Short Contents

Preface

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>xvii</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Thinking Clearly in a Data-Driven Age</td>
<td>1</td>
</tr>
</tbody>
</table>

PART I

ESTABLISHING A COMMON LANGUAGE

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Causation: What Is It and What Is It Good For?</td>
<td>37</td>
</tr>
</tbody>
</table>

PART II

DOES A RELATIONSHIP EXIST?

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Correlation Requires Variation</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>Regression for Describing and Forecasting</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>Samples, Uncertainty, and Statistical Inference</td>
<td>94</td>
</tr>
<tr>
<td>7</td>
<td>Over-Comparing, Under-Reporting</td>
<td>113</td>
</tr>
<tr>
<td>8</td>
<td>Reversion to the Mean</td>
<td>138</td>
</tr>
</tbody>
</table>

PART III

IS THE RELATIONSHIP CAUSAL?

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Why Correlation Doesn't Imply Causation</td>
<td>159</td>
</tr>
<tr>
<td>10</td>
<td>Controlling for Confounders</td>
<td>193</td>
</tr>
<tr>
<td>11</td>
<td>Randomized Experiments</td>
<td>218</td>
</tr>
<tr>
<td>12</td>
<td>Regression Discontinuity Designs</td>
<td>243</td>
</tr>
</tbody>
</table>
CHAPTER 13 Difference-in-Differences Designs 266
CHAPTER 14 Assessing Mechanisms 290

PART IV FROM INFORMATION TO DECISIONS 303
CHAPTER 15 Turn Statistics into Substance 305
CHAPTER 16 Measure Your Mission 336
CHAPTER 17 On the Limits of Quantification 357

Index 371
Contents

Preface xvii

Organization xviii
Who Is This Book For? xix
Acknowledgments xx

CHAPTER 1 Thinking Clearly in a Data-Driven Age 1
What You’ll Learn 1
Introduction 1
Cautionary Tales 2
Abe’s hasty diagnosis 2
Civil resistance 3
Broken-windows policing 5
Thinking and Data Are Complements, Not Substitutes 7
Readings and References 9

PART I ESTABLISHING A COMMON LANGUAGE 11

What You’ll Learn 13
Introduction 13
What Is a Correlation? 13
Fact or correlation? 17
What Is a Correlation Good For? 19
Description 19
Forecasting 20
Causal inference 23
Measuring Correlations 24
Mean, variance, and standard deviation 24
Covariance 27
Correlation coefficient 28
Slope of the regression line 29
Populations and samples 29
Straight Talk about Linearity 30
Wrapping Up 33
Key Terms 33

© Copyright Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

For general queries contact webmaster@press.princeton.edu.
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>37</td>
</tr>
<tr>
<td>2</td>
<td>Exercises</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>Potential Outcomes and Counterfactuals</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>What is Causation?</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>What is Causation Good For?</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>The Fundamental Problem of Causal Inference</td>
<td>41</td>
</tr>
<tr>
<td>7</td>
<td>Conceptual Issues</td>
<td>42</td>
</tr>
<tr>
<td>8</td>
<td>Wrapping Up</td>
<td>49</td>
</tr>
<tr>
<td>9</td>
<td>Key Terms</td>
<td>50</td>
</tr>
</tbody>
</table>

PART II DOES A RELATIONSHIP EXIST? 53

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Correlation Requires Variation</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>Regression for Describing and Forecasting</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>Does a Relationship Exist?</td>
<td>74</td>
</tr>
</tbody>
</table>

For general queries contact webmaster@press.princeton.edu.
<table>
<thead>
<tr>
<th>CHAPTER 6</th>
<th>Samples, Uncertainty, and Statistical Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>What You’ll Learn</td>
<td>94</td>
</tr>
<tr>
<td>Introduction</td>
<td>94</td>
</tr>
<tr>
<td>Estimation</td>
<td>94</td>
</tr>
<tr>
<td>Why Do Estimates Differ from Estimands?</td>
<td>96</td>
</tr>
<tr>
<td>Bias</td>
<td>96</td>
</tr>
<tr>
<td>Noise</td>
<td>97</td>
</tr>
<tr>
<td>What Makes for a Good Estimator?</td>
<td>98</td>
</tr>
<tr>
<td>Quantifying Precision</td>
<td>99</td>
</tr>
<tr>
<td>Standard errors</td>
<td>99</td>
</tr>
<tr>
<td>Small samples and extreme observations</td>
<td>101</td>
</tr>
<tr>
<td>Confidence intervals</td>
<td>102</td>
</tr>
<tr>
<td>Statistical Inference and Hypothesis Testing</td>
<td>103</td>
</tr>
<tr>
<td>Hypothesis testing</td>
<td>103</td>
</tr>
<tr>
<td>Statistical significance</td>
<td>104</td>
</tr>
<tr>
<td>Statistical Inference about Relationships</td>
<td>105</td>
</tr>
<tr>
<td>What If We Have Data for the Whole Population?</td>
<td>106</td>
</tr>
<tr>
<td>Substantive versus Statistical Significance</td>
<td>107</td>
</tr>
<tr>
<td>Social media and voting</td>
<td>107</td>
</tr>
<tr>
<td>The Second Reform Act</td>
<td>108</td>
</tr>
<tr>
<td>Wrapping Up</td>
<td>109</td>
</tr>
<tr>
<td>Key Terms</td>
<td>109</td>
</tr>
<tr>
<td>Exercises</td>
<td>110</td>
</tr>
<tr>
<td>Readings and References</td>
<td>111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 7</th>
<th>Over-Comparing, Under-Reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>What You’ll Learn</td>
<td>113</td>
</tr>
<tr>
<td>Introduction</td>
<td>113</td>
</tr>
<tr>
<td>Can an octopus be a soccer expert?</td>
<td>113</td>
</tr>
<tr>
<td>Publication Bias</td>
<td>118</td>
</tr>
<tr>
<td>p-hacking</td>
<td>119</td>
</tr>
<tr>
<td>p-screening</td>
<td>120</td>
</tr>
<tr>
<td>Are Most Scientific “Facts” False?</td>
<td>122</td>
</tr>
<tr>
<td>ESP</td>
<td>122</td>
</tr>
<tr>
<td>Get out the vote</td>
<td>123</td>
</tr>
<tr>
<td>p-hacking forensics</td>
<td>124</td>
</tr>
<tr>
<td>Potential Solutions</td>
<td>126</td>
</tr>
<tr>
<td>Reduce the significance threshold</td>
<td>126</td>
</tr>
<tr>
<td>Adjust p-values for multiple testing</td>
<td>127</td>
</tr>
<tr>
<td>Don’t obsess over statistical significance</td>
<td>127</td>
</tr>
</tbody>
</table>
CHAPTER 8 Reversion to the Mean 138
What You’ll Learn 138
Introduction 138

Does the truth wear off? 138
Francis Galton and Regression to Mediocrity 139
Reversion to the Mean Is Not a Gravitational Force 142
Seeking Help 145

Does knee surgery work? 145
Reversion to the Mean, the Placebo Effect, and Cosmic Habituation 147

The placebo effect 147
Cosmic habituation explained 148
Cosmic habituation and genetics 150

Beliefs Don’t Revert to the Mean 150
Wrapping Up 152
Key Words 152
Exercises 152
Readings and References 155

PART III IS THE RELATIONSHIP CAUSAL? 157

CHAPTER 9 Why Correlation Doesn’t Imply Causation 159
What You’ll Learn 159
Introduction 159

Charter schools 160
Thinking Clearly about Potential Outcomes 163
Sources of Bias 168
Confounders 168
Reverse causality 169
The 10,000-hour rule, revisited 170
Diet soda 173

How Different Are Confounders and Reverse Causality? 174
Campaign spending 174
Signing the Bias 176
Contraception and HIV 179
Mechanisms versus Confounders 181
Thinking Clearly about Bias and Noise 183
CHAPTER 10 Controlling for Confounders
What You’ll Learn 193
Introduction 193
 Party whipping in Congress 193
 A note on heterogeneous treatment effects 197
The Anatomy of a Regression 198
How Does Regression Control? 201
Controlling and Causation 209
 Is social media bad for you? 210
Reading a Regression Table 211
Controlling for Confounders versus Mechanisms 213
There Is No Magic 214
Wrapping Up 215
Key Terms 215
Exercises 216
Readings and References 217

CHAPTER 11 Randomized Experiments
What You’ll Learn 218
Introduction 218
 Breastfeeding 219
Randomization and Causal Inference 221
Estimation and Inference in Experiments 224
 Standard errors 224
 Hypothesis testing 225
Problems That Can Arise with Experiments 225
 Noncompliance and instrumental variables 226
 Chance imbalance 232
 Lack of statistical power 234
 Attrition 235
 Interference 236
Natural Experiments 237
 Military service and future earnings 238
Wrapping Up 239
Key Terms 239
Exercises 240
Readings and References 242

CHAPTER 12 Regression Discontinuity Designs
What You’ll Learn 243
Introduction 243
How to Implement an RD Design 247
 Are extremists or moderates more electable? 249
Continuity at the Threshold 251
 Does continuity hold in election RD designs? 255
Noncompliance and the Fuzzy RD 256
 Bombing in Vietnam 257
Motivation and Success 261
Wrapping Up 262
Key Terms 262
Exercises 262
Readings and References 264

CHAPTER 13 Difference-in-Differences Designs 266
What You’ll Learn 266
Introduction 266
Parallel Trends 267
Two Units and Two Periods 269
 Unemployment and the minimum wage 269
N Units and Two Periods 272
 Is watching TV bad for kids? 273
N Units and N Periods 275
 Contraception and the gender-wage gap 276
Useful Diagnostics 278
 Do newspaper endorsements affect voting decisions? 278
 Is obesity contagious? 279
Difference-in-Differences as Gut Check 282
 The democratic peace 282
Wrapping Up 285
Key Terms 285
Exercises 286
Readings and References 288

CHAPTER 14 Assessing Mechanisms 290
What You’ll Learn 290
Introduction 290
Causal Mediation Analysis 291
Intermediate Outcomes 292
 Cognitive behavioral therapy and at-risk youths in Liberia 293
Independent Theoretical Predictions 294
 Do voters discriminate against women? 294
Testing Mechanisms by Design 295
 Social pressure and voting 295
Disentangling Mechanisms 296
 Commodity price shocks and violent conflict 296
Wrapping Up 298
Key Terms 299
Exercises 299
Readings and References 300

PART IV FROM INFORMATION TO DECISIONS 303

CHAPTER 15 Turn Statistics into Substance 305
What You’ll Learn 305

For general queries contact webmaster@press.princeton.edu.
Contents

Introduction 305
What's the Right Scale? 305
 Miles-per-gallon versus gallons-per-mile 306
 Percent versus percentage point 309
Visual Presentations of Data 309
 Policy preferences and the Southern realignment 311
 Some rules of thumb for data visualization 314
From Statistics to Beliefs: Bayes' Rule 314
 Bayes' rule 317
 Information, beliefs, priors, and posteriors 318
 Abe's celiac revisited 319
 Finding terrorists in an airport 322
 Bayes' rule and quantitative analysis 325
Expected Costs and Benefits 328
 Screening frequently or accurately 329
Wrapping Up 331
Key Words 331
Exercises 332
Readings and References 334

CHAPTER 16 Measure Your Mission 336
What You’ll Learn 336
Introduction 336
Measuring the Wrong Outcome or Treatment 337
 Partial measures 337
 Metal detectors in airports 337
 Intermediate outcomes 339
 Blood pressure and heart attacks 340
 Ill-defined missions 341
 Climate change and economic productivity 342
Do You Have the Right Sample? 343
 External validity 343
 Malnutrition in India and Bangladesh 343
 Selected samples 344
 College admissions 345
 Why can't major league pitchers hit? 345
Strategic Adaptation and Changing Relationships 349
 The duty on lights and windows 349
 The shift in baseball 350
 The war on drugs 351
Wrapping Up 353
Key Words 353
Exercises 353
Readings and References 355

CHAPTER 17 On the Limits of Quantification 357
What You’ll Learn 357
Introduction 357
Decisions When Evidence Is Limited 358
 Cost-benefit analysis and environmental regulation 358

For general queries contact webmaster@press.princeton.edu.
Floss your teeth and wear a mask 359
Floss your teeth 359
Wear a mask 360
Quantification and Values 361
How quantitative tools sneak in values 361
Algorithms and racial bias in health care 361
How quantification shapes our values 363
Think Clearly and Help Others Do So Too 367
Exercises 367
Readings and References 368

Index 371
CHAPTER 1

Thinking Clearly in a Data-Driven Age

What You’ll Learn

- Learning to think clearly and conceptually about quantitative information is important for lots of reasons, even if you have no interest in a career as a data analyst.
- Even well-trained people often make crucial errors with data.
- Thinking and data are complements, not substitutes.
- The skills you learn in this book will help you use evidence to make better decisions in your personal and professional life and be a more thoughtful and well-informed citizen.

Introduction

We live in a data-driven age. According to former Google CEO Eric Schmidt, the contemporary world creates as much new data every two days as had been created from the beginning of time through the year 2003. All this information is supposed to have the power to improve our lives, but to harness this power we must learn to think clearly about our data-driven world. Clear thinking is hard—especially when mixed up with all the technical details that typically surround data and data analysis.

Thinking clearly in a data-driven age is, first and foremost, about staying focused on ideas and questions. Technicality, though important, should serve those ideas and questions. Unfortunately, the statistics and quantitative reasoning classes in which most people learn about data do exactly the opposite—that is, they focus on technical details. Students learn mathematical formulas, memorize the names of statistical procedures, and start crunching numbers without ever having been asked to think clearly and conceptually about what they are doing or why they are doing it. Such an approach can work for people to whom thinking mathematically comes naturally. But we believe it is counterproductive for the vast majority of us. When technicality pushes students to stop thinking and start memorizing, they miss the forest for the trees. And it’s also no fun.

Our focus, by contrast, is on conceptual understanding. What features of the world are you comparing when you analyze data? What questions can different kinds of comparisons answer? Do you have the right question and comparison for the problem you are trying to solve? Why might an answer that sounds convincing actually
be misleading? How might you use creative approaches to provide a more informative answer?

It isn't that we don't think the technical details are important. Rather, we believe that technique without conceptual understanding or clear thinking is a recipe for disaster. In our view, once you can think clearly about quantitative analysis, and once you understand why asking careful and precise questions is so important, technique will follow naturally. Moreover, this way is more fun.

In this spirit, we've written this book to require no prior exposure to data analysis, statistics, or quantitative methods. Because we believe conceptual thinking is more important, we've minimized (though certainly not eliminated) technical material in favor of plain-English explanations wherever possible. Our hope is that this book will be used as an introduction and a guide to how to think about and do quantitative analysis. We believe anyone can become a sophisticated consumer (and even producer) of quantitative information. It just takes some patience, perseverance, hard work, and a firm resolve to never allow technicality to be a substitute for clear thinking.

Most people don't become professional quantitative analysts. But whether you do or do not, we are confident you will use the skills you learn in this book in a variety of ways. Many of you will have quantitative analysts working for or with you. And all of you will read studies, news reports, and briefings in which someone tries to convince you of a conclusion using quantitative analyses. This book will equip you with the clear thinking skills necessary to ask the right questions, be skeptical when appropriate, and distinguish between useful and misleading evidence.

Cautionary Tales

To whet your appetite for the hard work ahead, let's start with a few cautionary tales that highlight the importance of thinking clearly in a data-driven age.

Abe's Hasty Diagnosis

Ethan's first child, Abe, was born in July 2006. As a baby, he screamed and cried almost non-stop at night for five months. Abe was otherwise happy and healthy, though a bit on the small side. When he was one year old the family moved to Chicago, without which move, you'd not be reading this book. (That last sentence contains a special kind of claim called a counterfactual. Counterfactuals are really important, and you are going to learn all about them in chapter 3.) After noticing that Abe was small for his age and growing more slowly than expected, his pediatrician decided to run some tests.

After some lab work, the doctors were pretty sure Abe had celiac disease—a digestive disease characterized by gluten intolerance. The good news: celiac disease is not life threatening or even terribly serious if properly managed through diet. The bad news: in 2007, the gluten-free dietary options for kids were pretty miserable.

It turns out that Abe actually had two celiac-related blood tests. One came back positive (indicating that he had the disease), the other negative (indicating that he did not have the disease). According to the doctors, the positive test was over 80 percent accurate. "This is a strong diagnosis," they said. The suggested course of action was to put Abe on a gluten-free diet for a couple of months to see if his weight increased. If it did, they could either do a more definitive biopsy or simply keep Abe gluten-free for the rest of his life.

Ethan asked for a look at the report on Abe's bloodwork. The doctors indicated they didn't think that would be useful since Ethan isn't a doctor. This response was neither
surprising nor hard to understand. People, especially experts and authority figures, often don't like acknowledging the limits of their knowledge. But Ethan wanted to make the right decision for his son, so he pushed hard for the information. One of the goals of this book is to give you some of the skills and confidence to be your own advocate in this way when using information to make decisions in your life.

Two numbers characterize the effectiveness of any diagnostic test. The first is its false negative rate, which is how frequently the test says a sick person is healthy. The second is its false positive rate, which is how frequently the test says a healthy person is sick. You need to know both the false positive rate and the false negative rate to interpret a diagnostic test's results. So Abe's doctors' statement that the positive blood test was 80 percent accurate wasn't very informative. Did that mean it had a 20 percent false negative rate? A 20 percent false positive rate? Do 80 percent of people who test positive have celiac disease?

Fortunately, a quick Google search turned up both the false positive and false negative rates for both of Abe's tests. Here's what Ethan learned. The test on which Abe came up positive for celiac disease has a false negative rate of about 20 percent. That is, if 100 people with celiac disease took the test, about 80 of them would correctly test positive and the other 20 would incorrectly test negative. This fact, we assume, is where the claim of 80 percent accuracy came from. The test, however, has a false positive rate of 50 percent! People who don't have celiac disease are just as likely to test positive as they are to test negative. (This test, it is worth noting, is no longer recommended for diagnosing celiac disease.) In contrast, the test on which Abe came up negative for celiac disease had much lower false negative and false positive rates.

Before getting the test results, a reasonable estimate of the probability of Abe having celiac disease, given his small size, was around 1 in 100. That is, about 1 out of every 100 small kids has celiac disease. Armed with the lab reports and the false positive and false negative rates, Ethan was able to calculate how likely Abe was to have celiac disease given his small size and the test results. Amazingly, the combination of testing positive on an inaccurate test and testing negative on an accurate test actually meant that the evidence suggested that Abe was much less likely than 1 in 100 to have celiac disease. In fact, as we will show you in chapter 15, the best estimate of the likelihood of Abe having celiac, given the test results, was about 1 in 1,000. The blood tests that Abe's doctors were sure supported the celiac diagnosis actually strongly supported the opposite conclusion. Abe was almost certain not to have celiac disease.

Ethan called the doctors to explain what he'd learned and to suggest that moving his pasta-obsessed son to a gluten-free diet, perhaps for life, was not the prudent next step. Their response: "A diagnosis like this can be hard to hear." Ethan found a new pediatrician.

Here's the upshot. Abe did not have celiac disease. The kid was just a bit small. Today he is a normal-sized kid with a ravenous appetite. But if his father didn't know how to think about quantitative evidence or lacked the confidence to challenge a mistaken expert, he'd have spent his childhood eating rice cakes. Rice cakes are gross, so he might still be small.

Civil Resistance

As many around the world have experienced, citizens often find themselves in deep disagreement with their government. When things get bad enough, they sometimes decide to organize protests. If you ever find yourself doing such organizing, you will face many important decisions. Perhaps none is more important than whether to build
a movement with a non-violent strategy or one open to a strategy involving more violent forms of confrontation. In thinking through this quandry, you will surely want to consult your personal ethics. But you might also want to know what the evidence says about the costs and benefits of each approach. Which kind of organization is most likely to succeed in changing government behavior? Is one or the other approach more likely to land you in prison, the hospital, or the morgue?

There is some quantitative evidence that you might use to inform your decisions. First, comparing anti-government movements across the globe and over time, governments more often make concessions to fully non-violent groups than to groups that use violence. And even comparing across groups that do use violence, governments more frequently make concessions to those groups that engage in violence against military and government targets rather than against civilians. Second, the personal risks associated with violent protest are greater than those associated with non-violent protest. Governments repress violent uprisings more often than they do non-violent protests, making concerns about prison, the hospital, and the morgue more acute.

This evidence sounds quite convincing. A non-violent strategy seems the obvious choice. It is apparently both more effective and less risky. And, indeed, on the basis of this kind of data, political scientists Erica Chenoweth and Evan Perkoski conclude that “planning, training, and preparation to maintain nonviolent discipline is key—especially (and paradoxically) when confronting brutal regimes.”

But let’s reconsider the evidence. Start by asking yourself, In what kind of a setting is a group likely to engage in non-violent rather than violent protest? A few thoughts occur to us. Perhaps people are more likely to engage in non-violent protest when they face a government that they think is particularly likely to heed the demands of its citizens. Or perhaps people are more likely to engage in non-violent protest when they have broad-based support among their fellow citizens, represent a group in society that can attract media attention, or face a less brutal government.

If any of these things are true, we should worry about the claim that maintaining non-violent discipline is key to building a successful anti-government movement. (Which isn’t to say that we are advocating violence.) Let’s see why.

Empirical studies find that, on average, governments more frequently make concessions in places that had non-violent, rather than violent, protests. The claimed implication rests on a particular interpretation of that difference—namely, that the higher frequency of government concessions in non-violent places is caused by the use of non-violent tactics. Put differently, all else held equal, if a given movement using violent methods had switched to using non-violent methods, the government would have been more likely to grant concessions. But is this causal interpretation really justified by the evidence?

Suppose it’s the case that protest movements are more likely to turn to violence when they do not have broad-based support among their fellow citizens. Then, when we compare places that had violent protests to places that had non-violent protests, all else (other than protest tactics) is not held equal. Those places differ in at least two ways. First, they differ in terms of whether they had violent or non-violent protests. Second, they differ in terms of how supportive the public was of the protest movement.

This second difference is a problem for the causal interpretation. You might imagine that public opinion has an independent effect on the government’s willingness to grant concessions. That is, all else held equal (including protest tactics), governments might be more willing to grant concessions to protest movements with broad-based public support. If this is the case, then we can’t really know whether the fact that governments
grant concessions more often to non-violent protest movements than to violent protest movements is because of the difference in protest tactics or because the non-violent movements also happen to be the movements with broad-based public support. This is the classic problem of mistaking correlation for causation.

It is worth noting a few things. First, if government concessions are in fact due to public opinion, then it could be the case that, were we actually able to hold all else equal in our comparison of violent and non-violent protests, we would find the opposite relationship—that is, that non-violence is not more effective than violence (it could even be less effective). Given this kind of evidence, we just can't know.

Second, in this example, the conclusion that appears to follow if you don't force yourself to think clearly is one we would all like to be true. Who among us would not like to live in a world where non-violence is always preferred to violence? But the whole point of using evidence to help us make decisions is to force us to confront the possibility that the world may not be as we believe or hope it is. Indeed, it is in precisely those situations where the evidence seems to say exactly what you would like it to say that it is particularly important to force yourself to think clearly.

Third, we've pointed to one challenge in assessing the effects of peaceful versus violent protest, but there are others. For instance, think about the other empirical claim we discussed: that violent protests are more likely to provoke the government into repressive crack-downs than are non-violent protests. Recall, we suggested that people might be more likely to engage in non-violent protest when they are less angry at their government, perhaps because the government is less brutal. Ask yourself why, if this is true, we have a similar problem of interpretation. Why might the fact that there are more government crack-downs following violent protests than non-violent protests not mean that switching from violence to non-violence will reduce the risk of crack-downs? The argument follows a similar logic to the one we just made regarding concessions. If you don't see how the argument works yet, that's okay. You will by the end of chapter 9.

Broken-Windows Policing

In 1982, the criminologist George L. Kelling and the sociologist James Q. Wilson published an article in *The Atlantic* proposing a new theory of crime and policing that had enormous and long-lasting effects on crime policy in the United States and beyond.

Kelling and Wilson's theory is called *broken windows*. It was inspired by a program in Newark, New Jersey, that got police out of their cars and walking a beat. According to Kelling and Wilson, the program reduced crime by elevating “the level of public order.” Public order is important, they argue, because its absence sets in motion a vicious cycle:

A piece of property is abandoned, weeds grow up, a window is smashed. Adults stop scolding rowdy children...Families move out, unattached adults move in. Teenagers gather in front of the corner store. The merchant asks them to move; they refuse. Fights occur. Litter accumulates. People start drinking in front of the grocery...

Residents will think that crime, especially violent crime, is on the rise...They will use the streets less often...Such an area is vulnerable to criminal invasion.

This idea that policing focused on minimizing disorder can reduce violent crime had a big impact on police tactics. Most prominently, the broken-windows theory was the
guiding philosophy in New York City in the 1990s. In a 1998 speech, then New York mayor Rudy Giuliani said,

> We have made the “Broken Windows” theory an integral part of our law enforcement strategy...

> You concentrate on the little things, and send the clear message that this City cares about maintaining a sense of law and order...then the City as a whole will begin to become safer.

And, indeed, crime in New York City did decline when the police started focusing “on the little things.” According to a study by Hope Corman and H. Naci Mocan, misdemeanor arrests increased 70 percent during the 1990s and violent crime decreased by more than 56 percent, double the national average.

To assess the extent to which broken-windows policing was responsible for this fall in crime, Kelling and William Sousa studied the relationship between violent crime and broken-windows approaches across New York City’s precincts. If minimizing disorder causes a reduction in violent crime, they argued, then we should expect the largest reductions in crime to have occurred in neighborhoods where the police were most focused on the broken-windows approach. And this is just what they found. In precincts where misdemeanor arrests (the “little things”) were higher, violent crime decreased more. They calculated that “the average NYPD precinct...could expect to suffer one less violent crime for approximately every 28 additional misdemeanor arrests.”

This sounds pretty convincing. But let’s not be too quick to conclude that arresting people for misdemeanors is the answer to ending violent crime. Two other scholars, Bernard Harcourt and Jens Ludwig, encourage us to think a little more clearly about what might be going on in the data.

The issue that Harcourt and Ludwig point out is something called reversion to the mean (which we’ll talk about a lot more in chapter 8). Here’s the basic concern. In any given year, the amount of crime in a precinct is determined by lots of factors, including policing, drugs, the economy, the weather, and so on. Many of those factors are unknown to us. Some of them are fleeting; they come and go across precincts from year to year. As such, in any given precinct, we can think of there being some “baseline” level of crime, with some years randomly having more crime and some years randomly having less (relative to that precinct-specific baseline).

In any given year, if a precinct had a high level of crime (relative to its baseline), then it had bad luck on the unknown and fleeting factors that help cause crime. Probably next year its luck won’t be as bad (that’s what fleeting means), so that precinct will likely have less crime. And if a precinct had a low level of crime (relative to its baseline) this year, then it had good luck on the unknown and fleeting factors, and it will probably have worse luck next year (crime will go back up). Thus, year to year, the crime level in a precinct tends to revert toward the mean (i.e., the precinct’s baseline level of crime).

Now, imagine a precinct that had a really high level of violent crime in the late 1980s. Two things are likely to be true of that precinct. First, it is probably a precinct with a high baseline of violent crime. Second, it is also probably a precinct that had a bad year or two—that is, for idiosyncratic and fleeting reasons, the level of crime in the late 1980s was high relative to that precinct’s baseline. The same, of course, is true in reverse for precincts that had a low level of crime in the late 1980s. They probably have a low baseline of crime, and they also probably had a particularly good couple of years.
Why is this a problem for Kelling and Sousa’s conclusions? Because of reversion to the mean, we would expect the most violent precincts in the late 1980s to show a reduction in violent crime on average, even with no change in policing. And unsurprisingly, given the police’s objectives, but unfortunately for the study, it was precisely those high-crime precincts in the 1980s that were most likely to get broken-windows policing in the early 1990s. So, when we see a reduction in violent crime in the precincts that had the most broken-windows policing, we don’t know if it’s the policing strategy or reversion to the mean that’s at work.

Harcourt and Ludwig go a step further to try to find more compelling evidence. Roughly speaking, they look at how changes in misdemeanor arrests relate to changes in violent crime in precincts that had similar levels of violent crime in the late 1980s. By comparing precincts with similar starting levels of violent crime, they go some way toward eliminating the problem of reversion to the mean. Surprisingly, this simple change actually flips the relationship! Rather than confirming Kelling and Sousa’s finding that misdemeanor arrests are associated with a reduction in violent crime, Harcourt and Ludwig find that precincts that focused more on misdemeanor arrests actually appear to have experienced an increase in violent crime. Exactly the opposite of what we would expect if the broken-windows theory is correct.

Now, this reversal doesn’t settle the matter on the efficacy of broken-windows policing. The relationship between misdemeanor arrests and violent crime that Harcourt and Ludwig find could be there for lots of reasons other than misdemeanor arrests causing an increase in violent crime. For instance, perhaps the neighborhoods with increasing misdemeanors are becoming less safe in general and would have experienced more violent crime regardless of policing strategies. What these results do show is that the data, properly considered, certainly don’t offer the kind of unequivocal confirmation of the broken-windows ideas that you might have thought from Kelling and Sousa’s finding. And you can only see this if you have the ability to think clearly about some subtle issues.

This flawed thinking was important. Evidence-based arguments like Kelling and Sousa’s played a role in convincing politicians and policy makers that broken-windows policing was the right path forward when, in fact, it might have diverted resources away from preventing and investigating violent crime and may have created a more adversarial and unjust relationship between the police and the disproportionately poor and minority populations who were frequently cited for “the small stuff.”

Thinking and Data Are Complements, Not Substitutes

Our quantitative world is full of lots of exciting new data and analytic tools to analyze that data with fancy names like machine learning algorithms, artificial intelligence, random forests, and neural networks. Increasingly, we are even told that this new technology will make it possible for the machines to do the thinking for us. But that isn’t right. As our cautionary tales highlight, no data analysis, no matter how futuristic its name, will work if we aren’t asking the right questions, if we aren’t making the right comparisons, if the underlying assumptions aren’t sound, or if the data used aren’t appropriate. Just because an argument contains seemingly sophisticated quantitative data analysis, that doesn’t mean the argument is rigorous or right. To harness the power of data to make better decisions, we must combine quantitative analysis with clear thinking.

Our stories also illustrate how our intuitions can lead us astray. It takes lots of care and practice to train ourselves to think clearly about evidence. The doctors’
intuition that Abe had celiac disease because of a test with 80 percent accuracy and the researchers’ intuition that broken-windows policing works because crime decreased in places where it was deployed seem sensible. But both intuitions were wrong, suggesting that we should be skeptical of our initial hunches. The good news is that clear thinking can become intuitive if you work at it.

Data and quantitative tools are not a substitute for clear thinking. In fact, quantitative skills without clear thinking are quite dangerous. We suspect, as you read the coming chapters, you will be jarred by the extent to which unclear thinking affects even the most important decisions people make. Through the course of this book, we will see how misinterpreted information distorts life-and-death medical choices, national and international counterterrorism policies, business and philanthropic decisions made by some of the world’s wealthiest people, how we set priorities for our children’s education, and a host of other issues from the banal to the profound. Essentially, no aspect of life is immune from critical mistakes in understanding and interpreting quantitative information.

In our experience, this is because unclear thinking about evidence is deeply ingrained in human psychology. Certainly our own intuitions, left unchecked, are frequently subject to basic errors. Our guess is that yours are too. Most disturbingly, the experts on whose advice you depend—be they doctors, business consultants, journalists, teachers, financial advisors, scientists, or what have you—are often just as prone to making such errors as the rest of us. All too often, because they are experts, we trust their judgment without question, and so do they. That is why it is so important to learn to think clearly about quantitative evidence for yourself. That is the only way to know how to ask the right questions that lead you, and those on whose advice you depend, to the most reliable and productive conclusions possible.

How could experts in so many fields make important errors so often? Expertise, in any area, comes from training, practice, and experience. No one expects to become an expert in engineering, finance, plumbing, or medicine without instruction and years of work. But, despite its fundamental and increasing importance for so much of life in our quantitative age, almost no one invests this kind of effort into learning to think clearly with data. And, as we’ve said, even when they do, they tend to be taught in a way that over-emphasizes the technical and under-emphasizes the conceptual, even though the fundamental problems are almost always about conceptual mistakes in thinking rather than technical mistakes in calculation.

The lack of expertise in thinking presents us with two challenges. First, if so much expert advice and analysis is unreliable, how do you know what to believe? Second, how can you identify those expert opinions that do in fact reflect clear thinking?

This book provides a framework for addressing these challenges. Each of the coming chapters explains and illustrates, through a variety of examples, fundamental principles of clear thinking in a data-driven world. Part 1 establishes some shared language—clarifying what we mean by correlation and causation and what each is useful for. Part 2 discusses how we can tell whether a statistical relationship is genuine. Part 3 discusses how we can tell if that relationship reflects a causal phenomenon or not. And part 4 discusses how we should and shouldn’t incorporate quantitative information into our decision making.

Our hope is that reading this book will help you internalize the principles of clear thinking in a deep enough way that they start to become second nature. You will know you are on the right path when you find yourself noticing basic mistakes in how people think and talk about the meaning of evidence everywhere you turn—as you watch
the news, peruse magazines, talk to business associates, visit the doctor, listen to the color commentary during athletic competitions, read scientific studies, or participate in school, church, or other communal activities. You will, we suspect, find it difficult to believe how much nonsense you're regularly told by all kinds of experts. When this starts to happen, try to remain humble and constructive in your criticisms. But do feel free to share your copy of this book with those whose arguments you find are in particular need of it. Or better yet, encourage them to buy their own copy!

Readings and References

The essay on non-violent protest by Erica Chenoweth and Evan Perkoski that we quote can be found at https://politicalviolenceataglance.org/2018/05/08/states-are-far-less-likely-to-engage-in-mass-violence-against-nonviolent-uprisings-than-violent-uprisings/.

The following book contains more research on the relationship between non-violence and efficacy:

The following articles were discussed in this order on the topic of broken windows policing:

Note: Page numbers in italic type indicate figures or tables.

abused children, 364–65
Achen, Christopher, 311
ACU. See American Conservative Union
adaptation, 22, 337–38, 349–52
algorithms, and racial bias, 361–63, 363
Altenburger, Kristen, 22
always-takers, 227, 239
American Conservative Union (ACU), 193–94, 196–97, 206–9, 212–13, 214
Anzia, Sarah, 294–95
Aronow, Peter, 123–24
attrition, 235–36, 240
average treatment effect (ATE), 164–67, 187, 198
average treatment effect on the treated (ATT), 165–67, 187, 268
average treatment effect on the untreated (ATU), 165–67, 187
back pain, 65
Bailey, Martha, 277
bandwidth, 248, 249
Bangladesh Integrated Nutrition Project (BINP), 344
Barlets, Larry, 311
baseball: defensive shifts in, 350–51; pitchers’ batting performance in, 345–49, 347, 348
baseline differences, 166–68, 187
Basinger, Scott, 18
Bayes, Thomas, 317
Bayesian statistics, 328
Bayes’ rule, 317–28, 332
beliefs: Bayes’ rule and, 317–28; and reversion to the mean, 151–52; and quantitative evidence, 314–28
Bem, Daniel, 122–23
Berger, Jonah, 261
Berlin, Samuel, 108
Berry, Chris, 294–95
best fit, 16, 34, 76. See also lines of best fit
best linear approximation to the conditional expectation function (BLACEF), 199
bias: baseline differences as, 166–68; in correlation and causation questions, 183–86; defined, 95, 109; estimator quality and, 98–99; over- and under-estimating, 176–81, 178; overview of, 96–97; precision and, 98, 99; randomized experiments as safeguard against, 210–11, 221–23; sources of, 168–74; as threat to clear thinking, 5. See also publication bias
Biden, Joe, 249, 251
Bill and Melinda Gates Foundation, 62, 101–2
binary variables, 14
Bin Laden, Osama, 63
Biny, 247–48
Blattman, Chris, 236–37, 293
blocking, 223, 234, 239
breastfeeding, 219–21
broken-windows theory, 5–7
Brooks, Juanita, 315
Budd, Chris, 116, 117
Burke, Marshall, 342–43
Bush, George W., 160
but-for test, 42, 47
Cage, Nicolas, 186
campaign spending, 174–76
card, David, 269
Carney, Dana, 131
CATE. See complier average treatment effect
Caughey, Devin, 256
causal effects, 50, 159, 187
causal mediation analysis, 291–92, 299
causation/causal inference, 37–50; average effects as key to, 41–42, 46, 49; conceptual issues in, 42–49; controlling and, 209–11; correlation mistaken for, 5, 23–24, 49, 159–74, 183–86; counterexamples and, 44–45; counterfactuals’ role in, 39–40, 42–44, 49; defined, 38; explanation

For general queries contact webmaster@press.princeton.edu.
causation/causal inference (continued)
of, 38–39; fundamental problem of, 41–42, 50; the
law and, 42, 47; physical connection not required
for, 48–49; problem of a single cause vs. multiple
causes in, 43–44; proximate causes and, 43–44, 47;
randomized experiments and, 221–25; significance
of knowledge about, 37; time and, 47–48; uses of,
40–41
cause-in-fact, 47
celiac disease, 2–3, 319–21
Central Limit Theorem, 102, 104
Challenger disaster, 67–68
chance: prediction threatened by possibility of, 21.
See also luck; noise
chance imbalance, 232–34, 240
changing relationship, 352
charters schools, and academic performance, 160–67,
161, 163, 177–78, 237–38, 290–93
Chenoweth, Erica, 4
Chicago Cubs, 351
Christakis, Nicholas, 280–81
civil resistance, 3–5
civil war–economy relationship, 168–69, 174, 182, 214
clear thinking and conceptual understanding: about
bias and noise, 183–86; bias as threat to, 5; data as
complement to, 8, 108; errors in, 8; examples showing
the need for, 2–8; improper training in, 8; moral
responsibility for, 367; about potential outcomes,
163–67; technicality subordinate to, 1–2
climate change, economic effects of, 342–43
Clinton, Hillary, 249, 251
cognitive behavioral therapy, 293–94
Cohen-Cole, Ethan, 281
coin clipping, 349–50, 349n
coin flips
Coleman Study, 273
college admissions, 345
Collins, Janet, 315–19
Collins, Malcolm, 315–19, 317n
Collins, Nick, 113
commodity price shocks–violent conflict relationship,
296–98. See also economy: civil war's effect on
complier average treatment effect (CATE), 230, 240,
260
compliers, 227, 239, 260. See also noncompliance
conceptual understanding. See clear thinking and
contceptual understanding
conditional correlation: example of, 21–22
conditional mean function, 78–79, 79, 92
conditional probability, 316, 332
confidence intervals, 102–3, 110
confounders: in case examples, 172–81, 194; control-
ling for, 193–215; defined, 187; explanation of, 168,
169; mechanisms vs., 181–83; over- and under-
estimating, 176–81; reverse causality in relation to,
174–76
continuity at the threshold, 251–56, 262
contraception–gender-wage gap relationship, 276–77
controlling, 193, 193–215; causation and, 209–11;
defined, 215; examples of, 194–97; heterogeneous
treatment effects and, 197–98; matching and,
214–15; for mechanisms, 213–14; regression and,
198–209
control variables, 198, 215
Corman, Hope, 6
coronavirus pandemic, 329–31, 360–61
correlation, 13–35; causation not implied by, 5, 23–24,
49, 159–74, 183–86; conditional, 21–22; defined, 13,
33; description as a useful function of, 19–20; ethi-
cal issues with, 22–23; facts vs., 17–19; measuring,
24–29; multivariable, 21–22; positive, negative, and
absence of, 13, 33; prediction as a useful function
of, 20–23; usefulness of, 19–24; variation in both
variables required to determine, 17–18, 55–70
correlation coefficient, 28–29, 34
corruption of the youth, 59–62
cosmic habituation, 139, 149–50, 151
counterexamples, 44–45
counterfactual comparisons, 39, 50
counterfactuals: examples of, 2, 38–39; potential out-
comes and, 39–40; role of, in causal reasoning,
39–40, 42–44, 49
covariance, 27–28, 34
crime: temperature in relation to, 15–17, 15–17, 24,
25, 26–27, 74–79, 75, 77–79
crime policy: broken-window theory and, 5–7
Cuddy, Amy, 131
dal Bo, Ernesto, 297–98
dal Bo, Pedro, 297–98
data: clear thinking as complement to, 8, 108; non-
linear, 30–32, 83–86; visual presentation of, 309–14,
310, 312, 313. See also quantitative evidence
defiers, 227, 240, 260
dell, melissa, 257, 260
demand effects, 139, 152
democratic Party, 249–51, 311–14
democratic peace theory, 282–85, 283
Denver, John, 60
dependent (outcome) variables, 57, 75, 91, 215. See
also selecting on the dependent variable
description, as a useful function of correlation, 19–20
deviation from the mean, 26, 34
dewan, torun, 108
diet soda, 173–74
difference-in-differences design, 266–86; defined, 285;
examples of, 269–77, 270–72, 274–75; overview
of, 266–67; parallel trends and, 267–69, 271–72,
278, 280–81, 285–86; units and periods in, 269–
77; useful diagnostics for, 278–81; usefulness of,
282–85
difference in means, 187
distribution: defined, 24
Drug Enforcement Administration, 352

For general queries contact webmaster@press.princeton.edu.
Index 373

© Copyright Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Dube, Oeindrila, 298
dummy variables, 196, 215
earnings. See income
economy: civil war's effect on, 168–69, 174, 182, 214; climate change's effect on, 342–43. See also commodity price shocks–violent conflict relationship
efficient-market hypothesis, 132, 151
elections: age in relation to voter turnout in, 19–21, 20, 79–86, 80–86, 89; campaign spending's effect on, 174–76; candidates' ideology as influence on, 193–97, 194, 206–9, 207–9, 212–13, 213; effect of expanding the franchise on, 108; football results in relation to, 129–30; forecasting of presidential, 89–89; gender discrimination and, 294–95; get-out-the-vote campaigns and, 123–24; incumbency and, 256; of moderates vs. extremists, 249–51, 252, 255–56; newspaper endorsements' effect on, 278–79; RD design's appropriateness for, 255–56; scandals' influence on, 18–19, 18; social pressure's influence on voting in, 107–8, 295–96
elections, in relation to football results, 129–30
der, Walter, 338
Environmental Protection Agency (EPA), 358–59
Ericsson, K. Anders, 171–72
erors: defined, 76, 92; examples of, 77, 78; standard, 99–101, 110, 224–25
estimands, 95–96, 106–7, 109
estimates, 95–96, 106–7, 109
estimation: overview of, 94–95; over- vs. under-, 176–81; in randomized experiments, 224–25
estimator, 95, 98–99, 98, 109
ethics, 22–23. See also values
evidence. See also quantitative evidence
exclusion restriction, 231, 238, 239, 240, 259
exogeneity, 231, 238, 240, 259, 260
expectations (expected values), 97, 109, 221–23, 232
experiments. See randomized experiments
experts and authorities, limits of reasoning and judgment of, 3, 8–9
explanatory variables. See independent (explanatory) variables
external validity, 343–44, 353
extrapolation: misuses of, 32
extrasensory perception (ESP), 122–23, 326
extreme observations, 101–2
Facebook, 107–8, 210–11
facts: correlation vs., 17–19; publication bias as cause for skepticism about, 122–26, 138–39
false negative rates, 3
false positive rates, 3
Farber, Henry, 284
favorite equation: bias and, 152, 154, 176–77, 222–23, 270, 274; and causal inference, 166, 183–84; explanation of, 94–95; noise and, 118, 138, 232; parallel
trends and, 268; publication bias and, 118; randomization and, 222–23; reversion to the mean and, 148–49; statistical inference and, 105
Fearon, James, 43
features of the world. See variables
Ferdinand, Archduke, 42–44, 47
Feynman, Richard, 68
file drawer problem, 121, 235
first differences, 272, 275–76, 286
first-stage effect, 231, 240
Fisher, R. A., 223
fixed effects, 272, 275–76, 277, 286
Fleming, Thomas, 340
Fletcher, Jason, 281
flossing, 359–60
Food and Drug Administration (FDA), 41–42, 329
football results, in relation to elections, 129–30
forecasting. See prediction
Fowler, James, 280–81
France, mayors' salaries in, 254–55
frequentist statistics, 328
fundamental problem of causal inference, 41–42, 50
fuzzy regression discontinuity design, 257–61, 262
gallons-per-mile vs. miles-per-gallon, 306–8, 307
Galan, Francis, 90, 139–42
Gar, Haritz, 248
Gauss, Carl Friedrich, *Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections*, 90
Gelman, Andrew, 137
gender: height-income relationship and, 202–6, 204–5; voter discrimination based on, 294–95; wage gap in relationship to contraception, 276–77
gene-disease linkages, 150, 151
General Accountability Office (GAO), 322, 324
Gentzkow, Matthew, 273, 275
Gerber, Alan, 295
get-out-the-vote campaigns, 123–24
Giuliani, Rudy, 6
Gladwell, Malcolm, 57–59, 171
Goldin, Claudia, 276
golf scores, 143–45, 144, 145
Goop, 38
Gore, Tipper, 59–60
government programs, RD designs for evaluating, 246–47
government type–oil production correlation, 14–15, 14, 55–56, 56
Gowa, Joanne, 284
Green, Donald (Don), 123–24, 284, 295
Greenstone, Michael, 365–66
Guggenheim, David, *Waiting for Superman*, 160–61
Hall, Andrew, 251, 256
Hamlet Evaluation System, 257–58, 260
Harcourt, Bernard, 6–7
Hawthorne effect, 139, 139n, 152
For general queries contact webmaster@press.princeton.edu.
health: causation in matters of, 38–42, 45–46; confounders and mechanisms in, 181–82; diagnoses influenced by limited sample of patients, 65; heart health, 181–82; help-seeking and reversion to the mean in matters of, 145–47; HIV and contraception, 179–80; intermediate outcomes’ value in studies related to, 340; predictions concerning violations of codes of public, 22; quantitative evidence interpretation in matters of, 2–3, 319–21; racial bias in algorithms related to, 361–63; of skin, 38–40, 221–22, 226–32, 235–36; social networks’ effect on behavior associated with, 279–81
Healy, Andrew, 129
height of individuals: generational variation in, 90, 91, 139–43; and income, 201–6, 202–5
Heinzerling, Lisa, 358
help-seeking, and reversion to the mean, 145–47
heterogenous treatment effects, 46, 50, 197–98
high school dropouts, 62–63
HIV, 179–80
Ho, Daniel, 22
homogeneous treatment effects, 230
homophily, 280–81
Hsiang, Solomon, 342–43
hypothesis testing, 103–4, 110, 114, 225
Imbens, Guido, 198
income: height in relation to, 201–6, 202–5; merit scholarships’ effect on, 244–46, 254–55; military service’s effect on, 238–39
incumbency advantage, 256
independent (explanatory) variables, 75, 83–86, 92
India, malnutrition in, 343–44
in expectation. See expectations (expected values)
instrumental variables (IV) analysis, 231–32, 238, 240, 260
intent-to-treat (ITT) effect, 226–31, 238, 240
intercept, 75, 92
interference, 236–37, 240
intermediate outcomes, 292–94, 339–41
internal validity, 343, 353
International Journal of Epidemiology, 219
Irvin, Veronica, 128
Jacobson, Gary, 175
Jamison, Julian, 293
Journal of Personality and Social Psychology, 122–23
Kant, Immanuel, 282
Kaplan, Robert, 128
Katz, Lawrence, 276
Kelling, George L., 5–7
Kim, Soo Yeon, 284
knee surgery, 146–47
Knowledge is Power Program, 163
Koehler, Jonathan, 315
Krueger, Alan, 269
Ladd, Jonathan, 278
The Lancet Infectious Diseases (journal), 179–80
Larimer, Christopher, 295
Larrick, Richard, 307–8
LATE. See local average treatment effect
law: causality and, 42, 47
Law of Large Numbers, 102
lead treatment variable, 278, 286
Legendre, Adrien-Marie, New Methods for the Determination of the Orbits of Comets, 89–90
Lenz, Gabriel, 278
Liberian youth, interventions for at-risk, 236–37, 293–94
life advice, 70
linearity: importance of determining, 21; uses for describing non-linearity, 30–32
lines of best fit, 16, 21, 29, 33, 74–76
Ling, Jeff, 60
local average treatment effect (LATE), 198, 216, 246, 247, 252, 260
local linear approach, 248, 249
long format, 272, 286
long regression, 199
luck, 113–18, 132–33, 143–44, 151. See also chance
Ludwig, Jens, 6–7
Maddon, Joe, 351
Malhotra, Neil, 129
malnutrition, in India and Bangladesh, 343–44
margin of error, 102, 110
mask-wearing, during coronavirus pandemic, 360–61
matched-pair design, 223
matching, 214–15
McChrystal, Stanley, 63–64
McGlaughlin, Dan, 170–73
McGrath, Mary, 123–24
McNamara, Robert, 257
mean (μ), 24, 26, 34. See also reversion to the mean measurement: intermediate outcomes and, 339–41; mission in relation to, 336–43; partial, 337–38; and sample appropriateness, 345–49; strategic adaptation and, 349–52; of wrong outcome or treatment, 337–43
mechanisms: assessment of, 290–99; causal mediation analysis and, 291–92; confounders vs., 181–83; controlling for, 213–14; defined, 187; designing studies to test, 295–96; disentangling, 296–98; independent theoretical predictions about, 294–95; intermediate outcomes and, 292–94; overview of, 290–91
mediators. See mechanisms
metal detectors in airports, 337–38
Miguel, Edward, 342–43
miles-per-gallon vs. gallons-per-mile, 306–8
military service–earnings relationship, 238–39
minimum wage–unemployment relationship, 269–72, 270–72
For general queries contact webmaster@press.princeton.edu.
missions: aligning measurement with, 336–43; external validity and, 343–44; ill-defined, 341–43; sample appropriateness for, 343–49; strategic adaptation and, 349–52
Mo, Cecelia, 129
Mocan, H. Naci, 6
Montagnes, Pablo, 129–30
motivation in sports, 261
multivariable correlation, 21–22
National Aeronautics and Space Administration (NASA), 68
National Heart, Lung, and Blood Institute, 128
National Political Awareness Test (NPAT), 194–97, 206–9, 212, 214
natural experiments, 237–39, 240
Nature (journal), 107–8
Nature Human Behaviour (journal), 127
nearest neighbor matching, 214
negative correlation: defined, 13, 33; examples of, 16
Nelson, Leif D., 124, 126
never-takers, 227, 240
New England Journal of Medicine, 148, 280
newspaper endorsements, voter behavior affected by, 278–79, 279
Newton, Isaac, 349n
New Yorker (magazine), 139
n factorial, 115
95% confidence interval, 102–3, 110
noise: in correlation and causation questions, 183–86; defined, 95, 97, 109, 152; effects of, 109; hypothesis testing for, 104, 114; in randomized experiments, 222, 223; reversion to the mean linked to, 138, 142.
See also chance noncompliance, 228–32, 239, 256–61 non-linearity, 30–32, 83–86 NPAT. See National Political Awareness Test null hypothesis, 104–5, 110
Obama, Barack, 160
obesity, contagiousness of, 279–80
observations: defined, 15
Office of Information and Regulatory Affairs (OIRA), 358–59
oil production–government type correlation, 14–15, 14, 55–56, 56
omitted variable bias formula, 200–201, 200, 201, 216
one-sided z-test, 104
ordinary least squares (OLS) regression, 77, 92, 196
ordinary least squares (OLS) regression coefficients, 77
ordinary least squares (OLS) regression line, 29, 34, 77–81
outcome variables. See dependent (outcome) variables
out-of-sample predictions, 86, 86, 92
over-comparing, 118–21, 119, 127–28, 131
over-estimates, 176–78, 180, 182, 187
overfitting, 86–89, 92
Paltrow, Gwyneth, 38
Pape, Robert, 63–64
paradox of plenty, 14
Parents Music Resource Center (PMRC), 59–62
partial measures, 337–38, 352
Pascal, Blaise, 43
Pauling, Linus, 148
Paul the Octopus, 113–18
PCR tests. See polymerase chain reaction (PCR) tests Pence, Mike, 360
percentage point change, 309, 331
percent change, 309, 331–32
Perkoski, Evan, 4
p-hacking, 119–20, 120n, 122–26, 134, 206
physicalism, 48–49
pitchers, batting performance of, 345–49, 347, 348
placebo effect, 147–48
politics: campaign spending, 174–76; French mayors’ salary-performance relationship, 254–55; Southern realignment in, 311–14, 312, 313; stock prices, 248–49. See also elections; U.S. Congress; voter behavior; voter turnout polling, 95, 97–101, 103–4
polymerase chain reaction (PCR) tests, 329–31
Pope, Devin, 261
population difference in means, 165
populations: defined, 109; samples in relation to, 29–30, 94
positive correlation: defined, 13, 33; examples of, 16
posterior beliefs, 318, 326–28, 327, 328, 332
post-mortem analyses, 65–69
post-treatment covariates, 181, 187
potential outcomes, 163–67; defined, 50; explanation of, 39–40
potential outcomes framework, 39, 50
power pose, 131
precision: bias and, 98, 99; defined, 109; estimator quality and, 97, 98–99
prediction: considerations involved in, 21; correlation as useful for, 20–23; ethical issues in, 22–23; example of unreliable, 113–18; out-of-sample, 86, 86, 92; of presidential elections, 87–89; quantifying, 99–103
pre-registration, of research studies, 127–28
presidential elections, 87–89
pre-treatment covariates, 181, 187
pre-trends, 278, 279, 279, 286
Preuss School, 160–63, 161, 163, 167–68
prior beliefs, 318, 326–28, 327, 328, 332
Proceedings of the National Academy of Sciences (journal), 129
product of the deviations, 28
Project Vote Smart, 194
proximate causality, 47
proximate causes, 43–44
p-screening, 120–21, 123–24, 134
PS: Political Science & Politics (journal), 87
publication bias: defined, 134; in everyday life, 131–34; overview of, 118–21, 119; p-hacking, 119–20, 122–26; potential solutions to, 126–31; p-screening, 120–21, 123–24; reversion to the mean linked to, 149–50, 151; skepticism about facts because of, 122–26, 138–39

p-value, 104–5, 110, 114, 119–21, 127, 325

Quarterly Journal of Political Science, 108
Querubin, Pablo, 257, 260

racial bias, in health-related algorithms, 361–63, 363

Radio Lab (radio show), 139
random assignment, 239

RD designs. See regression discontinuity (RD) designs
reduced-form effect. See intent-to-treat (ITT) effect
regression, 74–92; controlling and, 198–209; elements of, 198; intellectual history of, 89–91, 141; linear, 79–86; non-linear data and, 83–86; overfitting and, 87–89; overview of, 74–79; presentation of, 89, 89; reading regression tables, 211–13, 213; sharp vs. fuzzy, 256–57; usefulness of, 91
regression coefficient (slope of regression line), 29, 34
regression discontinuity (RD) designs, 243–62; applications of, 246–47; continuity at the threshold in, 251–56, 253; defined, 262; examples of, 244–46, 245–47, 248–51, 252, 257–61, 258, 259, 261; implementation of, 247–51; noncompliance and, 256–61; overview of, 243–46
regression equation, 75, 92
regression lines, 92. See also ordinary least squares
(OLS) regression line
regression parameters, 75–76, 92
regression tables, 211–13, 213
regression to the mean. See reversion to the mean
regulations, government, 306–8, 358–59
Reinhart, Carmen M., 69
replication, 123, 128–30, 138–39
replication crisis, 139
representativeness: of samples, 21
Republican Party, 311–14
research design, 218, 239
resource curse, 14
reverse causality: in case examples, 174–76, 178–79; confounders in relation to, 174–76; controlling not effective for, 210; defined, 187; explanation of, 169–70, 170
reversion to the mean, 138–52, 176–81; beliefs not susceptible to, 151–52; cosmic habituation and, 139, 149–50, 151; dangers of not recognizing, 150; defined, 152; discovery of, 139–41, 140; everyday life examples of, 145–47; examples of, 6–7, 90–91; explanation of, 141–45; instances not susceptible to, 151; noise linked to, 138, 142; placebo effect compared to, 147–48; signal linked to, 142
Rogers Commission, 68
Rogoff, Kenneth S., 69
r-squared statistic, 29, 89, 212–13
running variable, 244–46, 262
samples: appropriateness of, 343–49; defined, 109; populations in relation to, 29–30, 94; representativeness of, 21; selected, 344–49; small, 101–2
sampling distribution, 99, 110
Sanders, Bernie, 249–51
San Diego City Schools, 160–63, 161, 163, 167
Sandler, Todd, 338
scale, for data representation, 305–11
scatter plots, 15, 15
Schmidt, Eric, 1
scholarships–earnings relationship, 244–46, 254–55
Schooler, Jonathan, 139, 149
Science (journal), 362–63
Screening of Passengers by Observation Techniques (SPOT), 322–24
Second Reform Act (United Kingdom, 1867), 108
Sekhon, Jas, 256
selected samples, 344–49, 353
selecting on the dependent variable: defined, 56–57, 70; error of, 56–64; world seemingly organized to encourage, 64–70
sensitivity analysis, 179
Shapiro, Jesse, 273, 275
sharp regression discontinuity design, 256, 262
Sheridan, Margaret, 293
short regression, 199
signal (systematic factors), 142, 152
significance, substantive vs. statistical, 107–8
Silver, Nate, 87, 89
Simmons, Uri, 124, 126
Simonsohn, Joseph P., 124, 126
Singer, David Andrew, 69
slope, 16, 34, 75. See also regression coefficient
Snider, Dee, 60
social media: voter behavior and, 107–8; well-being in relation to use of, 210–11, 211
Soll, Jack, 307–8
sorting, 254
Sousa, William, 6–7
Southern realignment in politics, 311–14, 312, 313
Spenkuch, Jorg, 248
Spiegelharter, David, 116, 117
Springsteen, Bruce, 60
spurious correlation, 184
standard deviation (\(\sigma\)), 27
state fixed effects, 272
statistical inference, 21, 105–7
statistical power, 234–35, 240, 325–26, 332
statistical significance, 104–5, 107–8, 110, 126–27
statistics: beliefs and, 314–28; defined, 18; substantive use of, 305–31; values and, 328–31. See also quantitative evidence
stock prices, 132–34, 151–52
strategic adaptation, 22, 337–38, 349–52, 353
stratification, 223, 234, 239
substantive significance, 107–8
suicide terrorism, 63–64
summation (\(\sum\)): defined, 24
Summers, Larry, 365–66
sum of squared errors, 29, 34, 76–79, 92
superstars, 132–34
Tamil Nadu Integrated Nutrition Project (TINP), 343–44
Tampa Bay Rays, 351
teeth flossing, 359–60
television’s effect on children’s academic performance, 273–75
Thompson, Dan, 251
time; causality and, 47–48, difference-in-differences design for studying changes over, 266–85
toxic dumping, 365–67
Transportation Security Administration (TSA), 322–24
treatments, 39, 50, 164. See also heterogenous treatment effects
treatment variables, 198, 215
Trump, Donald, 250, 360
2008 financial crisis, 69
unbiasedness, 109
under-estimates, 176–78, 187
under-reporting, 118–21, 119, 127–28, 131
unemployment–minimum wage relationship, 269–72, 270–72
U.S. Coast Guard, 352
U.S. Congress, voting records of members of, 193–97, 194, 206–9, 207–9, 212–13, 213, 214
U.S. Department of Education, 61
U.S. House of Representatives, 63–64
U.S. Secret Service, 61
U.S. Senate, 60
utilitarianism, 364
values: and decision-making with quantitative evidence, 328–31, 357, 361–67; hidden in quantitative approach, 361–63; influenced by quantitative approaches, 364–67. See also ethics
values, and quantitative evidence, 328–31
Vargas, Juan, 298
variables: control, 198, 215; defined, 13, 15; dependent (outcome), 57, 75, 91, 215; independent (explanatory), 75, 83–86, 92; instrumental, 231–32, 238, 240; running, 244–46; treatment, 198, 215
variance (\(\sigma^2\)), 26, 34
Vietnam War, U.S. bombing strategy in, 257–61, 258, 259
Vigen, Tyler, 184–85
violent conflict–commodity price shocks relationship, 296–98. See also civil war–economy relationship
vitamin C, 148
voter behavior: and gender discrimination, 294–95; get-out-the-vote campaigns and, 123–24; policy preferences and, 311–14, 312, 313; social pressure and, 107–8, 295–96
voter turnout: age in relation to, 19–21, 20, 79–86, 80–86, 89; newspaper endorsements’ effect on, 278–79, 279
Wainer, Howard, 101
Wald, Abraham, 231
Wald Estimator, 231–32, 240
war. See civil war–economy relationship; democratic peace theory; violent conflict–commodity price shocks relationship
war on drugs, 351–52
welfarism, 364
well-being, social media’s effect on, 210–11, 211
Wertham, Fredric, 60–61
wide format, 272, 286
William III, King, 349
Wilson, James Q., 5
window tax, 349–50
World Bank, 343–44
World War I, 42–44, 47
Yap, Andy, 131
Yoon, David, 284
youth: corruption of, 59–62; as dropouts, 62–63
z-test, 104