will not come as a surprise to learn that it has dominated re-
search on thermonuclear fusion in plasmas. When a magnetic field plays a role in the
equilibrium (e.g., for magnetic confinement of a plasma), the field also makes possible
new modes of oscillation, and some of these MHD modes can be unstable to expo-
nential growth. Many magnetic-confinement geometries exhibit such instabilities. We
demonstrate this qualitatively by considering the physical action of the magnetic field,
and also formally by using variational methods.

In Sec. 19.6, we turn to a geophysical problem, the origin of Earth’s magnetic field.
It is generally believed that complex fluid motions in Earth’s liquid core are responsible
for regenerating the field through dynamo action. We use a simple model to illustrate
this process.

When magnetic forces are added to fluid mechanics, a new class of waves, called
magnetosonic waves, can propagate. We conclude our discussion of MHD in Sec. 19.7
by deriving the properties of these wave modes in a homogeneous plasma and dis-
cussing how they control the propagation of cosmic rays in the interplanetary and
interstellar media.

As in previous chapters, we encourage our readers to view films; on magneto-
hydrodynamics, for example, Shercliff (1965).

19.2 19.2 Basic Equations of MHD

The equations of MHD describe the motion of a conducting fluid in a magnetic field.
This fluid is usually either a liquid metal or a plasma. In both cases, the conductivity,

944 Chapter 19. Magnetohydrodynamics
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strictly speaking, should be regarded as a tensor (Sec. 20.6.3) if the electrons’ cyclotron
frequency (Sec. 20.6.1) exceeds their collision frequency (the inverse of the mean time
between collisions; Sec. 20.4.1). (If there are several collisions per cyclotron orbit, then
the influence of the magnetic field on the transport coefficients will be minimal.)
However, to keep the mathematics simple, we treat the conductivity as a constant
scalar, κe. In fact, it turns out that for many of our applications, it is adequate to take
the conductivity as infinite, and it does not matter whether that infinity is a scalar or
a tensor!

Two key physical effects occur in MHD, and understanding them well is key to
developing physical intuition. The first effect arises when a good conductor moves
into a magnetic field (Fig. 19.1a). Electric current is induced in the conductor, which,
by Lenz’s law, creates its own magnetic field. This induced magnetic field tends to
cancel the original, externally supported field, thereby in effect excluding the magnetic
field lines from the conductor. Conversely, when the magnetic field penetrates the
conductor and the conductor is moved out of the field, the induced field reinforces
the applied field. The net result is that the lines of force appear to be dragged along
with the conductor—they “go with the flow.” Naturally, if the conductor is a fluid with
complex motions, the ensuing magnetic field distribution can become quite complex,
and the current builds up until its growth is balanced by Ohmic dissipation.

The second key effect is dynamical. When currents are induced by a motion of a
conducting fluid through a magnetic field, a Lorentz (or j× B) force acts on the fluid
and modifies its motion (Fig. 19.1b). In MHD, the motion modifies the field, and the
field, in turn, reacts back and modifies the motion. This behavior makes the theory
highly nonlinear.

Before deriving the governing equations of MHD, we should consider the choice
of primary variables. In electromagnetic theory, we specify the spatial and temporal
variation of either the electromagnetic field or its source, the electric charge density
and current density. One choice is computable (at least in principle) from the other

N S N S

B B
(a) (b)

F = j × B

j¯
v

two key physical effects in
MHD

FIGURE 19.1 The two key physical effects that occur in MHD. (a) A moving conductor
modifies the magnetic field by dragging the field lines with it. When the conductivity
is infinite, the field lines are frozen in the moving conductor. (b) When electric
current, flowing in the conductor, crosses magnetic field lines, a Lorentz force is
generated that accelerates the fluid.

19.2 Basic Equations of MHD 945

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



using Maxwell’s equations, augmented by suitable boundary conditions. So it is with
MHD, and the choice depends on convenience. It turns out that for the majority of
applications, it is most instructive to deal with the magnetic field as primary, and toin MHD the magnetic field

is the primary variable use Maxwell’s equations

Maxwell’s equations ∇ . E = ρe
ε0

, (19.1a)

∇ . B= 0, (19.1b)

∇× E =−∂B
∂t

, (19.1c)

∇× B= μ0j+ μ0ε0
∂E
∂t

(19.1d)

to express the electric field E, the current density j, and the charge density ρe in terms
of the magnetic field (next subsection).

19.2.1 19.2.1 Maxwell’s Equations in the MHD Approximation

As normally formulated, Ohm’s law is valid only in the rest frame of the conductor. In
particular, for a conducting fluid, Ohm’s law relates the current density j′ measured
in the fluid’s local rest frame to the electric field E′ measured there:

j′ = κeE′, (19.2)

where κe is the scalar electric conductivity. Because the fluid is generally accelerated,
dv/dt �= 0, its local rest frame is generally not inertial. Since it would produce a
terrible headache to have to transform time and again from some inertial frame to
the continually changing local rest frame when applying Ohm’s law, it is preferable to
reformulate Ohm’s law in terms of the fields E, B, and j measured in an inertial frame.
To facilitate this (and for completeness), we explore the frame dependence of all our
electromagnetic quantities E, B, j, and ρe.

Throughout our development of magnetohydrodynamics, we assume that the
fluid moves with a nonrelativistic speed v� c relative to our chosen reference frame.
We can then express the rest-frame electric field in terms of the inertial-frame electric
and magnetic fields as

E′ = E + v × B; E′ = |E′| � E , so E �−v × B. (19.3a)

In the first equation we have set the Lorentz factor γ ≡ 1/
√

1− v2/c2 to unity, con-
sistent with our nonrelativistic approximation. The second equation follows from the
high conductivity of the fluid, which guarantees that current will quickly flow in what-
ever manner it must to annihilate any electric field E′ that might be formed in the fluid’s
local rest frame. By contrast with the extreme frame dependence (19.3a) of the electric

946 Chapter 19. Magnetohydrodynamics
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field, the magnetic field is essentially the same in the fluid’s local rest frame as in the
laboratory. More specifically, the analog of Eq. (19.3a) is B′ = B− (v/c2)× E; and
since E ∼ vB , the second term is of magnitude (v/c)2B , which is negligible, giving

B′ � B. (19.3b)

Because E is highly frame dependent, so is its divergence, the electric charge density
ρe. In the laboratory frame, whereE ∼ vB , Gauss’s and Ampère’s laws [Eqs. (19.1a,d)]
imply thatρe ∼ ε0vB/L∼ (v/c2)j , whereL is the lengthscale on which E and B vary;
and the relation E′ � E with Gauss’s law implies |ρ′

e
| � |ρe|:

ρe ∼ j v/c2, |ρ′
e
| � |ρe|. (19.3c)

By transforming the current density between frames and approximating γ � 1, we
obtain j′ = j+ ρev = j+O(v/c)2j ; so in the nonrelativistic limit (first order in v/c)
we can ignore the charge density and write

j′ = j. (19.3d)

in MHD, magnetic field
and current density are
approximately frame
independent; electric field
and charge density are
small and frame dependent

To recapitulate, in nonrelativistic magnetohydrodynamic flows, the magnetic field
and current density are frame independent up to fractional corrections of order
(v/c)2, while the electric field and charge density are highly frame dependent and
are generally small in the sense thatE/c∼ (v/c)B� B and ρe ∼ (v/c2)j � j/c [in
Gaussian cgs units we have E ∼ (v/c)B� B and ρec ∼ (v/c)j � j ].

Combining Eqs. (19.2), (19.3a), and (19.3d), we obtain the nonrelativistic form of
Ohm’s law in terms of quantities measured in our chosen inertial, laboratory frame:

Ohm’s lawj= κe(E + v × B). (19.4)

We are now ready to derive explicit equations for the (inertial-frame) electric field
and current density in terms of the (inertial-frame) magnetic field. In our derivation,
we denote by L the lengthscale on which the magnetic field changes.

We begin with Ampère’s law written as ∇× B−μ0j=μ0ε0∂E/∂t = (1/c2)∂E/∂t ,
and we notice that the time derivative of E is of orderEv/L∼Bv2/L (sinceE ∼ vB).
Therefore, the right-hand side is O[Bv2/(c2L)] and thus can be neglected compared
to the O(B/L) term on the left, yielding:

current density in terms of
magnetic field

j= 1
μ0

∇× B. (19.5a)

We next insert this expression for j into the inertial-frame Ohm’s law (19.4), thereby
obtaining

electric field in terms of
magnetic fieldE =−v × B+ 1

κeμ0
∇× B. (19.5b)

19.2 Basic Equations of MHD 947

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



If we happen to be interested in the charge density (which is rare in MHD), we can
compute it by taking the divergence of this electric field:

charge density in terms of
magnetic field ρe =−ε0∇ . (v × B). (19.5c)

Equations (19.5) express all the secondary electromagnetic variables in terms of our
primary one, B. This has been possible because of the high electric conductivity κe and
our choice to confine ourselves to nonrelativistic (low-velocity) situations; it would
not be possible otherwise.

We next derive an evolution law for the magnetic field by taking the curl of Eq.
(19.5b), using Maxwell’s equation ∇× E=−∂B/∂t and the vector identity ∇× (∇×
B)=∇(∇ . B)− ∇2B, and using ∇ . B= 0. The result is

evolution law for magnetic
field

∂B
∂t
=∇× (v × B)+

(
1
μ0κe

)
∇2B, (19.6)

which, using Eqs. (14.4) and (14.5) with ω replaced by B, can also be written as

DB
Dt

=−B∇ . v +
(

1
μ0κe

)
∇2B, (19.7)

where D/Dt is the fluid derivative defined in Eq. (14.5). When the flow is in-
compressible (as it often will be), the ∇ . v term vanishes.

Equation (19.6)—or equivalently, Eq. (19.7)—is called the induction equation and
describes the temporal evolution of the magnetic field. It is the same in form as the
propagation law for vorticity ω in a flow with ∇P ×∇ρ = 0 [Eq. (14.3), or (14.6) with
ω∇ . v added in the compressible case]. The ∇× (v × B) term in Eq. (19.6) dominates
when the conductivity is large and can be regarded as describing the freezing offor large conductivity:

freezing of magnetic field
into the fluid

magnetic field lines in the fluid in the same way as the ∇× (v × ω) term describes
the freezing of vortex lines in a fluid with small viscosity ν (Fig. 19.2). By analogy
with Eq. (14.10), when flux-freezing dominates, the fluid derivative of B/ρ can be
written as

D

Dt

(
B
ρ

)
≡ d

dt

(
B
ρ

)
−
(

B
ρ

. ∇
)

v = 0, (19.8)

where ρ is mass density (not to be confused with charge density ρe). Equation (19.8)
states that B/ρ evolves in the same manner as the separation�x between two points
in the fluid (cf. Fig. 14.4 and associated discussion).

The term [1/(μ0κe)]∇2B in the B-field evolution equation (19.6) or (19.7) is
analogous to the vorticity diffusion term ν∇2ω in the vorticity evolution equation
(14.3) or (14.6). Therefore, when κe is not too large, magnetic field lines will diffuse
through the fluid. The effective diffusion coefficient (analogous to ν) is

magnetic diffusion
coefficient DM = 1/(μ0κe). (19.9a)

948 Chapter 19. Magnetohydrodynamics
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B B
ω

(a) (b)

FIGURE 19.2 Pictorial representation of the evolution of the magnetic field
in a fluid endowed with infinite electrical conductivity. (a) A uniform
magnetic field at time t = 0 in a vortex. (b) At a later time, when the fluid
has rotated through ∼30◦, the circulation has stretched and distorted
the magnetic field.

Earth’s magnetic field provides an example of field diffusion. That field is believed
to be supported by electric currents flowing in Earth’s iron core. Now, we can estimate
the electric conductivity of iron under these conditions and from it deduce a value
for the diffusivity, DM ∼ 1 m2 s−1. The size of Earth’s core is L∼ 104 km, so if there
were no fluid motions, then we would expect the magnetic field to diffuse out of the
core and escape from Earth in a time

magnetic decay timeτM ∼ L2

DM
(19.9b)

∼3 million years, which is much shorter than the age of Earth, ∼5 billion years.
The reason for this discrepancy, as we discuss in Sec. 19.6, is that there are internal
circulatory motions in the liquid core that are capable of regenerating the magnetic
field through dynamo action.

Although Eq. (19.6) describes a genuine diffusion of the magnetic field, to compute
with confidence the resulting magnetic decay time, one must solve the complete
boundary value problem. To give a simple illustration, suppose that a poor conductor
(e.g., a weakly ionized column of plasma) is surrounded by an excellent conductor
(e.g., the metal walls of the container in which the plasma is contained), and that
magnetic field lines supported by wall currents thread the plasma. The magnetic field
will only diminish after the wall currents undergo Ohmic dissipation, which can take
much longer than the diffusion time for the plasma column alone.

It is customary to introduce a dimensionless number called the magnetic Reynolds
number,RM , directly analogous to the fluid Reynolds number Re, to describe the rel-
ative importance of flux freezing and diffusion. The fluid Reynolds number can be
regarded as the ratio of the magnitude of the vorticity-freezing term, ∇× (v × ω)∼
(V/L)ω, in the vorticity evolution equation, ∂ω/∂t =∇× (v × ω)+ ν∇2ω, to the
magnitude of the diffusion term, ν∇2ω ∼ (ν/L2)ω: Re= (V/L)(ν/L2)−1= VL/ν.
Here V is a characteristic speed, and L a characteristic lengthscale of the flow.
Similarly, the magnetic Reynolds number is the ratio of the magnitude of the

19.2 Basic Equations of MHD 949
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TABLE 19.1: Characteristic magnetic diffusivities DM , decay times τM , and magnetic
Reynolds numbers RM for some common MHD flows with characteristic length scales L
and velocities V

Substance L (m) V (m s−1) DM (m2 s−1) τM (s) RM

Mercury 0.1 0.1 1 0.01 0.01

Liquid sodium 0.1 0.1 0.1 0.1 0.1

Laboratory plasma 1 100 10 0.1 10

Earth’s core 107 0.1 1 1014 106

Interstellar gas 1017 103 103 1031 1017

magnetic-flux-freezing term, ∇× (v × B)∼ (V/L)B , to the magnitude of the mag-
netic-flux-diffusion term,DM∇2B= [1/(μoκe)]∇2B∼B/(μoκeL2), in the induction
equation (19.6):

magnetic Reynolds
number and magnetic field
freezing

RM = V/L

DM/L
2 =

VL

DM
= μ0κeVL. (19.9c)

When RM � 1, the field lines are effectively frozen in the fluid; when RM � 1, Ohmic
dissipation is dominant, and the field lines easily diffuse through the fluid.

Magnetic Reynolds numbers and diffusion times for some typical MHD flows
are given in Table 19.1. For most laboratory conditions, RM is modest, which means
that electric resistivity 1/κe is significant, and the magnetic diffusivity DM is rarely
negligible. By contrast, in space physics and astrophysics, RM is usually very large,
RM� 1, so the resistivity can be ignored almost always and everywhere. This limiting

perfect MHD: infinite
conductivity and magnetic
field freezing case, when the electric conductivity is treated as infinite, is often called perfect MHD.

The phrase “almost always and everywhere” needs clarification. Just as for large-
Reynolds-number fluid flows, so also here, boundary layers and discontinuities can be
formed, in which the gradients of physical quantities are automatically large enough
to make RM ∼ 1 locally. An important example discussed in Sec. 19.6.3 is magneticmagnetic reconnection

and its influence reconnection. This occurs when regions magnetized along different directions are
juxtaposed, for example, when the solar wind encounters Earth’s magnetosphere. In
such discontinuities and boundary layers, the current density is high, and magnetic
diffusion and Ohmic dissipation are important. As in ordinary fluid mechanics, these
dissipative layers and discontinuities can control the character of the overall flow
despite occupying a negligible fraction of the total volume.

19.2.2 19.2.2 Momentum and Energy Conservation

The fluid dynamical aspects of MHD are handled by adding an electromagnetic force
term to the Euler or Navier-Stokes equation. The magnetic force density j× B is the
sum of the Lorentz forces acting on all the fluid’s charged particles in a unit volume.
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There is also an electric force density ρeE, but this is smaller than j× B by a factor
O(v2/c2) by virtue of Eqs. (19.5), so we ignore it. When j× B is added to the Euler
equation (13.44) (or equivalently, to the Navier-Stokes equation with the viscosity
neglected as unimportant in the situations we shall study), it takes the following form:

MHD equation of motion
for fluid

ρ
dv
dt
= ρg −∇P + j× B= ρg −∇P + (∇× B)× B

μ0
. (19.10)

Here , 951 we have used expression (19.5a) for the current density in terms of the
magnetic field. This is our basic MHD force equation. In Sec. 20.6.2 we will generalize
it to situations where, due to electron cyclotron motion, the pressureP is anisotropic.

Like all other force densities in this equation, the magnetic one j× B can be
expressed as minus the divergence of a stress tensor, the magnetic portion of the
Maxwell stress tensor:

magnetic stress tensorTM = B
2g

2μ0
− B⊗ B

μ0
; (19.11)

see Ex. 19.1. By virtue of j× B=−∇ . TM and other relations explored in Sec. 13.5 momentum conservation

and Box 13.4, we can convert the force-balance equation (19.10) into the conservation
law for momentum [generalization of Eq. (13.42)]:

∂(ρv)
∂t

+ ∇ . (Pg+ ρv ⊗ v + Tg + TM)= 0. (19.12)

Here Tg is the gravitational stress tensor [Eq. (1) of Box 13.4], which resembles the
magnetic one:

Tg =− g
2g

8πG
+ g ⊗ g

4πG
; (19.13)

it is generally unimportant in laboratory plasmas but can be quite important in and
near stars and black holes.

The two terms in the magnetic Maxwell stress tensor [Eq. (19.11)] can be identified
as the “push” of an isotropic magnetic pressure of B2/(2μ0) that acts just like the gas
pressure P , and the “pull” of a tension B2/μ0 that acts parallel to the magnetic field.
The combination of the tension and the isotropic pressure give a net tensionB2/(2μ0)

along the field and a net pressureB2/(2μ0) perpendicular to the field lines (Ex. 1.14).
magnetic force densityThe magnetic force density

fm =−∇ . TM = j× B= (∇× B)× B
μ0

(19.14)

can be rewritten, using standard vector identities, as

fm =−∇
(
B2

2μ0

)
+ (B . ∇)B

μ0
=−
[
∇
(
B2

2μ0

)]
⊥
+
[
(B . ∇)B
μ0

]
⊥

. (19.15)
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FIGURE 19.3 Contributions to the electromagnetic force density acting on a
conducting fluid in a nonuniform magnetic field. A magnetic-pressure force
density −[∇B2/(2μ0)]⊥ acts perpendicularly to the field. And a magnetic-
curvature force density [(B . ∇)B/μ0]⊥, which is also perpendicular to the
magnetic field and lies in the plane of the field’s bend, points toward its center
of curvature. The magnitude of this curvature force density is B2/(μ0R),
where R is the radius of curvature.

Here “⊥” means keep only the components perpendicular to the magnetic field; the
fact that fm = j× B guarantees that the net force parallel to B must vanish, so we
can throw away the component along B in each term. This transversality of fm means
that the magnetic force neither inhibits nor promotes motion of the fluid along the
magnetic field. Instead, fluid elements are free to slide along the field like beads that
slide without friction along a magnetic “wire.”

The “⊥” expressions in Eq. (19.15) indicate that the magnetic force density has
two parts: first, the negative of the 2-dimensional gradient of the magnetic pressure
B2/(2μ0) orthogonal to B (Fig. 19.3a), and second, an orthogonal curvature force
(B . ∇)B/μ0, which has magnitude B2/(μ0R), where R is the radius of curvature of
a field line. This curvature force acts toward the field line’s center of curvature (Fig.
19.3b) and is the magnetic-field-line analog of the force that acts on a curved wire or
curved string under tension.

Just as the magnetic force density dominates and the electric force is negligible
[O(v2/c2)] in our nonrelativistic situation, so also the electromagnetic contribution
to the energy density is predominantly due to the magnetic termUM =B2/(2μ0)with
negligible electric contribution. The electromagnetic energy flux is just the Poynting
flux FM = E× B/μ0, with E given by Eq. (19.5b). Inserting these expressions into the
law of energy conservation (13.58) (and continuing to neglect viscosity), we obtain

energy conservation
∂

∂t

[(
1
2
v2 + u+�

)
ρ + B2

2μ0

]
+ ∇ .
[(

1
2
v2 + h+�

)
ρv + E × B

μ0

]
= 0.

(19.16)

When the fluid’s self-gravity is important, we must augment this equation with the
gravitational energy density and flux, as discussed in Box 13.4.

952 Chapter 19. Magnetohydrodynamics

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



As in Sec. 13.7.4, we can combine this energy conservation law with mass conser-
vation and the first law of thermodynamics to obtain an equation for the evolution of
entropy: Eqs. (13.75) and (13.76) are modified to read

entropy evolution; Ohmic
dissipation∂(ρs)

∂t
+ ∇ . (ρsv)= ρ ds

dt
= j 2

κeT
. (19.17)

Thus, just as viscosity increases entropy through viscous dissipation, and thermal
conductivity increases entropy through diffusive heat flow [Eqs. (13.75) and (13.76)],
so also electrical resistivity (formally, κe−1) increases entropy through Ohmic dissipa-
tion. From Eq. (19.17) we see that our fourth transport coefficient κe, like our previous
three (the two coefficients of viscosity η≡ ρν and ζ and the thermal conductivity κ),
is constrained to be positive by the second law of thermodynamics.

EXERCISESExercise 19.1 Derivation: Basic Equations of MHD
(a) Verify that−∇ . TM = j× B, where TM is the magnetic stress tensor (19.11).
(b) Take the scalar product of the fluid velocity v with the equation of motion (19.10)

and combine with mass conservation to obtain the energy conservation equation
(19.16).

(c) Combine energy conservation (19.16) with the first law of thermo-
dynamics and mass conservation to obtain Eq. (19.17) for the evolution of the
entropy.

19.2.319.2.3 Boundary Conditions

types of interfaces: contact
discontinuity and shock
front

The equations of MHD must be supplemented by boundary conditions at two differ-
ent types of interfaces. The first is a contact discontinuity (i.e., the interface between
two distinct media that do not mix; e.g., the surface of a liquid metal or a rigid wall
of a plasma containment device). The second is a shock front that is being crossed by
the fluid. Here the boundary is between shocked and unshocked fluid.

We can derive the boundary conditions by transforming into a primed frame in
which the interface is instantaneously at rest (not to be confused with the fluid’s local
rest frame) and then transforming back into our original unprimed inertial frame.
In the primed frame, we resolve the velocity and magnetic and electric vectors into
components normal and tangential to the surface. If n is a unit vector normal to the
surface, then the normal and tangential components of velocity in either frame are

vn = n . v , vt = v − (n . v)n, (19.18)
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FIGURE 19.4 Elementary pill box V and elementary circuit C used in
deriving the MHD junction conditions at a surface S.

and similarly for the E and B. At a contact discontinuity, we have

boundary conditions at
interfaces: Eqs. (19.19)

v′
n
= vn − vsn = 0 (19.19a)

on both sides of the interface surface; here vsn is the normal velocity of the surface.
At a shock front, mass flux across the surface is conserved [cf. Eq. (17.29a)]:

junction condition for mass
flux [ρv′

n
]= [ρ(vn − vsn)]= 0. (19.19b)

Here, as in Sec. 17.5, we use the notation [X]to signify the difference in some quantity
X across the interface, that is, the junction condition forX.

When we consider the magnetic field, it does not matter which frame we use, since
B is unchanged to the Galilean order at which we are working. Let us construct a thin
“pill box” V (Fig. 19.4) and integrate the equation ∇ . B= 0 over its volume, invoke the
divergence theorem, and let the box thickness diminish to zero; thereby we see that

electromagnetic junction
conditions [Bn]= 0. (19.19c)

By contrast, the tangential component of the magnetic field can be discontinuous
across an interface because of surface currents: by integrating ∇× B= μ0j across the
shock front, we can deduce that

[Bt]=−μ0n× J, (19.19d)

where J is the surface current density.
We deduce the junction condition on the electric field by integrating Maxwell’s

equation ∇× E =−∂B/∂t over the area bounded by the circuit C in Fig. 19.4 and
using Stokes’ theorem, letting the two short legs of the circuit vanish. We thereby
obtain

[E′
t
]= [Et]+ [(vs × B)t]= 0, (19.19e)
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where vs is the velocity of a frame that moves with the surface. Note that only the
normal component of the velocity contributes to this expression, so we can replace vs
by vsnn. The normal component of the electric field, like the tangential component
of the magnetic field, can be discontinuous, as there may be surface charge at the
interface.

There are also dynamical junction conditions that can be deduced by integrating
the laws of momentum conservation (19.12) and energy conservation (19.16) over the
pill box and using Gauss’s theorem to convert the volume integral of a divergence to a
surface integral. The results, naturally, are the requirements that the normal fluxes of
momentum T . n and energy F . n be continuous across the surface. Here T is the total
stress [i.e., the quantity inside the divergence in Eq. (19.12)], and F is the total energy
flux [i.e., the quantity inside the divergence in Eq. (19.16)]; see Eqs. (17.29)–(17.31)
and associated discussion. The normal and tangential components of [T . n]= 0 read

dynamical junction
conditions

[
P + ρ(vn − vsn)2 +

B2
t

2μ0

]
= 0, (19.19f)

[
ρ(vn − vsn)(vt − vst)− BnBt

μ0

]
= 0, (19.19g)

where we have omitted the gravitational stress, since it will always be continuous in
situations studied in this chapter (no surface layers of mass). Similarly, continuity of
the energy flux [F . n]= 0 reads[(

1
2
v2 + h
)
ρ(vn − vsn)+ n . [(E + vs × B)× B]

μ0

]
= 0. (19.19h)

When the interface has plasma on one side and a vacuum magnetic field on the
other, as in devices for magnetic confinement of plasmas (Sec. 19.3), the vacuum elec-
tromagnetic field, like that in the plasma, has small time derivatives: ∂/∂t ∼ v∂/∂xj .
As a result, the vacuum displacement current ε0∂E/∂t is very small, and the vacuum
Maxwell equations reduce to the same form as those in the MHD plasma but with
ρe and j zero. As a result, the boundary conditions at the vacuum-plasma interface
(Ex. 19.2) are those discussed above [Eqs. (19.19)], but with ρ and P vanishing on
the vacuum side.

EXERCISESExercise 19.2 Example and Derivation: Perfect MHD Boundary
Conditions at a Fluid-Vacuum Interface
When analyzing the stability of configurations for magnetic confinement of a plasma
(Sec. 19.5), one needs boundary conditions at the plasma-vacuum interface for the
special case of perfect MHD (electrical conductivity idealized as arbitrarily large).
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Denote by a tilde (B̃ and Ẽ) the magnetic and electric fields in the vacuum, and reserve
non-tilde symbols for quantities on the plasma side of the interface.
(a) Show that the normal-force boundary condition (19.19f) reduces to an equation

for the vacuum region’s tangential magnetic field:

B̃2
t

2μ0
= P + B2

t

2μ0
. (19.20a)

(b) By combining Eqs. (19.19c) and (19.19g) and noting that vn − vsn must vanish
(why?), and assuming that the magnetic confinement entails surface currents on
the interface, show that the normal component of the magnetic field must vanish
on both sides of the interface:

B̃n = Bn = 0. (19.20b)

(c) When analyzing energy flow across the interface, it is necessary to know the
tangential electric field. On the plasma side Ẽt is a secondary quantity fixed by
projecting tangentially the relation E+ v × B= 0. On the vacuum side it is fixed
by the boundary condition (19.19e). By combining these two relations, show that

Ẽt + vsn × B̃t = 0. (19.20c)

Exercise 19.3 Problem: Diffusion of Magnetic Field
Consider an infinitely long cylinder of plasma with constant electric conductivity,
surrounded by vacuum. Assume that the cylinder initially is magnetized uniformly
parallel to its length, and assume that the field decays quickly enough that the plasma’s
inertia keeps it from moving much during the decay (so v � 0).
(a) Show that the reduction of magnetic energy as the field decays is compensated

by the Ohmic heating of the plasma plus energy lost to outgoing electromagnetic
waves (which will be negligible if the decay is slow).

(b) Compute the approximate magnetic profile after the field has decayed to a small
fraction of its original value. Your answer should be expressible in terms of a Bessel
function.

Exercise 19.4 Example: Shock with Transverse Magnetic Field
Consider a normal shock wave (v perpendicular to the shock front), in which the
magnetic field is parallel to the shock front, analyzed in the shock front’s rest frame.
(a) Show that the junction conditions across the shock are the vanishing of all the

following quantities:

[ρv]= [P + ρv2 + B2/(2μ0)]= [h+ v2/2+ B2/(μ0ρ)]= [vB]= 0. (19.21)

(b) Specialize to a fluid with equation of state P ∝ ργ . Show that these junction
conditions predict no compression, [ρ]= 0, if the upstream velocity is v1= Cf ≡√
(B2

1/μ0 + γP1)/ρ1. For v1 greater than this Cf , the fluid gets compressed.
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(c) Explain why the result in part (b) means that the speed of sound perpendicular
to the magnetic field must be Cf . As we shall see in Sec. 19.7.2, this indeed is the
case: Cf is the speed [Eq. (19.77)] of a fast magnetosonic wave, the only kind of
sound wave that can propagate perpendicular to B.

Exercise 19.5 Problem: Earth’s Bow Shock
The solar wind is a supersonic, hydromagnetic flow of plasma originating in the solar
corona. At the radius of Earth’s orbit, the wind’s density is ρ ∼ 6× 10−21 kg m−3,
its velocity is v ∼ 400 km s−1, its temperature is T ∼ 105 K, and its magnetic field
strength is B ∼ 1 nT.

(a) By balancing the wind’s momentum flux with the magnetic pressure exerted by
Earth’s dipole magnetic field, estimate the radius above Earth at which the solar
wind passes through a bow shock (Fig. 17.2).

(b) Consider a strong perpendicular shock at which the magnetic field is parallel to
the shock front. Show that the magnetic field strength will increase by the same
ratio as the density, when crossing the shock front. Do you expect the compression
to increase or decrease as the strength of the field is increased, keeping all of the
other flow variables constant?

19.2.419.2.4 Magnetic Field and Vorticity

We have already remarked on how the magnetic field and the vorticity are both axial
vectors that can be written as the curl of a polar vector and that they satisfy similar
transport equations. It is not surprising that they are physically intimately related. To
explore this relationship in full detail would take us beyond the scope of this book.
However, we can illustrate their interaction by showing how they can create each other.
In brief: vorticity can twist a magnetic field, amplifying it; and an already twisted field, vorticity–magnetic-field

interactionstrying to untwist itself, can create vorticity.
First, consider a simple vortex through which passes a uniform magnetic field

(Fig. 19.2a). If the magnetic Reynolds number is large enough, then the magnetic
field is carried with the flow and is wound up like spaghetti on the end of a fork
(Fig. 19.2b, continued for a longer time). This process increases the magnetic energy
in the vortex, though not the mean flux of the magnetic field. This amplification
continues until either the field gradient is large enough that the field decays through
Ohmic dissipation, or the field strength is large enough to react back on the flow and
stop it from spinning.

Second, consider an irrotational flow containing a twisted magnetic field
(Fig. 19.5a). Provided that the magnetic Reynolds number is sufficiently large, the
magnetic stress, attempting to untwist the field, will act on the flow and induce vor-
ticity (Fig. 19.5b). We can describe this formally by taking the curl of the equation
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FIGURE 19.5 (a) A twisted magnetic field is frozen in an irrotational flow. (b) The field
tries to untwist and in the process creates vorticity.

of motion (19.10). Assuming, for simplicity, that the density ρ is constant and the
electric conductivity is infinite, we obtain

∂ω

∂t
−∇× (v × ω)= ∇× [(∇× B)× B]

μ0ρ
. (19.22)

The term on the right-hand side of this equation changes the number of vortex lines
threading the fluid, just like the −∇P ×∇ρ/ρ2 term on the right-hand side of Eq.
(14.3). However, because the divergence of the vorticity is zero, any fresh vortex lines
that are made must be created as continuous curves that grow out of points or lines
where the vorticity vanishes.

19.3 19.3 Magnetostatic Equilibria

19.3.1 19.3.1 Controlled Thermonuclear Fusion

GLOBAL POWER DEMAND

We start this section with an oversimplified discussion of the underlying problem.
Earth’s population has quadrupled over the past century to its present (2016) valuemotivation for controlled

fusion program of 7.4 billion and is still rising. We consume ∼16 TW of power more or less equally
for manufacture, transportation, and domestic use. The power is derived from oil (∼
5 TW), coal (∼4 TW), gas (∼4 TW), nuclear (fission) reactors (∼1 TW), hydroelec-
tric turbines (∼1 TW), and alternative sources, such as solar, wind, wave, and biomass
(∼1 TW). The average power consumption is ∼2 kW per person, with Canada and
the United States in the lead, consuming ∼10 kW per person. Despite conservation
efforts, the demand for energy still appears to be rising.

Meanwhile, the burning of coal, oil, and gas produces carbon dioxide at a rate of
∼1 Gg s−1, about 10% of the total transfer rate in Earth’s biomass–atmosphere–ocean
carbon cycle. This disturbance of the carbon-cycle equilibrium has led to an increase
in the atmospheric concentration of carbon dioxide by about a third over the past
century and it is currently growing at an average rate of about a half percent per year.
There is strong evidence to link this increase in carbon dioxide and other greenhouse
gases to climate change, as exemplified by an increase in the globally averaged mean
temperature of ∼1 K over the past century. Given the long time constants associated
with the three components of the carbon cycle, future projections of climate change
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are alarming. These considerations strongly motivate the rapid deployment of low-
carbon sources of power—renewables and nuclear—and conservation.

THERMONUCLEAR FUSION

For more than 60 years, plasma physicists have striven to address this problem by
releasing nuclear energy in a controlled, peaceful manner through confining plasma
at a temperature in excess of 100 million degrees using strong magnetic fields. In
the most widely studied scheme, deuterium and tritium combine according to the
reaction

d, t fusion reactiond + t→ α + n+ 22.4 MeV. (19.23)

The energy release is equivalent to∼400 TJ kg−1. The fast neutrons can be absorbed
in a surrounding blanket of lithium, and the heat can then be used to drive a generator.

PLASMA CONFINEMENT

At first this task seemed quite simple. However, it eventually became clear that it is
very difficult to confine hot plasma with a magnetic field, because most confinement
geometries are unstable. In this book we restrict our attention to a few simple con-
finement devices, emphasizing the one that is the basis of most modern efforts, the
tokamak.1 In this section, we treat equilibrium configurations; in Sec. 19.5, we con-
sider their stability.

In our discussions of both equilibrium and stability, we treat the plasma as a
magnetized fluid in the MHD approximation. At first sight, treating the plasma as
a fluid might seem rather unrealistic, because we are dealing with a dilute gas of ions
and electrons that undergo infrequent Coulomb collisions. However, as we discuss
in Sec. 20.5.2 and justify in Chaps. 22 and 23, collective effects produce a sufficiently
high effective collision frequency to make the plasma behave like a fluid, so MHD
is usually a good approximation for describing these equilibria and their rather slow
temporal evolution.

Let us examine some numbers that characterize the regime in which a successful
controlled-fusion device must operate.

PLASMA PRESSURE

The ratio of plasma pressure to magnetic pressure

pressure ratio βββ for
controlled fusion

β ≡ P

B2/(2μ0)
(19.24)

plays a key role. For the magnetic field to have any chance of confining the plasma,
its pressure must exceed that of the plasma (i.e., β must be less than one). The
most successful designs achieve β ∼ 0.2. The largest field strengths that can be safely

1. Originally proposed in the Soviet Union by Andrei Sakharov and Igor Tamm in 1950. The word is a
Russian abbreviation for “toroidal magnetic field.”
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sustained in the laboratory areB ∼ 10 T= 100 kG, so β <∼ 0.2 limits the gas pressuremaximum gas pressure for
magnetic confinement to P <∼ 107 Pa∼100 atmospheres.

LAWSON CRITERION

Plasma fusion can only be economically feasible if more power is released by nuclear
reactions than is lost to radiative cooling. Both heating and cooling are proportional to
the square of the number density of hydrogen ions, n2. However, while the radiative
cooling rate increases comparatively slowly with temperature, the nuclear reaction
rate increases very rapidly. (This is because, as the mean energy of the ions increases,
the number of ions in the Maxwellian tail of the distribution function that are energetic
enough to penetrate the Coulomb barrier increases exponentially.) Thus for the rate
of heat production to greatly exceed the rate of cooling, the temperature need only
be modestly higher than that required for the rates to be equal—which is a minimum
temperature essentially fixed by atomic and nuclear physics. In the case of a d-t plasma,minimum temperature

for fusion and maximum
density for confinement

this is Tmin∼ 108 K. The maximum hydrogen density that can be confined is therefore
nmax = P/(2kBTmin)∼ 3× 1021 m−3. (The factor 2 comes from the electrons, which
produce the same pressure as the ions.)

Now, if a volume V of plasma is confined at a given number density n and
temperature Tmin for a time τ , then the amount of nuclear energy generated will
be proportional to n2V τ , while the energy to heat the plasma up to Tmin is ∝ nV .
Therefore, there is a minimum value of the product nτ that must be attained before
net energy is produced. This condition is known as the Lawson criterion.Numerically,
the plasma must be confined for

Lawson criterion for net
energy production in
controlled fusion

τ ∼ (n/1020 m−3)−1 s, (19.25)

typically ∼30 ms. The sound speed at these temperatures is ∼1× 106 m s−1, and so
an unconfined plasma would hit the few-meter-sized walls of the vessel in which it is
held in a few μs. Therefore, the magnetic confinement must be effective for typically
104–105 dynamical timescales (sound-crossing times). It is necessary that the plasma
be confined and confined well if we want to build a viable fusion reactor.

19.3.2 19.3.2 Z-Pinch

Z-pinch configuration for
plasma confinement

Before discussing plasma confinement by tokamaks, we describe a simpler confine-
ment geometry known as the Z-pinch and often called the Bennett pinch (Fig. 19.6a).
In a Z-pinch, electric current is induced to flow along a cylinder of plasma. This
current creates a toroidal magnetic field whose tension prevents the plasma from ex-
panding radially, much like hoops on a barrel prevent it from exploding. Let us assume
that the cylinder has a radius R and is surrounded by vacuum.

Now, in static equilibrium we must balance the plasma pressure gradient by a
Lorentz force:

∇P = j× B. (19.26)
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FIGURE 19.6 (a) The Z-pinch. (b) The�-pinch. (c) The tokamak.
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(Gravitational forces can safely be ignored.) Equation (19.26) implies immediately
that B . ∇P = j . ∇P = 0, so both the magnetic field and the current density lie on
constant pressure (or isobaric) surfaces. An equivalent version of the force-balance
equation (19.26), obtained using Eq. (19.15) and Fig. 19.3, is

d

d"

(
P + B2

2μ0

)
=− B2

μ0"
, (19.27)

where " is the radial cylindrical coordinate. Equation (19.27) exhibits the balance
between the gradient of plasma and magnetic pressure on the left, and the magnetic
tension (the “hoop force”) on the right. Treating it as a differential equation forB2 and
integrating it, assuming thatP falls to zero at the surface of the column, we obtain for
the surface magnetic field

B2(R)= 4μ0
R2

∫ R
0
P"d" . (19.28)

We can reexpress the surface toroidal field in terms of the total current flowing along
the plasma as B(R)= μ0I/(2πR) (Ampère’s law); and assuming that the plasma is
primarily hydrogen (so its ion density n and electron density are equal), we can write
the pressure as P = 2nkBT . Inserting these expressions into Eq. (19.28), integrating,
and solving for the current, we obtain

I =
(

16πNkBT
μ0

)1/2
, (19.29)

whereN is the number of ions per unit length. For a column of plasma with diameter
2R ∼ 1 m, hydrogen density n∼ 1020 m−3, and temperature T ∼ 108 K, Eq. (19.29)
indicates that currents∼1 MA are required for confinement.

The most promising Z-pinch experiments to date have been carried out at Sandia
National Laboratories in Albuquerque, New Mexico. The experimenters have im-
pulsively compressed a column of gas into a surprisingly stable cylinder of diameter
∼1 mm for a time∼100 ns, using a current of∼30 MA from giant capaciter banks. A
transient field of∼1 kT was created.

19.3.3 19.3.3 �-Pinch

���-pinch configuration for
plasma confinement

There is a complementary equilibrium for a cylindrical plasma, in which the mag-
netic field lies parallel to the axis and the current density encircles the cylinder (Fig.
19.6b). This configuration is called the�-pinch. It is usually established by making a
cylindrical metal tube with a small gap, so that current can flow around it as shown
in the figure. The tube is filled with cold plasma, and then the current is turned on
quickly, producing a quickly growing longitudinal field in the tube (as in a solenoid).
Since the plasma is highly conducting, the field lines cannot penetrate the plasma
column but instead exert a pressure on its surface, causing it to shrink radially and
rapidly. The plasma heats up due to both the radial work done on it and Ohmic heating.
Equilibrium is established when the plasma’s pressure P balances the magnetic pres-
sure B2/(2μ0) at the plasma’s surface.
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Despite early promise, interest in �-pinches has waned, and mirror machines
(Sec. 19.5.3) have become more popular.

19.3.419.3.4 Tokamak

tokamak configuration for
plasma confinement

One of the problems with the �- and Z-pinches (and we shall find other problems
below!) is that they have ends through which plasma can escape. This is readily
addressed by replacing the cylinder with a torus. The most stable geometry, called the
tokamak, combines features of both Z- and�-pinches; see Fig. 19.6c. If we introduce
spherical coordinates (r , θ , φ), then magnetic field lines and currents that lie in an
r-θ plane (orthogonal to eφ) are called poloidal, whereas their φ components are
called toroidal.In a tokamak, the toroidal magnetic field is created by external poloidal
current windings. However, the poloidal field is mostly created as a consequence of
toroidal current induced to flow in the plasma torus. The resulting net field lines wrap
around the plasma torus in a helical manner, defining a magnetic surface on which
the pressure is constant. The number of poloidal transits around the torus during one
toroidal transit is denoted ι/(2π); ι is called the rotational transform and is a property
of the magnetic surface on which the field line resides. If ι/(2π) is a rational number,
then the field line will close after a finite number of circuits. However, in general,
ι/(2π)will not be rational, so a single field line will cover the whole magnetic surface
ergodically. This allows the plasma to spread over the whole surface rapidly. The
rotational transform is a measure of the toroidal current flowing inside the magnetic
surface and of course increases as we move out from the innermost magnetic surface,
while the pressure decreases.

JETThe best performers to date (2016) include the MIT Alcator C-Mod (n ∼
2× 1020 m−3, T ∼ 35 MK, B ∼ 6 T, τ ∼ 2 s), and the larger Joint European Torus
or JET (Keilhacker and the JET team, 1998). JET generated 16 MW of nuclear power
with τ ∼ 1 s by burning d-t fuel, but its input power was ∼25 MW and so, despite
being a major step forward, JET fell short of achieving “break even.”

ITERThe largest device, currently under construction, is the International Thermo-
nuclear Experimental Reactor (ITER) (whose acronym means “journey” in Latin).
ITER is a tokamak-based experimental fusion reactor being constructed in France by
a large international consortium (see http://www.iter.org/). The outer diameter of the
device is ∼20 m, and the maximum magnetic field produced by its superconducting
magnets will be ∼14 T. Its goal is to use d-t fuel to convert an input power of
∼50 MW into an output power of∼500 MW, sustained for∼3,000 s.2 However, many
engineering, managerial, financial, and political challenges remain to be addressed
before mass production of economically viable, durable, and safe fusion reactors can
begin.

2. Note that it would require of order 10,000 facilities with ITER’s projected peak power operating contin-
uously to supply, say, one-third of the current global power demand.
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EXERCISES Exercise 19.6 Problem: Strength of Magnetic Field in a Magnetic Confinement Device
The currents that are sources for strong magnetic fields have to be held in place
by solid conductors. Estimate the limiting field that can be sustained using normal
construction materials.

Exercise 19.7 Problem: Force-Free Equilibria
In an equilibrium state of a very low-β plasma, the plasma’s pressure force density
−∇P is ignorably small, and so the Lorentz force density j× B must vanish [Eq.
(19.10)]. Such a plasma is said to be “force-free.” As a result, the current density is
parallel to the magnetic field, so ∇× B= αB. Show that α must be constant along
a field line, and that if the field lines eventually travel everywhere, then α must be
constant everywhere.

Exercise 19.8 Example and Challenge: Spheromak
Another magnetic confinement device which brings out some important principles is
the spheromak.Spheromaks can be made in the laboratory (Bellan, 2000) and have also
been proposed as the basis of a fusion reactor.3 It is simplest to consider a spheromak
in the limit when the plasma pressure is ignorable (low β) and the magnetic field
distribution is force-free (Ex. 19.7). We just describe the simplest example of this
regime.
(a) As in the previous exercise, assume that α is constant everywhere and, without

loss of generality, set it equal to unity. Show that the magnetic field—and also the
current density and vector potential, adopting the Coulomb gauge—satisfy the
vector Helmholtz equation: ∇2B+ α2B= 0.

(b) Introduce a scalar χ such that B= αr × ∇χ + ∇ × (r × ∇χ), with r the radial
vector pointing out of the spheromak’s center, and show that χ satisfies the scalar
Helmholtz equation: ∇2χ + α2χ = 0.

(c) The Helmholtz equation in part (b) separates in spherical coordinates (r , θ , φ).
Show that it has a nonsingular solution χ = jl(αr)Ylm(θ , φ), where jl(αr) is a
spherical Bessel function, and Ylm(θ , φ) is a spherical harmonic. Evaluate this for
the simplest example, the spheromak, with l = 2 andm= 0.

(d) Calculate expressions for the associated magnetic field in part (c) and either sketch
or plot it.

(e) Show that the magnetic field’s radial component vanishes on the surface of a
sphere of radius equal to the first zero of jl. Hence explain why a spheromak
may be confined in a conducting sphere or, alternatively, by a current-free field
that is uniform at large distance.

3. Spheromak configurations of magnetic fields have even been associated with ball lightning!
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Exercise 19.9 Problem: Magnetic Helicity
(a) A physical quantity that turns out to be useful in describing the evolution of

magnetic fields in confinement devices is magnetic helicity. This is defined by
H = ∫ dVA . B, where A is the vector potential, and the integral should be
performed over all the space visited by the field lines to remove a dependence
on the electromagnetic gauge. Compute the partial derivative of A and B with
respect to time to show thatH is conserved if E . B= 0.

(b) The helicity H primarily measures the topological linkage of the magnetic field
lines. Therefore, it should not be a surprise that H turns out to be relatively
well-preserved, even when the plasma is losing energy through resistivity and
radiation. To discuss magnetic helicity properly would take us too far into the
domain of classical electromagnetic theory, but some indication of its value fol-
lows from computing it for the case of two rings of magnetic field containing
fluxes�1 and�2. Start with the rings quite separate, and show thatH = 0. Then
allow the rings to be linked while not sharing any magnetic field lines. Show that
nowH = 2�1�2 and that dH/dt =−2

∫
dV E . B.4

19.419.4 Hydromagnetic Flows

Hartmann flow and its
applications

We now introduce fluid motions into our applications of magnetohydrodynamics.
Specifically, we explore a simple class of stationary hydromagnetic flows: the flow of an
electrically conducting fluid along a duct of constant cross section perpendicular to a
uniform magnetic fieldB0 (see Fig. 19.7). This is sometimes known as Hartmann flow.
The duct has two insulating walls (top and bottom, as shown in the figure), separated
by a distance 2a that is much smaller than the separation of short side walls, which
are electrically conducting.

To relate Hartmann flow to magnetic-free Poiseuille flow (viscous, laminar flow
between plates; Ex. 13.18), we reinstate the viscous force in the equation of motion.
For simplicity we assume that the time-independent flow (∂v/∂t = 0) has traveled
sufficiently far down the duct (x direction) to have reached a z-independent form, so
v . ∇v = 0 and v = v(y , z). We also assume that gravitational forces are unimportant.
Then the flow’s equation of motion takes the form

∇P = j× B+ η∇2v , (19.30)

where η = ρν is the coefficient of dynamical viscosity. The magnetic (Lorentz) force
j× B alters the balance between the Poiseuille flow’s viscous force η∇2v and the

4. For further discussion, see Bellan (2000).
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FIGURE 19.7 Hartmann flow with average speed v along
a duct of thickness 2a, perpendicular to an applied
magnetic field of strength B0. The short side walls
are conducting and the two long horizontal walls are
electrically insulating.

pressure gradient ∇P . The details of that altered balance and the resulting magnetic-
influenced flow depend on how the walls are connected electrically. Let us considerfour versions of Hartmann

flow four possibilities chosen to bring out the essential physics.

ELECTROMAGNETIC BRAKE

We short circuit the electrodes, so a current j can flow (Fig. 19.8a). The magnetic field
lines are partially dragged by the fluid, bending them (as embodied in ∇× B= μ0j),
so they can exert a decelerating tension force j× B= (∇× B)× B/μ0 = B . ∇B/μ0
on the flow (Fig. 19.3b). This configuration is an electromagnetic brake. The pressure
gradient, which is trying to accelerate the fluid, is balanced by the magnetic tension
and viscosity. The work being done (per unit volume) by the pressure gradient,
v . (−∇P), is converted into heat through viscous and Ohmic dissipation.

MHD POWER GENERATOR

The MHD power generator is similar to the electromagnetic brake except that an
external load is added to the circuit (Fig. 19.8b). Useful power can be extracted from
the flow. Variants of this configuration were developed in the 1970s–1990s in many
countries, but they are currently not seen to be economically competitive with other
power-generation methods.

FLOW METER

When the electrodes in a flow meter are on an open circuit, the induced electric
field produces a measurable potential difference across the duct (Fig. 19.8c). This
voltage will increase monotonically with the rate of flow of fluid through the duct
and therefore can provide a measurement of the flow.

ELECTROMAGNETIC PUMP

Finally, we can attach a battery to the electrodes and allow a current to flow (Figs. 19.7
and 19.8d). This produces a Lorentz force which either accelerates or decelerates the
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FIGURE 19.8 Four variations on Hartmann flow: (a) Electromagnetic
brake. (b) MHD power generator. (c) Flow meter. (d) Electromagnetic
pump.

flow, depending on the direction of the magnetic field. This method can be used to
pump liquid sodium coolant around a nuclear reactor. It has also been proposed as a
means of spacecraft propulsion in interplanetary space.

We consider in more detail two limiting cases of the electromagnetic pump. When
there is a constant pressure gradient Q = −dP/dx but no magnetic field, a flow
with modest Reynolds number will be approximately laminar with velocity profile
(Ex. 13.18):

vx(z)= Qa
2

2η

[
1−
(
z

a

)2
]

, (19.31)

where a is the half-width of the channel. This flow is the 1-dimensional version of the
Poiseuille flow in a pipe, such as a blood artery, which we studied in Sec. 13.7.6 [cf.
Eq. (13.82a)]. Now suppose that uniform electric and magnetic fields E0 and B0 are
applied along the ey and ez directions, respectively (Fig. 19.7). The resulting magnetic
force j× B can either reinforce or oppose the fluid’s motion. When the applied mag-
netic field is small,B0�E0/vx, the effect of the magnetic force will be similar to that
of the pressure gradient, and Eq. (19.31) must be modified by replacingQ≡−dP/dx
by−dP/dx + jyBz =−dP/dy + κeE0B0. [Here jy = κe(Ey − vxBz)� κeE0.]

If the strength of the magnetic field is increased sufficiently, then the magnetic
force will dominate the viscous force, except in thin boundary layers near the walls.
Outside the boundary layers, in the bulk of the flow, the velocity will adjust so that the
electric field vanishes in the rest frame of the fluid (i.e., vx =E0/B0). In the boundary
layers vx drops sharply fromE0/B0 to zero at the walls, and correspondingly, a strong
viscous force η∇2v develops. Since the pressure gradient ∇P must be essentially the
same in the boundary layer as in the adjacent bulk flow and thus cannot balance this
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FIGURE 19.9 Velocity profiles [Eq. (19.35)] for flow in an electromagnetic pump of
width 2a with small and large Hartmann number scaled to the velocity at the center
of the channel. The dashed curve shows the almost parabolic profile for Ha = 0.1
[Eq. (19.31)]. The solid curve shows the almost flat-topped profile for Ha = 10.

large viscous force, it must be balanced instead by the magnetic force: j× B+ η∇2v =
0 [Eq. (19.30)], with j= κe(E+ v × B)∼ κevxB0ey. We thereby see that the thickness
of the boundary layer is given by

δH ∼
(
η

κeB
2
0

)1/2

. (19.32)

This suggests a new dimensionless number to characterize the flow,

Hartmann number Ha = a

δH
= B0a

(
κe

η

)1/2
, (19.33)

called the Hartmann number. The square of the Hartmann number, Ha2, is essentially
the ratio of the magnetic force, |j× B| ∼ κevxB2

0, to the viscous force, ∼ηvx/a2,
assuming a lengthscale a rather than δH for variations of the velocity.

The detailed velocity profile vx(z) away from the vertical side walls is computed in
Ex. 19.10 and is shown for low and high Hartmann numbers in Fig. 19.9. Notice that
at low Hartmann numbers, the plotted profile is nearly parabolic as expected, and at
high Hartmann numbers it consists of boundary layers at z ∼−a and z ∼ a, and a
uniform flow in between.

In Exs. 19.11 and 19.12 we explore two important astrophysical examples of hydro-
magnetic flow: the magnetosphere of a rotating, magnetized star or other body, and
the solar wind.

EXERCISES Exercise 19.10 Example: Hartmann Flow
Compute the velocity profile of a conducting fluid in a duct of thickness 2a
perpendicular to externally generated, uniform electric and magnetic fields (E0ey
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and B0ez) as shown in Fig. 19.7. Away from the vertical sides of the duct, the velocity
vx is just a function of z, and the pressure can be written in the formP =−Qx + p(z),
whereQ is the longitudinal pressure gradient.

(a) Show that the velocity field satisfies the differential equation

d2vx
dz2 −

κeB
2
0

η
vx =−(Q+ κeB0E0)

η
. (19.34)

(b) Impose suitable boundary conditions at the bottom and top walls of the channel,
and solve this differential equation to obtain the following velocity field:

vx = Q+ κeB0E0
κeB

2
0

[
1− cosh(Ha z/a)

cosh(Ha)

]
, (19.35)

where Ha is the Hartmann number (see Fig. 19.9).

Exercise 19.11 **Example: Rotating Magnetospheres
Many self-gravitating cosmic bodies are both spinning and magnetized. Examples are
Earth, the Sun, black holes surrounded by highly conducting accretion disks (which
hold a magnetic field on the hole), neutron stars (pulsars), and magnetic white dwarfs.
As a consequence of the magnetic field’s spin-induced motion, large electric fields are
produced outside the rotating body. The divergence of these electric fields must be
balanced by free electric charge, which implies that the region around the body can-
not be a vacuum. It is usually filled with plasma and is called a magnetosphere. MHD
provides a convenient formalism for describing the structure of this magnetosphere.
Magnetospheres are found around most planets and stars. Magnetospheres surround-
ing neutron stars and black holes are believed to be responsible for the emissions from
pulsars and quasars.

As a model of a rotating magnetosphere, consider a magnetized and infinitely con-
ducting star, spinning with angular frequency �∗. Suppose that the magnetic field is
stationary and axisymmetric with respect to the spin axis and that the magnetosphere,
like the star, is perfectly conducting.

(a) Show that the azimuthal componentEφ of the magnetospheric electric field must
vanish if the magnetic field is to be stationary. Hence show that there exists a
function �(r) that must be parallel to �∗ and must satisfy

E =−(�× r)× B. (19.36)

Show that if the motion of the magnetosphere’s conducting fluid is simply a
rotation, then its angular velocity must be �.

(b) Use the induction equation (magnetic-field transport law) to show that

(B . ∇)�= 0. (19.37)
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(c) Use the boundary condition at the surface of the star to show that the magne-
tosphere corotates with the star (i.e., �=�∗). This is known as Ferraro’s law of
isorotation.

Exercise 19.12 Example: Solar Wind
The solar wind is a magnetized outflow of plasma that emerges from the solar corona.
We make a simple model of it by generalizing the results from the previous exer-
cise that emphasize its hydromagnetic features while ignoring gravity and thermal
pressure (which are also important in practice). We consider stationary, axisymmet-
ric motion in the equatorial plane, and idealize the magnetic field as having the form
Br(r), Bφ(r). (If this were true at all latitudes, the Sun would have to contain magnetic
monopoles!)
(a) Use the results from the previous exercise plus the perfect MHD relation, E =

−v × B, to argue that the velocity field can be written in the form

v = κB
ρ
+ (�× r), (19.38)

where κ and � are constant along a field line. Interpret this relation kinematically.
(b) Resolve the velocity and the magnetic field into radial and azimuthal components,

vr , vφ, and Br , Bφ, and show that ρvrr2 and Brr2 are constant.
(c) Use the induction equation to show that

vr

vφ −�r
= Br
Bφ

. (19.39)

(d) Use the equation of motion to show that the specific angular momentum, includ-
ing both the mechanical and the magnetic contributions,

 = rvφ −
rBrBφ

μ0ρvr
, (19.40)

is constant.
(e) Combine Eqs. (19.39) and (19.40) to argue that

vφ =
�r[M2

A
 /(�r2)− 1]
M2
A − 1

, (19.41)

where

MA = vr(μ0ρ)
1/2

Br
(19.42)

is the Alfvén Mach number [cf. Eq. (19.73)]. Show that the solar wind must pass
through a critical point (Sec. 17.3.2) where its radial speed equals the Alfvén
speed.

(f) Suppose that the critical point in part (e) is located at 20 solar radii and that
vr = 100 km s−1, vφ = 20 km s−1, and Br = 400 nT there. Calculate values for
 , Bφ , ρ and use these to estimate the fraction of the solar mass and the solar
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angular momentum that could have been carried off by the solar wind over its
∼5 Gyr lifetime. Comment on your answer.

(g) Suppose that there is no poloidal current density so that Bφ ∝ r−1, and deduce
values for the velocity and the magnetic field in the neighborhood of Earth where
r ∼ 200 solar radii. Sketch the magnetic field and the path of the solar wind as it
flows from rc to Earth.

The solar mass, radius and rotation period are∼2× 1030 kg,∼7× 108 m, and∼25 d.

19.519.5 Stability of Magnetostatic Equilibria

Having used the MHD equation of motion to analyze some simple flows, we return
to the problem of magnetic confinement and demonstrate a procedure to analyze the
stability of the confinement’s magnetostatic equilibria. We first perform a straight-
forward linear perturbation analysis about equilibrium, obtaining an eigenequation
for the perturbation’s oscillation frequencies ω. For sufficiently simple equilibria, this
eigenequation can be solved analytically, but most equilibria are too complex for this
approach, so the eigenequation must be solved numerically or by other approxima-
tion techniques. This is rather similar to the task one faces in attempting to solve
the Schrödinger equation for multi-electron atoms. It will not be a surprise to learn
that variational methods are especially practical and useful, and we develop a suitable
formalism for them.

We develop the perturbation theory, eigenequation, and variational formalism in
some detail not only because of their importance for the stability of magnetostatic
equilibria, but also because essentially the same techniques (with different equations)
are used in studying the stability of other equilibria. One example is the oscillations
and stability of stars, in which the magnetic field is unimportant, while self-gravity is
crucial [see, e.g., Shapiro and Teukolsky (1983, Chap. 6), and Sec. 16.2.4 of this book,
on helioseismology]. Another example is the oscillations and stability of elastostatic
equilibria, in which B is absent but shear stresses are important (Secs. 12.3 and 12.4).

19.5.119.5.1 Linear Perturbation Theory

Consider a perfectly conducting, isentropic fluid at rest in equilibrium, with pressure
gradients that balance magnetic forces—for example, the Z-pinch, �-pinch, and
tokamak configurations of Fig. 19.6. For simplicity, we ignore gravity. (This is usually
justified in laboratory situations.) The equation of equilibrium then reduces to

equation of magnetostatic
equilibrium without gravity

∇P = j× B (19.43)
[Eq. (19.10)].

We now perturb slightly about our chosen equilibrium and ignore the (usually
negligible) effects of viscosity and magnetic-field diffusion, so η = ρν � 0 and κe �
∞. It is useful and conventional to describe the perturbations in terms of two different
types of quantities: (i) The change in a quantity (e.g., the fluid density) moving with Lagrangian and Eulerian

perturbations and how
they are related

the fluid, which is called a Lagrangian perturbation and is denoted by the symbol �
(e.g., the lagrangian density perturbation �ρ). (ii) The change at a fixed location in
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space, which is called an Eulerian perturbation and is denoted by the symbol δ (e.g.,
the Eulerian density perturbation δρ). The fundamental variable used in the theory is
the fluid’s Lagrangian displacement �x ≡ ξ(x , t) (i.e., the change in a fluid element’s
location). A fluid element whose location is x in the unperturbed equilibrium is moved
to location x + ξ(x , t) by the perturbations. From their definitions, one can see that
the Lagrangian and Eulerian perturbations are related by

�= δ + ξ . ∇ (e.g.,�ρ = δρ + ξ . ∇ρ). (19.44)

Now consider the transport law for the magnetic field in the limit of infinite electri-
cal conductivity, ∂B/∂t =∇× (v × B) [Eq. (19.6)]. To linear order, the fluid velocity
is v = ∂ξ/∂t . Inserting this into the transport law and setting the full magnetic field at
fixed x and t equal to the equilibrium field plus its Eulerian perturbation B→ B+ δB,
we obtain ∂δB/∂t =∇× [(∂ξ/∂t)× (B+ δB)]. Linearizing in the perturbation, and
integrating in time, we obtain for the Eulerian perturbation of the magnetic field:

δB=∇× (ξ × B). (19.45a)

Since the current and the field are related, in general, by the linear equation j=
∇× B/μ0, their Eulerian perturbations are related in the same way:

δj=∇× δB/μ0. (19.45b)

In the equation of mass conservation, ∂ρ/∂t +∇ . (ρv)= 0, we replace the density
by its equilibrium value plus its Eulerian perturbation, ρ→ ρ + δρ, and replace v by
∂ξ/∂t . We then linearize in the perturbation to obtain

δρ + ρ∇ . ξ + ξ . ∇ρ = 0. (19.45c)

The lagrangian density perturbation, obtained from this via Eq. (19.44), is

�ρ =−ρ∇ . ξ. (19.45d)

We assume that, as it moves, the fluid gets compressed or expanded adiabatically
(no Ohmic or viscous heating, or radiative cooling). Then the Lagrangian change of
pressure�P in each fluid element (moving with the fluid) is related to the Lagrangian
change of density by

�P =
(
∂P

∂ρ

)
s

�ρ = γP
ρ
�ρ =−γP∇ . ξ , (19.45e)

where γ is the fluid’s adiabatic index (ratio of specific heats), which might or might
not be independent of position in the equilibrium configuration. Correspondingly,
the Eulerian perturbation of the pressure (perturbation at fixed location) is

δP =�P − (ξ . ∇)P =−γP (∇ . ξ)− (ξ . ∇)P . (19.45f)

This is the pressure perturbation that appears in the fluid’s equation of motion.
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By replacing v → ∂ξ/∂t , P → P + δP , B→ B+ δB, and j→ j+ δj in the
fluid’s equation of motion (19.10) and neglecting gravity, and by then linearizing
in the perturbation, we obtain

dynamical equation for
adiabatic perturbations
of a magnetostatic
equilibrium

ρ
∂2ξ

∂t2
= j× δB+ δj× B−∇δP ≡ F̂[ξ]. (19.46)

Here F̂ is a real, linear differential operator, whose form one can deduce by substituting
expressions (19.45a), (19.45b), and (19.45f) for δB, δj, and δP , and by substituting
∇× B/μ0 for j. Performing these substitutions and carefully rearranging the terms,
we eventually convert the operator F̂ into the following form, expressed in slot-naming
index notation:

F̂i[ξ]=
{[
(γ − 1)P + B2

2μ0

]
ξk;k + BjBkμ0

ξj ;k

}
;i

+
[(
P + B2

2μ0

)
ξj ;i + BjBkμ0

ξi;k + BiBjμ0
ξk;k

]
;j

. (19.47)

Honestly! Here the semicolons denote gradients (partial derivatives in Cartesian co-
ordinates; connection coefficients (Sec. 11.8) are required in curvilinear coordinates).

force operator F̂i[ξ]F̂i[ξ]F̂i[ξ] is
self-adjoint

We write the operator F̂i in the explicit form (19.47) because of its power for
demonstrating that F̂i is self-adjoint (Hermitian, with real variables rather than com-
plex): by introducing the Kronecker-delta components of the metric, gij = δij , we can
easily rewrite Eq. (19.47) in the form

F̂i[ξ]= (Tijklξk;l);j , (19.48)

where Tijkl are the components of a fourth-rank tensor that is symmetric under
interchange of its first and second pairs of indices: Tijkl = Tklij .

Now, our magnetic-confinement equilibrium configuration (e.g., Fig. 19.6) typi-
cally consists of a plasma-filled interior region V surrounded by a vacuum magnetic
field (which in turn may be surrounded by a wall). Our MHD equations with force
operator F̂ are valid only in the plasma region V , and not in vacuum, where Maxwell’s
equations with small displacement current prevail. We use Eq. (19.48) to prove that
F̂ is a self-adjoint operator when integrated over V , with the appropriate boundary
conditions at the vacuum interface.

Specifically, we contract a vector field ζ into F̂[ξ], integrate over V , and perform
two integrations by parts to obtain∫

V
ζ . F[ξ]dV =

∫
V
ζi(Tijklξk;l);jdV =−

∫
V

Tijklζi;jξk;ldV =
∫

V
ξi(Tijklζk;l);jdV

=
∫

V
ξ . F[ζ]dV . (19.49)
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Here we have discarded the integrals of two divergences, which by Gauss’s theorem can
be expressed as surface integrals at the fluid-vacuum interface ∂V . Those unwanted
surface integrals vanish if ξ and ζ satisfy

Tijklξk;lζinj = 0, and Tijklζk;lξinj = 0, (19.50)

with nj the normal to the interface ∂V .
boundary conditions for
perturbations

Now, ξ and ζ are physical displacements of the MHD fluid, and as such, they
must satisfy the appropriate boundary conditions at the boundary ∂V of the plasma
region V . In the simplest, idealized case, the conducting fluid would extend far beyond
the region where the disturbances have appreciable amplitude, so ξ = ζ = 0 at the
distant boundary, and Eqs. (19.50) are satisfied. More reasonably, the fluid might
butt up against rigid walls at ∂V , where the normal components of ξ and ζ vanish,
guaranteeing again that Eqs. (19.50) are satisfied. This configuration is fine for liquid
mercury or sodium, but not for a hot plasma, which would quickly destroy the walls.
For confinement by a surrounding vacuum magnetic field, no current flows outside
V , and the displacement current is negligible, so ∇× δB= 0 there. By combining this
with the rest of Maxwell’s equations and paying careful attention to the motion of the
interface and boundary conditions [Eqs. (19.20)] there, one can show, once again, that
Eqs. (19.50) are satisfied (see, e.g., Goedbloed and Poedts, 2004, Sec. 6.6.2). Therefore,
in all these cases Eq. (19.49) is also true, which demonstrates the self-adjointness
(Hermiticity) of F̂.5 We use this property below.

Returning to our perturbed MHD system, we seek its normal modes by assuming
a harmonic time dependence, ξ ∝ e−iωt . The first-order equation of motion (19.46)
then becomes

Sturm-Liouville type
eigenequation for
perturbations

F̂[ξ]+ ρω2ξ = 0. (19.51)

This is an eigenequation for the fluid’s Lagrangian displacement ξ, with eigenvalue
ω2. It must be augmented by the boundary conditions (19.20) at the edge ∂V of the
fluid.

By virtue of the elegant, self-adjoint mathematical form (19.48) of the differen-
tial operator F̂, our eigenequation (19.51) is of a very special and powerful type,
called Sturm-Liouville; see any good text on mathematical physics (e.g., Mathews and
Walker, 1970; Arfken, Weber, and Harris, 2013; Hassani, 2013). From the general
(rather simple) theory of Sturm-Liouville equations, we can infer that all the eigen-
values ω2 are real, so the normal modes are purely oscillatory (ω2 > 0, ξ ∝ e±i|ω|t)

properties of eigen-
frequencies and
eigenfunctions or are purely exponentially growing or decaying (ω2 < 0, ξ ∝ e±|ω|t). Exponentially

growing modes represent instabilities. Sturm-Liouville theory also implies that all

5. Self-adjointness can also be deduced from energy conservation without getting entangled in detailed
boundary conditions (see, e.g., Bellan, 2006, Sec. 10.4.2).
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eigenfunctions [labeled by indices “(n)”] with different eigenfrequencies are orthog-
onal to one another, in the sense that

∫
V ρξ

(n) . ξ(m)dV = 0.

EXERCISESExercise 19.13 Derivation: Properties of Eigenmodes
Derive the properties of the eigenvalues and eigenfunctions for perturbations of an
MHD equilibrium that are asserted in the last paragraph of Sec. 19.5.1, namely, the
following.
(a) For each normal mode the eigenfrequency ωn is either real or imaginary.
(b) Eigenfunctions ξ(m) and ξ(n) that have different eigenvalues ωm �= ωn are orthog-

onal to each other:
∫
ρ ξ(m) . ξ(m)dV = 0.

19.5.219.5.2 Z-Pinch: Sausage and Kink Instabilities

We illustrate MHD stability theory using a simple, analytically tractable example: a
variant of the Z-pinch configuration of Fig. 19.6a. We consider a long, cylindrical
column of a conducting, incompressible liquid (e.g., mercury) with column radiusR
and fluid density ρ. The column carries a current I longitudinally along its surface
(rather than in its interior as in Fig. 19.6a), so j= [I/(2πR)]δ(" − R)ez, and the
liquid is confined by the resulting external toroidal magnetic field Bφ ≡ B . The
interior of the plasma is field free and at constant pressure P0. From ∇× B= μ0j,
we deduce that the exterior magnetic field is

Bφ ≡ B = μ0I

2π"
at" ≥ R. (19.52)

Here (" , φ , z) are the usual cylindrical coordinates. This is a variant of the Z-pinch,
because the z-directed current on the column’s surface creates the external toroidal
field B , which pinches the column until its internal pressure is balanced by the field’s
pressure:

P0 =
(
B2

2μ0

)
"=R

. (19.53)

It is quicker and more illuminating to analyze the stability of this Z-pinch equilib-
rium directly instead of by evaluating F̂, and the outcome is the same. (For a treatment
based on F̂, see Ex. 19.16.) Treating only the most elementary case, we consider small,
axisymmetric perturbations with an assumed variation ξ ∝ ei(kz−ωt)f(") for some
function f . As the magnetic field interior to the column vanishes, the equation of
motion ρdv/dt =−∇(P + δP ) becomes

−ω2ρξ" =−δP ′, −ω2ρξz =−ikδP , (19.54a)

where the prime denotes differentiation with respect to radius " . Combining these
two equations, we obtain

ξ ′
z
= ikξ" . (19.54b)
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Because the fluid is incompressible, it satisfies ∇ . ξ = 0:

"−1("ξ")
′ + ikξz = 0, (19.54c)

which, with Eq. (19.54b), leads to

ξ ′′
z
+ ξ ′

z

"
− k2ξz = 0. (19.54d)

The solution of this equation that is regular at" = 0 is

ξz = AI0(k") at" ≤ R , (19.54e)

where A is a constant, and In(x) is the modified Bessel function: In(x)= i−nJn(ix).
From Eq. (19.54b) and dI0(x)/dx = I1(x), we obtain

ξ" =−iAI1(k"). (19.54f)

Next we consider the region exterior to the fluid column. As this is vacuum, it
must be current free; and as we are dealing with a purely axisymmetric perturbation,
the " component of Maxwell’s equation ∇× δB= 0 (with negligible displacement
current) reads

∂δBφ

∂z
= ikδBφ = 0. (19.54g)

The φ component of the magnetic perturbation therefore vanishes outside the
column.

The interior and exterior solutions must be connected by the law of force balance,
that is, by the boundary condition (19.19f) [or equivalently, Eq. (19.20a) with the
tildes removed] at the plasma’s surface. Allowing for the displacement of the surface
and retaining only linear terms, this becomes

P0 +�P = P0 + (ξ . ∇)P0 + δP =
(B +�Bφ)2

2μ0
= B2

2μ0
+ B

μ0
(ξ . ∇)B + BδBφ

μ0
,

(19.54h)

where all quantities are evaluated at" =R. The equilibrium force-balance condition
gives us P0 = B2/(2μ0) [Eq. (19.53)] and ∇P0 = 0. In addition, we have shown that
δBφ = 0. Therefore, Eq. (19.54h) becomes simply

δP = BB
′

μ0
ξ" . (19.54i)
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FIGURE 19.10 Physical interpretation of (a) sausage and (b) kink instabilities.

Substituting δP from Eqs. (19.54a) and (19.54e), B from Eq. (19.52), and ξ" from
Eq. (19.54f), we obtain the dispersion relation

ω2 = −μ0I
2

4π2R4ρ

kRI1(kR)

I0(kR)

� −μ0I
2

8π2R2ρ
k2; for k� R−1

� −μ0I
2

4π2R3ρ
k; for k� R−1, (19.55)

where we have used I0(x)∼ 1, I1(x)∼ x/2 as x→ 0 and I1(x)/I0(x)→ 1as x→∞.
Because I0 and I1 are positive for all kR > 0, for every wave number k this disper-

sion relation shows that ω2 is negative. Therefore, ω is imaginary, the perturbation
grows exponentially with time, and so the Z-pinch configuration is dynamically un-
stable. If we define a characteristic Alfvén speed by a = B(R)/(μ0ρ)

1/2 [see Eq.
(19.73)], then we see that the growth time for modes with wavelengths comparable to
the column diameter is roughly an Alfvén crossing time 2R/a. This is fast!

sausage instability of
Z-pinch

This instability is sometimes called a sausage instability, because its eigenfunction
ξ" ∝ eikz consists of oscillatory pinches of the column’s radius that resemble the
pinches between sausages in a link. This sausage instability has a simple physical
interpretation (Fig. 19.10a), one that illustrates the power of the concepts of flux
freezing and magnetic tension for developing intuition. If we imagine an inward radial
motion of the fluid, then the toroidal loops of magnetic field will be carried inward,
too, and will therefore shrink. As the external field is unperturbed, δBφ = 0, we have
Bφ ∝ 1/" , whence the surface field at the inward perturbation increases, leading to
a larger “hoop” stress or, equivalently, a larger j× B Lorentz force, which accelerates
the inward perturbation (see Fig. 19.10a).

So far, we have only considered axisymmetric perturbations. We can generalize
our analysis by allowing the perturbations to vary as ξ ∝ exp(imφ). (Our sausage in-
stability corresponds to m= 0.) Modes with m ≥ 1, like m= 0, are also generically
unstable. Them= 1 modes are known as kink modes. In this case the column bends, kink instability of Z-pinch
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(a) (b)
B

FIGURE 19.11 (a) Stabilizing magnetic fields for �-pinch configuration. (b) Flute instability for
�-pinch configuration made into a torus.

and the field strength is intensified along the inner face of the bend and reduced on the
outer face, thereby amplifying the instability (Fig. 19.10b). The incorporation of com-
pressibility, as is appropriate for plasma instead of mercury, introduces only algebraic
complexity; the conclusions are unchanged. The column is still highly unstable. It re-
mains so if we distribute the longitudinal current throughout the column’s interior,
thereby adding a magnetic field to the interior, as in Fig. 19.6a. MHD instabilities such
as these have bedeviled attempts to confine plasma long enough to bring about nuclear
fusion. Indeed, considerations of MHD stability were one of the primary motivations
for the tokamak, the most consistently successful of experimental fusion devices.

19.5.3 19.5.3 The�-Pinch and Its Toroidal Analog; Flute Instability; Motivation for Tokamak

full stability of���-pinch

By contrast with the extreme instability of the Z-pinch configuration, the �-pinch
configuration (Sec. 19.3.3 and Fig. 19.6b) is fully stable against MHD perturbations!
(See Ex. 19.14.) This is easily understood physically (Fig. 19.11a). When the plasma
cylinder is pinched or bent, at outward displaced regions of the cylinder, the external
longitudinal magnetic field lines are pushed closer together, thereby strengthening
the magnetic field and its pressure and thence creating an inward restoring force.
Similarly, at inward displaced regions, the field lines are pulled apart, weakening their
pressure and creating an outward restoring force.

Unfortunately, the�-pinch configuration cannot confine plasma without closing
its ends. The ends can be partially closed by a pair of magnetic mirrors, but there
remain losses out the ends that cause problems. The ends can be fully closed by
bending the column into a closed torus, but, sadly, the resulting toroidal �-pinchtoroidal ���-pinch: flute

instability configuration exhibits a new MHD “flute” instability (Fig. 19.11b).
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This flute instability arises on and near the outermost edge of the torus. That edge
is curved around the torus’s symmetry axis in just the same way as the face of the Z-
pinch configuration is curved around its symmetry axis—with the magnetic field in
both cases forming closed loops around the axis. As a result, this outer edge is subject
to a sausage-type instability, similar to that of the Z-pinch. The resulting corrugations
are translated along the torus, so they resemble the flutes on a Greek column that
supports an architectural arch or roof (hence the name “flute instability”). This fluting
can also be understood as a flux-tube interchange instability (Ex. 19.15).

how tokamak
configuration
counteracts
instabilities

The flute instability can be counteracted by endowing the torus with an internal
magnetic field that twists (shears) as one goes radially inward (the tokamak config-
uration of Fig. 19.6c). Adjacent magnetic surfaces (isobars), with their different field
directions, counteract each other’s MHD instabilities. The component of the mag-
netic field along the plasma torus provides a pressure that stabilizes against sausage
instabilities and a tension that stabilizes against kink-type instabilities; the compo-
nent around the torus’s guiding circle acts to stabilize its flute modes. In addition, the
formation of image currents in the conducting walls of a tokamak vessel can also have
a stabilizing influence.

EXERCISESExercise 19.14 Problem and Challenge: Stability of�-Pinch
Derive the dispersion relation ω2(k) for axisymmetric perturbations of the �-pinch
configuration when the magnetic field is confined to the cylinder’s exterior, and con-
clude from it that the �-pinch is stable against axisymmetric perturbations. [Hint:
The analysis of the interior of the cylinder is the same as for the Z-pinch analyzed
in the text.] Repeat your analysis for a general, variable-separated perturbation of
the form ξ ∝ ei(mθ+kz−ωt), and thereby conclude that the �-pinch is fully MHD
stable.

Exercise 19.15 Example: Flute Instability Understood by Flux-Tube Interchange
Carry out an analysis of the flute instability patterned after that for rotating Cou-
ette flow (first long paragraph of Sec. 14.6.3) and that for convection in stars (Fig.
18.5): Imagine exchanging two plasma-filled magnetic flux tubes that reside near
the outermost edge of the torus. Argue that the one displaced outward experi-
ences an unbalanced outward force, and the one displaced inward experiences an
unbalanced inward force. [Hint: (i) To simplify the analysis, let the equilibrium mag-
netic field rise from zero continuously in the outer layers of the torus rather than
arising discontinuously at its surface, and consider flux tubes in that outer, continu-
ous region. (ii) Argue that the unbalanced force per unit length on a displaced flux
tube is [−∇(P + B2/(2μ0))− (B2

tube/")e" ]A. Here A is the tube’s cross sectional
area, " is distance from the torus’s symmetry axis, e" is the unit vector point-
ing away from the symmetry axis, Btube is the field strength inside the displaced
tube, and ∇(P + B2/(2μ0)) is the net surrounding pressure gradient at the tube’s
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displaced location.] Argue further that the innermost edge of the torus is stable
against flux-tube interchange, so the flute instability is confined to the torus’s outer
face.

19.5.4 19.5.4 Energy Principle and Virial Theorems

For the perturbation eigenequation (19.46) and its boundary conditions, analytical or
even numerical solutions are only readily obtained in the most simple of geometries
and for the simplest fluids. However, as the eigenequation is self-adjoint, it is possible
to write down a variational principle and use it to derive approximate stability criteria.
This variational principle has been a powerful tool for analyzing the stability of
tokamak and other magnetostatic configurations.

To derive the variational principle, we begin by multiplying the fluid velocity
ξ̇ = ∂ξ/∂t into the eigenequation (equation of motion) ρ∂2ξ/∂t2 = F̂[ξ]. We then
integrate over the plasma-filled region V , and use the self-adjointness of F̂ to write∫
V dV ξ̇ . F̂[ξ]= 1

2
∫
V dV (ξ̇

. F̂[ξ]+ ξ . F̂[ξ̇]). We thereby obtain

conserved energy for
adiabatic perturbations
of magnetostatic
configurations

dE

dt
= 0, where E = T +W , (19.56a)

T =
∫

V
dV

1
2
ρξ̇2, and W =W [ξ]≡−1

2

∫
V
dV ξ . F̂[ξ]. (19.56b)

The integrals T and W are the perturbation’s kinetic and potential energy, and E =
T +W is the conserved total energy.

Any solution of the equation of motion ∂2ξ/∂t2 = F̂[ξ] can be expanded in
terms of a complete set of normal modes ξ(n)(x) with eigenfrequencies ωn: ξ =∑
n Anξ

(n)e−iωnt . Because F̂ is a real, self-adjoint operator, these normal modes can all
be chosen to be real and orthogonal, even when some of their frequencies are degen-
erate. As the perturbation evolves, its energy sloshes back and forth between kinetic
T and potentialW , so time averages of T andW are equal: T =W . This implies, for
each normal mode,

ω2
n
= W [ξ(n)]∫

V
dV 1

2ρξ
(n)2

. (19.57)

As the denominator is positive definite, we conclude that a magnetostatic equilibriumenergy principle (Rayleigh
principle) for stability is stable against small perturbations if and only if the potential energyW [ξ] is a positive-

definite functional of the perturbation ξ.This is sometimes called the Rayleigh principle
for a general Sturm-Liouville problem. In the MHD context, it is known as the energy
principle.

action principle for
eigenfrequencies

It is straightforward to verify, by virtue of the self-adjointness of F̂[ξ], that ex-
pression (19.57) serves as an action principle for the eigenfrequencies: If one inserts
into Eq. (19.57) a trial function ξtrial in place of ξ(n), then the resulting value of the
equation will be stationary under small variations of ξtrial if and only if ξtrial is equal to
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some eigenfunction ξ(n); and the stationary value of Eq. (19.57) is that eigenfunction’s
squared eigenfrequency ω2

n
. This action principle is most useful for estimating the

lowest few squared frequencies ω2
n
. Because first-order differences between ξtrial and

ξ(n) produce second-order errors in ω2
n
, relatively crude trial eigenfunctions can fur-

nish surprisingly accurate eigenvalues.
Whatever may be our chosen trial function ξtrial, the computed value of the action

(19.57) will always be larger thanω2
0, the squared eigenfrequency of the most unstable

mode. Therefore, if we compute a negative value of Eq. (19.57) using some trial
eigenfunction, we know that the equilibrium must be even more unstable.

The MHD energy principle and action principle are special cases of the general
conservation law and action principle for Sturm-Liouville differential equations (see,
e.g., Mathews and Walker, 1970; Arfken, Weber, and Harris, 2013; Hassani, 2013). For
further insights into the energy and action principles, see the original MHD paper by
Bernstein et al. (1958), in which these ideas were developed; also see Mikhailovskii
(1998), Goedbloed and Poedts (2004, Chap. 6), and Bellan (2006, Chap. 10).

EXERCISESExercise 19.16 Example: Reformulation of the Energy Principle;
Application to Z-Pinch
The form of the potential energy functional derived in the text [Eq. (19.47)] is optimal
for demonstrating that the operator F̂ is self-adjoint. However, there are several
simpler, equivalent forms that are more convenient for practical use.

(a) Use Eq. (19.46) to show that

ξ . F̂[ξ]= j× b . ξ − b2/μ0 − γP (∇ . ξ)2 − (∇ . ξ)(ξ . ∇)P
+∇ . [(ξ × B)× b/μ0 + γP ξ(∇ . ξ)+ ξ(ξ . ∇)P ], (19.58)

where b≡ δB is the Eulerian perturbation of the magnetic field.
(b) Insert Eq. (19.58) into expression (19.56b) for the potential energy W [ξ] and

convert the volume integral of the divergence into a surface integral. Then impose
the boundary condition of a vanishing normal component of the magnetic field
at ∂V [Eq. (19.20b)] to show that

W [ξ]= 1
2

∫
V
dV
[
−j× b . ξ + b2/μ0 + γP (∇ . ξ)2 + (∇ . ξ)(ξ . ∇)P

]
− 1

2

∫
∂V

d� . ξ
[
γP (∇ . ξ)+ ξ . ∇P − B . b/μ0

]
. (19.59)

(c) Consider axisymmetric perturbations of the cylindrical Z-pinch of an incom-
pressible fluid, as discussed in Sec. 19.5.2, and argue that the surface integral
vanishes.

(d) Adopt a simple trial eigenfunction, and obtain a variational estimate of the growth
rate of the sausage instability’s fastest growing mode.
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Exercise 19.17 Problem: Potential Energy in Its Most Physically Interpretable Form
(a) Show that the potential energy (19.59) can be transformed into the following

form:

W [ξ]= 1
2

∫
V
dV

[
−j× b . ξ + b2

μ0
+ δP �ρ

ρ

]

+ 1
2

∫
∂V

d� . ∇
(
B̃2

2μ0
− P − B2

2μ0

)
ξ 2
n
+ 1

2

∫
vacuum

dV
b̃2

μ0
. (19.60)

Here symbols without tildes represent quantities in the plasma region, and those
with tildes are in the vacuum region; ξn is the component of the fluid displacement
orthogonal to the vacuum-plasma interface.

(b) Explain the physical interpretation of each term in the expression for the
potential energy in part (a). Notice that, although our original expression for
the potential energy, W = − 1

2
∫
V ξ . F[ξ]dV , entails an integral only over the

plasma region, it actually includes the vacuum region’s magnetic energy.

Exercise 19.18 Example: Virial Theorems
Additional mathematical tools that are useful in analyzing MHD equilibria and their
stability—and are also useful in astrophysics—are the virial theorems. In this exercise
and the next, you will deduce time-dependent and time-averaged virial theorems for
any system for which the law of momentum conservation can be written in the form

∂(ρvj)

∂t
+ Tjk;k = 0. (19.61)

Here ρ is mass density, vj is the material’s velocity, ρvj is momentum density, and
Tjk is the stress tensor. We have met this formulation of momentum conservation
in elastodynamics [Eq. (12.2b)], in fluid mechanics with self-gravity [Eq. (2) of Box
13.4], and in magnetohydrodynamics with self-gravity [Eq. (19.12)].

The virial theorems involve integrals over any region V for which there is no mass
flux or momentum flux across its boundary: ρvjnj = Tjknk = 0 everywhere on ∂V ,
where nj is the normal to the boundary.6 For simplicity we use Cartesian coordinates,
so there are no connection coefficients to worry about, and momentum conservation
becomes ∂(ρvj)+ ∂Tjk/∂xk = 0.

(a) Show that mass conservation, ∂ρ/∂t +∇ . (ρv)= 0, implies that for any field f
(scalar, vector, or tensor), we have

d

dt

∫
V
ρf dV =

∫
V
ρ
df

dt
dV . (19.62)

6. If self-gravity is included, then the boundary will have to be at spatial infinity (i.e., no boundary), as
T

grav
jk nk cannot vanish everywhere on a finite enclosing wall.
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(b) Use Eq. (19.62) to show that

d2Ijk

dt2
= 2
∫

V
TjkdV , (19.63a)

where Ijk is the second moment of the mass distribution:

Ijk =
∫

V
ρxjxkdV (19.63b)

with xj the distance from a chosen origin. This is the time-dependent tensor
virial theorem. (Note that the system’s mass quadrupole moment is the trace-
free part of Ijk, Ijk = Ijk − 1

3Igjk, and the system’s moment of inertia tensor
is Ijk = Ijk − Igjk, where I = Ijj is the trace of Ijk.)

(c) If the time integral of d2Ijk/dt
2 vanishes, then the time-averaged stress tensor

satisfies ∫
V

T̄jkdV = 0. (19.64)

This is the time-averaged tensor virial theorem. Under what circumstances is this
theorem true?

Exercise 19.19 Example: Scalar Virial Theorems
(a) By taking the trace of the time-dependent tensorial virial theorem and specializ-

ing to an MHD plasma with (or without) self-gravity, show that

1
2
d2I

dt2
= 2Ekin + Emag + Egrav + 3EP , (19.65a)

where I is the trace of Ijk,Ekin is the system’s kinetic energy,Emag is its magnetic
energy, EP is the volume integral of its pressure, and Egrav is its gravitational
self-energy:

I =
∫

V
ρx2dV , Ekin =

∫
V

1
2
ρv2dV , Emag =

∫
B2

2μ0
, EP =

∫
V
PdV ,

Egrav = 1
2

∫
V
ρ�=−

∫
V

1
8πG

(∇�)2 =−1
2

∫
V

∫
V
G
ρ(x)ρ(x′)
|x − x′| dV

′dV , (19.65b)

with� the gravitational potential energy [cf. Eq. (13.62)].
(b) When the time integral of d2I/dt2 vanishes, then the time average of the right-

hand side of Eq. (19.65a) vanishes:

2Ēkin + Ēmag + Ēgrav + 3ĒP = 0. (19.66)

This is the time-averaged scalar virial theorem. Give examples of circumstances in
which it holds.
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(c) Equation (19.66) is a continuum analog of the better-known scalar virial theorem,
2Ēkin + Ēgrav = 0, for a system consisting of particles that interact via their self-
gravity—for example, the solar system (see, e.g., Goldstein, Poole, and Safko,
2002, Sec. 3.4).

(d) As a simple but important application of the time-averaged scalar virial theorem,
show—neglecting self-gravity—that it is impossible for internal currents in a
plasma to produce a magnetic field that confines the plasma to a finite volume:
external currents (e.g., in solenoids) are necessary.

(e) For applications to the oscillation and stability of self-gravitating systems, see
Chandrasekhar (1961, Sec. 118).

19.6 19.6 Dynamos and Reconnection of Magnetic Field Lines

As we have already remarked, the timescale for Earth’s magnetic field to decay is
estimated to be roughly 1 million years. Since Earth is far older than that, some
process inside Earth must be regenerating the magnetic field. This process is known
as a dynamo. Generally speaking, in a dynamo the motion of the fluid stretchesdynamo
the magnetic field lines, thereby increasing their magnetic energy density, which
compensates for the decrease in magnetic energy associated with Ohmic decay. The
details of how this happens inside Earth are not well understood. However, some
general principles of dynamo action have been formulated, and their application to
the Sun is somewhat better understood (Exs. 19.20 and 19.21).

19.6.1 19.6.1 Cowling’s Theorem

It is simple to demonstrate the impossibility of dynamo action in any time-
independent, axisymmetric flow. Suppose that there were such a dynamo configura-
tion, and the time-independent, poloidal (meridional) field had—for concreteness—
the form sketched in Fig. 19.12. Then there must be at least one neutral point marked
P (actually a circle about the symmetry axis), where the poloidal field vanishes. How-
ever, the curl of the magnetic field does not vanish at P, so a toroidal current jφ must
exist there. Now, in the presence of finite resistivity, there must also be a toroidal
electric field at P, since

jφ = κe[Eφ + (vP × BP )φ]= κeEφ . (19.67)

Here vP and BP are the poloidal components of v and B. The nonzero Eφ in turn
implies, via ∇× E =−∂B/∂t , that the amount of poloidal magnetic flux threading
the circle at P must change with time, violating our original supposition that the
magnetic field distribution is stationary.

Cowling’s theorem for
dynamos

We therefore conclude that any time-independent, self-perpetuating dynamo
must be more complicated than a purely axisymmetric magnetic field. This result
is known as Cowling’s theorem.
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FIGURE 19.12 Impossibility of an axisymmetric dynamo.

19.6.219.6.2 Kinematic Dynamos

The simplest types of dynamo to consider are those in which we specify a particular
velocity field and allow the magnetic field to evolve according to the transport law
(19.6). Under certain circumstances, this can produce dynamo action. Note that we
do not consider in our discussion the dynamical effect of the magnetic field on the
velocity field.

dynamo cycleThe simplest type of motion is one in which a dynamo cycle occurs. In this cycle,
there is one mechanism for creating a toroidal magnetic field from a poloidal field
and a separate mechanism for regenerating the poloidal field. The first mechanism
is usually differential rotation. The second is plausibly magnetic buoyancy, in which
a toroidal magnetized loop is lighter than its surroundings and therefore rises in the
gravitational field. As the loop rises, Coriolis forces twist the flow, causing a poloidal
magnetic field to appear, which completes the dynamo cycle.

dynamo action in
turbulence

Small-scale, turbulent velocity fields may also be responsible for dynamo action.
In this case, it can be shown on general symmetry grounds that the velocity field
must contain hydrodynamic helicity—a nonzero mean value of v . ω [which is an hydrodynamic helicity
obvious analog of magnetic helicity (Ex. 19.9), the volume integral or mean value
of A . B= A . (∇× A)].

If the magnetic field strength grows, then its dynamical effect will eventually react
back on the flow and modify the velocity field. A full description of a dynamo must
include this back reaction. Dynamos are a prime target for numerical simulations of
MHD, and in recent years, significant progress has been made using these simulations
to understand the terrestrial dynamo and other specialized problems.

EXERCISESExercise 19.20 Problem: Differential Rotation in the Solar Dynamo
This problem shows how differential rotation leads to the production of a toroidal
magnetic field from a poloidal field.

(a) Verify that for a fluid undergoing differential rotation around a symmetry axis
with angular velocity�(r , θ), the φ component of the induction equation reads
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∂Bφ

∂t
= sin θ

(
Bθ
∂�

∂θ
+ Brr ∂�

∂r

)
, (19.68)

where θ is the co-latitude. (The resistive term can be ignored.)
(b) It is observed that the angular velocity on the solar surface is largest at the equa-

tor and decreases monotonically toward the poles. Analysis of solar oscillations
(Sec. 16.2.4) has shown that this variation �(θ) continues inward through the
convection zone (cf. Sec. 18.5). Suppose that the field of the Sun is roughly
poloidal. Sketch the appearance of the toroidal field generated by the poloidal
field.

Exercise 19.21 Problem: Buoyancy in the Solar Dynamo
Consider a slender flux tube with width much less than its length which, in turn, is
much less than the external pressure scale height H . Also assume that the magnetic
field is directed along the tube so there is negligible current along the tube.
(a) Show that the requirement of magnetostatic equilibrium implies that inside the

flux tube

∇
(
P + B2

2μ0

)
� 0. (19.69)

(b) Consider a segment of this flux tube that is horizontal and has length �. Holding
both ends fixed, bend it vertically upward so that the radius of curvature of its
center line is R� �. Assume that the fluid is isentropic with adiabatic index γ .
By balancing magnetic tension against buoyancy, show that magnetostatic equi-
librium is possible if R � 2γH . Do you think this equilibrium could be stable?

(c) In the solar convection zone (cf. Sec. 18.5), small entropy differences are impor-
tant in driving the convective circulation. Following Ex. 19.20(b), suppose that
a length of toroidal field is carried upward by a convecting “blob.” Consider the
action of the Coriolis force due to the Sun’s rotation (cf. Sec. 14.2.1) on a single
blob, and argue that it will rotate. What will this do to the magnetic field? Sketch
the generation of a large-scale poloidal field from a toroidal field through the
combined effects of many blobs. What do you expect to observe when a flux tube
breaks through the solar surface (known as the photosphere)?

The combined effect of differential rotation, magnetic stress, and buoyancy, as
outlined in Exs. 19.20 and 19.21, is thought to play an important role in sustaining
the solar dynamo cycle. See Goedbloed and Poedts (2004, Secs. 8.2, 8.3) for
further insights.

19.6.3 19.6.3 Magnetic Reconnection

So far, our discussion of the evolution of the magnetic field has centered on the
induction equation (19.6) (the magnetic transport law). We have characterized the
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FIGURE 19.13 Magnetic reconnection. In the shaded reconnection region,
Ohmic diffusion is important and allows magnetic field lines to
“exchange partners,” changing the overall field topology. Magnetic
field components perpendicular to the plane of the illustration do not
develop large gradients and so do not inhibit the reconnection process.

magnetized fluid by a magnetic Reynolds number using some characteristic lengthL
associated with the flow, and have found that, when RM � 1, Ohmic dissipation and
field-line diffusion in the transport law are unimportant. This is reminiscent of the
procedure we followed when discussing vorticity. However, for vorticity we discovered
a very important exception to an uncritical neglect of viscosity, dissipation, and
vortex-line diffusion at large Reynolds numbers, namely, boundary layers (Sec. 14.4).
In particular, we found that large-Reynolds-number flows near solid surfaces develop
large velocity gradients on account of the no-slip boundary condition, and that the
local Reynolds number can thereby decrease to near unity, allowing viscous stress
to change the character of the flow completely. Something similar, called magnetic
reconnection, can happen in hydromagnetic flows with large RM , even without the
presence of solid surfaces.

how magnetic
reconnection occurs
at high RMRMRM

Consider two oppositely magnetized regions of conducting fluid moving toward
each other (the upper and lower regions in Fig. 19.13). Mutual magnetic attraction
of the two regions occurs, as magnetic energy would be reduced if the two sets of
field lines were superposed. However, strict flux freezing prevents superposition.
Something has to give! What happens is a compromise. The attraction causes large
magnetic gradients to develop, accompanied by a buildup of large current densities,
until Ohmic diffusion ultimately allows the magnetic field lines to slip sideways
through the fluid and to reconnect with the field in the other region (the sharply curved
field lines in Fig. 19.13).

This reconnection mechanism can be clearly observed at work in tokamaks and
in Earth’s magnetopause, where the solar wind’s magnetic field meets Earth’s mag-
netosphere. However, the details of the reconnection mechanism are quite complex,
involving plasma instabilities, anisotropic electrical conductivity, and shock fronts.
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Large, inductive electric fields can also develop when the magnetic geometry un-
dergoes rapid change. This can happen in the reversing magnetic field in Earth’s
magnetotail,7 leading to the acceleration of charged particles that impact Earth during
a magnetic substorm. Like dynamo action, reconnection has a major role in determin-
ing how magnetic fields actually behave in both laboratory and space plasmas.

For further detail on the physics and observations of reconnection, see, for exam-
ple, Birn and Priest (2007) and Forbes and Priest (2007).

19.7 19.7 Magnetosonic Waves and the Scattering of Cosmic Rays

In Sec. 19.5, we discussed global perturbations of a nonuniform magnetostatic plasma
and described how they may be unstable. We now consider a different, particularly
simple example of dynamical perturbations: planar, monochromatic, propagating
waves in a uniform, magnetized, conducting medium. These are called magnetosonicmagnetosonic waves

waves. They can be thought of as sound waves that are driven not just by gas pressure
but also by magnetic pressure and tension.

Although magnetosonic waves have been studied experimentally under labora-
tory conditions, there the magnetic Reynolds numbers are generally quite small, so
the waves damp quickly by Ohmic dissipation. No such problem arises in space plas-
mas, where magnetosonic waves are routinely studied by the many spacecraft that
monitor the solar wind and its interaction with planetary magnetospheres. It appears
that these modes perform an important function in space plasmas: they control the
transport of cosmic rays. Let us describe some properties of cosmic rays before giving
a formal derivation of the magnetosonic-wave dispersion relation.

19.7.1 19.7.1 Cosmic Rays

Cosmic rays are the high-energy particles, primarily protons, that bombard Earth’s
magnetosphere from outer space. They range in energy from ∼1 MeV to ∼3×cosmic-ray spectrum

1011 GeV= 0.3 ZeV∼ 50 J. (The highest cosmic-ray energy ever measured was∼50 J.
Thus, naturally occurring particle accelerators are far more impressive than their ter-
restrial counterparts, which can only reach∼10 TeV = 104 GeV!) Most subrelativistic
particles originate in the solar system. Their relativistic counterparts, up to energies
∼100 TeV, are believed to come mostly from interstellar space, where they are accel-
erated by expanding shock waves created by supernova explosions (cf. Sec. 17.6.3).
The origin of the highest energy particles, greater than ∼100 TeV, is an intriguing
mystery.

The distribution of cosmic-ray arrival directions at Earth is inferred to be quite
isotropic (to better than 1 part in 104 at an energy of 10 GeV). This is somewhat sur-isotropy

prising, because their sources, both in and beyond the solar system, are believed to be
distributed anisotropically, so the isotropy needs to be explained. Part of the reason
for the isotropy is that the interplanetary and interstellar media are magnetized, and

7. The magnetotail is the region containing trailing field lines on the night side of Earth.
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the particles gyrate around the magnetic field with the gyro (relativistic cyclotron)
frequency ωG = eBc2/E, where E is the (relativistic) particle energy including rest
mass, and B is the magnetic field strength. The gyro (Larmor) radii of the non-
relativistic particle orbits are typically small compared to the size of the solar system,
and those of the relativistic particles are typically small compared to characteristic
lengthscales in the interstellar medium. Therefore, this gyrational motion can effec-
tively erase any azimuthal asymmetry around the field direction. However, this does evidence for scattering
not stop the particles from streaming away from their sources along the magnetic
field, thereby producing anisotropy at Earth. So something else must be impeding
this along-line flow, by scattering the particles and causing them to effectively diffuse
along and across the field through interplanetary and interstellar space.

As we verify in Sec. 20.4, Coulomb collisions are quite ineffective (even if they were
effective, they would cause huge cosmic-ray energy losses, in violation of observa-
tions). We therefore seek some means of changing a cosmic ray’s momentum without
altering its energy significantly. This is reminiscent of the scattering of electrons in
metals, where it is phonons (elastic waves in the crystal lattice) that are responsible
for much of the scattering. It turns out that in the interstellar medium, magnetosonic
waves can play a role analogous to phonons and can scatter the cosmic rays. As an aid
to understanding this phenomenon, we now derive the waves’ dispersion relation.

19.7.219.7.2 Magnetosonic Dispersion Relation

Our procedure for deriving the dispersion relation (last paragraph of Sec. 7.2.1) should
be familiar by now. We consider a uniform, isentropic, magnetized fluid at rest; we
perform a linear perturbation and seek monochromatic plane-wave solutions varying
as ei(k.x−ωt). We ignore gravity and dissipative processes (specifically, viscosity, ther-
mal conductivity, and electrical resistivity), as well as gradients in the equilibrium,
which can all be important in some circumstances.

It is convenient to use the velocity perturbation δv as the independent variable.
The perturbed and linearized equation of motion (19.10) then takes the form

−iρωδv =−iC2kδρ + (ik × δB)× B
μ0

. (19.70)

Here C is the sound speed [C2 = (∂P/∂ρ)s = γP/ρ, not to be confused with the
speed of light c], and δP = C2δρ is the Eulerian pressure perturbation for our ho-
mogeneous equilibrium.8 (Note that ∇P =∇ρ = 0, so Eulerian and Lagrangian per-
turbations are the same.) The perturbed equation of mass conservation, ∂ρ/∂t +∇ .
(ρv)= 0, becomes

ωδρ = ρk . δv , (19.71)

8. Note that we are assuming that (i) the equilibrium pressure tensor is isotropic and (ii) the perturbations
to the pressure are also isotropic. This is unlikely to be the case for a collisionless plasma, so our treatment
there must be modified. See Sec. 20.6.2 and Ex. 21.1.
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and the MHD law of magnetic-field transport with dissipation ignored, ∂B/∂t =
∇× (v × B), becomes

ωδB=−k × (δv × B). (19.72)

We introduce the Alfvén velocityAlfvén velocity

a ≡ B
(μ0ρ)

1/2 , (19.73)

and insert δρ [Eq. (19.71)] and δB [Eq. (19.72)] into Eq. (19.70) to obtain

eigenequation for
magnetosonic waves {k × [k × (δv × a)]} × a + C2(k . δv)k = ω2δv . (19.74)

Equation (19.74) is an eigenequation for the wave’s squared frequency ω2 and
eigendirection δv. The straightforward way to solve it is to rewrite it in the standard
matrix formMijδvj = ω2δvi and then use standard matrix (determinant) methods.
It is quicker, however, to seek the three eigendirections δv and eigenfrequenciesω one
by one, by projection along preferred directions.

Alfvén mode and its
dispersion relation

We first seek a solution to Eq. (19.74) for which δv is orthogonal to the plane
formed by the unperturbed magnetic field and the wave vector, δv = a × k up to a
multiplicative constant. Inserting this δv into Eq. (19.74), we obtain the dispersion
relation

ω =±a . k; ω

k
=±a cos θ , (19.75)

where θ is the angle between k and the unperturbed field, and a ≡ |a| = B/(μoρ)1/2
is the Alfvén speed. This type of wave is known as the intermediate magnetosonic
mode and also as the Alfvén mode. Its phase speed ω/k = a cos θ is plotted as the
larger figure-8 curve in Fig. 19.14. The velocity and magnetic perturbations δv andAlfvén-mode properties
δB are both along the direction a × k, so the Alfvén wave is fully transverse. There
is no compression (δρ = 0), which accounts for the absence of the sound speed C in
the dispersion relation. This Alfvén mode has a simple physical interpretation in the
limiting case when k is parallel to B. We can think of the magnetic field lines as strings
with tension B2/μ0 and inertia ρ, which are plucked transversely. Their transverse
oscillations then propagate with speed

√
tension/inertia = B/√μ0ρ = a. For details

and delicacies, see Ex. 21.8.
The dispersion relations for the other two modes can be deduced by projecting the

eigenequation (19.74) successively along k and along a to obtain two scalar equations:

k2(k . a)(a . δv)= [(a2 + C2)k2 − ω2](k . δv),

C2(k . a)(k . δv)= ω2(a . δv). (19.76)
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FIGURE 19.14 Phase-velocity surfaces for the three types of
magnetosonic modes: fast (f), intermediate (i), and slow (s).
The three curves are polar plots of the wave phase velocity
ω/k in units of the Alfvén speed a = B/√μ0ρ. In the
particular example shown, the sound speed C is half the
Alfvén speed.

Combining these equations, we obtain the dispersion relation

dispersion relation for
fast (+++) and slow (−−−)
magnetosonic modes

(
ω

k

)2
= 1

2
(a2 + C2)

[
1±
(

1− 4C2a2 cos2 θ

(a2 + C2)2

)1/2]
. (19.77)

(By inserting this dispersion relation, with the upper or lower sign, back into Eqs.
(19.76), we can deduce the mode’s eigendirection δv.) This dispersion relation tells us
that ω2 is positive, so no unstable modes exist, which seems reasonable, as there is no
source of free energy. (The same is true, of course, for the Alfvén mode.)

These waves are compressive, with the gas being moved by a combination of
gas pressure and magnetic pressure and tension. The modes can be seen to be non-
dispersive, which is also to be expected, as we have introduced neither a characteristic
timescale nor a characteristic length into the problem.

fast magnetosonic-mode
properties

The mode with the plus signs in Eq. (19.77) is called the fast magnetosonic mode;
its phase speed is depicted by the outer, quasi-circular curve in Fig. 19.14. A good
approximation to its phase speed when a� C or a� C is ω/k �±(a2 + C2)1/2.
When propagating perpendicularly to B, the fast mode can be regarded as simply
a longitudinal sound wave in which the gas pressure is augmented by the magnetic
pressure B2/(2μ0) (adopting a specific-heat ratio γ for the magnetic field of 2, as
B ∝ ρ and so Pmag ∝ ρ2 under perpendicular compression).

slow magnetosonic-mode
properties

The mode with the minus signs in Eq. (19.77) is called the slow magnetosonic
mode. Its phase speed (depicted by the inner figure-8 curve in Fig. 19.14) can be
approximated by ω/k =±aC cos θ/(a2 + C2)1/2 when a� C or a� C. Note that
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slow mode—like the intermediate mode but unlike the fast mode—is incapable of
propagating perpendicularly to the unperturbed magnetic field; see Fig. 19.14. In the
limit of vanishing Alfvén speed or vanishing sound speed, the slow mode ceases to
exist for all directions of propagation.

In Chap. 21, we will discover that MHD is a good approximation to the behavior
of plasmas only at frequencies below the “ion cyclotron frequency,” which is a rather
low frequency. For this reason, magnetosonic modes are usually regarded as low-
frequency modes.

19.7.3 19.7.3 Scattering of Cosmic Rays by Alfvén Waves

mechanism for Alfvén
waves to scatter cosmic-
ray particles

Now let us return to the issue of cosmic-ray propagation, which motivated our in-
vestigation of magnetosonic modes. Let us consider 100-GeV particles in the inter-
stellar medium. The electron (and ion, mostly proton) density and magnetic field
strength are typically n∼−3× 104 m−3 and B ∼ 300 pT. The Alfvén speed is then
a ∼ 30 km s−1, much slower than the speeds of the cosmic rays. When analyzing
cosmic-ray propagation, a magnetosonic wave can therefore be treated as essen-
tially a magnetostatic perturbation. A relativistic cosmic ray of energy E has a gyro
(relativistic Larmor) radius of rG = E/eBc, in this case ∼3× 1012 m. Cosmic rays
will be unaffected by waves with wavelength either much greater than or much less
than rG. However, magnetosonic waves (especially Alfvén waves, which are respon-
sible for most of the scattering), with wavelength matched to the gyro radius, will
be able to change the particle’s pitch angle α (the angle its momentum makes with
the mean magnetic field direction). See Sec. 23.4.1 for some details. If the Alfvén
waves in this wavelength range have rms dimensionless amplitude δB/B � 1, then
the particle’s pitch angle will change by an amount δα ∼ δB/B for every wavelength.
Now, if the wave spectrum is broadband, individual waves can be treated as un-
correlated, so the particle pitch angle changes stochastically. In other words, the par-
ticle diffuses in pitch angle. The effective diffusion coefficient is

Dα ∼
(
δB

B

)2
ωG, (19.78)

whereωG= c/rG is the gyro frequency (relativistic analog of cyclotron frequencyωc).
The particle is therefore scattered by roughly a radian in pitch angle every time it
traverses a distance �∼ (B/δB)2rG. This is effectively the particle’s collisional mean
free path. Associated with this mean free path is a spatial diffusion coefficient

Dx ∼ �c3 . (19.79)

It is thought that δB/B ∼ 10−1 in the relevant wavelength range in the inter-

estimated and measured
cosmic-ray anisotropy

stellar medium. An estimate of the collision mean free path is then �(100 GeV)∼
1014 m. Now, the thickness of our galaxy’s interstellar disk of gas is roughly
L ∼ 3× 1018 m ∼104�. Therefore, an estimate of the cosmic-ray anisotropy is
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∼�/L∼ 3× 10−5, roughly compatible with the measurements. Although this dis-
cussion is an oversimplification, it does demonstrate that the cosmic rays in the
interplanetary, interstellar, and intergalactic media can be scattered efficiently by mag-
netosonic waves. This allows the particle transport to be impeded without much loss
of energy, so that the theory of cosmic-ray acceleration (Ex. 23.12) and scattering (this
section) together can account for the particle fluxes observed as a function of energy
and direction at Earth.

A good question to ask at this point is “Where do the Alfvén waves come from?”
The answer turns out to be that they are maintained as part of a turbulence spectrum
and created by the cosmic rays themselves through the growth of plasma instabilities.
To proceed further and give a more quantitative description of this interaction, we
must go beyond a purely fluid description and explore the motions of individual
particles. This is where we shall turn in the next few chapters, culminating with a
return to the interaction of cosmic rays with Alfvén waves in Sec. 23.4.1.

Bibliographic Note

For intuitive insight into magnetohydrodynamics, we recommend Shercliff (1965).
For textbook introductions to magnetohydrodynamics, we recommend the rel-

evant chapters of Landau, Pitaevskii, and Lifshitz (1979), Schmidt (1979), Boyd and
Sanderson (2003), and Bellan (2006). For far greater detail, we recommend a textbook
that deals solely with magnetohydrodynamics: Goedbloed and Poedts (2004) and its
advanced supplement Goedbloed, Keppens, and Poedts (2010). For a very readable
treatment from the viewpoint of an engineer, with applications to engineering and
metallurgy, see Davidson (2001).

For the theory of MHD instabilities and applications to magnetic confinement, see
the above references, and also Bateman (1978) and the collection of early papers edited
by Jeffrey and Taniuti (1966). For applications to astrophysics and space physics, see
Parker (1979), Parks (2004), and Kulsrud (2005).
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Abbé condition, 1180n
absorption of radiation, 1017, 1054, 1057, 1126–1130
accretion disk around spinning black hole, 969
action principles

for rays in geometric optics, 1178–1180
for eigenfrequencies of normal modes, 980–981

adiabatic index
in plasma: anisotropic, 1020–1024

adiabatic invariants
accuracy of, 1030
failure of, 1030
for charged particle in magnetic field, 1028–1030
wave action of a classical wave, 1172–1173

Alcator C-Mod, 963
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1056–1057
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interaction with cosmic rays. See cosmic rays

angular momentum
in fluid mechanics, 1151, 1152

angular momentum conservation
in circulating water, 1151–1152

Appleton-Hartree dispersion relation, 1059–1060
atomic bomb, 1009

BBGKY hierarchy of kinetic equations, 1103–1106,
1109

BGK waves in a plasma, 1100–1101
bird flight

wingtip vortices, 1154f
black holes

accretion of gas onto, 969
bosons, 1187
bow shock around Earth, 957, 1090, 1146–1147, 1146f
bremsstrahlung, 1009, 1017
Brillouin scattering, 1142
bump-in-tail instability, 1136–1137, 1138–1139
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charge density
as integral over plasma distribution function, 1072

charged-particle motion in electromagnetic field, 1024–1032
chemical reactions, including nuclear and particle

examples
electron-positron pair formation, 1001
ionization of hydrogen: Saha equation, 998–1000
controlled thermonuclear fusion, 959–960, 1141b

circulation, 1154
climate change, 958
closure relation, in plasma kinetic theory, 1074, 1105
CMA diagram for waves in cold, magnetized plasma,

1062–1065, 1064f
collective effects in plasmas, 943, 1003–1006, 1016, 1020,

1070, 1146
collisionless shocks, 1145–1147
commutator

of two vector fields, 1155n
conductivity, electrical, κe

in plasmas with Coulomb collisions, 1015, 1018
in magnetized plasma, tensorial, 1022–1023, 1036

contact discontinuity, 953
controlled fusion. See fusion, controlled thermonuclear
Coriolis acceleration, 1155
correlation functions

for many-particle system, 1104–1106
two-point and three-point, 1104–1106

cosmic rays
spectrum of, 988
ultra-high-energy, 1024
anisotropy of arrival directions, 992–993
acceleration of in strong shock fronts, 1147–1148
interaction with Alfvén waves, 992–993, 1138–1139

Cerenkov emission of Alfvén waves by, 1138–1139
observational evidence for scattering of, 989
scattering of, by Alfvén waves, 992–993, 1138–1139

Coulomb correction to pressure in plasma, 1108
Coulomb logarithm, 1008–1009
Coulomb scattering

Rutherford scattering analysis, 1006–1007
Fokker-Planck analysis of, 1013–1015
deflection times and frequencies, 1008
energy equilibration times, 1010–1012, 1002t

Cowling’s theorem, for dynamos, 984
cruise-control system for automobiles, 1097–1098
current density

as integral over plasma distribution function, 1072
curvature drift, 1026, 1027f
cutoff, in wave propagation, 1049–1050, 1050f
cyclotron frequencies, 1019, 1002t

relativistic, 1024

Debye length, 1002t, 1004
Debye number, 1002t, 1004
Debye shielding, 1003–1004
decay time for magnetic field, in MHD, 949, 950t
degeneracy, of gas, 1000, 1002
density of states (modes)

for free particles, 1186–1188
derivatives of scalars, vectors, and tensors

Lie derivative, 1155n
dielectric tensor, 1036

in cold, magnetized plasma, 1051–1052
diffusion coefficient

for electrons interacting with electrostatic waves in
plasma, 1118–1119, 1123

for magnetic field, in MHD, 948
diffusion equation

for magnetic field, in MHD, 948
in nonlinear plasma physics, 1118–1119, 1135, 1148

dispersion relation, 1159. See also under geometric optics
as Hamiltonian for rays, 1168, 1174

distribution function
mean occupation number, 1185–1188. See also occupation

number, mean
number density in phase space, 1184
N-particle, 1102–1103
for particles in a plasma, 1071, 1185–1186

N-particle, 1102–1103
drift velocities

for charged particles in electromagnetic field, 1025–1027
for electron and ion fluids, 1038–1039

drift waves, 1067–1068
dynamos, 984–988

eikonal approximation. See geometric optics
electric charge. See charge density
electromagnetic field. See also electromagnetic waves;

Maxwell’s equations
electric displacement vector, 1036

electromagnetic waves
in anisotropic, linear dielectric medium, 1035–1037

wave equation and dispersion relation, 1037
in cold plasma, 1035–1068

electron motion in electromagnetic field, 1024–1032
electrostatic waves. See also Langmuir waves; ion-acoustic

waves; Landau damping
dispersion relation for, 1083–1084

for weakly damped or growing modes, 1085–1086
kinetic-theory analysis of, 1077–1079
stability analysis of, 1090–1092, 1095–1098
quasilinear theory of, 1113–1135
nonlinear: BGK waves, 1100–1101
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emission
spontaneous

of plasmons, in a plasma, 1126–1128
stimulated

of plasmons, in a plasma, 1134
energy density, U

deduced from lagrangian, 1172
for prototypical wave equation, 1172

energy flux, Newtonian, F
deduced from lagrangian, 1172
for prototypical wave equation, 1172

energy principle for perturbations of magnetostatic
equilibria, 980–982

Eulerian perturbations, 971–972
extraordinary waves

in a cold, magnetized plasma, 1057–1058, 1060, 1063,
1064f

Faraday rotation, 1053–1054, 1060–1061
feedback-control system, 1093b

stability analysis of, 1093b–1095b, 1098
Fermat’s principle, 1178

for dispersionless waves, 1179–1180
and Feynman sum over paths, 1179

fermions, 1187
Ferraro’s law of isorotation for magnetosphere, 970
flexural waves on a beam or rod, 1160, 1162f, 1163,

1175–1176
fluid flows

barotropic, inviscid, 1155–1157
flute instability for toroidal�-pinch, 978–979, 978f
Fokker-Planck equation

for Coulomb collisions, 1013–1016, 1032
for electrons interacting with plasmons, 1123, 1130–

1131
force-free magnetic field, 964
Fourier transform, conventions for

in plasma physics, 1115
fusion, controlled thermonuclear, 959–964, 999f, 1001,

1002t, 1140–1142
motivation for, 958–959
Lawson criterion for, 960
d, t fusion reaction, 959
magnetic confinement for, 960–964
laser fusion, 1140–1142

gain margin, for stability of control system, 1095b, 1098
galaxies

dark matter in, 1076n
gas, hydrogen, 999f
gas discharge, in laboratory, 999f, 1001, 1002t

geometric optics, 1164–1182. See also Fermat’s principle
as two-lengthscale expansion for a wave, 1164, 1166, 1167
limitations (failure) of, 1176–1178
for a completely general wave, 1173–1175
for prototypical wave equation, 1165–1173
eikonal approximation, 1166
connection to quantum theory, 1169–1172
rays and Hamilton’s equations for them, 1168
dispersion relation as Hamiltonian, 1168, 1174
amplitude and its propagation, 1166, 1168, 1171–1172,

1175
phase and its propagation, 1166, 1169, 1174
angular frequency and wave vector, 1166
energy density, U , 1166
energy flux, F, 1166
quanta, 1170

conservation of, 1171, 1172, 1175
Hamiltonian, energy, momentum, number density, and

flux of, 1170
eikonal equation (Hamilton-Jacobi equation), 1169
for dispersionless waves in time-independent medium

index of refraction, 1179
ray equation, 1180
Fermat’s principle: rays have extremal time, 1179
Snell’s law, 1180, 1181f

examples
light propagating through lens, 1177f
light rays in an optical fiber, 1181–1182
flexural waves in a tapering rod, 1175–1176
spherical sound waves, 1175, 1176
Alfvén waves in Earth’s magnetosphere, 1177f

global warming, 958
globular star cluster, energy equilibration time for, 1012–

1013. See also stellar dynamics
gradient drift, 1027, 1027f
gravitational drift of charged particle in magnetic field, 1026
gravitational waves

dispersion relation for, 1161
gravity waves on water, 1160, 1162f, 1163

deep water, 1160, 1162f, 1163
greenhouse effect, 958
group velocity, 1162
guiding-center approximation for charged-particle motion,

1025–1030, 1055
gyro frequencies. See cyclotron frequencies

Hamilton-Jacobi equation, 1169, 1182
Hamilton’s equations

for rays in geometric optics, 1168–1170, 1174
for plasmons, 1124

Hamilton’s principal function, 1169, 1182
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Hartmann flow, 965–969
Hartmann number, 968
helicity

hydrodynamic, 985
magnetic, 965

hydrogen gas. See gas, hydrogen
hydromagnetic flows, 965–971

index of refraction, 1179
for optical fiber, 1181
for plasma waves, 1052, 1057, 1058f

intergalactic medium, 999f, 1002, 1002t
interstellar medium, 950t, 989, 992, 999f, 1001, 1002t, 1012,

1060–1061, 1138–1139, 1146–1147
ion-acoustic waves. See also electrostatic waves; plasmons

in two-fluid formalism, 1046–1050
in kinetic theory, 1088–1090
Landau damping of, 1088
nonlinear interaction with Langmuir waves, 1132–

1135
solitons, 1142–1146

ionosphere, 999f, 1001, 1002t, 1059
radio waves in, 1058–1062

ITER (International Thermonuclear Experimental Reactor),
963

Jeans’ theorem, 1074–1077, 1100
JET (Joint European Torus), 963
junction conditions

MHD, 953–956
Jupiter, 1100

KDP nonlinear crystal, 1141b
kink instability, of magnetostatic equilibria, 977–978
Korteweg–de Vries equation and soliton solutions, 1048–

1049

lagrangian density
energy density and flux in terms of, 1172
for prototypical wave equation, 1172

Lagrangian perturbations, 971–972
Landau contour, 1082f, 1083
Landau damping

physics of: particle surfing, 1046, 1069–1070, 1098–1099
for ion-acoustic waves, 1088–1090
for Langmuir waves, 1086–1088
in quantum language, 1127–1129

Langmuir waves. See also electrostatic waves; plasmons
in two-fluid formalism, 1044–1047
in kinetic theory, 1086–1088, 1090
in quasilinear theory, 1115–1123

summary of, in one dimension, 1120
evolution of electron distribution, 1118–1120
evolution of wave spectral density, 1118
in three dimensions, 1122–1123

Landau damping of, 1086–1088, 1098–1099
particle trapping in, 1098–1100
nonlinear interaction with ion-acoustic waves, 1132–1135

Laplace transform, 1081, 1084
used to evolve initial data, 1081

Larmor radius, 1019, 1002t
Lawson criterion for controlled fusion, 960
least action, principle of, 1178, 1178n
left modes, for plasma electromagnetic waves parallel to

magnetic field, 1052–1056
Lenz’s law, 945
Lie derivative, 1155n
Lorentz contraction of volume, 1184

magnetic bottle, 1028, 1029f
magnetic confinement of plasma, for controlled fusion,

960–964
magnetic field diffusion in MHD, 948–950, 950t, 956
magnetic field interaction with vorticity, 957–958, 958f
magnetic field-line reconnection, 950, 986–988, 987f
magnetic force density on fluid, in MHD, 951–952
magnetic Reynolds number, 950, 950t
magnetization

in magnetized plasma, 1039
magnetohydrodynamics (MHD), 943–993

conditions for validity, 1020
fundamental equations of

electric field, charge, and current density in terms of
magnetic field, 947–948

magnetic-field evolution equation, 948
freezing-in of magnetic field, 948
magnetic field diffusion, 948
fluid equation of motion, 951
magnetic force density on fluid, 951–952
boundary conditions and junction conditions, 953–956
momentum conservation, 951
energy conservation, 952
entropy evolution, 953
Ohm’s law, 947

generalizations of, 1020–1022
magnetoionic theory, for radio waves in atmosphere,

1058–1062
magnetosonic waves, 988–992

Alfvén waves (intermediate magnetosonic mode),
990–991, 1053f, 1161–1162. See also Alfvén waves

fast magnetosonic mode, 990–992
slow magnetosonic mode, 990–992
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magnetosphere, 999f, 1001, 1002t
rotating, 969–970
Alfvén waves in, 1177f
interaction of solar wind with Earth’s, 950, 957, 987–988,

1090, 1146–1147, 1146f
magnetostatic equilibria, 958–965, 971, 1030–1031

equations of, 960, 962
perturbations and stability of, 971–984

dynamical equation, 973
boundary conditions, 974
energy principle, 980–982
virial theorems, 982–984

Maxwell’s equations
in terms of electric and magnetic fields, 946
in linear, polarizable (dielectric) medium, 1036

MHD electromagnetic brake, 966, 967f
MHD electromagnetic pump, 966–968, 967f
MHD flow meter, 966, 967f
MHD power generator, 966, 967f
mirror machine for confining plasma, 963, 1030–1031
mirror point for particle motion in magnetic field, 1027f,

1028–1029, 1029f
moments, method of: applications

constructing fluid models from kinetic theory, 1074
momentum space, 1183, 1184f
multiplicity for particle’s spin states, gŝ , 1187

National Ignition Facility, 1141b
neutrinos

chirality of, 1187n
spin-state multiplicity, 1187

neutron stars
structures of, 1153
magnetospheres of, 969–970

normal modes
Sturm-Liouville, 974–975
of magnetostatic equilibria, 975–976, 980–981

nuclear reactions. See chemical reactions, including nuclear
and particle

Nyquist diagram and method for analyzing stability,
1091–1098, 1092f

occupation number, mean
defined, 1187
ranges, for fermions, bosons, distinguishable particles,

and classical waves, 1187–1188
for plasmon modes in a plasma, 1123–1124

Ohm’s law. See also conductivity, electrical
in magnetohydrodynamics, 946–947
tensorial in magnetized plasmas, 1036

Ohmic dissipation, 945, 949–950, 953, 957, 966, 987–988

Onsager relation, 1018
optical fiber

light rays in, 1181
ordinary waves

in a cold, magnetized plasma, 1057–1058, 1060, 1063,
1064f

pairs, electron-positron
thermal equilibrium of, 1001
temperature-density boundary for, 999f

parametric amplification, 1140–1142
parametric instability, 1140–1141
Parseval’s theorem, 1116–1117
particle conservation law

in plasma, 1071
particle kinetics in phase space, 1183–1184
path integrals in quantum mechanics, 1178–1179
Penning trap, 1031–1032
Penrose stability criterion for electrostatic waves, 1097
perfect MHD, 950
phase margin, for stability of control system, 1098
phase space, 1183–1184
phase velocity, 1159
phonons

momentum and energy of, 1170
pitch angle, 1028
plasma electromagnetic waves

validity of fluid approximation for, 1020
in unmagnetized plasma, 1042–1044, 1050
in magnetized plasma, parallel to magnetic field: left and

right modes, 1052–1066
plasma frequency, 1005, 1002t, 1041
plasma oscillations

elementary analysis of, 1005
in two-fluid formalism, 1041–1042
in moving reference frame, 1065
two-stream instability for, 1065–1067

plasma waves
in an unmagnetized, cold plasma, 1040–1044. See also

plasma electromagnetic waves; plasma oscillations
in a magnetized, cold plasma, 1050–1065. See also

Alfvén waves; ordinary waves; extraordinary waves;
magnetosonic waves; plasma oscillations; whistler
wave in plasma

in an unmagnetized, warm plasma, 1044–1050. See also
ion-acoustic waves; Langmuir waves

plasmas. See also plasma waves; plasmons
summary in density-temperature plane, 999f
summary of parameter values for, 1002t
electron correlations (antibunching) in, 1106
electron-positron pair production in, 1001
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plasmas (continued)
ionization of, 999–1000
degeneracy of, 1000, 1002
examples of, 999f, 1001–1002, 1002t
relativistic, 1000

plasmons. See also ion-acoustic waves; Langmuir waves;
quasilinear theory in plasma physics

mean occupation number for, 1124
master equation for evolution of, 1126

fundamental emission rates, 1127, 1133–1134
interaction with electrons, 1124–1131
nonlinear interaction with each other, 1132–1135

Poiseuille flow (confined laminar, viscous flow)
between two plates with MHD magnetic field, 965–969

Poisson’s equation, 1003, 1078
polarization of charge distribution

in a linear dielectric medium, 1036
in a plasma, 1035–1036

pressure ratio β in MHD, 959
pulsar. See also neutron stars

radio waves from, 1060–1061

quasars, 969, 995
quasilinear theory in plasma physics. See also ion-acoustic

waves; Langmuir waves
in classical language, 1113–1123

in three dimensions, 1122–1123
in quantum language, 1123–1135

radiative processes
bremsstrahlung, 1009, 1017
Raman scattering, 1140

radio waves: AM, FM, and SW, 1060
Raman scattering, stimulated, 1140
random walk, 1007
random-phase approximation, 1116–1117, 1137
Rayleigh principle, 980. See also action principles
refractive-index surface, 1062–1063, 1062f
resonance conditions in wave-wave mixing, 1132
rest frame, local, 1173
Reynolds number

magnetic, 950, 987
right modes, for plasma electromagnetic waves parallel to

magnetic field, 1052–1056
Rutherford scattering, 1006–1007

Saha equation for ionization equilibrium, 999–1000
sausage instability, of magnetostatic equilibria, 977
Schrödinger equation

and Coulomb wave functions, 1009
geometric optics for, 1181–1182

Shapiro time delay, 1009
shock waves (shock fronts) in a fluid, adiabatic

bow shock in solar wind around Earth, 957, 1146–1147,
1146f

acceleration of cosmic rays in, 1145–1148
shock waves in a plasma, collisionless, 1145–1147, 1146f
solar dynamo, 985–986
solar wind, 970–971, 988, 999f, 1001, 1002t

two-stream instability in, 1066–1067
collisionless shocks in, 1146
bow shock at interface with Earth, 957, 1090, 1146–1147,

1146f
termination shock with interstellar medium, 1146–1147

solitons
in ion-acoustic waves in plasma, 1142–1146

sound waves in a fluid
dispersion relation, 1160
phase velocity and group velocity, 1162
propagating in a horizontal wind with shear, 1173
quanta: phonons, 1170. See also phonons

spectral energy density Ek, in quasilinear theory of plasma
waves, 1117

spheromak, 964
stellar dynamics. See also under galaxies

Jeans’ theorem in, 1076–1077
equilibration time for stars in cluster, 1012–1013

Sturm-Liouville equation and theory, 974–975, 980–981
sun. See also solar dynamo; solar wind

core of, 999f, 1001, 1002t
disturbances on surface, 1035, 1065

superfluid, rotating, 1153
surfing of electrons and protons on electrostatic waves, 1046,

1069–1070, 1098–1099. See also Landau damping
susceptibilities, dielectric

linear, 1036

thermoelectric transport coefficients, 1017–1018
three-point correlation function, 1105
three-wave mixing in plasmas

driving term for, in Vlasov equation, 1114
quasilinear theory of, 1132–1135

tokamak, 963
MHD stability of, 979

transport coefficients. See also diffusion coefficient
in plasmas, 1015–1018
thermoelectric, 1017–1018

two-fluid formalism, for plasma physics, 1037–1068
fundamental equations, 1037–1038
deduced from kinetic theory, 1073–1074

two-lengthscale expansion
bookkeeping parameter for, 1167b
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for geometric optics, 1164–1165, 1166–1167
for quasi-linear theory in plasma physics, 1113–1114

two-point correlation function, 1104–1107
for Coulomb corrections to pressure in a plasma,

1107–1108
for electron antibunching in a plasma, 1104–1107

two-stream instability
in two-fluid formalism, 1065–1068
in kinetic theory, 1079–1080, 1137

van Allen belts, 1028, 1029f
virial theorems

for any system obeying momentum conservation, 982–984
for self-gravitating systems, 984
MHD application, 982, 984

Vlasov equation, in plasma kinetic theory, 1071–1072
solution via Jeans’ theorem, 1075

volume in phase space, 1183
vortex. See also vortex lines; vorticity

above a water drain, 1151
wingtip vortex, 1154f
tornado, 1151

vortex cores, in superfluid, 1153
vortex lines, 1153–1154, 1154f

frozen into fluid, for barotropic, inviscid flows, 1155–1157,
1157f

vorticity, 1151–1152, 1152f
measured by a vane with orthogonal fins, 1151–1152
evolution equations for, 1153–1157

frozen into an inviscid, barotropic flow, 1155–1157
interaction with magnetic field, 957–958
delta-function: constant-angular-momentum flow,

1151–1152

Voyager spacecraft, 1147

water waves. See gravity waves on water; sound waves in a
fluid

wave equations
prototypical, 1165

lagrangian, energy density flux, and adiabatic invariant
for, 1172–1173

algebratized, 1037
for electromagnetic waves. See electromagnetic waves

wave packet, 1161–1163
Gaussian, 1163–1164
spreading of (dispersion), 1163–1164

wave-normal surface, 1062–1063, 1062f, 1064f
wave-wave mixing

in plasmas, 1132–1135
waves, monochromatic in homogeneous medium. See also

sound waves in a fluid; gravity waves on water;
flexural waves on a beam or rod; gravitational waves;
Alfvén waves

dispersion relation, 1159
group velocity, 1162
phase velocity, 1159
plane, 1159

whistler wave in plasma, 1053f, 1054–1055, 1062f, 1146f
winds, propagation of sound waves in, 1173
wingtip vortices, 1154f
WKB approximation, as example of eikonal approximation,

1165

zero point energy, 1002
Z-pinch for plasma confinement, 960–962, 961f

stability of, 975–978
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