Contents

Pr	eface		xiii
1	Intr	oduction	1
	1.1	The world of galaxies	1
	1.2	A brief tour of galaxy observations	6
PA	ART :	I Basics of galactic dynamics	
2	Gra	vitation	17
	2.1	Matter and the gravitational field	18
	2.2	Spherical systems: Newton's shell theorems	22
	2.3	Circular velocity and dynamical time	26
	2.4	Examples of spherical potentials	28
	2.5	Exercises	38
3	Eler	nents of classical mechanics	42
	3.1	Mechanics of a particle	42
	3.2	Escape velocity	45
	3.3	Lagrangian formulation of classical mechanics	47
	3.4	Hamiltonian mechanics	49
	3.5	Exercises	59
4	Orb	its in spherical mass distributions	60
	4.1	General properties of orbits in spherical potentials	60
	4.2	Orbits in specific spherical potentials	64
	4.3	Integrals of motion	74
	4.4	Actions and angles in spherical potentials	78
	4.5	Numerical orbit integration	82
	4.6	Exercises	88
5	Equ	ilibria of collisionless stellar systems	92
	5.1	Collisionless vs. collisional dynamics	93
	5.2	The virial theorem	97
	5.3	The collisionless Boltzmann equation	100
	5.4	The Jeans equations	103
	5.5	The Jeans theorem	109

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

CONTENTS

viii

	5.6	Spherical distribution functions	111
	5.7	Exercises	128
6	Mass	ses of spherical stellar systems	131
	6.1	Dark matter in the Coma cluster	131
	6.2	The escape velocity near the Sun and the total mass of the Milky	
		Way	132
	6.3	The Local Group timing argument	134
	6.4	The mass of the Milky Way's dark matter halo	136
	6.5	The masses of dwarf spheroidal galaxies using the Jeans equation	138
	6.6	The Wolf mass estimator	141
	6.7	Ultra-diffuse galaxies and Dragonfly 44	144
	6.8	Estimating masses with multiple populations: cusps vs. cores in	
		dwarf spheroidals	147
	6.9	Exercises	151
PA	RT I	II Disk galaxies	
7	Grav	vitation in galactic disks	155
	7.1	The observed structure of disk galaxies	156
	7.2	Simple gravitational potentials for flattened mass distributions	159
	7.3	Gravitational potentials from disk density distributions	170
	7.4	Exercises	181
8	The	kinematics and dynamics of galactic rotation	185
	8.1	Velocity fields in external galaxies	185
	8.2	Rotation curves of external galaxies	193
	8.3	The kinematics of the Milky Way's interstellar medium	203
	8.4	Observing differential rotation locally: The Oort constants	209
	8.5	Exercises	214
9	Orbi	its in disks	217
	9.1	Motion in the meridional plane	218
	9.2	The separability of disk orbits	222
	9.3	Close-to-circular orbits: The epicycle approximation	227
	9.4	Action-angle coordinates in and around disks	231
	9.5	Exercises	242
10	Equi	ilibria of galactic disks	247
	10.1	The axisymmetric Jeans equations and the asymmetric drift	249
	10.2	Distribution functions for razor-thin disks	251

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

ix

CONTENTS

	10.3	The velocity distribution in the solar neighborhood	259
	10.4	The vertical equilibrium state of disks	269
	10.5	Exercises	279
11	Cher	nical evolution in galaxies	283
		Chemical enrichment processes in galaxies	283
		Classical models of galactic chemical evolution	289
		The evolution of abundance ratios	305
	11.4	Exercises	321
D۸	рт і	II Elliptical galaxies	
		II Elliptical galaxies	220
12		vitation in elliptical galaxies and dark-matter halos	329
	12.1	The three-dimensional structure of elliptical galaxies and dark-matter halos	330
	12.2	Gravitational potentials for mildly-flattened and triaxial mass	330
	12.2	distributions	338
	12.3	Multipole and basis-function expansions	351
		N-body modeling	363
		Exercises	378
13		its in triaxial mass distributions and surfaces of section	380
••		Surfaces of section	380
		Orbits in two-dimensional, non-axisymmetric systems	384
		Chaos in axisymmetric systems	389
		Orbits in triaxial systems	395
		Exercises	412
			44.5
14	_	libria of elliptical galaxies and dark-matter halos	416
		The tensor virial theorem	417
		Are elliptical galaxies flattened by rotation?	424
		Schwarzschild modeling	428 444
	14.4	Exercises	444
15	Grav	ritational lensing	448
	15.1	The lensing equation	451
		The lensing and Fermat potentials	456
	15.3	Magnification and shear	469
		The occurrence of images and the critical and caustic curves $\ $	481
	15.5	Exercises	492
16	Mass	s modeling in elliptical galaxies	500

X CONTENTS

	16.1	Supermassive black holes at the centers of galaxies	500
	16.2	Schwarzschild modeling and the structure of elliptical galaxies	510
	16.3	Jeans Anisotropic Modeling (JAM)	516
	16.4	The inner orbital structure of elliptical galaxies	518
	16.5	The stellar and dark mass profiles of elliptical galaxies	523
	16.6	Exercises	529
PA	RT I	V Galaxy formation and evolution	
17	Forn	nation of dark-matter halos	539
	17.1	Cosmological evolution of small perturbations	540
	17.2	Spherical collapse of overdensities in the Universe	562
	17.3	Virialization	565
	17.4	The halo mass function	578
	17.5	Exercises	584
18	Extr	agalactic astronomy	589
	18.1	Stellar-population synthesis modeling	589
	18.2	Dark-matter halos and their galaxies	609
	18.3	Galaxy classification	623
	18.4	Galaxy-scaling relations	633
	18.5	Star formation in galaxies	640
	18.6	Exercises	647
19	Hier	archical galaxy formation	650
	19.1	The role of mergers in galaxy evolution	652
		Dark-matter halo growth by mergers and accretion	659
		Galaxy growth by gas accretion	674
		Dynamical processes	687
	19.5	Exercises	713
20	Inter	rnal evolution in galaxies	718
	20.1	The (in)stability of disks	721
		Bars	746
	20.3	Spiral structure	771
	20.4	Exercises	797
ΑF	PEN	IDICES	
A	Coor	rdinate systems	801
		Generalities	801

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

CC	NTEN	ITS	xi
	A.2	Positions in the Milky Way	802
	A.3	Velocities in the Milky Way	804
В	Mat	hematical background	806
	B.1	Vector calculus	806
	B.2	The calculus of variations and the Euler–Lagrange equation	808
	B.3	Special functions	809
	B.4	Solving integral and differential equations	823
C	The	general theory of relativity and galaxies	827
	C .1	Einstein's field equations and geodesic motion	828
	C.2	The Newtonian limit	839
	C.3	Gravitational light bending and the Shapiro delay	846
	C.4	Homogeneous and isotropic cosmological models	849
Bil	bliogi	raphy	859
Inc	dex		917

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Chapter 1

Introduction

Galaxies. They are some of the most beautiful and fascinating objects in the Universe. They come in a large variety of sizes and shapes, colors and brightnesses, from majestic spirals to seemingly boring ellipticals, massive cluster members to dinky little satellites only seen nearby. Every new way that astronomers devise to look at the sky reveals a different view of galaxies, from the familiar optical and near-infrared images dominated by starlight, to the dust emission in the far infrared, and the high-energy processes that shape the far reaches of the wavelength scale. Remarkably, much of the structure of galaxies can be understood using simple physics and the goal of this book is to provide an introduction to the quantitative understanding of galactic structure, formation, and evolution that is derived primarily from chasing down the effects of gravity on stellar systems. Of course, while gravity is arguably the most important fundamental force on the scale of galaxies, it does not suffice to understand the full picture of galaxies and their formation and evolution. The physics of radiation, hydrodynamics, nuclear fusion, chemistry, etc. play a fundamental role as well and we will also discuss their important contributions to shaping galaxies.

1.1 THE WORLD OF GALAXIES

Before we start our sojourn in the realm of galaxies, let's take a quick tour of the types of galaxies found in the Universe. Figure 1.1 displays two very beautiful, famous galaxies: M51 and Cen A. M51 is a *grand-design spiral* galaxy. While the origin of spiral structure in galaxies remains an open problem with likely a variety of solutions, in this case the beautiful spiral structure is most probably caused by the response to the gravity from the companion galaxy at the top of the image. Spiral structure, besides looking pretty, is an important driver of star formation, as the gravitational force of the spiral compresses gas, leading to the formation of new stars within the spirals. These show up as the compact dots along the spiral arms in Figure 1.1, which are small clusters of young stars, traced by their ionized HII emission here.

Cen A is one of the brightest galaxies in the sky and an example of an S0 galaxy, a galaxy somewhere between the extremes of elliptical and spiral galaxies. Its exact classification is still a matter of debate and this illustrates the difficulty we face when studying galaxies. The only data we have is a single snapshot in time from a single perspective, with very limited information on its three-dimensional structure.

Figure 1.1: M51 (NASA/JPL-Caltech/Univ. of Arizona/DSS/SST) and Cen A (NASA/DOE/Fermi LAT Collaboration, Capella Observatory).

Because no galaxy is a fully relaxed system, *all* galaxies are evolving and many are going through dramatic transformations. Cen A has probably endured a merger in its recent past, leading to a burst of star formation and the fueling of an active galactic nucleus (AGN)—a supermassive black hole with a bright accretion disk—at its center.

While most of the famous galaxies are as large as those pictured in Figure 1.1, many other galaxies are quite a bit smaller. We find many examples of these in our own backyard, as satellite galaxies of the Milky Way. Figure 1.2 shows two examples: the Large Magellanic Cloud (LMC) and the Fornax dwarf galaxy (not to be confused with the Fornax cluster!). The LMC is one of the closest neighbors of the Milky Way and the largest of its satellite galaxies—galaxies caught in the web of the Milky Way's gravitational attraction. The LMC is part of a pair of galaxies that fell into the Milky Way's gravitational field together and its irregular appearance is in large part due to the tidal interactions with its sibling, the Small Magellanic Cloud, and with the Milky Way. The LMC has a prominent bar at its center and was likely a barred spiral galaxy before it started interacting with the Milky Way. The LMC is about 10 times smaller in size and mass than the Milky Way. It has a lot of gas and many areas of active star formation. Some of the most famous star-forming regions are in the LMC.

Fornax is an example of a dwarf spheroidal galaxy, which are the smallest galaxies. Such galaxies are much more diffuse, as can be seen by comparing the Fornax dwarf galaxy to the pictures of M51 or Cen A above, and their masses are dominated by dark matter, making them some of the best places we have to constrain the fundamental

INTRODUCTION 3

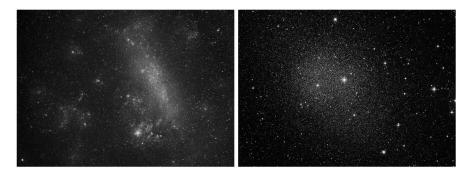


Figure 1.2: The Large Magellanic Cloud (credit: Dylan O'Donnell) and the Fornax dwarf spheroidal (ESO/Digitized Sky Survey 2).

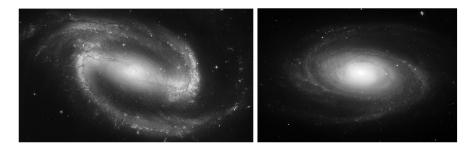


Figure 1.3: NGC 1300 and M81 (both NASA, ESA, and The Hubble Heritage Team STScI/AURA).

nature of dark matter. Fornax in particular is a bit of a dynamical celebrity, because it has a number of globular clusters. If the dark-matter profile in the centers of galaxies has the expected, cuspy shape, then the process of dynamical friction should have caused these clusters to have long since spiraled into the center (Tremaine 1976b). That Fornax still has these globular clusters therefore indicates that the dark-matter density is lower than expected at its center.

Circling back to Milky-Way-sized galaxies, Figure 1.3 gives two more examples of large disk galaxies: NGC 1300 and M81. The most obvious property of NGC 1300 is the rectangular-ish feature at its center, with two prominent spiral arms emanating from its ends. This feature is called a *bar* (for obvious reasons) and it is a common feature of disk galaxies. Overall, about 30% of disk galaxies in the local Universe have strong bars, a fraction that goes down as we look further into the past, showing that bars are a relatively recent (in cosmic time units!) feature of galaxies. Our own Milky Way has a bar at its center, the exact properties of which are still up for debate, but it is far less strong than the bar in NGC 1300. Bars form naturally during the evolution of disk galaxies.

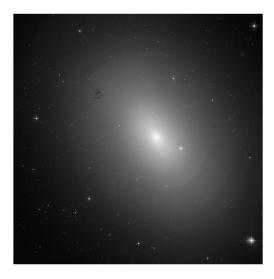


Figure 1.4: NGC 3923 (NASA/ESA Hubble Space telescope).

M81 is a spiral galaxy without an obvious bar at its center. Instead, it has a prominent *bulge*, a spheroidal concentration of mostly old stars, and tightly wound spirals. M81 is part of a group of galaxies much like the Local Group, the set of galaxies that includes the Milky Way and the Andromeda galaxies (which we will typically refer to as M31), their satellites, and some more small galaxies associated with them. M81 interacts with M82 and NGC 3077, a good reminder that almost no galaxy lives in isolation.

We could keep showing pictures of barred and spiral disk galaxies (and of barred-spiral disk galaxies!), but let's look at an example of an elliptical galaxy: NGC 3923 in Figure 1.4. NGC 3923 is a more-interesting-than-usual example of an elliptical galaxy, which normally have smooth, elliptical light distributions without any features. Even though most elliptical galaxies might at first glance therefore seem a little boring, their internal orbital structure can be quite complex. NGC 3923 is especially interesting, because it has multiple shell-like features in its outer parts; such galaxies are known as *shell galaxies*. The presence of shells indicates that the stars are arranged in a structure more akin to layers than in a smooth, continuous distribution like in other elliptical galaxies. Such shell-like features are common in elliptical galaxies, with an estimated 50% of elliptical galaxies displaying faint shells. The shells are an indication that NGC 3923 has experienced a merger with a small satellite and the distribution of orbits of stars in the satellite got re-arranged to give rise to a density profile with sharp edges.

Galaxies are not just made up of single stars, but also contain stellar clusters of various sorts. Because the evolution of these clusters is intimately related to the evolution of their host galaxies, we will also give them some attention in this book. Two

INTRODUCTION 5

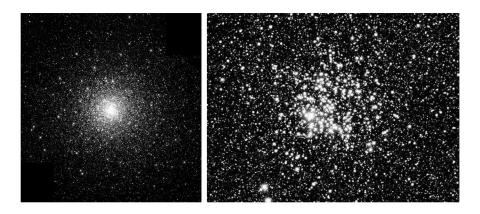


Figure 1.5: M80 (NASA, The Hubble Heritage Team, STScI/AURA) and M11 (NASA).

of the main types of stellar clusters are globular clusters and open clusters. Figure 1.5 gives an example of one of each: the globular cluster M80 and the open cluster M11. It is immediately clear that these are two quite different beasts. Globular clusters are extremely dense, with typical sizes of a few to 10 pc and containing upwards of ten thousand stars (up to a million). The center of M80 is a blob of light, even in this picture taken by the Hubble Space Telescope, because there are too many stars close together to be able to resolve all of them as individual stars in this image. M80 is one of the most massive of the ≈ 150 globular clusters in the Milky Way. Globular clusters are old and are found in almost all galaxies, with the number of globular clusters in a galaxy scaling with the total mass (e.g., Harris et al. 2013). Because they are so dense, globular clusters display a rich dynamical phenomenology that is quite different from that of galaxies. Dynamics and stellar evolution are also intimately linked in globular clusters, making them a fine laboratory for stellar evolution and potentially factories for binary black holes such as those seen by LIGO. Globular clusters can also get disrupted by tidal interactions with their host galaxies, leading to the production of narrow stellar streams.

Open clusters are very different from globular clusters. The main difference is that they are much less dense and many of them are only marginally bound. Open clusters dot the disks of star-forming galaxies. They consist of stars born together in a (typically recent) star-formation event, have typical sizes of about 10 pc, and contain a few hundred to tens of thousands of stars. Open clusters are generally only a few hundred million years old, although some survive for many billions of years. The open cluster pictured in Figure 1.5, M11, is about 250 million years old and is a rich open cluster with about 3,000 stars. Open clusters are an important laboratory for simple stellar evolution. Open clusters get easily disrupted by tidal forces and only the most tightly bound therefore survive for billions of years.

Figure 1.6: NGC 4565, an edge-on disk galaxy (ESO).

1.2 A BRIEF TOUR OF GALAXY OBSERVATIONS

To set the stage for the material covered in this book, we start with a high-level overview of the various components that make up galaxies. The objective here is not to provide a detailed and exhaustive overview of galaxy phenomenology (that will be done in later chapters!), but merely to briefly discuss the size, shape, and contribution to the overall mass budget of different galactic components.

We will focus our overview on large disk galaxies. Large disk galaxies are one of the most important type of galaxies for various reasons: approximately half of all galaxies in the local Universe are disk galaxies, and such galaxies appear to be most efficient at converting gas into stars. Therefore, most stars in the local Universe live in the disks of large disk galaxies. We also live close to the mid-plane of a large disk galaxy, the Milky Way. This provides us with a detailed, close-up view of the structure of such a galaxy. In the Milky Way, we can observe stars from the most luminous giants to the lowest-mass M dwarfs, from the center of the Galaxy to the outskirts of the spherical stellar halo surrounding the disk, and we can study gas in its various atomic and molecular phases. Because galactic disks are "dynamically cold", meaning that the ratio of their velocity dispersion to the typical velocity of a star is small, they are also prone to instabilities that give rise to bars, spiral structure, etc., which are phenomena that we will discuss in later chapters.

Figure 1.6 shows a typical disk galaxy, NGC 4565, seen edge-on. NGC 4565 displays all of the components of a typical disk galaxy. Its structure is dominated by a disk consisting of stars and gas, with a protrusion of stars near the center that is called the bulge. The gas itself cannot be seen in this picture, but its presence can

INTRODUCTION 7

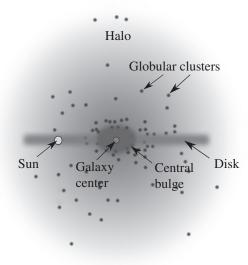


Figure 1.7: A schematic overview of the Milky Way (RJHall at English Wikipedia).

be inferred because gas is traced by dust grains, which redden passing starlight and cause the reddish band close to the disk's mid-plane. NGC 4565 does have a stellar halo (Harmsen et al. 2017), but it is too faint to be seen in this picture. Also not seen in this picture (and never seen *directly*—whatever that means—in any picture of any galaxy) is the spheroidal distribution of dark matter that surrounds the disk and extends to very large distances from the center.

Figure 1.7 provides a schematic overview of a disk galaxy, the Milky Way in particular (but except for the Sun's position, this structure applies to all disk galaxies). This illustration shows the disk edge-on and displays the system of globular cluster that surrounds each galaxy, in addition to the components that we already discussed. The Galactic center is also separately emphasized. We have known for about two decades that the centers of galaxies host supermassive black holes (see Chapter 16), which can be active and surrounded by an accretion disk (such accretion disks are a topic that we will not cover in this book) or inactive and often surrounded by a dense *nuclear star cluster*.

1.2.1 The distribution of stars in galaxies

One of the most basic observations about the disks of galaxies is that they are **exponential**. That is, their light profiles I(R) follow an exponential decline with radius $I(R) = I_0 \exp(-R/h_R)$. This had been known in the mid-1900s, but was most famously discussed by Freeman (1970) "On the disks of spiral and S0 galaxies" (oh,

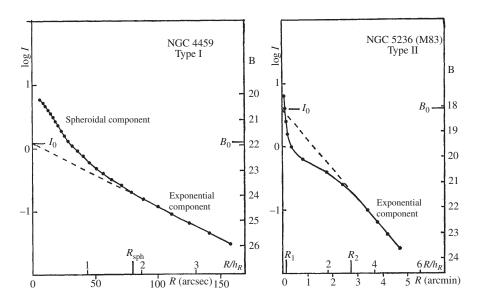


Figure 1.8: Galaxy disks have exponential profiles (Freeman 1970).

to be able to write a paper with a title like that!). Figure 1.8 is the first figure in Freeman's paper, which shows the surface brightness as a function of radius along the major axis in the blue B band. Because surface brightness is given on the y axis as a logarithmic quantity measured in magnitudes, the linear decline implies an exponential decline of the light profile. Both of the shown galaxies only follow the exponential law over a restricted radial range. Near the center they rise precipitously, due to the presence of the bulge (the "spheroidal component" above); the galaxy on the right also has a flattened part of the light profile near the center, which is not uncommon.

The second most important dimension of a disk is its vertical dimension. Vertical for the moment means perpendicular to the two-dimensional plane of the disk, the direction along which the disk is narrowest. Along the vertical direction, the density also falls off quickly in a roughly symmetric manner; the peak of the vertical density occurs at the **mid-plane**, the zero-point of the vertical coordinate. Like for the radial profile, we look at the vertical profile of the surface brightness to get a sense for what the vertical mass distribution is. Figure 1.9 shows a typical result. This figure shows vertical surface-brightness profiles for NGC 4244 at different distances from its center. Again, we see a linear decline at large distances, which implies an exponential fall-off (because the surface brightness in this figure is again a logarithmic quantity). Near the mid-plane the profile flattens and becomes close to constant. The fit that is shown is a sech² profile, a hyperbolic secant squared, which is the equilibrium solution of a self-gravitating isothermal disk, as we will see in Chapter 10.4. As we discussed above and will discuss below in more detail, disks contain gas and stars of various ages with different vertical distributions and the simple isothermal—having

INTRODUCTION 9

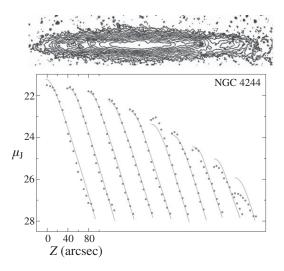


Figure 1.9: NGC 4244: top: a pure-disk galaxy seen edge-on; bottom: vertical surface-brightness profiles at a range of distances from the center; profiles are displaced along the X-axis to avoid overlapping (van der Kruit & Freeman 2011).

the same amount of random motion at each vertical height—can therefore not be entirely correct. The sech² profile should therefore not be taken too seriously, but is simply a physically-motivated profile that does a good job of fitting the observations.

The ratio between the scale length h_R of the radial decline and the scale height h_z of the vertical decline is a measure of the thickness of the disk. A typical value is $h_R/h_z \approx 10$, meaning that disks are quite thin.

Whether we use number counts or surface brightness, to translate these observed profiles to mass profiles, we have to assume stellar-population models for how mass is traced by light. This is done by applying a **mass-to-light ratio** M/L that converts the amount of light observed to an amount of (stellar) mass and is usually silently expressed in solar units (the Sun's mass over the Sun's luminosity). The stellar mass-to-light ratio is typically assumed to be constant through the galaxy and is $M/L \approx 3$, but it depends on the passband in which the luminosity is measured. The total mass-to-light ratio in galaxies is much larger and depends on position, because in addition to stars, it includes the dark matter, which adds mass, but does not contribute to the luminosity; the total M/L also includes gas, which in broad optical and near-infrared passbands similarly does not contribute to the luminosity, while adding mass (but generally much less mass than either stars or dark matter; see below). The total mass-to-light ratio depends on position because the fraction of total mass that is dark matter and gas strongly depends on position.

While the radial and vertical profiles of the disk are (close to) exponential, the central bulge is not. Bulges typically have profiles similar to elliptical galaxies, which are modeled as **Sérsic profiles**: $\mu(R) = \mu_0 - b_n R^{1/n}$, where μ is the surface brightness,

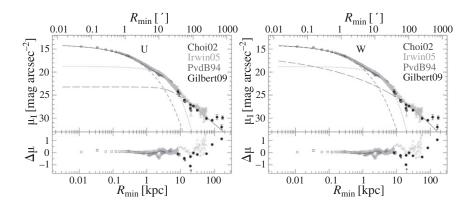


Figure 1.10: Surface-brightness profile of M31 along with a fit with a Sérsic bulge (dashed), exponential disk (dotted) and halo (long dashed) with the combined fit profile as the full curve; halo model is a power-law on the left and Sérsic on the right (Courteau et al. 2011).

 μ_0 is the central surface brightness, n is the Sérsic index, and b_n can be computed from the value of n. The case of n=4 is the classic **de Vaucouleurs profile**, which represents the surface brightness profiles of large elliptical galaxies well. Setting n=1, we have an exponential profile.

As an example, Figure 1.10 displays the surface-brightness profile of M31, the closest large disk galaxy outside of the Milky Way. M31's bulge component is a dashed line in fits to this profile with a Sérsic bulge, exponential disk, and a stellar halo (with two different radial profiles in the two panels). The bulge has a Sérsic index of about 2.2 and dominates within 1 kpc, the very central region of the galaxy. The disk, given by the dotted line, starts to dominate the light outside 1 kpc and does so out to 10 kpc. The stellar halo dominates the light outside the disk region.

Given how prominent the stellar halo is outside the disk region, let's take a closer look at this component. Figure 1.11 shows deep observations of some external disk galaxies. These observations are deep enough to reveal the low surface-brightness envelope surrounding these disks (the actual disks are painted in from shallower observations). When fitting the radial surface-brightness profile of these galaxies with an exponential-disk plus a bulge, many of these galaxies have excess light at large radii (> 20 kpc) beyond the exponential disk. This light extends in a spheroidal manner, not a disk, and follows an approximate power-law profile. There is great diversity in the profiles of the stellar halos in galaxies. This is because the stellar halo is believed to form primarily from mergers (accreted material from merging satellite galaxies, or material from the main galaxy disturbed by a merger).

While the stellar halo takes up a large volume, its total stellar mass is much smaller than that of the other main galactic components. The stellar halo typically only accounts for a few percent of the stellar mass of a galaxy and much less than that of the INTRODUCTION 11

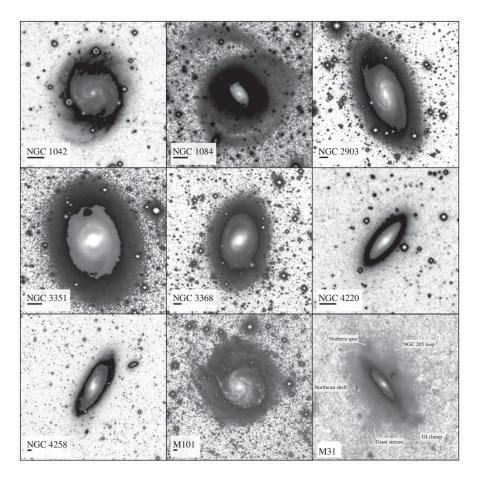


Figure 1.11: Stellar halos (Merritt et al. 2016).

total mass. There is no part of a galaxy where the stellar halo dominates the density, because it is always overwhelmed by either the bulge, disk, dark-matter halo, or the gaseous component.

1.2.2 The distribution of gas in galaxies

All baryonic matter was once in gaseous form, but in large, present-day disk galaxies only about 10% of the baryonic mass is present as cold/warm gas in the interstellar medium. Gas is present in galaxies in different phases and in both atomic and molecular form. Making a precise census of all of the gas in galaxies, in particular the amount of hot halo gas, is difficult.

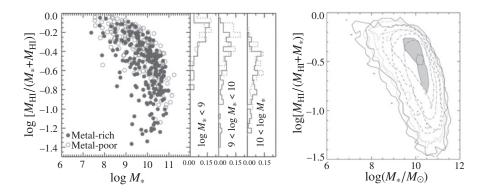


Figure 1.12: The gas content of galaxies (Zhang et al. 2009). Left panel: HI gas mass fraction vs. stellar mass for metal-rich (red) and metal-poor (blue) galaxies, for galaxies with direct HI observations. Right panel: HI mass fraction vs. stellar mass for star-forming galaxies with indirect HI measurements.

Stars form from cold molecular gas. Cold gas is contained in a disk component much like the stellar disk component that we discussed above. Most of the gas is atomic hydrogen, or HI. Figure 1.12 shows the cold-gas content (HI in particular) as a function of stellar mass for a sample of galaxies in the local Universe. The Milky Way's stellar mass is about $6\times10^{10}\,M_\odot$ or $\log(M_*/M_\odot)\approx10.8$ (Bovy & Rix 2013); gas makes up about 10% of the baryonic disk mass in the Milky Way. Figure 1.12 shows that the gas fraction rises as one goes to lower mass galaxies and the dynamics of gas and its interaction with stars is thus much more important in lower mass galaxies than it is in the Milky Way.

In the Milky Way, we can make a reasonably complete census of the interstellar medium near the Sun. The main components are: atomic hydrogen (HI), ionized hydrogen (HII), and molecular hydrogen (H_2), contributing $\approx 1.01 \, \mathrm{cm}^{-3}$, $\approx 0.015 \, \mathrm{cm}^{-3}$, and $\approx 0.15 \, \mathrm{cm}^{-3}$, respectively in the mid-plane (McKee et al. 2015). The atomic hydrogen comes in cold and warm phases that constitute $\approx 80\%$ and $\approx 20\%$ of the local HI density. Converting these number densities in the mid-plane to a mass density, we find that the mid-plane gas density is about $0.041 \, M_\odot \, \mathrm{pc}^{-3}$, approximately the same as that in stars ($\approx 0.040 \, M_\odot \, \mathrm{pc}^{-3}$; Bovy 2017b). The molecular gas layer has an exponential scale height that is approximately $h_z = 100 \, \mathrm{pc}$, the cold component of HI has about the same thickness, the warm HI has $h_z \approx 300 \, \mathrm{pc}$, while the ionized gas is contained in a much thicker layer. The total local gas surface density is $\approx 14 \, M_\odot \, \mathrm{pc}^{-2}$ with HI contributing $\approx 11 \, M_\odot \, \mathrm{pc}^{-2}$, HII $\approx 2 \, M_\odot \, \mathrm{pc}^{-2}$, and H_2 adding $\approx 1 \, M_\odot \, \mathrm{pc}^{-2}$.

The radial distribution of these gas components is much less certain. The radial surface density of HI is shown in the left panel of Figure 1.13. Thus, the density of HI is almost constant within 10 kpc or at most displays a shallow decline; outside

INTRODUCTION 13

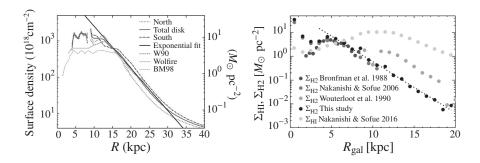


Figure 1.13: The surface density of neutral hydrogen (Kalberla & Kerp 2009; left panel) and of molecular hydrogen (Miville-Deschênes et al. 2017; right panel) in the Milky Way.

of 10 kpc it falls off exponentially. But note that there are significant asymmetries between different parts of the distribution.

A smaller fraction of the ISM is contained in molecular gas (about 10% near the Sun). The radial profile of the molecular gas is similar to that of the HI: it is approximately constant in the inner Galaxy and drops off exponentially at larger radii, as shown in the right panel of Figure 1.13. But the molecular gas has a shorter scale length than the HI, so very little of it is found outside of 15 kpc. Almost all of the molecular gas is contained in molecular clouds.

1.2.3 The distribution of mass in galaxies

Now that we have a good sense of the stellar and gas distribution in a typical disk galaxy, let's take a look at the largest contributor to the galactic mass distribution: the dark-matter halo. Dark matter is a largely unknown constituent of the Universe, likely a new particle, that overall is about 5 times more abundant (e.g., Planck Collaboration et al. 2016) than ordinary matter (sometimes called "baryonic matter" although this misses the ordinary, fermionic matter that is, however, negligible in mass compared to its baryonic counterpart). In galaxies such as the Milky Way, there is more than ten times more dark matter than ordinary matter, with the remaining baryonic matter likely in warm and hot phases in the interstellar and intergalactic medium (e.g., Shull et al. 2012). We know about the presence of dark matter solely through its gravitational influence and this book will cover how we have learned and are continuing to investigate the distribution of dark matter in galaxies.

To get a sense of the distribution of dark matter, we will plot the density and enclosed mass of different components of the Milky Way. We use the mass model for the Milky Way from McMillan (2017). This model has a bulge, disk, and dark-matter halo potential (ignoring the contributions from the stellar halo and including those from the gas together with the stellar disk). In the top panel of Figure 1.14, we look at the density of the different components in the mid-plane of the Milky Way

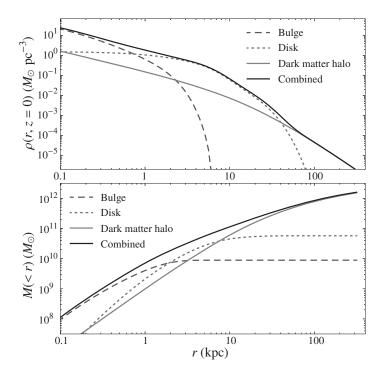


Figure 1.14: The mass profile of the Milky Way.

(at z = 0) as well as the total density. Much like in M31 above, the bulge component dominates the density within 1 kpc, but becomes less important after that. The stellar disk dominates the density between 1 kpc and about 30 kpc, after which the dark-matter halo dominates.

The total density near the Sun (at \approx 8 kpc from the center) is about $0.1\,M_\odot\,\mathrm{pc^{-3}}$, with only about 1/10th of that contributed by dark matter. The bottom panel of Figure 1.14 shows the total mass enclosed within a given radius for the different components and for the total mass. The total mass in the bulge+disk is approximately equal to the total mass in the dark-matter halo within 10 kpc from the center. Outside of this, the dark-matter halo dominates the mass and at the edge of the Milky Way, around 250 kpc from the center, there is more than ten times as much dark matter as there is ordinary matter. We will have much more to say about the distribution of dark matter in later chapters.

Index

4000 Å break, 594	with type Ia delays, 317
A, 210	Action diamond, 241
B, 210	Action-angle coordinates, 57
D4000, 594	action diamond, 241
H, 541	adiabatic approximation, 233
H_0 , 542	adiabatic invariance, 58
$M_{\rm vir}$, 35	convergent method, 240
R_{25} , 194	Staeckel approximation, 237
$T_{0,\text{CMB}}$, 560	Active galactic nuclei
$X_{\rm CO}$ factor, 644	BL Lac objects, 631
[Fe/H], 314	blazars, 631
[O/Fe], 314	duty cycle, 632
[O II] line, 591	LINERs, 630
[X/H], 314	optically violent variables, 631
Δ_{v} , 35, 567	quasars, 631
$\Omega_{0,\Lambda}$, 542	radio galaxies, 630
$\Omega_{0,b}$, 542	Seyfert galaxies, 630
$\Omega_{0,k}$, 542	unified model, 632
$\Omega_{0,m}$, 542	Active galactic nucleus, 630
$\Omega_{0,r}$, 542	Active galaxies, 630
α elements, 286	Adiabatic approximation, 233
α enhanced, 305	Adiabatic contraction, 409
\dot{M}_* , 290	Adiabatic contraction, 409 Adiabatic initial density perturbations
γ models, see Gamma models	556
$\mathcal{R} = R_{\rm CR}/R_b, 750$	Adiabatic invariance, 58, 577
ρ_c , 542	Age–metallicity relation, 791
r_{max} , 36	Age-velocity-dispersion relation, 786
r _{vir} , 35, 567	AGN feedback, see Feedback
$t_{\rm dyn}$, 27	Alpha elements, 286
v_{max} , 36	Alpha enhanced, 305
v _c , 26	Andromeda galaxy, 10
[NII], 185	Angle-action coordinates, see
	Action-angle coordinates
Abel integral equation, 823	Angular diameter distance, 454, 856
Abel inversion, 823	Angular momentum, 44, 61
Abundance ratios	z component, 218
definition of [X/H], 314	conservation of, 218
evolution, 305	conservation of, 61
evolution of [O/Fe] vs. [Fe/H], 315	specific, 61
solar abundances, 315	Angular momentum barrier, 62, 219
Accreting box model, 301	Anisotropic distribution function,
metallicity distribution, 303	118
with outflows and recycling, 303	stability, 575

Anisotropy	vertical profile, 747
degeneracy with mass, 107, 137	Baryon acoustic oscillations, 560
orbital, 106	Baryonic feedback, see Feedback
Antennae galaxies, 651	Baryonic Tully–Fisher relation, 636
Anti-spiral theorem, 778	Basis-function expansion, 352
Antonov's second law, 575	Bessel functions, 814
Apocenter, 63, 220	Fourier–Bessel theorem, 815
Arp 271, 651	modified Bessel functions, 815
Associated Legendre polynomials, 354,	numerical integration, 816
821	of the first kind, 814
recurrence, 822	spherical Bessel functions, 816
Astroid caustic, 487	Big Bang nucleosynthesis, 285
Asymmetric drift, 250, 256	Binding energy, 111
solar neighborhood, 261	Birkhoff's theorem, 562
Atomic gas	BL Lac objects, 631
radial profile, 12	Black-hole–galaxy scaling relations, 508
Attenuation, 605	Blazars, 631
Augmented density, 119	Blue cloud, 628
Axisymmetric Jeans equations, see also	Bottom-up structure formation, 580
Jeans equations	Bound-bound emission, 675
asymmetric drift, 250	Bound-free emission, 675
azimuthal, 249	Box orbit, 386
azimuthal, razor-thin, time-dependent,	parent, 387
723	Boxlet, 403, 406, 755
decoupled vertical, 250	Boxy isophote, 335
radial, 249	Bremsstrahlung, 675
radial, razor-thin, time-dependent, 723	Buckling instability, 769
separable, 250	Bulge shock, 707, 709
vertical, 249, 270	6 , ,
in terms of surface density, 271	Canonical momentum, 49
Azimuthal action, 58, 79	Canonical transformation, 53
Azimuthal frequency, 63	Caustic (lensing), 485
in the epicycle approximation, 227	fold and cusp, 488
Azimuthal period, 63	Cen A, 1
1	Centrifugal force, 699
Banana orbit, 406	Centrophilic orbit, 403
Bar instability, 733	Centrophobic orbit, 403
Barnes–Hut tree, 655	CGM, see Circumgalactic medium
Bars	Chaotic orbit, 389
connection to spirals and rings, 750	Characteristic curve, 758
dissolution, 770	Chemical enrichment
fast and slow, 750	r-process, 286
gas flows, 769	s-process, 286
pattern speeds, 749	time scales, 287
peanut shape, 748	type Ia supernovae, 286
radial profile, 747	type II supernovae, 285
shape, 747	yields, 288
strong and weak, 747	Chemical evolution
Tremaine–Weinberg method, 749	abundance ratios, 305

accreting-box model, see Accreting axisymmetric, razor-thin disk, 723 box model density, 104 closed-box model, see Closed box phase-space density, 101 model Convergence, 457 instantaneous recycling elliptical power law, 459 approximation, 289 Cooling function, 675 leaky-box model, see Leaky box model Cooling time, 680 pre-enrichment, 297 Core collapse (globular clusters), 720 recycling fraction, 300 Core galaxies, 332 Christoffel connection, 834 Core-collapse supernova enrichment, 285 Churning, 784 Cored logarithmic potential, 193 Circular frequency, 227 Coriolis force, 699 Circular velocity, see Rotation curve Corotation radius, 737 Circumgalactic medium, 687 Cosmic noon, 642 Classical dwarf spheroidal, 139 Cosmic ray spallation, 285 Closed box model, 290 Cosmic shear, 450 G-dwarf problem, 296 Cosmic star-formation history, 642 Cosmological constant, 540, 839 metallicity distribution, 291 with type Ia delays, 310 Counter-rotating disk, 512 Closed long-axis orbit, 387 Covariant derivative, 832 Closed short-axis orbit, 388 Critical curve, 485 Cold-mode accretion, 674 Critical density, 542 Collisional excitation cooling, 675 Critical surface density, 457 Critical wave number (stability), 725 Collisional ionization cooling, 675 Collisional ionization equilibrium, 676 Critical wavelength (stability), 725 Collisionless Boltzmann equation, 100 Crossing time, 27 canonical coordinates, 101 Curl. 807 Cartesian coordinates, 101 Curvature potential, 844 equilibrium, 102 Cusp caustic, 488 Liouville's theorem, 102 Cut (lensing), 492 one-dimensional, 269 Cyclic coordinate, 49 Collisionless dynamics, 94 disk galaxies, 96 D4000 index, 594 versus collisional, 93 Dark energy, 854 Comoving coordinates, 544 Dark matter, 13 Comoving distance, 544, 852 cusp vs. core, 147 Compton heating, 677 density near the Sun, 278 Concentration disk rotation curves, 201 King profile, 117 subhalos, 329, 712 NFW profile, 35 Dark matter halos Conditional halo mass function, 668 radial profile, 34 Configuration space, 51 shape, 336, 576 Conjugate momentum, 49 subhalos, 329, 712 Conservative force, 45 Dark-energy domination, 541 Constant anisotropy distribution de Vaucouleurs profile, 10, 330 function, 120 approximation with gamma=3/2 sample, 122 model, 332 stability, 575 Decaying mode, 553 Continuity equation Declination, 803

Deflection angle	stability, 575
axially-symmetric lens, 452	sampling an anisotropic spherical
GR calculation, 847	distribution function
logarithmic potential, 452	constant anisotropy, 122
NFW potential, 452	Osipkov–Merritt anisotropy, 127
point mass, 451	sampling an isotropic spherical
reduced, 454	distribution function, 112
singular isothermal sphere, 452	Schwarzschild, 254
Deflection potential, see Lensing	Shu, 258
potential	Divergence, 807
Dehnen distribution function, 259	Divergence theorem, 807
solar neighborhood, 266	Doremus–Feix–Baumann theorem, 575
Delay time distribution, see Type Ia	Dormand–Prince method, 85
supernovae delay time	Double-exponential disk, 159, 178
distribution	approximate circular velocity, 179
Delta function, 810	Downsizing, 641, 643
Density parameter, 855	Dust attenuation, 605
Depletion time scale, 316	Dust extinction, 604
Differential rotation, 209	Dwarf elliptical galaxy, 626
Oort constants, 211	Dwarf irregular galaxy, 626
Dirac delta function, <i>see</i> Delta function	Dwarf spheroidal galaxy, 2, 138, 627
Direct summation, 365	inner dark-matter profile, 147
Disk shock, 707	mass-to-light ratio, 141
Disk-halo conspiracy, 526	ultra-faint, 627
Disky isophote, 335	Dwarf spiral galaxy, 626
Disky potential, 232	Dynamical friction, 654
Dispersion criterion	bars, 770
multi-component disk, 731	deceleration formula, 691
Dispersion relation, 724	isotropic velocity distribution, 692
cold stellar disk, 724	time scale, 696
forbidden region, 739	time scale with mass loss, 697
gas disk, 730	Tremaine–Weinberg formula, 771
non-axisymmetric perturbations, 737	Dynamical time, 27
warm stellar disk, 726	Dynamical-friction
Distant-tide approximation, 701	wake, 694
Distribution function, 100	wate, or i
anisotropic, 118	Early-type galaxy, 511, 625
stability, 575	Eccentric anomaly, 69
augmented density, 119	Eccentricity
constant anisotropy, 120	ellipse, 65
stability, 575	orbital, 63, 220
Dehnen, 259	two-dimensional, 476
Eddington formula, 112	Eddington formula, 112
ergodic, 111	Effective potential, 62, 218
stability, 575	rotating frame, 700
general, one-dimensional density, 272	Effective radius, 330
isothermal, 115	Effective yield, 300
vertical, 272	Einstein angle, 455
Osipkov–Merritt anisotropy, 124	point mass, 455

singular isothermal sphere, 455	Euler method, 83
Einstein field equations, 839	Euler–Lagrange equation, 47, 808
Einstein radius, 455, 465	Excursion-set formalism, see Extended
Einstein ring, 449, 455, 465	Press–Schechter formalism
Einstein summation convention, 830	Exponential disk, 7, 156
contraction, 830	double-exponential disk, 159
Einstein tensor, 836	razor-thin, 175
Einstein-de Sitter model, 543, 554	razor-thin, circular velocity, 175
Ellipsoidal coordinate, 397	razor-thin, peak circular velocity, 175
Ellipsoidal coordinates, 345	scale length/height, 158
Elliptic integral, 813	type I, II, or II profile, 156
Ellipticity, 334, 476, 623	Extended Press–Schechter formalism,
Energy, 45	660
binding, 111	External convergence, 474
conservation of, 45	External shear, 474
kinetic, 44	Extinction, 604
potential, 45	Extinction curve, 604
radial, 62	Extinction cut ve, oo i
relative, 111	Faber–Jackson relation, 637
specific, 45	Factorial, 813
vertical, 226, 269	Fast rotators, 335, 521
Energy density of the Universe, 540	Feedback, 149, 411, 657, 684, 685
	AGN feedback, 686
Energy-momentum tensor, see	•
Stress-energy tensor	early-stellar feedback, 686
Epicycle approximation, 227	quasar mode, 686
azimuthal frequency, 227	radio mode, 686
epicycle frequency, 227	stellar-mass-halo-mass relation, 621
solution, 228, 229	sub-grid physics, 687
velocities, 230	supernova feedback, 149, 685
vertical frequency, 227	Fermat potential, 460
Epicycle frequency, 227	Fictitious force, 43, 699
Equation of state, 542	First-order method, 84
Equations of motion	Fish orbit, 406
cylindrical coordinates, 48	Flattened logarithmic potential, 168
epicycle approximation, 227	Flattening, 168
meridional plane, 218	potential vs. density, 169
rotating frame, 699	Flocculent spiral, 772
spherical mass distribution, 61	Flux, 589
Equatorial coordinates, 803	Flux density, 469, 589
Equivalence principle, 827	Flux ratio anomalies, 490
Ergodic distribution function, 111	Fold caustic, 488
Eddington formula, 112	Forbidden region (dispersion relation),
sample, 112	739
stability, 575	Fornax, 2
Ergodic orbit, 389	Fourier mode, 551
Error function, 809	Fourier transform, 170
Escape velocity, 45	Fourier-Bessel theorem, 815
mass of the Milky Way, 46, 132	Free-bound emission, 675
Euler force, 699	Free-fall time, 681

Free-free emission, 675	equation, 835
Freeman's law, 627	null, 846
Frequency	Geodesic equation, 835
azimuthal, 63	Globular clusters, 5
in the epicycle approximation, 227	core collapse, 720
circular, 227	Gradient, 806
epicycle, 227	Gradient theorem, 808
orbital, 57	Gram-Schmidt orthogonalization, 353,
radial, 63	818
in the epicycle approximation, 227	Grand-design spiral, 1, 772
vertical, see also Vertical frequency	Gravitational constant, 22
in the epicycle approximation, 227	Gravitational field, 21
Friedmann equations, 854	Gravitational instability, see also Jeans
Friedmann-Lemaître-Robertson-Walker	instability, 572
metric, 852	Gravitational potential, 18
Fundamental plane, 515, 638	Gravitational softening, 364
tilt, 515, 528, 639	Gravo-thermal catastrophe, 720
	Green valley, 629
G-dwarf problem, 296	Green's function, 19
Gaia mission, 265	Green's theorem, 808
Gaia phase-space spiral, 268	Growing mode, 553
Galactic coordinates, 803	Growth factor, 554
Galactocentric coordinates, 803	Guiding-center radius, 220
Galaxy luminosity function, 609	
$1/V_{\rm max}$ method, 610	$H\alpha$, 185
luminosity density, 614	$H\alpha$ line, 591
Schechter function, 613	SFR, 592
ultraviolet, 613	$H\beta$ line, 591
Galaxy morphology, 623	Half-mass radius, 143
Galaxy quenching, 617	Half-normal distribution, see also normal
Galaxy stellar mass function, 615	distribution, 810
stellar-mass density, 615	Halo mass function, 579
Galaxy-galaxy lensing, 478	conditional, 668
Gamma function, 812	subhalo mass function, 620
Gamma models, 33	Hamilton–Jacobi equation, 55
as an approximation of the de	and the perfect ellipsoid, 350
Vaucouleurs profile, 331	spherical potential, 78
Gauss's law, 22	Hamilton's characteristic function, 56
Gaussian distribution, 809	Hamilton's equations, 50
Gaussian hypergeometric functions, 822	Hamilton's principal function, 55
Gegenbauer polynomials, 361, 818	Hamilton's principle, 47
differential equation, 820	Hamiltonian, 50
recurrence relation, 821	cylindrical coordinates, 51
Generalized coordinates, 48	polar coordinates, 51
Generalized momentum, 49	spherical coordinates, 105
Generating function, 53	Hamiltonian mechanics, 49
Generating function of the first kind, 54	action-angle coordinates, 57
Generating function of the third kind, 235	angle-action coordinates, 57
Geodesic	canonical momentum, 49

canonical transformation, 53	deprojection, 440
generating function, 53	disk galaxy, 194
generating function of the first kind, 54	of an orbit in a spherical potential, 64
generating function of the third kind,	Incomplete elliptic integral, 813
235	Inertial reference frame, 42
Hamilton-Jacobi equation, 55	Inflation, 544
Hamilton's characteristic function, 56	Initial mass function, 595
Hamilton's equations, 50	Chabrier, Kroupa, Salpeter, 595
Hamilton's principal function, 55	Inner Lindblad resonance, 737
Modified Hamilton's principle, 52	Instability
phase space, 51	bar, 733
phase-space volume conservation, 55	buckling, 769
point transformation, 54	Jeans, 572
Heating (kinematical), 787	radial-orbit, 575
Heaviside function, 812	Instantaneous recycling approximation,
Helmholtz equation, 353	289
Henon-Heiles potential, 389	Integrable potential, 394
Hermite integrators, 375	Integral of motion, 75, 223
Hermitian operator, 352	independent, 76
Hernquist profile, 33	isolating, 75, 223
as an approximation of the de	non-classical, 382
Vaucouleurs profile, 331	third, see also Third integral, 224
constant-anisotropy distribution	Integral-field spectroscopy, 511
function, 121, 122	Interstellar medium
enclosed mass, 33	evolution of elemental abundances,
ergodic distribution function, 113	284
Osipkov-Merritt distribution function,	mass, 11
127	Intracluster light, 657
potential, 33	Ionization parameter, 606
Hierarchical structure formation, 580	Isochrone
Hill radius, see (idal radius)704	orbits, 72, 81
Hipparcos mission, 261	potential, 30
Homogeneous sphere	Isochrone (stellar), 596
orbits, 64	Isolating integral of motion, 75, 223
potential, 29	Isophotal twists, 335
Horizon, 544	Isothermal sheet, 272
Horseshoe orbit, 784	distribution function, 272
Hot-mode accretion, 674	
Hubble classification, 623	Jacobi integral, 700
elliptical galaxies, 334	Jacobi radius, see (idal radius)704
Hubble type, 623	Jaffe profile, 34
Hubble constant, 542, 855	as an approximation of the de
Hubble drag, 572	Vaucouleurs profile, 331
Hubble parameter, 541	Jansky, 590
Hypergeometric functions, 822	Jeans equations, see also Spherical Jeans
	equation, 103, see also
Impact parameter, 94	Axisymmetric Jeans equations
Impulse approximation, 94	closure, 104, 516
Inclination, 189	general, 103

Jeans instability, 572, 679, 680	Large Magellanic Cloud, 2
Jeans length, 552, 572, 679	Late-type galaxy, 625
Jeans mass, 679	Latitudinal action, 79
Jeans swindle, 574	Leaky box model, 299
Jeans theorem, 109	effective yield, 300
Jeans wavenumber, see also Jeans length,	outflow efficiency, 299
572	recycling fraction, 300
Jerk, 128	with type Ia delays, 316
	Leapfrog method, 87
K correction, 603	Legendre polynomials, 818
Kennicutt-Schmidt law, see Schmidt law	associated, 354, see also Associated
Kepler	Legendre polynomials, 821
eccentric anomaly, 69	differential equation, 820
first law, 69	Legendre transformation, 50
Kepler's equation, 70	Lensing degeneracies, 467
mean anomaly, 70	Lensing equation, 454
orbits, 67	axially-symmetric lens, 455
potential, 28	multi-plane, 454
second law, 62	Lensing potential (in GR), see Curvature
third law, 69	potential
true anomaly, 68	Lensing potential (in gravitational
Kepler's equation, 70	lensing), 457
Keplerian, 28	Lenticular galaxy, 624
Kinematic major axis, 186, 511	Lin-Shu hypothesis, 795
Kinematic position angle, 518	Lindblad diagram, 783
Kinematical heating, 787	Lindblad resonance, 737
Kinematically-decoupled core, 512	vertical, 780
Kinemetry, 518	Line of nodes, 189
Kinetic energy, 44	Linear matter power spectrum, 561
King profile, 116	LINERs, 630
concentration, 117	Liouville's theorem, 102
elliptical galaxies, 332	Little h , 542
radius, 117	Local Group, 4
Kuzmin model	mass from timing argument, 136
circular velocity, 163	Local Group timing argument, 134
potential, 162	Local standard of rest, 205
	Logarithmic potential, 33
Lagrange equations, 48	cored, 193
Lagrange points, 703	deflection angle, 452
bar, 752	flattened, 168
two orbiting point masses, 703	non-axisymmetric, 384
Lagrangian, 47	non-axisymmetric, rotating, 752
Lagrangian mechanics, 47	Logarithmic spiral, 778
generalized coordinates, 48	Long & Murali bar potential, 759
generalized momentum, 49	Long-axis tube orbit, 400
Hamilton's principle, 47	Long-wave branch, 739
Landau damping, 573	Longitude of the ascending node, 64
Lane–Emden equation, 716	Longitude-velocity (l, v) diagram, 203
Laplacian, 807	and circular rotation, 205

Loop orbit, 386	Meridional plane, 218
parent, 386	Metal-line blanketing, 295
Lorentz transformation, 829	metric, 828
Low-surface brightness galaxy, 626	tensor, 830
Lower incomplete gamma function, 813	Michie model, 118
Luminosity density, 614	Mid-plane, 8
Luminosity distance, 857	Milky Way
Luminosity function (galaxy), see Galaxy	bar, 747, 767
luminosity function	circular velocity, 26
Luminous infrared galaxy, 643	dark matter, 13
Lyman break, 594	disk stability, 731
	gas mass, 12
M–sigma relation, 508	local density, 14
M100, 773	local ISM density, 12
M101, 17	local stellar density, 12
M11, 5	mass distribution, 13
M31, 10	mass from escape velocity, 134
M33, 774	mass from halo Jeans analysis, 138
M51, 1, 653	mass from virial theorem, 99
M80, 5	spiral structure, 773
M81, 4	stellar mass, 12
Magnification, 469	Minimal coupling, 834
Magnification matrix, 469	Minkowski metric, 829
Magnitude (flux), 590	Minor merger, 657
Main sequence (stars), 596	Minor-axis rotation
Major axis	in elliptical galaxies, 335
kinematic, 186, 511	in triaxial mass distributions, 401
photometric, 186, 511	Miyamoto-Nagai model, 165
Major merger, 657	Mode (Fourier), 551
Mass loading factor, see Outflow	Modified Euler method, 87
efficiency	Modified Hamilton's principle, 52
Mass-anisotropy degeneracy, 107	Modified Newtonian Dynamics, 637
Mass-sheet degeneracy, 467	Molecular gas
Mass-to-light ratio, 9, 158	radial profile, 13
and dark matter, 201	Momentum, 42
disk galaxies, 197	specific, 60
from stellar-population synthesis	Moving groups, 268
modeling, 592	Multi-plane lensing, 454
maximum-disk fit, 197	Multiplicity function (Press-Schechter),
Matter domination, 541	582
Matter power spectrum, 561	Multipole expansion, 357
Matter-radiation equality, 541	MWPotential2014, 217
Maximum height above the plane zmax,	
220	Naked cusp, 488
Maximum-bulge fits, 526	nebular emission, 604
Maximum-disk fit, 197	nebular emssion, 605
Mean anomaly, 70	Newton
Mechanical work, 44	first shell theorem, 22
Merger rate, 657	laws of motion, 42

Newton (continued)	Non-inertial reference frame, 43
in the general theory of relativity,	Non-regular orbit, 392
835	Normal distribution, 809
second shell theorem, 22	Normal mode, 777
third shell theorem, 378	Nuclear star cluster, 7
NFW profile, 33	Nuker profile, 333
circular velocity	Null geodesic, 846
oblate or prolate, 348	
spherical, 36	Oblate spheroid, 339
concentration, 35	Oblate spheroidal coordinates, 339
enclosed mass, 36	gradient, 341
radial velocity dispersion, 107	Laplacian, 341
rmax, 36	Oct-tree, 367
triaxial	One form, 830
orbits, 401	general manifold, 832
virial mass, 35	Oort constants, 210
vmax, 36	and the epicycle approximation, 229
NGC 1291, 751	and the local velocity dispersion
NGC 1300, 3	tensor, 231
NGC 147, 626	and the local velocity distribution, 260
NGC 185, 626	and the Poisson equation, 270
NGC 2336, 750	azimuthal shear, 211
NGC 2623, 654	rotation curve, 213
NGC 2974, 513	Open cluster, 5
NGC 2998, 198	Opening angle, 368
NGC 3198, 187, 201	Optical radius, 194
NGC 3315, 330	Orbit
NGC 3379, 330	$x_1, 753$
NGC 3923, 4	$x_2, 755$
NGC 4150, 329	$x_3, 755$
NGC 4244, 8	<i>x</i> ₄ , 753
NGC 4314, 719	banana, 406
NGC 4342, 439, 531	box, 386
NGC 4365, 512	boxlet, 403, 406, 755
NGC 4414, 774	centrophilic, 403
NGC 4535, 634	centrophobic, 403
NGC 4549, 330	chaotic, 389
NGC 4565, 6	ergodic, 389
NGC 4660, 336	fish, 406
NGC 4676, 651	horseshoe, 784
NGC 5322, 336	long-axis tube, 400
NGC 6066, 601	loop, 386
NGC 660, 17	parent, 383
NGC 753, 197	polar, 380
NGC 801, 197, 198	pretzel, 406
Noether's theorem, 49	regular, 58, 389
integral of motion, 77	resonant, 383
Non-homology of the orbit distribution,	short-axis tube, 400
640	tube, 400

Orbital anisotropy, 106	definition, 775
kinetic energy tensor, 520	Hubble classification, 624
meridional plane, 516	Plummer model, 30
Orbital eccentricity, 63	surface density, 140
Orbital frequencies, 57	Poincaré invariant theorem, 52
Orbital non-homology, 640	Point transformation, 54
Orbital torus, 58	Point-mass potential
Ordinary differential equation	deflection angle, 451
homogeneous, 824	Poisson equation, 18
inhomogeneous, 824	cylindrical coordinates, 228, 269
particular solution, 824	for the surface density, 271
linear, 824	in a galactic disk, 228, 269
linear and homogeneous, 824	in terms of the relative potential, 111
characteristic equation, 824	in two dimensions, 457
Ordinary hypergeometric functions, 822	oblate spheroidal coordinates, 341
Orthogonal polynomials, 818	phantom density, 270
Rodrigues' formula, 820	Polar orbit, 380
three-term recurrence formulae, 820	Polycyclic aromatic hydrocarbons
Osipkov–Merritt anisotropic distribution	(PAHs), 605
function, 124	Position angle
sample, 127	kinematic, 518
stability, 575	position angle, 440
Ostriker & Peebles stability criterion, 734	Potential
Outer Lindblad resonance, 737	arbitrary oblate spheroid, 345
•	•
Outflow efficiency, 299	arbitrary prolate spheroid, 346
Over-cooling problem, 683	arbitrary razor-thin disk, 177 arbitrary spherical density, 24
DAIL: 605	
PAHs, 605 Pal 5	arbitrary triaxial ellipsoid, 346
	arbitrary, disky, 181
stream, 711	bar (Long & Murali), 759
tidal field, 701, 707 Parent orbit, 383	basis-function expansion, 352, 359
	cored logarithmic, 193
Particle horizon, 544	Cox & Gomez spiral structure, 781
Particle-spray technique, 717	disky, 232
Peak height, 582	double-exponential disk, 178
Perfect ellipsoid, 350	effective, 62, 218
circular velocity, 350	gamma models, 33
Perfect fluid, 837	Henon–Heiles, 389
Pericenter, 62, 220	Hernquist, 33
Period	homogeneous sphere, 29
azimuthal, 63	in the general theory of relativity, 844
radial, 63	integrable, 394
Phase space, 51	Isochrone, 30
Phase-space spiral, 268	Kepler, 28
Photo-ionization, 677	Kuzmin, 162
Photometric major axis, 186, 511	logarithmic, 33
Photometry, 589	flattened, 168
Pitch angle	non-axisymmetric, 384
and the shape function, 777	non-axisymmetric, rotating, 752

Potential (continued)	Radial acceleration relation, 637
Miyamoto-Nagai, 165	Radial action, 58, 79
multipole expansion, 357	Radial frequency, 63
NFW, 33	in the epicycle approximation, 227
perfect ellipsoid, 350	Radial Jeans equation, see also
plane wave, 722	Axisymmetric Jeans equations,
Plummer, 30	249
point mass, 28	Radial migration, 792
power-law, 32	Radial period, 63
relative, 111	Radial-orbit instability, 575
self-consistent field method, 361	Radiation domination, 541
thick disk, 178	Radio galaxies, 630
thin oblate shell, 342, 343	Razor-thin disk, 162
thin ring, 159, 176	distribution function, 251
thin spherical shell, 24	cold, 253
arbitrary surface density, 357	Razor-thin exponential disk, 175
non-uniform surface density, 356	circular velocity, 175
tightly-wound perturbation, 722	peak circular velocity, 175
two-power density, 33	Recombination cooling, 675
Potential energy, 45	Rectangular function, 811
Potential-density pair, 20	Recycling fraction, 300
Power-law galaxies, 332	Red sequence, 628
Pre-enrichment, 297	Reduced deflection angle, 454
Press–Schechter formalism, 581	Reduced mass, 89
Extended Press-Schechter formalism,	Reduced shear, 476
660	Reduction factor, 725
Press-Schechter halo mass function, 582	Regular orbit, 58, 389
in the extended Press-Schechter	actions, 58
formalism, 663	Reheating, 556
peak height, 582	Relative energy, 111
Pressureless dust, 838	Relative potential, 111
Pretzel orbit, 406	Relaxation time, 94
Prolate spheroid, 339	near an SMBH, 503
Prolate spheroidal coordinates, 235, 342	Resolution (spectrograph), 590
gradient, 378	convolution, 602
Laplacian, 378	Resonant orbit, 383
Proper distance, 852	Restricted three-body approximation, 653
Proper motion, 804	Ricci scalar, 836
Proper time, 829	Ricci tensor, 836
	Riemann tensor, 835
Q, 727	Right ascension, 803
QSO 0957+561, 448, 450	Robertson–Walker metric, 852
QSOs, see Quasars	Roche radius, see (idal radius)704
Quad lens, 456	Rodrigues' formula, 820
Quasars, 631	Rosenbluth potential, 691
Quasi-equilibrium state, 93, 718	Rosette, 73, 221
Quenching, 617	Rotation curve, 27, 187
- 0.	and the (l, v) diagram, 205
r-process enrichment, 286	arbitrary razor-thin disk. 196

arbitrary spherical density, 196 Shu distribution function, 258 circular velocity at the Sun, 207 Single stellar populations, 594 disk potential, 163 Singular isothermal sphere, 115, see also effect of flattening, 348 Logarithmic Potential from spherically-symmetric surface convergence and shear, 473 brightness, 196 deflection angle, 452 maximum-disk fit. 197 Einstein angle, 455 Oort constants, 211 isotropic distribution function, 115 spherical mass distribution, 27 lensing equation, 455 spheroidal mass distribution, 347 magnification, 469 tangent-point method, 208 potential, 33 terminal velocity curve, 208 Slow rotators, 335, 521 Rotational frequency, 63 Softening, 364 in the epicycle approximation, 227 Softening length, 365 Rotational period, 63 Solar abundances, 285 Runge-Kutta method, 84 Solar motion, 262, 264 RXJ1131-1231, 448 Solar neighborhood abundance ratios, 316 s-process enrichment, 286 age-metallicity relation, 791 S0 galaxy, 1, 624 age-velocity-dispersion relation, 786 SB(r) galaxy, 750 asymmetric drift, 261 SB(s) galaxy, 750 epicycle amplitude, 231 Scale factor, 852 epicycle frequency, 230 Scale height, 9, 158 ISM density, 12 ratio with scale length, 9 local dark matter density, 278 Scale length, 9, 156, 158 metallicity distribution, 296 Schechter function, 613 moving groups, 268 Schmidt law, 643 Oort constants, 213 Schwarzschild distribution function, 254 phase-space spiral, 268 Schwarzschild radius, 502 stellar density, 12 Sech² profile, 8, 158 total density of matter, 276 Secular evolution, 718 total surface density of matter, 277 Seeing, 502 velocity distribution, 267 Self-consistent field method, 361 Solar system barycenter, 260 Self-gravitating isothermal sheet, see Solid-body rotation, 29 also Isothermal sheet, 272 Soltan argument, 509 Semi-analytic galaxy formation, 660 Source plane, 454 Sérsic profile, 9, 331 Specific intensity, 470 Seyfert galaxies, 630 Specific star formation rate, 640 Shape Spectra, 589 ellipticity, 334, 623 typical elliptical, spiral, and irregular triaxiality parameter, 337 galaxy spectra, 593 Shapiro delay, 462, 849 Spectral energy distribution, 590 Shear, 472 Spectral library, 598 Shearing sheet, 246, 739 Spectroscopy, 589 Shell crossing, 576 Sphere of influence, 402, 502 Shell galaxy, 4 Short-axis tube orbit, 400 Spherical collapse, 563 Short-wave branch, 739 Spherical harmonics, 355

Spherical Jeans equation, see also Jeans	Stephan's Quintet, 651
equations, 106	Stress-energy tensor, 837
in terms of line-of-sight velocity	Stromberg asymmetric drift, see
dispersion, 140	Asymmetric drift
in terms of the circular velocity, 136	Strong gravitational lensing, 465
in terms of the enclosed mass, 106	Strong lensing, 450
in terms of the gravitational potential,	Sturm–Liouville theory, 353
106	Sub-grid physics, 687
solution, arbitrary $\beta(r)$, 107	Subhalo mass function, 620
solution, constant β , 107	Subhalos, 329
Spheroid, 339	Supernova feedback, see Feedback
Spiral structure	Surface brightness, 470
angular-momentum transport, 794	Surface density
anti-spiral theorem, 778	deprojection assuming spherical
churning, 784	symmetry, 140
grand design, 1	in terms of potential for a razor-thin
grand-design vs. flocculent, 772	disk, 163
Lin–Shu hypothesis, 795	Surface of section, 381
logarithmic, 778	Swing amplification, 735
material arms, 777	bars, 768
pitch angle, 775	criterion, 743
trailing vs. leading, 774	feedback loop, 745
winding problem, 777	
Splashback radius, 569	Tangent-point method, see Terminal
sSFR, 640	velocity curve
Stability criterion	Temperature, of a self-gravitating system
gas disk, 730	719
multi-component disk, 731	Tensor, 830
Ostriker & Peebles, 734	general manifold, 832
stellar disk, 727	Terminal velocity curve, 208
thick disk, 728	Test particle, 60
Staeckel approximation, 237	Thin screen approximation, 453
Staeckel fudge, 237	Third integral, 224
Staeckel potential, 236, 397	surface of section, 382
Star formation efficiency, 289, 293, 644	Tidal bridge, 650, 652
Star formation rate, 293	Tidal radius, 704
delay-time-distribution-averaged, 311	King profile, 117
from emission lines, 591	Tidal stream, 710
specific, 640	particle-spray technique, 717
Stellar evolutionary tracks, 595	Tidal tail, 650, 652
Stellar halo, 10	Tight-winding approximation, 721
Stellar isochrone, 596	Tilted-ring model, 194
Stellar mass function (galaxy), see	Time delay in lensing, 462
Galaxy stellar mass function	geometric, 461
Stellar population synthesis, 592	Shapiro, 462
Stellar-mass density, 615	Time-delay distance, 462
Stellar-mass-halo-mass relation, 618	Toomre <i>Q</i> , 727
Stellar-population synthesis, 527	thick disk, 728
Step function, 812	Toomre stability criterion, 727

Top-down structure formation, 580 Vector calculus Torque, 44 curl, 807 Torus, 58 divergence, 807 Transfer function, 558 divergence theorem, 807 Tremaine-Weinberg method, 749 gradient, 806 bars, 749 gradient theorem, 808 spirals, 776 Green's theorem, 808 Triangulum galaxy, 774 Laplacian, 807 Triaxiality parameter, 337 Velocity ellipsoid, 266 tilt, 270 True anomaly, 68 Tube orbit, 400, 513 vertex deviation, 267 Tully–Fisher relation, 634 Velocity field, 185 baryonic form, 636 axisymmetric model, 190 Turn-around time, 566 flat rotation curve, 191 Turn-off mass, 596 observations, 186 Twin quasar QSO 0957+561, 448, 450 peaked rotation curve, 191 Two-body encounters, 689 sky and galaxy coordinate systems, Two-body relaxation, 95, 720 Type I, II, or III disk profile, 156 solid-body rotation, 190 Type Ia supernovae tilted-ring model, 194 Chandrasekhar mass, 306 Vertex deviation, 267 enrichment, 286 Vertical action, 58 progenitor systems, 306 Vertical frequency total yield of iron, 309 in terms of the local density, 228 Type Ia supernovae delay time in the epicycle approximation, 227 distribution, 307 Vertical Jeans equation, see also expected from progenitor models, 307 Axisymmetric Jeans equations, normalization, 308 observed distribution, 308 Vertical Lindblad resonances, 780 Type Ia supernovae Violent relaxation, 576 Virial mass, 35, 567 delay-time-distribution-averaged Milky Way, 35 star-formation history, 311 Virial overdensity, 567 Type II supernovae enrichment, 285 Virial quantity, 97 progenitor systems, 306 Virial radius, 35, 567 Milky Way, 35 ULIRG, 643, 656 Virial temperature, 680 Ultra-diffuse galaxy, 144, 627 Virial theorem, 97 Ultra-faint dwarf spheroidal, 139 external point-mass potential, 97 Ultra-faint dwarf spheroidal galaxy, 627 scalar, 99 self-gravitating system, 98 Ultra-luminous infrared galaxies, 656 Ultra-luminous infrared galaxy, 643 Ultraviolet background, 677 Wake (dynamical friction), 694 Unified Model of AGN, 632 Wave propagation (stellar disks), 738 Upper incomplete gamma function, 813 Weak equivalence principle, 21, 827 UV excess, 295 Weak lensing, 450, 475 Winding problem, 777 Vector kinematic waves, 779 general manifold, 832 Wolf mass estimator, 141

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

932 INDEX

Work, 44 effective yield, 300 of iron, 309 X (swing amplification), 743 of oxygen, 314 x_1 orbits, 753 population, 288 x_2 orbits, 755 total yield of all elements, 288 x_3 orbits, 755

*x*₄ orbits, 753 Zero-velocity curve, 219, 223, 700
Yield, 288 Zoom-in simulations, 377