Contents

Introduction xxi

PART I Introduction to the Solid Earth System 1

AN EX	KPLORA	TION OF BASIC SOLID EARTH STRUCTURE AND DYNAMICS 3					
1.1	Topogra	aphy 3					
	1.1.1	Isostasy 6					
1.2	Geopot	entials: Shape, spin, and geoid 10					
	1.2.1	Gravitational potential 10					
	Expand	ed details 1: Moments of inertia and geopotentials of an ellipsoidal Earth 12					
	1.2.2	Reference geoid, spin, and the Earth-Moon system 16					
	1.2.3	Geoid and gravity anomalies 17					
	Expand	ed details 2: Geoid, spherical harmonics, and gravity anomalies 18					
1.3	Interna	structure, temperature, and composition of Earth 22					
	1.3.1	1-D structure of Earth as seen from seismology 22					
	1.3.2	Pressure and mass within the Earth 24					
	1.3.3	Complexities in the 1-D model 25					
		1.3.3.1 The lithosphere and its topography 25					
		1.3.3.2 The asthenosphere 27					
	1.3.4	Thermal background state of the mantle 28					
	Expand	ed details 3: Thermodynamics of the adiabatic mantle temperature gradient 29					
	1.3.5	Composition and mantle phase transitions 32					
1.4	Plate motions in the past and at present 34						
	1.4.1	Seafloor spreading and seafloor age 35					
	Expanded details 4: Rikitake dynamo, magnetic field creation, and chaos 38						
	1.4.2	Current plate motions 42					
		1.4.2.1 Absolute reference frames and net rotation 42					
		1.4.2.2 Poloidal and toroidal flow 45					
	1.4.3	Plate motion reconstructions 47					
1.5	Seismic	tomography—3-D mantle structure 50					
Reviev	v questio	ns and discussion topics 1 54					

PART II Fundamental Physics 57

2

CON	INUUM	MECHANICS 59			
2.1	Concept of a continuum 59				
2.2	Displacements, velocities, and reference frames 61				
	2.2.1	Reference frames for considering deformation of a continuum 63			
		2.2.1.1 Lagrangian reference frame 63			
		2.2.1.2 Eulerian reference frame 63			
2.3	Strain	64			
	2.3.1	Displacement gradient tensor 68			
	2.3.2	Strain rates 69			
	2.3.3	Finite strain 70			
2.4	Forces	and stress 72			
	2.4.1	Sign convention for stress 72			
	2.4.2	Cauchy stress tensor 72			
	2.4.3	Static force equilibrium and stress tensor symmetry 73			
	2.4.4	Principal axes of the stress tensor 75			
	2.4.5	Pressure and deviatoric stress 76			
	Expand	led details 5: Tensor invariants and measures of stress 79			
	2.4.6	Stress in two dimensions 81			
	2.4.7	Pure shear and simple shear 82			
	2.4.8	Continuity of stress tensor components 83			
	Exercis	e 1: Strain, strain rates, and stress 84			
2.5	Constra	aining crustal deformation and stress 84			
	2.5.1	Moment tensors and the gCMT catalog 84			
	Expanded details 6: Non-double-couple moment tensor deformation 87				
	2.5.2	Seismic coupling and seismotectonics 89			
	2.5.3	Crustal strain-rate fields from geodesy 91			
	2.5.4	Constraints on stress within the lithosphere 92			
	2.5.5	Stress vs. strain from focal mechanisms 93			
Reviev	v questic	ns and discussion topics 2 94			
ELAS	TIC AND	D BRITTLE BEHAVIOR OF ROCKS 97			
3.1	Constit	utive laws 98			
3.2	Elastici	ty 100			
	3.2.1	2-D elasticity, plane strain/stress 104			
	Expand	led details 7: Isotropic and anisotropic elasticity 105			
	Exercis	e 2: Stresses in the lithosphere 107			
	3.2.2	Elastic flexure 110			
		3.2.2.1 Flexural profiles 110			
		3.2.2.2 Flexural vs. isostatic compensation 112			
		3.2.2.3 Gravity-topography ratios 114			
3.3	Brittle f	ailure 116			
	3.3.1	Fracturing and faulting 117			
		3.3.1.1 Griffith criterion and linear elastic fracture mechanics 117			

	3.3.2	Mohr-Could	Mohr-Coulomb failure and friction 119			
	3.3.2.1 Byerlee's rule (or "law") 120					
		3.3.2.2	Mohr's circle 122			
	Exercis	e 3: Byerlee	's law applied to the lithosphere 124			
		3.3.2.3 Griffith cracks and fluid effects 125				
		3.3.2.4	Shear cracks 126			
	3.3.3	Fault zone	structure 126			
3.4	Earthqu	lakes and f	riction 130			
	3.4.1	Earthquake	e statistics 132			
		3.4.1.1	Frequency-magnitude (Gutenberg-Richter) relationship 134			
		3.4.1.2	Clustering: Omori's and Båth's laws 137			
		3.4.1.3	Some implications of clustered seismicity 139			
	3.4.2	Static and o	dynamic friction and the seismic cycle 139			
		3.4.2.1	Elastic rebound and stick-slip cycles 140			
		3.4.2.2	How regular are large earthquakes? 141			
		3.4.2.3	Earthquake predictability 142			
	3.4.3	Modeling a	nd constraining coseismic deformation 144			
		3.4.3.1	Screw dislocation in an elastic half-space 145			
		3.4.3.2	Postseismic relaxation in a confined depth region 147			
		3.4.3.3	Fault solution for two elastic layers 147			
		3.4.3.4	Dislocation models for finite faults 148			
		3.4.3.5	Tectonic space geodesy 152			
	3.4.4	Earthquake	e source mechanics 153			
		3.4.4.1 Constant stress drop scalings 155				
			ed details 8: Rupture dynamics energy considerations and stress drop 156			
	Expand	ed details	8: Rupture dynamics energy considerations and stress drop 156			
	Expand 3.4.5		8: Rupture dynamics energy considerations and stress drop 156 rate friction as a constitutive law 159			
	3.4.5	Rate and st				
	3.4.5	Rate and st	ate friction as a constitutive law 159			
	3.4.5 Expand	Rate and st led details 9 3.4.5.1	eate friction as a constitutive law 159 9: Physical processes behind rate-state friction 163			
	3.4.5 Expand	Rate and st led details 9 3.4.5.1	eate friction as a constitutive law 159 9: Physical processes behind rate-state friction 163 Stability and limit cycles of an RSF spring slider 164			
	3.4.5 Expand	Rate and st led details 3.4.5.1 led details	9: Physical processes behind rate-state friction 163 Stability and limit cycles of an RSF spring slider 164 10: Numerical implementation of rate-state friction equations 166			
	3.4.5 Expand	Rate and st led details 9 3.4.5.1 led details 9 3.4.5.2 3.4.5.3	sate friction as a constitutive law 159 9: Physical processes behind rate-state friction 163 Stability and limit cycles of an RSF spring slider 164 10: Numerical implementation of rate-state friction equations 166 Frictional stability in the lab and in nature 167			
Review	3.4.5 Expand Expand 3.4.6	Rate and st led details 9 3.4.5.1 led details 9 3.4.5.2 3.4.5.3 Fault streng	eate friction as a constitutive law 159 9: Physical processes behind rate-state friction 163 Stability and limit cycles of an RSF spring slider 164 10: Numerical implementation of rate-state friction equations 166 Frictional stability in the lab and in nature 167 Complex seismic cycles on simple faults 169			
	3.4.5 Expand Expand 3.4.6 v question	Rate and st led details st 3.4.5.1 led details st 3.4.5.2 3.4.5.3 Fault streng	9: Physical processes behind rate-state friction 163 Stability and limit cycles of an RSF spring slider 164 10: Numerical implementation of rate-state friction equations 166 Frictional stability in the lab and in nature 167 Complex seismic cycles on simple faults 169 gth, stress, and heterogeneity 172 cussion topics 3 174			
	3.4.5 Expand Expand 3.4.6 v question	Rate and st led details st 3.4.5.1 led details st 3.4.5.2 3.4.5.3 Fault streng	9: Physical processes behind rate-state friction 163 Stability and limit cycles of an RSF spring slider 164 10: Numerical implementation of rate-state friction equations 166 Frictional stability in the lab and in nature 167 Complex seismic cycles on simple faults 169 gth, stress, and heterogeneity 172			
	3.4.5 Expand 3.4.6 v question	Rate and st led details st 3.4.5.1 led details st 3.4.5.2 3.4.5.3 Fault streng	9: Physical processes behind rate-state friction 163 Stability and limit cycles of an RSF spring slider 164 10: Numerical implementation of rate-state friction equations 166 Frictional stability in the lab and in nature 167 Complex seismic cycles on simple faults 169 gth, stress, and heterogeneity 172 cussion topics 3 174			
VISCO	3.4.5 Expand 3.4.6 v question	Rate and st led details of 3.4.5.1 led details of 3.4.5.2 3.4.5.3 Fault streng ons and disc ASTIC, AN	9: Physical processes behind rate-state friction 163 Stability and limit cycles of an RSF spring slider 164 10: Numerical implementation of rate-state friction equations 166 Frictional stability in the lab and in nature 167 Complex seismic cycles on simple faults 169 gth, stress, and heterogeneity 172 cussion topics 3 174 ND TRANSIENT BEHAVIOR 175			
VISCO	3.4.5 Expand 3.4.6 v question DUS, PL	Rate and st led details 9 3.4.5.1 led details 9 3.4.5.2 3.4.5.3 Fault streng ons and disc ASTIC, AN nian fluids Bulk viscos	9: Physical processes behind rate-state friction 163 Stability and limit cycles of an RSF spring slider 164 10: Numerical implementation of rate-state friction equations 166 Frictional stability in the lab and in nature 167 Complex seismic cycles on simple faults 169 gth, stress, and heterogeneity 172 cussion topics 3 174 ND TRANSIENT BEHAVIOR 175			
VISCO	3.4.5 Expand 3.4.6 v question DUS, PL Newtor 4.1.1 4.1.2	Rate and st led details 9 3.4.5.1 led details 9 3.4.5.2 3.4.5.3 Fault streng ons and disc ASTIC, AN nian fluids Bulk viscos	9: Physical processes behind rate-state friction 163 Stability and limit cycles of an RSF spring slider 164 10: Numerical implementation of rate-state friction equations 166 Frictional stability in the lab and in nature 167 Complex seismic cycles on simple faults 169 gth, stress, and heterogeneity 172 cussion topics 3 174 ND TRANSIENT BEHAVIOR 175 175 ity and partial melting 177 issipation 179			
VISC (4.1	3.4.5 Expand 3.4.6 v question DUS, PL Newtor 4.1.1 4.1.2	Rate and st led details (3.4.5.1 led details (3.4.5.2 3.4.5.3 Fault streng ons and disc ASTIC, AN hian fluids Bulk viscos Viscous disc ewtonian fluids	9: Physical processes behind rate-state friction 163 Stability and limit cycles of an RSF spring slider 164 10: Numerical implementation of rate-state friction equations 166 Frictional stability in the lab and in nature 167 Complex seismic cycles on simple faults 169 gth, stress, and heterogeneity 172 cussion topics 3 174 ND TRANSIENT BEHAVIOR 175 175 ity and partial melting 177 issipation 179			
VISC (4.1	3.4.5 Expand 3.4.6 v question DUS, PL Newtor 4.1.1 4.1.2 Non-Ne	Rate and st led details (3.4.5.1 led details (3.4.5.2 3.4.5.3 Fault streng ons and disc ASTIC, AN hian fluids Bulk viscos Viscous disc ewtonian fluids	9: Physical processes behind rate-state friction 163 Stability and limit cycles of an RSF spring slider 164 10: Numerical implementation of rate-state friction equations 166 Frictional stability in the lab and in nature 167 Complex seismic cycles on simple faults 169 ofth, stress, and heterogeneity 172 cussion topics 3 174 ND TRANSIENT BEHAVIOR 175 175 ity and partial melting 177 esipation 179 unids 179 ening and work softening 180			
VISC (4.1	3.4.5 Expand 3.4.6 v question DUS, PL Newtor 4.1.1 4.1.2 Non-Ne 4.2.1	Rate and st led details of the state of the	9: Physical processes behind rate-state friction 163 Stability and limit cycles of an RSF spring slider 164 10: Numerical implementation of rate-state friction equations 166 Frictional stability in the lab and in nature 167 Complex seismic cycles on simple faults 169 ofth, stress, and heterogeneity 172 cussion topics 3 174 ND TRANSIENT BEHAVIOR 175 175 ity and partial melting 177 esipation 179 unids 179 ening and work softening 180			
VISC (4.1	3.4.5 Expand 3.4.6 v question DUS, PL Newtor 4.1.1 4.1.2 Non-Ne 4.2.1	Rate and st led details of the state of the	9: Physical processes behind rate-state friction 163 Stability and limit cycles of an RSF spring slider 164 10: Numerical implementation of rate-state friction equations 166 Frictional stability in the lab and in nature 167 Complex seismic cycles on simple faults 169 gth, stress, and heterogeneity 172 cussion topics 3 174 ND TRANSIENT BEHAVIOR 175 175 ity and partial melting 177 ssipation 179 uids 179 ening and work softening 180 avior 180			
VISC (4.1	3.4.5 Expand 3.4.6 v question DUS, PL Newtor 4.1.1 4.1.2 Non-Ne 4.2.1	Rate and st led details (1) 3.4.5.1 led details (1) 3.4.5.2 3.4.5.3 Fault streng ons and disc ASTIC, AN mian fluids Bulk viscos Viscous disc ewtonian flu Work harde Plastic beh 4.2.2.1 4.2.2.2	9: Physical processes behind rate-state friction 163 Stability and limit cycles of an RSF spring slider 164 10: Numerical implementation of rate-state friction equations 166 Frictional stability in the lab and in nature 167 Complex seismic cycles on simple faults 169 gth, stress, and heterogeneity 172 cussion topics 3 174 ND TRANSIENT BEHAVIOR 175 175 ity and partial melting 177 sisipation 179 uids 179 ening and work softening 180 avior 180 Von Mises yield criterion 181			
VISC (4.1	3.4.5 Expand 3.4.6 v question OUS, PL Newtor 4.1.1 4.1.2 Non-Ne 4.2.1 4.2.2	Rate and st led details (1) 3.4.5.1 led details (2) 3.4.5.2 3.4.5.3 Fault strength and discons and discons and discons (2) ASTIC, ANnian fluids Bulk viscos (2) Viscous discons (2) Work harder (2) Plastic behave (2) Strain and (3)	9: Physical processes behind rate-state friction 163 Stability and limit cycles of an RSF spring slider 164 10: Numerical implementation of rate-state friction equations 166 Frictional stability in the lab and in nature 167 Complex seismic cycles on simple faults 169 gth, stress, and heterogeneity 172 cussion topics 3 174 ND TRANSIENT BEHAVIOR 175 175 ity and partial melting 177 sisipation 179 uids 179 ening and work softening 180 avior 180 Von Mises yield criterion 181 Drucker-Prager criterion 182			
VISCO 4.1 4.2	3.4.5 Expand 3.4.6 v question OUS, PL Newtor 4.1.1 4.1.2 Non-Ne 4.2.1 4.2.2	Rate and st led details (1) 3.4.5.1 led details (2) 3.4.5.2 3.4.5.3 Fault streng ons and disconstant fluids Bulk viscos Viscous disconstant fluids Work harde Plastic beh 4.2.2.1 4.2.2.2 Strain and standard material	9: Physical processes behind rate-state friction 163 Stability and limit cycles of an RSF spring slider 164 10: Numerical implementation of rate-state friction equations 166 Frictional stability in the lab and in nature 167 Complex seismic cycles on simple faults 169 gth, stress, and heterogeneity 172 cussion topics 3 174 ND TRANSIENT BEHAVIOR 175 175 175 179 181 179 181 179 181 179 181 179 181 170 181 170 181 170 181 171 181 175 181 181 181 183 183			

	4.3.3	Viscoelastic behavior: The Maxwell body 185
		ded details 11: Derivation of the viscoelastic Maxwell body response 186 ded details 12: Other viscoelastic transient models 189
4.4		uation and frequency-dependent moduli 192
	4.4.1	Attenuation for the standard linear solid 193
	4.4.2	Q within the Earth 195
	4.4.3	Temperature derivatives of seismic velocities 196
4.5	Transie	ent deformation throughout the seismic cycle 199
	4.5.1	Relaxation of an elastic plate over a viscous layer 200
	4.5.2	Dislocation solution for a viscoelastic half-space 200
	4.5.3	Earthquake cycle solution for a viscoelastic half-space 202
	4.5.4	Postseismic response after earthquakes 202
Reviev	v questi	ons and discussion topics 4 206
LITH	OSPHE	RIC STRENGTH FROM COMPLEX ROCK RHEOLOGY 207
5.1	Microp	physical mechanisms for viscous creep 207
	5.1.1	Pressure solution 207
	5.1.2	Temperature dependence: The Arrhenius law 207
	5.1.3	Diffusion creep 209
	5.1.4	Dislocation creep 209
	5.1.5	Mapping ductile crustal deformation 211
	5.1.6	Laboratory-derived creep laws 213
	5.1.7	Peierls creep/plasticity 216
	Expan	ded details 13: Fugacity and volatile concentration 217
		se 4: Laboratory-derived creep laws 218
5.2	Exercis	se 4: Laboratory-derived creep laws 218 meters and grain size evolution 221
5.2	Exercis	
5.2 5.3	Exercis Piezon Expand	neters and grain size evolution 221
	Exercis Piezon Expan	meters and grain size evolution 221 ded details 14: Grain size evolution laws 222
	Exercis Piezon Expan Average	meters and grain size evolution 221 ded details 14: Grain size evolution laws 222 ging of heterogeneous media 224
	Expand Expand Average 5.3.1 5.3.2 5.3.3	meters and grain size evolution 221 ded details 14: Grain size evolution laws 222 ging of heterogeneous media 224 Harmonic (weak) mean 224
	Expand Expand 5.3.1 5.3.2 5.3.3 5.3.4	meters and grain size evolution 221 ded details 14: Grain size evolution laws 222 ging of heterogeneous media 224 Harmonic (weak) mean 224 Arithmetic (strong) mean 224 Geometric (intermediate) mean 225 Self-consistent averaging 225
	Exercise Piezon Expand Average 5.3.1 5.3.2 5.3.3 5.3.4 Deform	meters and grain size evolution 221 ded details 14: Grain size evolution laws 222 ging of heterogeneous media 224 Harmonic (weak) mean 224 Arithmetic (strong) mean 224 Geometric (intermediate) mean 225 Self-consistent averaging 225 mation maps 226
5.3	Exercise Piezon Expand Average 5.3.1 5.3.2 5.3.3 5.3.4 Deform	meters and grain size evolution 221 ded details 14: Grain size evolution laws 222 ging of heterogeneous media 224 Harmonic (weak) mean 224 Arithmetic (strong) mean 224 Geometric (intermediate) mean 225 Self-consistent averaging 225
5.3 5.4	Exercise Piezon Expand Average 5.3.1 5.3.2 5.3.3 5.3.4 Deform	meters and grain size evolution 221 ded details 14: Grain size evolution laws 222 ging of heterogeneous media 224 Harmonic (weak) mean 224 Arithmetic (strong) mean 224 Geometric (intermediate) mean 225 Self-consistent averaging 225 mation maps 226
5.3 5.4	Expanda Strenge	meters and grain size evolution 221 ded details 14: Grain size evolution laws 222 ging of heterogeneous media 224 Harmonic (weak) mean 224 Arithmetic (strong) mean 224 Geometric (intermediate) mean 225 Self-consistent averaging 225 mation maps 226 gth of the lithosphere and upper mantle 228
5.3 5.4	Exercise Piezon Expand Average 5.3.1 5.3.2 5.3.3 5.3.4 Deform Streng 5.5.1	meters and grain size evolution 221 ded details 14: Grain size evolution laws 222 ging of heterogeneous media 224 Harmonic (weak) mean 224 Arithmetic (strong) mean 224 Geometric (intermediate) mean 225 Self-consistent averaging 225 mation maps 226 gth of the lithosphere and upper mantle 228 Byerlee's law as a function of pressure 228 Brittle-ductile behavior 229 5.5.2.1 Oceanic plates 229
5.3 5.4 5.5	Exercise Piezon Expano Average 5.3.1 5.3.2 5.3.3 5.3.4 Deform Streng 5.5.1 5.5.2	meters and grain size evolution 221 ded details 14: Grain size evolution laws 222 ging of heterogeneous media 224 Harmonic (weak) mean 224 Arithmetic (strong) mean 224 Geometric (intermediate) mean 225 Self-consistent averaging 225 mation maps 226 yth of the lithosphere and upper mantle 228 Byerlee's law as a function of pressure 228 Brittle-ductile behavior 229 5.5.2.1 Oceanic plates 229 5.5.2.2 Continental plates 231
5.3 5.4 5.5	Exercise Piezon Expano Average 5.3.1 5.3.2 5.3.3 5.3.4 Deform Streng 5.5.1 5.5.2	meters and grain size evolution 221 ded details 14: Grain size evolution laws 222 ging of heterogeneous media 224 Harmonic (weak) mean 224 Arithmetic (strong) mean 224 Geometric (intermediate) mean 225 Self-consistent averaging 225 mation maps 226 gth of the lithosphere and upper mantle 228 Byerlee's law as a function of pressure 228 Brittle-ductile behavior 229 5.5.2.1 Oceanic plates 229
5.3 5.4 5.5 Review	Exercise Piezon Expand Average 5.3.1 5.3.2 5.3.3 5.3.4 Deform Streng 5.5.1 5.5.2	meters and grain size evolution 221 ded details 14: Grain size evolution laws 222 ging of heterogeneous media 224 Harmonic (weak) mean 224 Arithmetic (strong) mean 224 Geometric (intermediate) mean 225 Self-consistent averaging 225 mation maps 226 yth of the lithosphere and upper mantle 228 Byerlee's law as a function of pressure 228 Brittle-ductile behavior 229 5.5.2.1 Oceanic plates 229 5.5.2.2 Continental plates 231
5.3 5.4 5.5 Review	Exercise Piezon Expand Average 5.3.1 5.3.2 5.3.3 5.3.4 Deform Streng 5.5.1 5.5.2 v question USFER (meters and grain size evolution 221 ded details 14: Grain size evolution laws 222 ging of heterogeneous media 224 Harmonic (weak) mean 224 Arithmetic (strong) mean 224 Geometric (intermediate) mean 225 Self-consistent averaging 225 mation maps 226 gth of the lithosphere and upper mantle 228 Byerlee's law as a function of pressure 228 Brittle-ductile behavior 229 5.5.2.1 Oceanic plates 229 5.5.2.2 Continental plates 231 ons and discussion topics 5 232
5.3 5.4 5.5 Review	Exercise Piezon Expand Average 5.3.1 5.3.2 5.3.3 5.3.4 Deform Streng 5.5.1 5.5.2 w question Nondin	meters and grain size evolution 221 ded details 14: Grain size evolution laws 222 ging of heterogeneous media 224 Harmonic (weak) mean 224 Arithmetic (strong) mean 224 Geometric (intermediate) mean 225 Self-consistent averaging 225 mation maps 226 gth of the lithosphere and upper mantle 228 Byerlee's law as a function of pressure 228 Brittle-ductile behavior 229 5.5.2.1 Oceanic plates 229 5.5.2.2 Continental plates 231 ons and discussion topics 5 232 DF MOMENTUM: FLUID DYNAMICS 233

6.2	Steady, unidirectional flow and the 1-D Stokes equation 240				
	Expanded details 16: Stokes (force balance) equation in 3-D 241				
6.3	Shear and pressure-driven flow 243				
	6.3.1 Couette flow 243				
	6.3.2 Hagen-Poiseuille flow 244				
	6.3.3 Gravity-driven flow down a plane 245				
6.4	Density-driven flow: The Stokes sinker 246				
	6.4.1 Stokes velocity 246				
	6.4.2 Rayleigh number from Stokes velocity and Peclet number 249				
	6.4.3 Dynamic topography of the Stokes sinker 249				
	Expanded details 17: Role of viscosity variations for dynamic topography 251				
6.5	Stream function solutions 252				
	6.5.1 Corner flow 253				
	6.5.2 Parabolic flow: Source in a uniform stream 254				
	6.5.3 Hale-Shaw flow and superposition 254				
6.6	Thin viscous sheets and gravitational potential energy 255				
6.7	Postglacial rebound and glacial isostatic adjustment 259				
	6.7.1 The Haskell constraint on mantle viscosity 260				
	6.7.1.1 Wavelength dependence of viscoelastic relaxation 262				
	Expanded details 18: Glacial isostatic adjustment and sea level 266				
Revie	w questions and discussion topics 6 267				
Revie	W questions and discussion topics of 207				
TRA	NSFER OF ENERGY: HEAT TRANSPORT 269				
7.1	Conduction of heat and budgets 270				
	7.1.1 Heat budgets and fractionation 272				
	7.1.1.1 Fractionation and rare earth elements 274				
	7.1.1.2 Total radiogenic budget of the mantle 275				
	7.1.1.3 Radioactive decay and time dependence of internal heating 276				
7.2	Diffusion of heat and the conduction equation 277				
	7.2.1 Steady-state conduction solutions: Geotherms 279				
	7.2.1.1 Fixed surface temperature and heat flux 279				
	7.2.1.2 Fixed surface and base temperatures 280				
	7.2.1.3 Fixed surface temperature, constant flux at base 280				
	7.2.1.4 Fixed surface temperature, fixed deep flux 281				
7.3	Time-dependent solutions of the conduction equation 282				
	7.3.1 Half-space cooling (HSC) 283				
	Expanded details 19: Half-space cooling solution by separation of variables 284				
	Expanded details 20: Periodic heating of a semi-infinite half-space 287				
	Exercise 6: Finite difference solution of 1-D heat equation 289				
	7.3.2 Application of half-space cooling to the oceanic lithosphere 293				
	7.3.2.1 Oceanic plate bathymetry from HSC 294				
	Exercise 7: Plate driving forces from half-space cooling 297				
7.4	Convection 302				
- • •	7.4.1 Instability analysis for the Rayleigh-Bénard problem 303				

Expanded details 21: Linear instability analysis for Rayleigh-Bénard convection 304

		7.4.1.1 Internal heating 308
	7.4.2	Earth's mantle is convecting vigorously 309
	7.4.3	Finite amplitude boundary layer model 310
	Expan	ded details 22: Modified boundary layer models 312
		7.4.3.1 Scaling laws for mantle convection 314
		7.4.3.2 Layer thickness independence of heat flux in convection 314
	Expan	ded details 23: Boundary layer instability and local Rayleigh number 315
	7.4.4	Nondimensional equations and the Rayleigh number 316
Revie	w questi	ons and discussion topics 7 317
		N
MAN	ITLE CO	NVECTION 319
8.1	Numer	rical Rayleigh-Bénard convection experiments 319
	8.1.1	Role of internal heating 321
	Expan	ded details 24: Compressibility and viscous heating 323
		8.1.1.1 Top down or bottom up? 324
	8.1.2	Earth's thermal initial condition 325
		8.1.2.1 Moon-forming impact 325
8.2	-	erature and stress dependence of viscosity 326
	8.2.1	Approximations of rheological descriptions 326
	8.2.2	8.2.1.1 Partial melt parameterization 327 Temperature dependence and the stagnant lid 328
	8.2.3	Non-Newtonian flow 331
	Expan	ded details 25: Power-law based Rayleigh numbers 332
8.3	-	of phase transitions 333
6.5	8.3.1	Kinetics, metastability, and multiminerality 336
8.4		s of 3-D spherical geometry and toroidal flow 337
0.4	8.4.1	Generation of toroidal flow 338
		ded details 26: Generation of toroidal flow 341
8.5		
0.5	8.5.1	generating convection models 342 Viscoplasticity to break the stagnant lid 342
	0.5.1	8.5.1.1 The low-yield stress problem 344
		8.5.1.2 Hysteresis of heat transport state? 346
	8.5.2	The role of the asthenosphere 347
	8.5.3	Effects of continents and the supercontinental cycle 347
	8.5.4	Localization and memory: Rheological hysteresis 350
Povio		ons and discussion topics 8 354

PART III Tectonics and Mantle Dynamics 355

9 GLOBAL MANTLE CIRCULATION 357

- 9.1 The mantle wind: Predicting mantle flow 357
- 9.2 Surface topography 360
 - 9.2.1 Residual and dynamic topography 363

	9.2.2	Estimates of dynamic topography 362			
	0.0.0	9.2.2.1 Fréchet kernels 363			
	9.2.3	Residual vs. dynamic surface topography 365			
9.3	Time re	eversal of mantle convection 367			
9.4	The ge	oid constraint on viscosity 368			
	9.4.1	Venus, volatile storage capacity, and geoid-topography ratios 370			
	9.4.2	Typical viscosity profiles and nonuniqueness 371			
9.5	Plate d	riving and crustal deformation studies 372			
	9.5.1	Plate driving forces 373			
	Exercis	8: Modeling global mantle circulation with SEATREE 377			
	9.5.2	Crustal stress and lithospheric deformation 380			
	9.5.3	Opportunities for model refinement 381			
9.6	Seismic	c anisotropy as a constraint for mantle flow 382			
3.0	9.6.1	Origin of upper mantle seismic anisotropy 385			
	9.6.2	Development of CPO anisotropy in upper mantle flow 386			
	5.0.2	9.6.2.1 Mechanical anisotropy 388			
		9.6.2.2 Absolute plate motion and net rotations 389			
		9.6.2.3 Memory of deformation 391			
Poviou	, augstio	ons and discussion topics 9 393			
Review	v questio	ins and discussion topics 3 3/3			
DIVE	CENT	MOTIONS AND CREATION OF THE LITHOSPHERE 395			
10.1	The role	e of plumes in mantle convection 395			
	10.1.1	Hotspots and plumes 395			
	10.1.2	Large igneous provinces 397			
	10.1.3	Plumes and the evolution of tectonics 399			
	10.1.4	Hotspot swells and plume heat transport 401			
	10.1.5	Hotspot reference frames and moving plumes 406			
	10.1.6	Thermal anomaly underneath hotspots and imaging plumes 407			
	10.1.7	Hotspots as probes of deep mantle reservoirs 408			
		10.1.7.1 Mixing of chemical heterogeneity in convection 410			
		10.1.7.2 Origin and geometry of geochemical reservoirs 412			
	10.1.8	Flood basalts and mass extinctions 413			
10.2	Rifting:	Breaking continents apart 415			
	10.2.1	Anatomy of a rift zone 416			
		Style and mechanics of rifting 421			
	10.2.3	Dynamics of rifting 426			
	10.2.4	The East African rift (EAR) 431			
	10.2.5	The Basin and Range 436			
10.3		c spreading: Generating lithosphere 439			
	10.3.1	Structure of the oceanic crust 446			
	10.3.2	Slow to fast spreading and melt generation 448			
	10.3.3	Hydrothermal circulation 450			
	10.3.4	Partial melting 451			
		10.3.4.1 Two-phase flow 452			
		10.3.4.2 Melt parameterizations 453			
	10.3.5	Deviations from half-space cooling at old ages 455			
		10.3.5.1 Plate model 455			
		10.3.5.2 Chablis model 457			

		10.3.5.3	Physical processes for deviations from HSC 458	
		10.3.5.4	Regional deviations from HSC and reheating 459	
10.4	Plates as thermochemical boundary layers 460			
	10.4.1 Compositional density anomalies in the oceanic lithosphere 46			
	10.4.2	The contin	ental tectosphere 462	
		10.4.2.1	Continental keels 464	
		10.4.2.2	Midlithospheric discontinuities 465	
Review	questio	ns and dis	cussion topics 10 466	
LATER	AL MO	TION OF	THE LITHOSPHERE: STRIKE SLIP 467	
11.1	Introduc	ction 467		
	11.1.1	Hazard and	drisk 469	
11.2	Anatom	y of a strik	e-slip fault zone 472	
11.3	Tectonic	context o	f strike-slip systems 473	
	11.3.1	Oceanic tra	ansforms 475	
		11.3.1.1	Origin of oceanic transform faults 477	
	11.3.2	Continenta	l transforms 479	
		11.3.2.1	Strike slip in collisional settings 479	
		11.3.2.2	Tibetan collision 481	
	44.2.2	11.3.2.3	Anatolian system 482	
44.4	11.3.3		systems in an active subduction setting 484	
11.4			orms and earthquake dynamics 487	
	11.4.1 11.4.2		ization underneath faults 487 zard assessment and fault systems 489	
	11.4.2	11.4.2.1	Time-dependent hazard estimates 489	
		11.4.2.2	Constant fault geometry seismicity dynamics 490	
		11.4.2.3	Fault system evolution 492	
	11.4.3	Off-fault de	eformation 493	
Review	questio	ns and dis	cussion topics 11 494	
RECYC	CLING T	HE LITHO	OSPHERE: SUBDUCTION 495	
12.1	Introduc	ction 495		
12.2	Anatom	y of a sub	duction zone 498	
12.3	Trench t	forearc and	d sedimentary systems 499	
12.4	Temper	ature, mag	matism, and metamorphism 504	
	12.4.1	Thermal pa	arameter and shear heating 504	
	12.4.2	Volatile flux	kes 509	
	12.4.3	Petrologica	al constraints 510	
12.5	Arc volc	anism 51	5	
	12.5.1	Slab-assoc	iated, off-arc volcanism 519	
12.6	Back-ar	c systems	519	
12.7	Slab and	d trench ki	nematics: Rollback 520	
12.8	Flat slab	os 525		
12.9	Slab dyı	namics fro	m force balance considerations 526	
	12.9.1		rce balance 528	
		12.9.1.1	Effective strength of the subducting lithosphere 530	

12.10.1 The megathrust interface 533 12.10.11 Megathrust deformation cycles 536 12.10.12 The spectrum of fault slip 538 12.10.13 Megathrust evolution and tectonics 540 12.10.2 Bulk deep slab deformation from moment release rates and style 541 12.10.3 Deep earthquake mechanisms 542 12.11 Tectonics and dynamics of subduction evolution 543 12.11.1 Subduction initiation 543 12.11.2 Subduction systems of the Pacific 546 12.11.2.1 The motion of the Pacific and back-arc extension 546 12.11.2.1 The motion of the Pacific and back-arc extension 546 12.11.2.2 Izu-Bonin-Mariana and slab-slab interactions 549 12.11.2.3 Double slab systems 550 12.11.3 Slab rollback in the Mediterranean 552 12.12 Slab transport through the transition zone 557 12.12.1 Controls on regional slab and transition zone dynamics 561 12.12.2 Surface geology record of slab penetration 563 Review questions and discussion topics 12 565 13 OROGENY: MAKING MOUNTAINS 567 13.1 Introduction 567 13.2 Anatomy of orogenic belts 570 13.3 The kinematics of mountain building 576 13.4 Mechanics of mountain building 576 13.5 The elevation of mountain belts 582 13.5.1 Wedge dynamics 587 13.5.1.1 Critical taper and Coulomb wedge theory 587 Expanded details 27: Coulomb wedge equations 588 13.6 Tectonics, climate, and erosion 591 13.6.1 What is uplifting relative to what? 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630 Review questions and discussion topics 13 635		12.10	Subduction zone seismicity 533			
12.10.1.2 The spectrum of fault slip 538 12.10.1.3 Megathrust evolution and tectonics 540 12.10.2 Bulk deep slab deformation from moment release rates and style 541 12.10.3 Deep earthquake mechanisms 542 12.11 Tectonics and dynamics of subduction evolution 543 12.11.1 Subduction initiation 543 12.11.2 Subduction systems of the Pacific 546 12.11.2.1 The motion of the Pacific 546 12.11.2.1 The motion of the Pacific and back-arc extension 546 12.11.2.1 Izu-Bonin-Mariana and slab-slab interactions 549 12.11.2.3 Double slab systems 550 12.11.3 Slab rollback in the Mediterranean 552 12.12 Slab transport through the transition zone 557 12.12.1 Controls on regional slab and transition zone dynamics 561 12.12.2 Surface geology record of slab penetration 563 Review questions and discussion topics 12 565 13 OROGENY: MAKING MOUNTAINS 567 13.1 Introduction 567 13.2 Anatomy of orogenic belts 570 13.3 The kinematics of mountain building 576 13.4 Mechanics of mountain building 578 13.5.1 Wedge dynamics 587 13.5.1 Vedge dynamics 587 13.5.1 Critical taper and Coulomb wedge theory 587 Expanded details 27: Coulomb wedge equations 588 13.6.1 Tectonics, climate, and erosion 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630			12.10.1 The megathrust interface 533			
12.10.13 Megathrust evolution and tectonics 540 12.10.2 Bulk deep slab deformation from moment release rates and style 541 12.10.3 Deep earthquake mechanisms 542 12.11 Tectonics and dynamics of subduction evolution 543 12.11.1 Subduction initiation 543 12.11.2 Subduction systems of the Pacific 546 12.11.2.1 The motion of the Pacific and back-arc extension 546 12.11.2.1 The motion of the Pacific and back-arc extension 546 12.11.2.1 Jouble slab systems 550 12.11.3 Slab rollback in the Mediterranean 552 12.12 Slab transport through the transition zone 557 12.12.1 Controls on regional slab and transition zone dynamics 561 12.12.2 Surface geology record of slab penetration 563 Review questions and discussion topics 12 565 13 OROGENY: MAKING MOUNTAINS 567 13.1 Introduction 567 13.2 Anatomy of orogenic belts 570 13.3 The kinematics of mountain building 578 13.5 The elevation of mountain belts 582 13.5.1 Wedge dynamics 587 13.5.1 Vedge dynamics 587 13.5.1 Critical taper and Coulomb wedge theory 587 Expanded details 27: Coulomb wedge equations 588 13.6 Tectonics, climate, and erosion 591 13.6.1 What is uplifting relative to what? 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630			12.10.1.1 Megathrust deformation cycles 536			
12.10.2 Bulk deep slab deformation from moment release rates and style 12.10.3 Deep earthquake mechanisms 542 12.11 Tectonics and dynamics of subduction evolution 543 12.11.2 Subduction initiation 543 12.11.2 Subduction systems of the Pacific 546 12.11.2.1 The motion of the Pacific and back-arc extension 546 12.11.2.2 Izu-Bonin-Mariana and slab-slab interactions 549 12.11.2.3 Double slab systems 550 12.11.3 Slab rollback in the Mediterranean 552 12.12 Slab transport through the transition zone 557 12.12.1 Controls on regional slab and transition zone dynamics 561 12.12.2 Surface geology record of slab penetration 563 Review questions and discussion topics 12 565 13 OROGENY: MAKING MOUNTAINS 567 13.1 Introduction 567 13.2 Anatomy of orogenic belts 570 13.3 The kinematics of mountain building 576 13.4 Mechanics of mountain building 578 13.5.1 Wedge dynamics 587 13.5.1.1 Circlia taper and Coulomb wedge theory 587 Expanded details 27: Coulomb wedge equations 588 13.6 Tectonics, climate, and erosion 591 13.6.1 What is uplifting relative to what? 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630			12.10.1.2 The spectrum of fault slip 538			
12.10.3 Deep earthquake mechanisms 542 12.11 Tectonics and dynamics of subduction evolution 543 12.11.1 Subduction initiation 543 12.11.2 Subduction systems of the Pacific 546 12.11.2.1 The motion of the Pacific and back-arc extension 546 12.11.2.1 Deuble slab systems 550 12.11.3 Slab rollback in the Mediterranean 552 12.12 Slab transport through the transition zone 557 12.12.1 Controls on regional slab and transition zone dynamics 561 12.12.2 Surface geology record of slab penetration 563 Review questions and discussion topics 12 565 13 OROGENY: MAKING MOUNTAINS 567 13.1 Introduction 567 13.2 Anatomy of orogenic belts 570 13.3 The kinematics of mountain building 578 13.5 The elevation of mountain belts 582 13.5.1 Wedge dynamics 587 13.5.1 Wedge dynamics 587 13.6.1 What is uplifting relative to what? 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630			3			
12.11 Tectonics and dynamics of subduction evolution 543 12.11.1 Subduction initiation 543 12.11.2 Subduction systems of the Pacific 546 12.11.2.1 The motion of the Pacific and back-arc extension 546 12.11.2.2 Izu-Bonin-Mariana and slab-slab interactions 549 12.11.2.3 Double slab systems 550 12.11.3 Slab rollback in the Mediterranean 552 12.12 Slab transport through the transition zone 557 12.12.1 Controls on regional slab and transition zone dynamics 561 12.12.2 Surface geology record of slab penetration 563 Review questions and discussion topics 12 565 13 OROGENY: MAKING MOUNTAINS 567 13.1 Introduction 567 13.2 Anatomy of orogenic belts 570 13.3 The kinematics of mountain building 576 13.4 Mechanics of mountain building 578 13.5 The elevation of mountain belts 582 13.5.1 Wedge dynamics 587 13.5.1 Vedge dynamics 587 13.6.1 What is uplifting relative to what? 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Mediterranean 618 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630						
12.11.1 Subduction initiation 543 12.11.2 Subduction systems of the Pacific 546 12.11.2.1 The motion of the Pacific 546 12.11.2.2 Izu-Bonin-Mariana and slab-slab interactions 549 12.11.2.3 Double slab systems 550 12.11.3 Slab rollback in the Mediterranean 552 12.12 Slab transport through the transition zone 557 12.12.1 Controls on regional slab and transition zone dynamics 561 12.12.2 Surface geology record of slab penetration 563 Review questions and discussion topics 12 565 13 OROGENY: MAKING MOUNTAINS 567 13.1 Introduction 567 13.2 Anatomy of orogenic belts 570 13.3 The kinematics of mountain building 576 13.4 Mechanics of mountain building 578 13.5 The elevation of mountain belts 582 13.5.1 Wedge dynamics 587 13.5.1 Critical taper and Coulomb wedge theory 587 Expanded details 27: Coulomb wedge equations 588 13.6 Tectonics, climate, and erosion 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630		10.11	·			
12.11.2 Subduction systems of the Pacific 546 12.11.2.1 The motion of the Pacific and back-arc extension 546 12.11.2.2 Izu-Bonin-Mariana and slab-slab interactions 549 12.11.3 Slab rollback in the Mediterranean 552 12.12 Slab transport through the transition zone 557 12.12.1 Controls on regional slab and transition zone dynamics 561 12.12.2 Surface geology record of slab penetration 563 Review questions and discussion topics 12 565 13 OROGENY: MAKING MOUNTAINS 567 13.1 Introduction 567 13.2 Anatomy of orogenic belts 570 13.3 The kinematics of mountain building 576 13.4 Mechanics of mountain building 578 13.5 The elevation of mountain belts 582 13.5.1 Wedge dynamics 587 13.5.1.1 Critical taper and Coulomb wedge theory 587 Expanded details 27: Coulomb wedge equations 588 13.6.1 What is uplifting relative to what? 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630		12.11	•			
12.11.2.1 The motion of the Pacific and back-arc extension 546 12.11.2.2 Izu-Bonin-Mariana and slab-slab interactions 549 12.11.3 Double slab systems 550 12.11.3 Slab rollback in the Mediterranean 552 12.12 Slab transport through the transition zone 557 12.12.1 Controls on regional slab and transition zone dynamics 561 12.12.2 Surface geology record of slab penetration 563 Review questions and discussion topics 12 565 13 OROGENY: MAKING MOUNTAINS 567 13.1 Introduction 567 13.2 Anatomy of orogenic belts 570 13.3 The kinematics of mountain building 576 13.4 Mechanics of mountain building 578 13.5 The elevation of mountain belts 582 13.5.1 Wedge dynamics 587 13.5.1.1 Critical taper and Coulomb wedge theory 587 Expanded details 27: Coulomb wedge equations 588 13.6 Tectonics, climate, and erosion 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630						
12.11.2.2 Izu-Bonin-Mariana and slab-slab interactions 549 12.11.2.3 Double slab systems 550 12.11.3 Slab rollback in the Mediterranean 552 12.12 Slab transport through the transition zone 557 12.12.1 Controls on regional slab and transition zone dynamics 561 12.12.2 Surface geology record of slab penetration 563 Review questions and discussion topics 12 565 13 OROGENY: MAKING MOUNTAINS 567 13.1 Introduction 567 13.2 Anatomy of orogenic belts 570 13.3 The kinematics of mountain building 576 13.4 Mechanics of mountain building 578 13.5 The elevation of mountain belts 582 13.5.1 Wedge dynamics 587 13.5.1.1 Critical taper and Coulomb wedge theory 587 Expanded details 27: Coulomb wedge equations 588 13.6 Tectonics, climate, and erosion 591 13.6.1 What is uplifting relative to what? 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630						
12.11.2.3 Double slab systems 550 12.11.3 Slab rollback in the Mediterranean 552 12.12 Slab transport through the transition zone 557 12.12.1 Controls on regional slab and transition zone dynamics 561 12.12.2 Surface geology record of slab penetration 563 Review questions and discussion topics 12 565 13 OROGENY: MAKING MOUNTAINS 567 13.1 Introduction 567 13.2 Anatomy of orogenic belts 570 13.3 The kinematics of mountain building 576 13.4 Mechanics of mountain building 578 13.5 The elevation of mountain belts 582 13.5.1 Wedge dynamics 587 13.5.1.1 Critical taper and Coulomb wedge theory 587 Expanded details 27: Coulomb wedge equations 588 13.6 Tectonics, climate, and erosion 591 13.6.1 What is uplifting relative to what? 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630						
12.11.3 Slab transport through the transition zone 557 12.12.1 Controls on regional slab and transition zone dynamics 561 12.12.2 Surface geology record of slab penetration 563 Review questions and discussion topics 12 565 13 OROGENY: MAKING MOUNTAINS 567 13.1 Introduction 567 13.2 Anatomy of orogenic belts 570 13.3 The kinematics of mountain building 576 13.4 Mechanics of mountain building 576 13.5 The elevation of mountain belts 582 13.5.1 Wedge dynamics 587 13.5.1.1 Critical taper and Coulomb wedge theory 587 Expanded details 27: Coulomb wedge equations 588 13.6 Tectonics, climate, and erosion 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630						
12.12.1 Controls on regional slab and transition zone dynamics 561 12.12.2 Surface geology record of slab penetration 563 Review questions and discussion topics 12 565 13 OROGENY: MAKING MOUNTAINS 567 13.1 Introduction 567 13.2 Anatomy of orogenic belts 570 13.3 The kinematics of mountain building 576 13.4 Mechanics of mountain building 578 13.5 The elevation of mountain belts 582 13.5.1 Wedge dynamics 587 13.5.1.1 Critical taper and Coulomb wedge theory 587 Expanded details 27: Coulomb wedge equations 588 13.6 Tectonics, climate, and erosion 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630						
12.12.1 Controls on regional slab and transition zone dynamics 561 12.12.2 Surface geology record of slab penetration 563 Review questions and discussion topics 12 565 13 OROGENY: MAKING MOUNTAINS 567 13.1 Introduction 567 13.2 Anatomy of orogenic belts 570 13.3 The kinematics of mountain building 576 13.4 Mechanics of mountain building 578 13.5 The elevation of mountain belts 582 13.5.1 Wedge dynamics 587 13.5.1.1 Critical taper and Coulomb wedge theory 587 Expanded details 27: Coulomb wedge equations 588 13.6 Tectonics, climate, and erosion 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630		12.12	Slab transport through the transition zone 557			
Review questions and discussion topics 12 565 13 OROGENY: MAKING MOUNTAINS 567 13.1 Introduction 567 13.2 Anatomy of orogenic belts 570 13.3 The kinematics of mountain building 576 13.4 Mechanics of mountain building 578 13.5 The elevation of mountain belts 582 13.5.1 Wedge dynamics 587 13.5.11 Critical taper and Coulomb wedge theory 587 Expanded details 27: Coulomb wedge equations 588 13.6 Tectonics, climate, and erosion 591 13.6.1 What is uplifting relative to what? 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630			· · · · · · · · · · · · · · · · · · ·			
Review questions and discussion topics 12 565 13 OROGENY: MAKING MOUNTAINS 567 13.1 Introduction 567 13.2 Anatomy of orogenic belts 570 13.3 The kinematics of mountain building 576 13.4 Mechanics of mountain building 578 13.5 The elevation of mountain belts 582 13.5.1 Wedge dynamics 587 13.5.1.1 Critical taper and Coulomb wedge theory 587 Expanded details 27: Coulomb wedge equations 588 13.6 Tectonics, climate, and erosion 591 13.6.1 What is uplifting relative to what? 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630						
13.0 ROGENY: MAKING MOUNTAINS 567 13.1 Introduction 567 13.2 Anatomy of orogenic belts 570 13.3 The kinematics of mountain building 576 13.4 Mechanics of mountain building 578 13.5 The elevation of mountain belts 582 13.5.1 Wedge dynamics 587 Expanded details 27: Coulomb wedge equations 588 13.6 Tectonics, climate, and erosion 591 13.6.1 What is uplifting relative to what? 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630		Review				
13.1 Introduction 567 13.2 Anatomy of orogenic belts 570 13.3 The kinematics of mountain building 576 13.4 Mechanics of mountain building 578 13.5 The elevation of mountain belts 582 13.5.1 Wedge dynamics 587 13.5.1.1 Critical taper and Coulomb wedge theory 587 Expanded details 27: Coulomb wedge equations 588 13.6 Tectonics, climate, and erosion 591 13.6.1 What is uplifting relative to what? 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630						
13.2 Anatomy of orogenic belts 570 13.3 The kinematics of mountain building 576 13.4 Mechanics of mountain building 578 13.5 The elevation of mountain belts 582 13.5.1 Wedge dynamics 587 13.5.1.1 Critical taper and Coulomb wedge theory 587 Expanded details 27: Coulomb wedge equations 588 13.6 Tectonics, climate, and erosion 591 13.6.1 What is uplifting relative to what? 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630	13	OROG	SENY: MAKING MOUNTAINS 567			
13.3 The kinematics of mountain building 576 13.4 Mechanics of mountain building 578 13.5 The elevation of mountain belts 582 13.5.1 Wedge dynamics 587 13.5.1.1 Critical taper and Coulomb wedge theory 587 Expanded details 27: Coulomb wedge equations 588 13.6 Tectonics, climate, and erosion 591 13.6.1 What is uplifting relative to what? 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630		13.1	Introduction 567			
13.4 Mechanics of mountain building 578 13.5 The elevation of mountain belts 582 13.5.1 Wedge dynamics 587 13.5.1.1 Critical taper and Coulomb wedge theory 587 Expanded details 27: Coulomb wedge equations 588 13.6 Tectonics, climate, and erosion 591 13.6.1 What is uplifting relative to what? 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630		13.2	Anatomy of orogenic belts 570			
13.5 The elevation of mountain belts 582 13.5.1 Wedge dynamics 587 13.5.1.1 Critical taper and Coulomb wedge theory 587 Expanded details 27: Coulomb wedge equations 588 13.6 Tectonics, climate, and erosion 591 13.6.1 What is uplifting relative to what? 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630		13.3	The kinematics of mountain building 576			
13.5.1 Wedge dynamics 587 13.5.1.1 Critical taper and Coulomb wedge theory 587 Expanded details 27: Coulomb wedge equations 588 13.6 Tectonics, climate, and erosion 591 13.6.1 What is uplifting relative to what? 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630		13.4	5			
Expanded details 27: Coulomb wedge equations 588 13.6 Tectonics, climate, and erosion 591 13.6.1 What is uplifting relative to what? 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630		13.5	The elevation of mountain belts 582			
Expanded details 27: Coulomb wedge equations 588 13.6 Tectonics, climate, and erosion 591 13.6.1 What is uplifting relative to what? 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630			13.5.1 Wedge dynamics 587			
13.6 Tectonics, climate, and erosion 591 13.6.1 What is uplifting relative to what? 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630						
13.6 Tectonics, climate, and erosion 591 13.6.1 What is uplifting relative to what? 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630		-				
13.6.1 What is uplifting relative to what? 591 13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630		13.6	· · · · · · · · · · · · · · · · · · ·			
13.6.2 Uplift rates and surface transport 594 Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630		13.0				
Expanded details 28: Stream power and surface transport laws 595 13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630			, ,			
13.6.3 Fingerprinting topography 598 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630		-				
 13.7 Exhumation of deep-seated rock units 601 13.8 Dynamics of mountain building 607 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630 		-				
 13.9 Regional case histories 609 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630 		13.7				
 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630 		13.8	Dynamics of mountain building 607			
 13.9.1 Cordilleran orogeny: The Andes 610 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630 		13.9	Regional case histories 609			
 13.9.2 Accretionary orogeny: The Mediterranean 618 13.9.3 Collisional orogeny: Himalaya-Tibet 621 13.10 Orogeny, the Wilson cycle, and supercontinental assembly 630 			5			
13.9.3 Collisional orogeny: Himalaya-Tibet 62113.10 Orogeny, the Wilson cycle, and supercontinental assembly 630			· ·			
Review questions and discussion topics 13 635		13.10	Orogeny, the Wilson cycle, and supercontinental assembly 630			
		Review	questions and discussion topics 13 635			

14 PLATE TECTONICS AND PLANETARY EVOLUTION 637

- 14.1 Onset of plate tectonics 637
- 14.2 Different modes of early Earth heat transport 638

		14.3	Parameterized thermal and volatile evolution models 639
		14.4	Plate tectonics on other planets 644
			14.4.1 Should exoplanets have plate tectonics? 645
	ΟL	JTLOOI	《 647
PART IV		Appen	dixes 649
	A	REFE	RENCE DATA AND ADDITIONAL FIGURES 651
		A.1	Important constants and typical parameter values 651
		A.2	Geological timescale and magnetic reversals 651
		A.3	Phase diagrams 651
		A.4	Gravitational potentials for terrestrial planets 655
		Д.Т	A.4.1 Comparison to Venus and Mars: Aphroditoid and areoid 657
		A.5	Plate geometry, names, and motion statistics 659
	В	ADDI	TIONAL TOPICS IN CONTINUUM MECHANICS 663
		B.1	General conservation laws: One law to derive them all 663
		B.2	Strain compatibility equations 666
		B.3	Finite strain 668
		B.4	Relationship between moment tensors and fault plane solutions 670
		B.5	Rayleigh-Taylor instabilities 670
			nayleigh rayler metabhilice o/s
	С	MATH	HAND STATISTICS NOTES 675
		C.1	Useful conventions and basic mathematical functions 675
			C.1.1 Scientific notation, unit prefixes, and messing with exponents 675
			C.1.2 Logarithms 675
			C.1.3 Oscillations and trigonometric (or harmonic) functions 676
			C.1.3.1 Hyperbolic functions 678 C.1.4 Complex numbers and trigonometric functions 678
			C.1.4.1 Quadratic equation 679
		C.2	Calculus concepts 679
			C.2.1 Full and partial derivatives 679
			C.2.2 Taking derivatives 680
			C.2.3 Series approximations 682
			C.2.4 Integrals 683
			C.2.5 Singularities 685
		C.3	Linear algebra 685
			C.3.1 Vectors 685
			C.3.1.1 Norms 686 C.3.2 Matrices 687
			C.3.2.1 Operations on square matrices 687
			C.3.3 Adding and multiplying vectors and matrices 688

Dot vector product, δ_{ij} , and ε_{ijk} 688

Addition 688

C.3.3.1

C.3.3.2

CONTENTS xvii

		C.3.3.3 Cross vector product 689
		C.3.3.4 Dyadic vector product 690
		C.3.3.5 Multiplication of a matrix with a scalar 690
		C.3.3.6 Multiplication of a matrix with a vector 690
		C.3.3.7 Multiplication of two matrices 691
		C.3.3.8 Inner product of two tensors 691
	C.3.4	Matrix flavors and additional operations 691
		C.3.4.1 Identity matrix 691
		C.3.4.2 Matrix inverse 691
		C.3.4.3 Orthogonal or rotation matrices 692
		C.3.4.4 Euler angles and rotation matrices 692
		C.3.4.5 Matrix decomposition 693
		C.3.4.6 Eigenvalues and eigenvectors 693
		C.3.4.7 Linear inverse problems 694
C.4	Coordi	nate systems and spherical trigonometry 694
	C.4.1	Cartesian and spherical coordinate systems 694
	C.4.2	Useful formulas for spherical trigonometry 696
C.5	Vector	calculus: Divergence, curl, and tensors 698
	C.5.1	The Gauss and Stokes theorems 701
	C.5.2	Tensors 701
		C.5.2.1 The wedge operator 702
C.6	Spectr	al analysis 702
	C.6.1	Fourier series 702
	C.6.2	Spherical harmonics 703
		C.6.2.1 Helmholtz decomposition of vector fields 706
C.7	Simple	statistics and curve fitting 707
	C.7.1	Means, variance, and standard deviation 707
		C.7.1.1 Averaging of directional and orientational data 708
	C.7.2	Distributions and moments 709
	C.7.3	Linear regression 710
	C.7.4	Correlation 711
	C.7.5	Estimates of uncertainties 711

Bibliography 713 Acronyms 833 Index 835 © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

An Exploration of Basic Solid Earth Structure and Dynamics

he Earth sciences have always been interdisciplinary and are founded on interpreting the rich geological record of our planet. Much of the dramatic progress over the last century has been driven by discoveries based on observations in solid Earth geophysics, from gravity, to magnetic field measurements, to global seismology, and more recently to space geodetic techniques. However, the biggest advances usually arise when diverse observations from different disciplines are combined in mechanically consistent ways to establish a comprehensive theory for why the Earth works this way.

The establishment of the integrative model of plate tectonics is such an occasion and *the* big story in the solid Earth geosciences. As conceived originally, plate tectonics is a kinematic description for how the surface of the Earth deforms and moves horizontally, without specifying anything about the driving forces (*McKenzie & Parker*, 1967; *Morgan*, 1968; *Le Pichon*, 1968). However, those forces were quickly reconnected to the fact that plate tectonics is the surface expression of mantle convection, as had been suggested roughly 40 years earlier (*Holmes*, 1931).

Because of sustained radiogenic heat production within the mantle and the sluggish nature of mantle convection, our planet is still cooling and its surface continues to be shaped and reworked by its internal dynamics. Mantle convection controls the evolution of the solid systems of our planet, encompassing nearly all tectonic and magmatic activity, including the earthquakes and volcanic eruptions that affect society in sometimes catastrophic ways. Moreover, mantle convection and plate tectonics also interact with the exosphere, comprising the ocean and atmospheric layers, and with that the climate and the biosphere we are part of. However, there are still many open questions as to exactly how those interactions occur, and there are a number of important observations, such as those relating to tectonic transients, continental dynamics, and plate boundary evolution, that have so far resisted integration into a proper, comprehensive dynamic theory.

We proceed to review some of the fundamental geophysical and geological observations for Earth, with a focus on global scales, as if we were exploring an alien planet remotely. We then discuss the Earth's thermochemical structure, often explored jointly with seismological constraints, and then turn to an overview of a dynamic description of tectonic activities, which we follow up on throughout the remainder of the book.

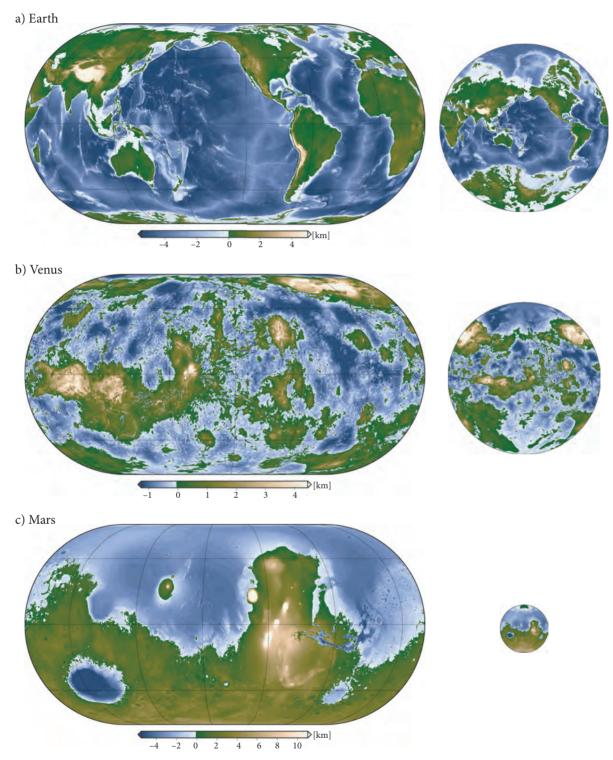
1.1 Topography

When viewed from space, the outer terrestrial planets are strikingly different. The famous, Earth-as-a-blue-marble photo taken during the Apollo 17 mission emphasized our special, perhaps precarious, state with water oceans covering much of the planet, and a temperate atmosphere with clouds and prevailing wind currents generated by the interaction of solar heat influx, rotation, and the hydrological cycle, along with the atmospheric signatures of life (*Sagan et al.*, 1993). There

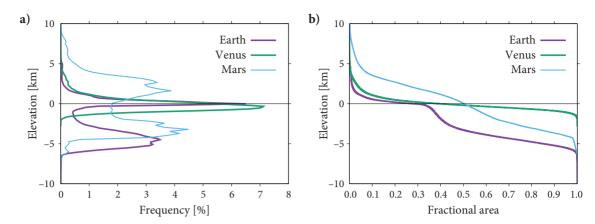
CHAPTER 1 Solid Earth Structure and Dynamics

is evidence for water having been available in fluid form on Earth's surface over billions of years (*Mojzsis et al.*, 2001), yet why and how this stable condition was maintained is not entirely clear.

The early Sun was much fainter than at present day, such that our oceans would have likely been permanently frozen in the Archean (Feulner, 2012). While there were periods of near-global glaciation in Earth's history (Hoffman et al., 2017), those episodes were temporarily restricted, and for the most part, a self-regulatory climate feedback mechanism appears to have been at work, thanks in part to plate tectonics (Walker et al., 1981): If the atmosphere gets too hot, rock is more readily eroded by surface processes. Weathering transports carbon into the oceans, where it forms sediments that are subducted back into the mantle. This pathway draws down atmospheric CO₂, and so reduces the atmospheric greenhouse effect. This reduces temperatures, and with it the strength of weathering, and as a consequence, less carbon gets transported into the mantle. Due to the sustained convective and tectonic outflux of CO₂ from the interior of the Earth, e.g., from volcanism, carbon dioxide concentrations increase in the atmosphere, leading to warming.


Such long-term climate regulation, and the existence of oxygen or any other atmospheres, are not guaranteed for terrestrial planets, as our sister planet Venus shows. The atmosphere of Venus is $\sim\!340$ K hotter than Earth's, thanks to runaway greenhouse effects due a high CO₂ and sulfur-rich atmosphere that also leads to surface pressures $\approx\!92$ times those of Earth. There are no oceans or other surface water on Venus, and plate tectonics is absent, perhaps because of rheological effects due to the absence of water, the high surface temperatures, or both. Heat from Venus's mantle is transported mainly through a more or less stagnant surface that exhibits volcanism and appears to show episodic reworking. Mars has a more temperate atmosphere but is likewise frozen tectonically, indicating that Earth's style of tectonics is unique in our solar system (§14.4). Surface conditions in terms of temperature, availability of water, and the carbon cycle are thus linked with the internal evolution of a planet, and somehow interact to lead to habitable conditions, at least for Earth.

If a spacecraft remotely exploring planets in our solar system were to use a radar instrument, an explorer could then peek through the atmosphere to reveal the planets' surface elevation with respect to some reference. Figure 1.1 shows topography for the three Earthlike planets using the same type of colorscale, centered on the reference (sea level for Earth). Thanks to space exploration, we have learned much about the surface geology of Mars, which shows the remnants of fluid water and wind-driven transport processes, but is at present characterized by a hemispheric dichotomy with southern highlands and northern lowlands. This feature is related to the internal dynamics of Mars's mantle, and there are remnants of extensive volcanism, including Olympus Mons, the highest topographic feature of all terrestrial planets. We know that Mars's surface is relatively static because many large-impact craters are preserved, and the relative decrease in typical impact size over solar system evolution can be used for dating.


Venus's surface is comparatively younger and shows features of large-scale reorganizations, in particular near-circular features, *coronas*, as well as indications of active volcanism. Earth shares the general planetary age of \sim 4.6 Gyr with the terrestrial planets that formed from silicic- and iron-type materials in similar fashion during the formative eon of the solar system. The last planet-shattering event for Earth was the impact of a Mars-sized object that led to the formation of Earth's moon (\S 8.1.2.1). However, compared to Mars, Earth's surface is much younger. While there are rocks of \sim 3.8 Gyr age preserved in Earth's continents, there are few signs of impact craters, indicating tectonic reworking and active surface processes. In particular, Earth's oceans are underlain by seafloor which, for the most part, is at present nowhere older than \sim 200 Ma.

One way to analyze topography is by computation of fractional or cumulative topography histograms, *hypsometric curves* (Fig. 1.2). Such analysis brings out the aforementioned global features; for example, Venus has a slightly skewed, but overall nearly normally distributed topography. Earth shows clear peaks at the average continental and oceanic elevations of \sim 100 m and \sim -4500 m,

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Figure 1.1: Topography of Earth (**a**; bedrock elevation, removing ice for Greenland and Antarctica; *Amante & Eakins*, 2009), Venus (**b**; Magellan, Pioneer Venus, and Venera missions), Mars (**c**; Mars Global Surveyor), where datasets for b) and c) were expanded from spherical harmonics (*Wieczorek*, 2015) (up to degree 720, when available). On left, Eckert-IV projection; on right, van der Grinten projection, scaled with the square of the object radius. See Fig. A.5 for power spectra and geoid anomalies.

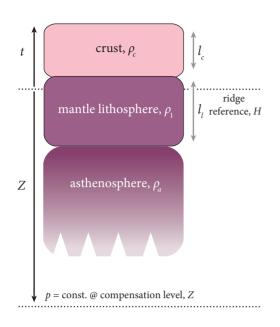
Figure 1.2: a) Fractional histogram of elevation for planetary topography from Fig. 1.1. b) Cumulative distribution function of elevation in area (i.e., hypsometric curve) (*y* axes clipped) for objects as in a).

respectively. This dichotomy is profound, and is the result of thermochemical mantle convection. Oceanic plates are continuously generated and recycled with a lifetime of $\sim \! 100$ Ma. Continents are created mainly through fractionation at subduction zone arc volcanism, and subduction-driven accumulation of protocontinental fragments, e.g., created by plumes.

1.1.1 Isostasy

The bulk difference in oceanic and continental elevation of Fig. 1.2 can be explained by the floating equilibrium of different crustal columns. *Airy* (1855) first proposed that

Earth's crust lying upon the lava can be compared with perfect correctness to the state of a raft timber floating upon water.


This idea was based on 1730s survey results by Pierre Bouguer from the Andes, and in the Nine-teenth century in India, including by George Everest close to the south Himalayas. Both studies showed that the plumb line deflection at the base of the mountain was less than expected from the extra mass above sea level.

One way to explain this is there was a negative mass anomaly at the base of the mountain due to the "substitution of a certain volume of light crust for heavy lava" (Airy, 1855), as for a floating iceberg. This is one way to state the principle of isostasy, which posits that a crustal density column should be in an (Archimedes) floating equilibrium over long time and length scales (Fig. 1.3). If this isostatic equilibrium holds, the pressure due to the overburden of a crustal column, p, has to add up to the same everywhere at some $compensation\ depth$, Z, i.e., p(Z) = const. everywhere. Pressure arises from the forces pushing inward on an object from all directions, normalized by the surface area of the object.

How can we link this assumption about force balance to topographic or structural observables? When considering forces, it is often useful to start with Newton. His second law says that force, expressed as a *vector* (\$C.3) pointing in some direction, F (units N, Newton), is mass m (units kg) times *acceleration*, g,

$$F = mg, (1.1)$$

where acceleration, g, is a temporal change in velocity (units of m/s²). Eq. (1.1) means that it takes a force to change the rate of motion of an object due to inertia.

Figure 1.3: Isostatic balance column for load components from a crustal layer with thickness l_c and density ρ_c , and a mantle lithosphere with thickness l_l and density ρ_l (total lithospheric thickness $L = l_c + l_l$), floating over an asthenosphere of density ρ_a . The pressure p at the compensation depth Z is constant for a floating equilibrium, where the overburden pressure p_L , eq. (1.3), is computed for a column of height h = Z + t. Isostatic topography, t, is relative to a hypothetical spreading-center reference height H, where $l_c = l_l = 0$.

If g is the *gravitational acceleration*, i.e., the pull due to gravity, e.g., of our planet, then eq. (1.1) allows us to infer the weight of an object, and g points more or less vertically down toward the center of the Earth. If that m object is our mantle column considered for the floating equilibrium, with area A and volume V on top of the compensation depth is $m = \rho V = \rho h A$, with *density*

$$\rho = \frac{m}{V},\tag{1.2}$$

and topography z and h = t + Z (Fig. 1.3). The weight of that crustal column is thus $F = mg = \rho ghA$, with the amplitude, or length/norm, of g, g = |g| (eq. C.22). The pressure (force per area, units of N/m² or Pa) is therefore (ignoring atmospheric pressure)

$$p_l = \rho g h = \int dz \rho(z) g(z), \qquad (1.3)$$

where the integral over depth, $\int dz$, means sum up the area under a function (§C.2.4), and replaces the product if ρ and/or g(z) are functions of depth. This lithostatic, or overburden, pressure is identical to the hydrostatic pressure in a fluid at rest, and the depth derivative of eq. (1.3),

$$\frac{\mathrm{d}p}{\mathrm{d}z} = -\rho g,\tag{1.4}$$

is called the *hydrostatic equilibrium equation*.

Let us assume that the crust is part of the thicker *lithosphere* (Greek *lithos* ($\lambda(\theta \circ \zeta)$) = stone, here: strong), which is a mechanical term that encompasses the relatively slowly deforming, cold surface regions of the Earth. It sits on top of the *asthenosphere* (Greek *asthenos* ($\alpha \circ \theta \circ \gamma \circ \gamma \circ \zeta$) = without strength, weak) which can flow so that things equilibrate. The timescales for this equilibration after load removal, e.g., due to erosion or deglaciation at the surface, or removal of dense layers by tectonic processes, depends on the creep behavior of the underlying mantle and the wavelength of perturbations (§6.7.1).

Assuming that density is constant with each layer (following Airy), this yields a balance for a column floating at topography $z_{\rm iso}$ under a cover of air (Fig. 1.3, and see exercise 2). Comparing the lithospheric and reference column in Fig. 1.3, we can write the pressure at compensation depth Z and asthenospheric density ρ_a as

$$g(\rho_{c}l_{c} + \rho_{l}l_{l} + (Z + t - l_{c} - l_{l})\rho_{a}) = gZ\rho_{a}$$

$$(\rho_{c} - \rho_{a})l_{c} + (\rho_{l} - \rho_{a})l_{l} + t\rho_{a} + Z\rho_{a} = Z\rho_{a}$$

$$t = \frac{\rho_{a} - \rho_{c}}{\rho_{a}}l_{c} + \frac{\rho_{a} - \rho_{l}}{\rho_{a}}l_{l}.$$
(1.5)

Any asthenospheric layer below l_l thus cancels out irrespective of the actual choice for Z. However, this is only the case under the assumption that there are no asthenospheric density variations. Those complicate analysis of the nonisostatic residuals and considerations of the origin of topography (§9.2.1).

Allowing for water coverage, we can write the isostatic elevation of the continental lithosphere relative, e.g., to a hypothetical spreading center reference level, H, with no oceanic crust, $l_c = 0$, and zero plate thickness, $l_l = 0$, by definition, as

$$z_{\text{iso}}^{\text{land}} = f_1 l_c + f_2 l_l - f_3 H \quad \text{if} \quad z \ge 0 \text{ and}$$

$$z_{\text{iso}}^{\text{water}} = \frac{z_{\text{iso}}^{\text{land}}}{f_3} \quad \text{if} \quad z < 0,$$

$$(1.6)$$

with

$$f_1 = \left(1 - \frac{\rho_c}{\rho_a}\right), \quad f_2 = \left(1 - \frac{\rho_l}{\rho_a}\right), \quad \text{and} \quad f_3 = \left(1 - \frac{\rho_w}{\rho_a}\right) \approx \frac{1}{1.44},$$

where ρ_w is the density of water, with $H \approx 2.6...2.7$ km (§7.3.2, §10.3.5). With $l_l = 0$ or no lithospheric variations, eq. (1.6) shows that high topography at constant crustal density has to be balanced by thicker crust, such that the depth to the base of the crust is variable (*Airy*, 1855). The factors relating crustal and lithospheric layer thickness and topography are of order $f_1 \sim 0.1...0.2$ and $f_2 \sim -0.02...-0.01$, respectively (Fig. 1.4). This means that variations in crustal thickness have ~ 10 times the effect of variations in lithospheric thickness, albeit with larger uncertainties for l_l (§9.2.1).

Alternatively, the depth from sea level to the base of the crust or lithosphere, P, can be chosen to be the same as the compensation depth, P=Z. In this case, floating equilibrium for variable surface topography can also be achieved if the crustal density, ρ_P , is variable, e.g., reduced underneath high topography. This sort of compensation is attributed to Pratt, who in *Pratt* (1855) attempted to explain the Himalayan plumb line measurements with variable crustal density, akin to this line of reasoning. If compensation were to happen at a constant crustal bottom depth Z, the same kind of balance shows that the required density is

$$\rho_P = \rho_0 \frac{Z}{Z+t},\tag{1.7}$$

where ρ_0 is the reference density at the spreading center. If a lithospheric column is perfectly in *Airy isostasy* or *Pratt isostasy*, it is called *fully compensated* (§3.2.2.2).

Granitic continental crust is lighter, i.e., less dense, than the basalt (extrusive) and gabbroic (intrusive) oceanic crust, which is also underlain by a relatively denser, colder convective boundary layer, and thus mainly thermally controlled, lithosphere. These bulk differences explain much of

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

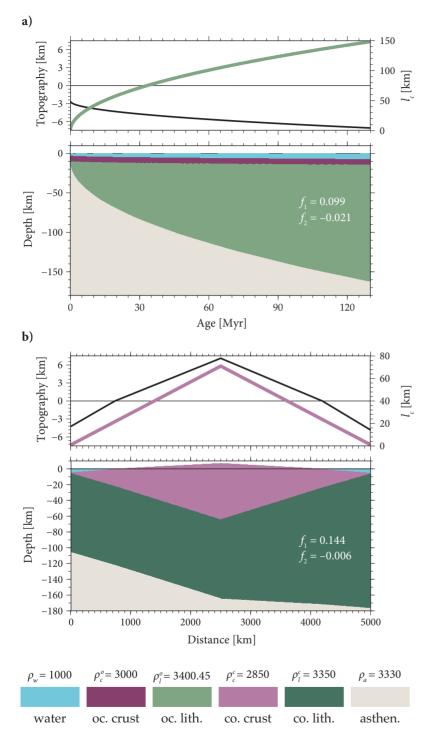


Figure 1.4: Nominal oceanic (a) and continental (b) lithospheric columns in isostatic balance, eq. (1.6), using the density values as provided in the color legend (units of kg/m³). Top subplots show topography (black) and lithospheric, l_1^0 , and crustal, l_c^c , thickness, respectively. The oceanic plate is represented by constant crustal thickness, $l_c^0 = 7$ km, and a half-space cooling (§7.3.2) dependence of lithospheric thickness, l_1^0 , following eq. (7.45), with constant lithospheric density, ρ_I^o , as per eq. (7.51), but can also be viewed as having constant l_l^o and variable ρ_l^o in a Pratt sense. In order to have the zero age, $l_1^0 = 0$, plate rest at realistic $H \sim 2.6$ km water depth for nonzero l_c^0 at the ridge, eq. (1.5) was corrected by adding $\Delta Hl_c^0(\rho_c^0 - \rho_a)/(\rho_w - \rho_a)$ to $\hat{H} = H +$ $\Delta H \approx 3.6$ km. Continental crustal thickness is for a nominal orogen where the left and right half have constant l_l^c and constant $l_c^c + l_l^c$, respectively. Inset f_1 and f_2 values are the thickness multipliers of eq. (1.6).

the topography of Earth (Fig. 1.2) as a mix of mostly Airy isostasy for the continents and Airy and Pratt isostasy for the oceanic lithosphere (Fig. 1.4). There, we can apply the half-space cooling model to explain much of the deepening of the seafloor away from midoceanic spreading centers, one of the major achievements of geodynamics (§7.3.2).

Besides plate-scale features in the oceans and the continent-ocean difference, curious alien observers of our planet's topography might further identify linear chains of islands on the seafloor (Fig. 1.1a), and might make the connection to hotspot volcanism and moving plates (§10.1). They would also see that the suboceanic mountains show midoceanic ridges in the Atlantic but more subdued slopes within the Pacific. They might suggest different types of oceanic crust production, which we know to be due to slow and fast spreading, respectively (§10.3). Along the spreading centers, there are characteristic offsets by transform faults, another hallmark of Earth's style of plate tectonics and indicative of the generation of strike-slip-type motion by some means of strain-localizing rheologies (§8.5). Continents reflect a much longer geological record of more complex processes, with the high plateau of Tibet and the Andes being prominent topographic features, and other orogens, such as the North American Cordillera being more subdued, with evidence for water and wind-driven surface transport processes and erosion.

Even from such global-scale comparative, qualitative assessments of the outer terrestrial planets, it is thus clear that not only the surface morphology of planets but also their mass and energy transport processes, including climate and perhaps life, depend on interior dynamics through mantle convection. The latter is expressed, within our solar system only for Earth, as plate tectonics at the surface. However, the internal feedbacks are not limited to those expressed by the mantle at the surface. At its base, mantle convection controls core cooling, and hence magnetic field generation through the convective geodynamo operating in the liquid outer core (§1.4.1). The heat flow imposed on the core by the mantle may matter directly for the types and stability of the magnetic field, and indirectly through regulating inner core freezing. The field in turn may play a role for sustaining an atmosphere by shielding planets from solar radiation, another example of systems-level feedbacks. Our sister planet Venus is lacking a magnetic field at present, which is another indication of different planetary evolutionary trajectories (§9.4.1).

1.2 Geopotentials: Shape, spin, and geoid

If our aliens are able to put satellites into orbit around Earth and track their orbits precisely, as we have done for Earth, Mars, and Venus (Fig. A.5), they would be able to determine models of the spatial variation of the gravitational attraction one experiences in different places. Those variations arise due to internal density anomalies (Fig. 1.5) and lead to subtle fluctuations in the distance between the satellite and the planet, as exploited by terrestrial spacecraft missions of the GRACE series by having two satellites follow each other through the ups and downs of their orbits.

1.2.1 Gravitational potential

Newton's first law states that the gravitational force, F, exerted by a mass M, e.g., a planet, on a mass m, e.g., a satellite, is given by

$$F = -G \frac{mM}{r^2} \hat{\boldsymbol{e}}_r \quad \text{or} \quad F = |F| = G \frac{mM}{r^2}, \tag{1.8}$$

where r is the distance between the objects (their centers of mass, assumed as points), \hat{e}_r is a unity vector, i.e., $|\hat{e}_r| = 1$, pointing in from the M object to the m object's center of mass, and G is the *universal gravitational constant* (one of nature's less well constrained fundamental constants;

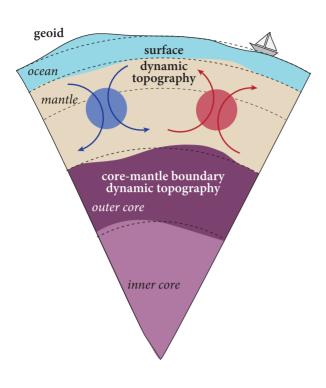


Figure 1.5: Drawing illustrating the definition of the geopotential surface of the actual geoid and its deflection from a reference geoid of ellipsoidal form shown with dashed lines (Fig. A.3). Internal density anomalies, such as due to a dense and light anomaly (blue and red, respectively), have a static and dynamic response on the geoid. Static, since the excess mass of a positive geoid anomaly means one has to move further away to experience the same gravitational pull, eq. (1.35). If the anomaly introduces flow, the resulting stresses also deflect the surface and core-mantle boundary, and those undulations lead to additional, dynamic effects on the geoid on timescales of \sim Myr (§9.4). Here, we assume a higher viscosity lower mantle which leads to reduction of the surface relative to the bottom topographic deflection, and an effective positive geoid anomaly for a mid-mantle slab sinker (§9.4). Another time-dependent effect on the geoid is due to glacial isostatic adjustment, on timescales of melting, \sim 26,000 yr for the last glacial maximum (§6.7).

Table A.1). If we consider the total work, W, involved in moving an object m from far away, at infinite distance, toward another with mass M at R, say, the surface of the Earth, we need to sum up, i.e., again integrate, the spatially dependent force that is required to do that. Using eq. (1.8) and integrating against that force (note sign),

$$W = \int_{\infty}^{R} F(r) dr = GMm \int_{\infty}^{R} r^{-2} dr = GMm \left[r^{-1} \right]_{\infty}^{R} = -GMm \left[\frac{1}{R} - \frac{1}{\infty} \right] = -\frac{GMm}{R}, \quad (1.9)$$

which defines the *gravitational energy* of the two masses, $E_p = W$. The energy is negative because work has to be done to separate them to infinite distances such that energy is conserved, and energy, or work, has units of force \times length, i.e., Nm, or J (joules).

Since the gravitational force is also given by Newton's second law, eq. (1.1),

$$\mathbf{g} = -\frac{GM}{r^2}\hat{\mathbf{e}}_r$$
, or $|\mathbf{g}| = \frac{GM}{r^2}$ (1.10)

holds, which defines the gravitational acceleration, g, for the satellite, or for any observer at the surface of a homogeneous sphere with radius R such that $g = \frac{GM}{R^2}$, and the negative sign indicates that the acceleration is downward from the normal on the surface of the M object. Eq. (1.10) means that the gravitational attraction of the planet is fully described locally by g; it is only the actual force (eqs. 1.1 and 1.8) that depends on the test mass m, e.g., of the satellite, that we are considering.

After things have settled down following planetary formation, any planet's mass distribution will mainly be layered, since denser material sinks to the bottom in the gravitational field, e.g., to form a predominantly iron core and silicic-type mantle. However, things get more complicated because there might be lateral variations of density, e.g., due to internal convective dynamics (Fig. 1.5). To capture these complexities, along with the possibility of having a rotating planet, we can express the gravitational force through a *potential*, U, which at a distance r from the center of the planet is defined as

$$U(r) = U_g + U_{\text{rot}} = -G \int_V \frac{\rho(r')}{|r|} \, dV' - \frac{1}{2} \Omega^2 r_0^2 \cos^2 \lambda$$
 (1.11)

(see Expanded details 1), where \int_V indicates integration over mass density at r from the mass center of the planet. In contrast to the vector g, U is a scalar; the value of U depends on location, but there is only a single number defining it at that location, which is part of the motivation for introducing U. U is hence a *scalar field*, like topography expressed on a topo map.

For a spherical planet,

$$U_g(r) = -\frac{GM}{r} \tag{1.12}$$

is the *point mass potential* equivalent to a mass M at the center, and recovers eq. (1.9) for a unit test mass m = 1. The second term on the right-hand side (RHS) of eq. (1.11) is the rotational component of the potential, U_{rot} , and accounts for the centrifugal force due to a spin. The angular velocity of the Earth at the present day is $\Omega_E = 7.292, 211, 5 \cdot 10^{-5}$ rad/s as of the *World Geodetic System* (WGS-84; *NIMA*, 1984).

 $U_{\rm rot}$ increases from zero at the pole of the rotation axes (latitude $\lambda = 90^{\circ}$) to maximum at the equator ($\lambda = 0$). Also in contrast to eq. (1.1), eq. (1.12) has a $\frac{1}{r}$ dependence, and bringing things back from U to g shows why. It takes work to move an object from $U(r_0)$ to $U(r_0 + dr)$ radially within the potential; that change is $dU = -g_r dr$, and we can recover g from the radial derivative of U (§C.2.2):

$$g_r = -\frac{\partial U}{\partial r}$$
 or, more generally, $\mathbf{g} = -\begin{pmatrix} \frac{\partial U}{\partial x} \\ \frac{\partial U}{\partial y} \\ \frac{\partial U}{\partial z} \end{pmatrix} = -\nabla U$, (1.13)

i.e., the gravitational attraction is a vector that aligns with the gradient of the potential field, U. The g vector points away from the steepest gradient, measured by the *gradient operator*, ∇ (which is a vector; SC.5). For a nonrotating, homogeneous sphere, eq. (1.12) holds, which also follows from integration of eq. (1.10) or the stationary part of eq. (1.11). One can show that eq. (1.13) is a sufficient condition for the gravitational force, eq. (1.1), to be conservative.

EXPANDED DETAILS 1: Moments of inertia and geopotentials of an ellipsoidal Earth

Consider the *moment of inertia* for rotation for a location at r given a spin vector ω ,

$$I(r) = \int (r' \sin \theta)^2 dM \stackrel{\text{point mass}}{=} mr^2$$

(units: kgm²), where $r' \sin \theta$ is the distance between r and ω , and dM indicates integration over all mass elements, hence weighted by distance squared. The *angular momentum* is $L = I\omega$ with a moment of inertia tensor, I,

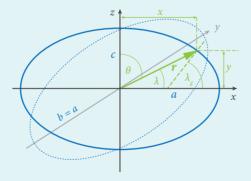
$$I_{xx} = \int (y^2 + z^2) \, dM$$
, $I_{yy} = \int (x^2 + z^2) \, dM$, $I_{xy} = -\int xy \, dM$, and similar,

and for the point mass

$$L = mr^2 \omega, \tag{1.14}$$

which implies that since L is conserved for a closed system, r has to vary with any changes in ω , and vice versa, as for ice skaters extending their arms, for example.

In a reference frame with $\{\hat{x}, \hat{y}, \hat{z}\}$, I, the moment of inertia depends on direction cosines i_i , with, e.g., $i_3 = \cos \theta$, where θ is the angle between I(r) and the \hat{z} axis, the colatitude, and $I = i_1^2 A + i_2^2 B + i_3^2 C$ with $i_1^2 + i_2^2 + i_3^2 = 1$ and


$$A = \int (\hat{y}^2 + \hat{z}^2) \, dM, \quad B = \int (\hat{x}^2 + \hat{z}^2) \, dM, \quad \text{and} \quad C = \int (\hat{x}^2 + \hat{y}^2) \, dM. \tag{1.15}$$

If two moments of inertia are equal, A = B, then $I = A + i_1^2(C - A)$.

Let us move our mass integration for the potential into the center of mass, and further align the $\{\hat{x}, \hat{y}, \hat{z}\}$ so that they are the eigenvectors of I; then I has no off-diagonal elements (§2.4.4). This makes A, B, and C the *principal moments of inertia*. In this moment of inertia frame, the general U_g term of eq. (1.11) is given by MacCullagh's formula,

$$U_g(r) = -\frac{GM}{r} - \frac{G}{2r^3} (A + B + C - 3I(r)). \tag{1.16}$$

For a spherically symmetrical body, A = B = C = I holds, meaning that eq. (1.16) reduces to eq. (1.12).

Figure 1.6: Coordinates and geometry for an oblate ellipsoid, or spheroid, with axes a = b > c. A location on the surface in geocentric coordinates r = x, y, z is described by longitude and *geocentric latitude* λ and colatitude $\theta = 90^{\circ} - \lambda$, or *geographic latitude* λ_g , defined with respect to the normal to the surface.

Now consider an Earthlike object, which is as an approximation an oblate, squashed *spheroid*. This is a special case of an even, long-axes, a = b *ellipsoid*, with long axis a along the equator (distance from the center), and shorter axis c to the pole aligned with the rotational axis (Fig. 1.6). If we then define C to be the *polar moment* and A and B, to be *equatorial moments*, such that $\{\hat{x}, \hat{y}, \hat{z}\}$ are aligned with the a, b, and c axes of the ellipsoid, then

$$I(r) = A + (C - A)\cos^2\theta.$$

One can then show that

$$U_g(r) = -\frac{GM}{r} + \frac{G}{r^3}(C - A)\left(\frac{3}{2}\cos^2\theta - \frac{1}{2}\right) = -\frac{GM}{r} + \frac{GMa^2}{r^3}J_2\left(\frac{3}{2}\cos^2\theta - \frac{1}{2}\right), \quad (1.17)$$

with a as the equatorial radius and J_2 as the *dynamic flattening parameter*,

$$J_2 = \frac{C - A}{Ma^2} \approx 1.081 \cdot 10^{-3},\tag{1.18}$$

where J_2 can be determined in different ways. The relevance of this equation is that our aliens (or ourselves for other planets) can determine J_2 from remote observations of the gravitational potential, and eq. (1.18) links this to properties that depend on the internal density distribution of the object, e.g., the fractionation into a core and mantle once the geometrical property a is determined.

The potential on the reference ellipsoid best matching the spheroid form of our planet with axes a and c, U_{ref} , which we might use for navigation, defines the *reference geoid*, where a geoid is a surface of constant gravitational potential U. Thus U_{ref} is the closest approximation of the geoid (Fig. 1.5) that can be fit by a spheroid. Even though the ellipticity inherent in U_g from eq. (1.17) results from a planet's spin, that potential does not include the effects of rotation. That motion around an axis, \hat{c}_z , contributes

$$U_{\text{rot}}(\mathbf{r}) = -\frac{1}{2}\Omega^2 r^2 \sin^2 \theta = -\frac{1}{2}|\boldsymbol{\omega} \times \mathbf{r}|^2,$$
 (1.19)

with $\omega = \Omega \hat{e}_z$, where $\omega \times r$ denotes the cross product (§C.3.3.3). Eq. (1.19) follows from an integration like eq. (1.9) with unity mass, but instead of using the gravitational acceleration, g, we use the *centrifugal acceleration*, $p = \omega \times (\omega \times r)$.

The total potential outside a rotating, Earthlike reference spheroid is then

$$U(r) = -\frac{GM}{r} + \frac{GMa^2}{r^3} J_2\left(\frac{3}{2}\cos^2\theta - \frac{1}{2}\right) - \frac{1}{2}\Omega^2 r^2 \sin^2\theta.$$
 (1.20)

From eq. (1.20), at the poles where r = c and at the equator where r = a,

$$U_{\text{ref}}^{\text{pole}} = -\frac{GM}{c} - \frac{GMa^2}{c^3} J_2 = U_{\text{ref}}^{\text{equator}} = -\frac{GM}{a} - \frac{GM}{2a} J_2 - \frac{1}{2} a^2 \Omega^2.$$
 (1.21)

The geometric flattening, or ellipticity, of the reference geoid can then be derived as

$$f = \frac{a - c}{a} = J_2 \left(\frac{c}{2a} + \frac{a^2}{c^2} \right) + \frac{1}{2} \frac{a^2 c \Omega^2}{GM} \approx \frac{1}{2} (3J_2 + m), \quad f_{\text{WGS-84}} = \frac{1}{298.257, 223, 563}, \tag{1.22}$$

with what turns out to be the ratio between centrifugal to total gravity at the equator:

$$m = \frac{a^3 \Omega^2}{GM} = 3.461,391,899 \cdot 10^{-3},$$

with a = 6,378,137.0 m and $GM = 3.986,004,418 \cdot 10^{14}$ m³/s² of the World Geodetic System (WGS-84; *NIMA*, 1984). Eq. (1.22) yields another approximation for $J_2 = \frac{(2f-m)}{3} = 1.08141$ ·

 10^{-3} . We get $U_{\rm ref} = 62,636,860.8497 \text{ m}^2/\text{s}^2$, and then c = 6356.7523 km; thus the difference between equatorial and polar radial axes is $a - c \approx 21 \text{ km}$.

The geodetically observed flattening as in, e.g., WGS-84 is actually slightly larger than that expected theoretically for a rotating, hydrostatic Earth, with expected values of $f_H = \frac{1}{299.829}$ (*Nakiboglu*, 1982) and $f_H = \frac{1}{299.981}$ (*Chambat et al.*, 2010) for different theoretical approaches. The difference between f and f_H becomes significant when interpreting geopotential field anomalies for glacial isostatic adjustment (Expanded details 18) or as a constraint for mantle convection (§9.4). The observed *hydrostatic bulge*, a-c, is 113 m larger than the a-c that is expected from a hydrostatic Earth (*Chambat et al.*, 2010). Different corrections are shown in Fig. A.3, but it is clear that J_2 is dynamically supported by mantle convection where it evolves over timescales of ~ 50 Myr (*Ricard et al.*, 1984, 1993; *Steinberger & O'Connell*, 1997). On even longer, \sim Gyr timescales, the slowdown of Earth's rotation through tidal dissipation will decrease J_2 (§1.2.2), and deglaciation since the last glacial maximum can be constrained by secular, present-day \dot{J}_2 (*Yuen & Sabadini*, 1985; *Mitrovica & Peltier*, 1993). The deglaciation trend is of order $\dot{J}_2 \sim -3 \cdot 10^{-11}$ yr⁻¹ and needs to be accounted for to understand present-day contributions due to melt water influx and climatic cycles (Expanded details 18; *Cazenave & Nerem*, 2004; *Cheng et al.*, 2013).

For our purposes here, \dot{J}_2 is super tiny (~ 0.02 m of reduced bulge per 100 yrs) to require adjusting WGS-84 over decadal scales. Using the relationship between g and U from eq. (1.13) and eq. (1.20) and only considering the radial component of g,

$$g(r) \approx \frac{GM}{r^2} - 3\frac{GMa^2}{r^4}J_2\left(\frac{3}{2}\cos^2\theta - \frac{1}{2}\right) - \Omega^2r\sin^2\theta.$$

The distance from the center of the Earth to the spheroidal reference geoid, or the approximation of r for an ellipse, is

$$r_{\text{ref}}(\theta) \approx a \left(1 + \frac{f(2-f)}{(1-f)^2} \cos^2 \theta \right) \approx a(1 - f \cos^2 \theta).$$
 (1.23)

Averaging of eq. (1.23) leads to the mean radius of the Earth, R_E (Table A.1). We can also derive a *reference gravitational acceleration* on the reference geoid at r_{ref} as

$$g_{\text{ref}}(\theta) \approx \frac{GM}{a^2} \left(1 + 2f\cos^2\theta - 3J_2 \left(\frac{3}{2}\cos^2\theta - \frac{1}{2} \right) - m\sin^2\theta \right)$$
$$\approx \frac{GM}{a^2} \left(1 + \frac{3}{2}J_2\sin^2\theta - m + 2m\cos^2\theta \right), \tag{1.24}$$

which can be written as a function of latitude, $\lambda = 90^{\circ} - \theta$:

$$g_{\lambda} = 9.780,327(1 + 0.005,302,4\sin^2 \lambda - 0.000,005,9\sin^2 2\lambda) \text{ m/s}^2.$$
 (1.25)

We can define a gravity flattening factor, analogous to eq. (1.22), as

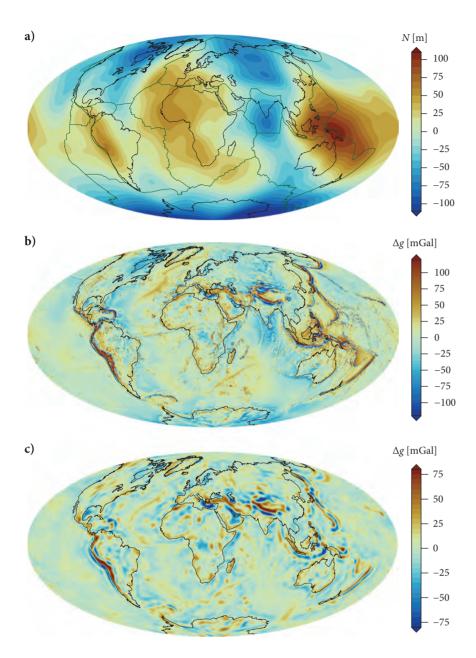
$$f^* = \frac{g_{\text{pole}} - g_{\text{equator}}}{g_{\text{equator}}} = \frac{-\frac{3}{2}J_2 + 2m}{1 + \frac{3}{2}J_2 - m},$$
 (1.26)

and eq. (1.24) can then be rewritten like eq. (1.23) as another ellipse:

$$g_{\text{ref}}(\theta) = g_{\text{equator}} \left(1 + f^* \cos^2 \theta \right).$$

Within these approximations, *Clairaut's theorem* (from 1743) describes this interesting relationship between geometrical and dynamic properties,

$$f^* = \frac{5m}{2} - f,$$


i.e., f can be inferred from gravity observations alone, for example. The links of J_2 with the satellite geoid are further explored in Expanded details 2.

1.2.2 Reference geoid, spin, and the Earth-Moon system

On global scales, we can then use the geoid to describe variations in gravitational pull. The *geoid* is a constant gravitational potential surface, defined to coincide with the average sea surface height in the absence of \lesssim yr timescale oceanographic fluctuations, i.e., *sea surface equipotential*, or *sea surface height* (Fig. 1.5). In continents, the geoid would be the level of water in an imaginary set of interconnected canals, ignoring any extra pull from any surrounding mountains.

We call the best-fitting spheroidal approximation to the geoid the *reference geoid*, based on evaluating the gravitational potential on the *reference ellipsoid*, which describes the oblate approximation to the shape of the Earth (Expanded details 1). Since the ellipsoidal geometry dominates the actual geoid, one typically makes a correction before analysis of *geoid anomalies*. The best-fitting spheroidal shape that is observed for Earth is that of an ellipsoid where the equator is ≈ 21 km further from the center of the Earth than the poles. While this shape is mainly due to the spin, the degree of ellipticity is slightly larger than that expected for a spinning planet with a 1-D Earth structure, the purely *hydrostatic geoid* (§A.4). This means that there is a dynamic, mantle-convection-related contribution to the equatorial bulge itself (§9.4). It has long been recognized that the Moon's ellipticity is likewise too large (*Laplace*, 1823), in fact much too large, at ~ 20 times the hydrostatic value (*Keane & Matsuyama*, 2014). Unlike for the Earth where dynamic processes sustain a slight extra ellipticity, the Moon has a *fossil bulge* (*Jeffreys*, 1915), frozen in during the early planetary evolution, perhaps at ~ 4 Ga (*Lambeck & Pullan*, 1980; *Qin et al.*, 2018). While that bulge is now static, its formation is one way in which the Earth and Moon are coupled through their orbits, internal dissipation, and angular momentum.

In particular, sedimentary deposits on Earth record tidal cycles, and such constraints indicate that our planet experienced \approx 22 h days at the end of the Neoproterozoic (\sim 620 Ma; *Williams*, 1989), and \approx 19 h days at 1.4 Ga (*Meyers & Malinverno*, 2018), i.e., a \approx 25% faster spin rate. The effects of the Coriolis forces due to planetary rotation are important for the geodynamo as well as for organizing atmospheric and ocean circulation (Expanded details 15), and hence possibly paleoclimate and the biosphere (*Walker*, 1982; *Olson et al.*, 2020). Perhaps less exciting, faster spin also implies a \sim 60% larger ellipticity at that time, since the hydrostatic bulge $\propto \Omega^2$ (eq. 1.11). The geological timescale slowdown of Earth's spin toward the present day is caused by tidal dissipation, which depends on the internal structure of the planet for solid tides, and on ocean circulation dynamics as affected, e.g., by plate-tectonics-dependent bathymetry and continental distribution. Oceanic processes make up the bulk of Earth's tidal dissipation at present, but both contributions have evolved over planetary history (*Ross & Schubert*, 1989; *Bills & Ray*, 1999; *Tyler*, 2021). Since the total angular momentum of any closed system has to be conserved, the Moon has moved away from Earth at \approx 2.2 cm/yr on average since 620 Ma (*Williams*, 2000) (eq. 1.14), and this separation rate has sped up to \approx 3.8 cm/yr at present (*Dickey et al.*, 1994), prolonging our aliens' journey.

Figure 1.7: EGM 2008 (*Pavlis et al.*, 2012) geopotential model up to spherical harmonic degree L=512 (§C.6.2). **a**) Nonhydrostatic geoid height anomalies, N of eq. (1.31), corrected following *Chambat et al.* (2010) (cf. Fig. A.3). **b**) Equivalent free-air gravity anomalies (cf. Fig. A.3d). **c**) Medium wavelength ($\ell=10...80$, \cos^2 -smoothed), band-pass-filtered free-air gravity anomalies as often used to infer admittance-based dynamic topography, δz (e.g., $\delta z \sim \delta g/50$ km/mGal; *Craig et al.*, 2011). See Fig. A.5 for a comparison of topography-geoid spectra for terrestrial planets.

1.2.3 Geoid and gravity anomalies

Figure 1.7a shows geoid anomalies with respect to the expected hydrostatic shape of the Earth (Expanded details 2). This satellite-based geoid anomaly map reveals that the geoid is in reality quite a bumpy landscape for Earth. Latitudinally, most positive anomalies globally are found around the equator, and the poles show negative anomalies. This pattern might be expected if the planet were to continuously reorient its excess density in the mantle and crust with respect to the spin axis such that the major moment of inertia, eq. (1.15), is oriented with excess mass moved to the equator. This way of shifting the entire mass of the Earth, including its surface, with respect to the rotation axis is called *true polar wander* (TPW). Mantle convection as well as glacial isostatic adjustment further change the geoid on a range of timescales (§6.7 and §9.4).

Without constraints about the internal structure of the planet, our aliens could not make a hydrostatic correction, but they could nonetheless explore, e.g., the correlation between topography and the geoid (§A.5), and muse as to the mechanisms of generation of the anomalies at different wavelengths (§3.2.2). When viewed in light of the interpretation of the oceanic topography, the aliens may note that there is no clear relationship between spreading centers and geoid highs, for example, which we now interpret as implying that spreading is predominantly passive, i.e., not driven by active, hot upwellings. There are large, positive geoid anomalies in places that we now associate with the main drivers of plate motions, subducted slabs, and deep mantle anomalies, but their proper interpretation relies on more sophisticated models of internal dynamics (§9.4).

Given that the geoid is predominantly ellipsoidal, the gravitational pull also mainly varies with latitude, as we are experiencing different degrees of the centrifugal force, eq. (1.25). We therefore consider anomalies from that reference gravity (Expanded details 2). Given that geoid anomalies are typically expanded as spherical harmonics, eq. (1.30), it is straightforward to manipulate the field, and, e.g., free-air gravity anomalies, eq. (1.34), at the reference level can be obtained from the geoid deflection's (N of eq. 1.31), spherical harmonic coefficients by multiplying them, at a given spherical harmonic degree ℓ , by an ($\ell-1$)-dependent factor (Expanded details 2). The resulting free-air anomalies (Fig. 1.7b) therefore look much rougher, or more detailed, than the geoid (Fig. 1.7a), since the derivative operation of eq. (1.13) leads to an $\ell-1$ enhancement of higher spatial frequency power, eq. (C.67) (Fig. A.4). Tectonic analysis often uses gradients of the free-air anomalies to further enhance local variations, but note that the true information content in all those gravity "products," as in Fig. 1.7, is identical.

Expressing gravity in a harmonic basis also allows filtering by wavelength. At the shortest wavelengths, $\ell \gtrsim 100$, a strong lithosphere is able to support surface topography by flexure rather than isostasy, leading to large free-air gravity anomalies that are well correlated with topography (§3.2.2). On longer than flexural wavelengths, isostatic adjustment over geologic timescales leads to small gravity anomalies and decorrelation with topography, and for $\ell \lesssim 20$, we expect mantle dynamics to matter (§9.4).

While any direct interpretation of gravity anomalies is highly dependent on a range of assumptions, mid-wavelength free-air gravity (Fig. 1.7c) is sometimes used to identify "anomalous," that is, uncompensated, or "dynamic" topography. There are a number of features in this map that we return to (§9.2), such as the W-E tilting of Arabia, indication of mantle support of the Atlas Mountains of NE Africa, a marked depression in central Africa, and a characteristic pattern of free-air highs and lows along subduction arcs.

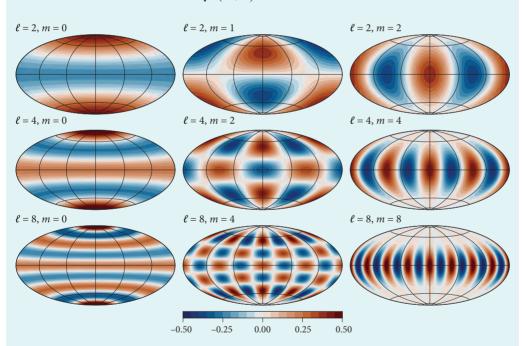
EXPANDED DETAILS 2: Geoid, spherical harmonics, and gravity anomalies

If we apply the divergence theorem, eq. (C.55), on g, and use eqs. (1.10) and (1.13) considering a small volume V of homogeneous mass with surface area $4\pi r^2$, we can heuristically derive *Poisson's equation* for the gravitational potential,

$$\nabla^2 U(\mathbf{r}) = 4\pi \, G\rho(\mathbf{r}),\tag{1.27}$$

where ρ is density and ∇^2 is the *Laplacian* operator, in Cartesian $\left\{\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right\}$ (§C.5). Eq. (1.27) is called the *Laplace equation* if the RHS is zero, which is the case for the potential at and above the Earth's surface. Written in spherical coordinates with longitude ϕ and colatitude θ (eq. C.50),

$$\nabla^2 U = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial U}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial U}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 U}{\partial \phi^2} = 0. \tag{1.28}$$


The type of second-order partial differential equation (PDE) the Laplace equation, eq. (1.28), belongs to is called *elliptic*, and indeed it has an ellipsoidal, J_2 -type lowest-order solution, eq. (1.21).

The general solution to associated Legendre functions is one of *solid spherical harmonics*; for the potential outside the mass distribution, U is given by the superposition of harmonic functions

$$U(r) = \sum_{\ell=0}^{\infty} \sum_{m=0}^{\ell} \left(\frac{1}{r}\right)^{\ell+1} \left(c'_{\ell m} \cos m\phi + d'_{\ell m} \sin m\phi\right) P_{\ell m}(\cos \theta),$$

where ℓ is degree, m is order, the $P_{\ell m}$ are associated Legendre functions, eq. (C.64) (Fig. 1.8), and c' and d' are spherical harmonic coefficients, where care needs to be taken as to different normalizations being in use (§C.6.2). Spherical harmonics are in general highly useful to characterize the spectral content of global features (e.g., §1.5, §C.6.2). The equivalent feature length, D, or half wavelength, λ , on the surface of the Earth (§C.6.2) is

$$D = \frac{\lambda}{2} = \frac{\pi R_E}{\sqrt{\ell(\ell+1)}} \approx \frac{\pi R_E}{\ell} \approx \frac{20,000 \text{ km}}{\ell}.$$
 (1.29)

Figure 1.8: Examples of spherical harmonic basis functions (§C.6.2), with *degree*, ℓ , and *order*, m, showing the $\cos m\phi$ -type of contributions, or the $\mathcal{Y}_{\ell-m}$ spherical harmonics, eq. (C.63), in a projection centered on longitude $\phi = \pi$. The m = 0-type functions are called *zonal*; there is no longitude dependence. Wavelengths of features $\lambda \sim 40,000 \text{ km}/\ell$, eq. (1.29). Hammer equal area projection.

The actual geoid, e.g., as measured from satellite orbits for the Earth, is represented by a *band-limited* expansion with $\ell \le L$ (cf. §C.6):

$$U(r) = -\frac{GM}{a} \sum_{\ell=0}^{L} \sum_{m=0}^{\ell} {a \choose r}^{\ell+1} \left(c_{\ell m} \cos m\phi + d_{\ell m} \sin m\phi \right) P_{\ell m}(\cos \theta). \tag{1.30}$$

The ellipsoidal U_g without rotation, eq. (1.17), is recovered by only considering $\ell=0$ and $\ell=2$ and m=0 terms, for which $c_{20}=\frac{-J_2}{\sqrt{5}}$ for "fully normalized" harmonics (§C.6.2). At a certain location on the actual geoid, the difference between the value of the actual geoid when evaluated at the reference height, $U(r_{\rm ref})$, and the reference geoid value, $U_{\rm ref}$, is called a *potential anomaly*, and considering only verticals, is approximately

$$\Delta U = U(r_{\text{ref}}) - U_{\text{ref}}$$
.

To first order, the difference in height away from the reference ellipsoid to where the actual U has the U_{ref} value is the *geoid undulation*, N, and Bruns' formula relates the two:

$$\Delta U = -g_{\text{ref}}N. \tag{1.31}$$

This allows inferring N from the reference gravity (eq. 1.25), and potential measurements, as well as computing the geoid anomalies of Fig. 1.7a from an expansion of the form eq. (1.30).

The gravity varies on the geoid, equipotential surface, and we can define *free-air* gravity anomalies from the gravity g at some point at height r on the actual geoid relative to the gravity at the projection of this point onto the reference geoid, $g_{\text{ref}}(r')$:

$$\Delta g(r) = g(r) - g_{ref}(r').$$

From eq. (1.10), gravity changes with radial distance to first order as

$$\frac{\partial g}{\partial r} = \frac{\partial}{\partial r} \frac{GM}{r^2} = -\frac{2GM}{r^3} \approx -\frac{2g}{r_{\text{ref}}},\tag{1.32}$$

which means that we can correct $g_{\rm ref}(r')$ to $g_{\rm ref}(r)$ by adding $\approx -\frac{2g_{\rm ref}(\theta)}{r_{\rm ref}N(r)}$. Using eq. (1.31) and $g(r) - g_{\rm ref}(r) \approx \frac{\partial \Delta U(r)}{\partial r}$, the fundamental equation of geodesy results in

$$\Delta g(r) = \frac{\partial \Delta U(r)}{\partial r} + \frac{2}{r_{\rm ref}} \Delta U(r), \tag{1.33}$$

where Δg are the measurements and the disturbing potential ΔU is the unknown, which has to be determined from eq. (1.28) since we are limited to measurements on the surface.

The most straightforward way of converting observed gravity values, $g_{\rm obs}$, such as from a survey, collected at some height $h=r-r_{\rm ref}$ above the reference geoid to some standard is thus by means of using the *free-air gravity anomaly*, Δg_{FA} (Fig. 1.7b). Close to the reference surface, we can write

$$\Delta g_{FA} = g_{\text{obs}} - g_{\lambda} + \frac{2g}{r}h = g_{\text{obs}} - g_{\lambda} + \gamma_{FA}h, \tag{1.34}$$

with $\gamma_{FA} \approx 0.3086$ mGal/m, where mGal is 10^{-5} m/s² in SI units. Therefore, Δg_{FA} corrects for the decrease of gravitational pull away from the reference height as if there were air in between r_{ref} and r.

Free-air gravity anomalies are also linked through eq. (1.33) if there is an expansion of ΔU given by some set of anomaly coefficients \bar{c} and \bar{d} akin to eq. (1.30), in which case the corresponding N expansion is given by using the same \bar{c} and \bar{d} but dividing by $-g_{\rm ref}$ as per eq. (1.31), and the free-air anomalies by scaling $\bar{c}_{\ell m}$ and $\bar{d}_{\ell m}$ by $-\frac{(\ell-1)}{a}$ (Fig. A.4). The equivalent, local

gravity anomalies, e.g., due to buried ore bodies or other lateral density variations, are tiny fractions of g_{λ} , and modern gravimeters used for surveying have relative μGal sensitivity, i.e., of order 10^{-9} of g.

The *Bouguer* gravity anomaly assumes that there is a laterally infinite slab of material with density ρ_B instead of air in between; with $\rho_B = 2670 \text{ kg/m}^3$, an equivalent $\gamma_B = 0.1967 \text{ mGal/m}$. We can compute the *surface gravity anomaly* dg of a buried density anomaly by integrating the incremental effect of all mass anomalies dM via eq. (1.9), $dg = \frac{G}{r^2} dm$. For example, a buried sphere of radius a with $\Delta \rho$ density anomaly yields

$$\Delta g = \frac{4\pi G a^3 \Delta \rho}{3r^2} \text{ or } \Delta g_0 = \frac{4\pi G a^3 \Delta \rho}{3} \frac{b}{(x^2 + b^2)^{\frac{3}{2}}},$$

where Δg_v is the vertical gravity anomaly, x is the horizontal distance from the center of the sphere, and b is the burial depth to the center. Integration for complex geometries has to proceed numerically, and different-shaped anomalies may yield similar Δg expressions at the surface—a classic example of nonuniqueness of inversions, as expected from the solution of eq. (1.28) as required for eq. (1.33).

If a region is under isostasy, eq. (1.3) ensures that density anomalies down to compensation depth Z (Fig. 1.3) balance such that

$$\int_0^Z \Delta \rho(z) \, \mathrm{d}z = 0,$$

and this can be achieved in numerous ways. However, the geoid anomalies need not be zero since those depend on the *dipole moment of the density distribution*,

$$\Delta N = -\frac{2\pi G}{g} \int_0^Z z \, \Delta \rho(z) \, \mathrm{d}z = -\frac{3}{2\bar{\rho}R_F} \int_0^Z z \, \Delta \rho(z) \, \mathrm{d}z \tag{1.35}$$

(*Parsons & Richter*, 1980), where $\bar{\rho}$ is the mean density of Earth, and the integral arises in computations of gravitational potential energy (§6.6).

If a crustal column of density ρ_c , thickness l_c , and topography t is in Airy compensation floating in a mantle of ρ_a , then

$$\Delta N_{t>0}^{A} = \frac{\pi G}{g} \rho_{c} \left(2l_{c}t + \frac{\rho_{a}}{\rho_{a} - \rho_{c}} t^{2} \right) \quad \text{or} \quad \Delta N_{t<0}^{A} = \frac{\pi G}{g} \left(\rho_{c} - \rho_{w} \right) \left(2l_{w}t + \frac{\rho_{a} - \rho_{w}}{\rho_{a} - \rho_{c}} t^{2} \right) \tag{1.36}$$

(*Turcotte & Schubert*, 2014; sec. 5.13), where the second equation accounts for an ocean basin, with water, ρ_w , coverage of depth l_w . For Pratt isostasy at a constant crustal base, depth Z = P and using eq. (1.7) is

$$\Delta N_{t>0}^{P} = \frac{\pi G}{g} \rho_0 Z l_c \quad \text{or} \quad \Delta N_{t<0}^{P} = \frac{\pi G}{g} (\rho_0 - \rho_w) Z l_c.$$
(1.37)

Local topography variations of $\mathcal{O}(1 \text{ km})$ of isostatic crust thus correspond to $\mathcal{O}(10 \text{ m})$ geoid variations.

Geoid anomalies relate to ridge push via the density moment, eq. (1.35), associated with half-space cooling (exercise 7). Fig. 1.7a shows that spreading centers have, in general, no strong, excess positive geoid anomaly, meaning that spreading is passive in general, and not due to an active, hot mantle push component ($\S 8.1.1$). However, there are long-wavelength, large ΔN variations of the geoid; those are dynamically supported by the deep mantle ($\S 9.4$).

1.3 Internal structure, temperature, and composition of Earth

Remarkably, the USSR landed a number of probes on Venus during the Venera program starting in 1970. Those short-lived missions gathered photos and determined rock composition, which indicates basaltic-type rock cover in the lowlands. Our geophysical analysis of Venus so far is based on topography, geopotential, and inertial dynamics. However, given the more temperate climate, our enterprising aliens might be tempted to link appearances with internal qualities and deploy sensors on Earth.

Besides gravity, deep sounding estimates typically depend on electromagnetic or acoustic wave propagation, with the deepest and most detailed imaging achieved by listening to seismic waves using seismometers. Outside our planet, astronauts have deployed four such instruments on the Moon (*Toksöz et al.*, 1974; *Nakamura*, 1983), and a single sensor has recently greatly advanced our knowledge of the interior of Mars (*Lognonné et al.*, 2020; *Khan et al.*, 2021; *Beghein et al.*, 2022). What can our aliens say based on seismic wave propagation?

1.3.1 1-D structure of Earth as seen from seismology

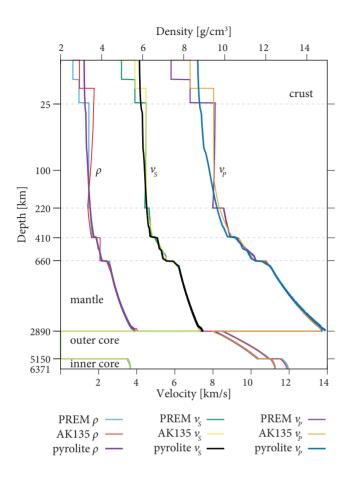
Seismic waves are vibrations of the Earth where mechanical and kinematic energy gets transported away from a source, such as an earthquake or explosion, through an outwardly propagating wave front where material gets locally and transiently deformed. While more complicated in practice, we can think of this seismic wave by considering a raypath that is orthogonal to the wave front. That raypath will find the fastest path between source and receiver. If velocity increases with depth in the planet, the ray will thus not go straight from one side of the object to a recorder on the other side, but instead dive downward first and then be bent upward. This *refraction* is governed by *Snell's law* if velocities are layered, and differences in arrival time from a known source can be used to infer velocity with depth. A wave may also be *reflected* at a sharp contrast, such as a compositional layer, where the energy of transmission through an interface depends on the *impedance*, the product of wave speed and density. This provides constraints on the depth of the interface and the nature of the contrast.

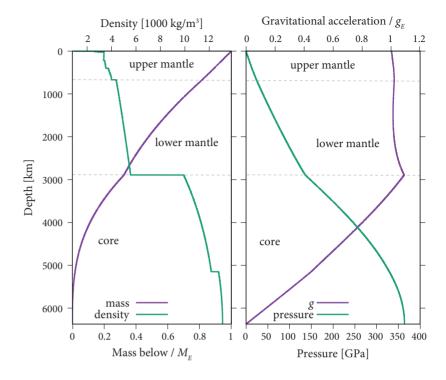
Acoustic waves through air are of the volumetric (bulk) compressional type, but in an elastic solid, compressional, P, and shear, S, waves exist (SB.1). If we think of them as propagating through a planet as rays, we consider them to be two types of *body waves*. Their respective wave speeds correspond to different types of solutions of the wave equation (SB.1) and depend on different mechanical (elastic) properties and density as

$$v_P = \sqrt{\frac{K + \frac{4}{3}\mu}{\rho}}$$
 and $v_S = \sqrt{\frac{\mu}{\rho}}$, (1.38)

where μ , K, and ρ are the shear modulus, incompressibility (§3.2), and density, respectively. Because K, $\mu \geq 0$, $\rightarrow v_P > v_S$, which means that the P wave arrives first, hence the labels of primary and secondary. The different wave types provide complementary constraints about the subsurface, e.g., since K and μ have different dependence on properties such as temperature and melt (§4.4.3). For wave propagation, v_P is like light speed for remote detection, in that no information can arrive earlier than as carried by the P wave. Earthquake rupture propagation typically happens at $\lesssim v_S$, but the related coseismic deformation can be transmitted remotely in near-instantaneous fashion by gravity signals traveling at actual light speed (V

Based on their understanding of wave propagation, the analysis of refraction and reflection from a large amount of body wave records would then allow our aliens to infer a 1-D model of v_P and v_S for the Earth (e.g., AK135 in Fig. 1.9). For Earth, the interpretation of wave speeds in terms of solid and fluid structure has an interesting history (*Brush*, 1980). *Wiechert* (1897) proposed the existence of an iron core in a rocky shell, but the discovery of the core can be attributed to




Figure 1.9: Layer averaged, 1-D Earth models showing density, ρ , as well as compressional, v_P , and shear wave, v_S , velocities from the long-period PREM (Dziewoński & Anderson, 1981) and shorter-period AK135 (Kennett et al., 1995) seismic models, and for the mantle only from a mineral physics prediction for pyrolite (HeFESTo computation; Stixrude & Lithgow-Bertelloni, 2011, 2022) and the geotherm of Fig. 1.13. PREM layer depths for 25 km (nominal crustal thickness) and 220 km (not globally observed), as well as actual major phase transition depths of 410 km and 660 km (670 km in PREM) (Fig. 1.14) are indicated; note log-scale for depth.

Oldham (1906). The depth of the core-mantle boundary (CMB) was placed at 2900 km by *Gutenberg* (1913). The CMB is one example where the differences in K and μ dependence of wave speed, eq. (1.38), jump out: a fluid cannot sustain shear, and the absence of shear wave arrivals once bent raypaths reach a certain depth in the deep Earth lead to the discovery of the fluid outer core, where $\mu = 0 \rightarrow v_S = 0$ (Oldham, 1906; *Jeffreys*, 1926).

The inner core was discovered by *Lehmann* (1936; paper title: "P"), and the major, global layers as seen in Fig. 1.9 were established in the Earth model by *Bullen* (1947). This is not to say that we fully understand the internal structure and dynamics of the Earth even on large scales. For example, there are indications of an anisotropically distinct innermost inner core (*Ishii & Dziewoński*, 2002; *Pham & Tkalčić*, 2023), and such inner core heterogeneity remains to be fully linked to planetary evolution. The existence of the inner core is also not a static feature, but arose some time over the last \sim 2.5 Ga (*Buffett*, 2002; *Landeau et al.*, 2022), with revision of thermal conductivity estimates indicating a young, \lesssim 700 Myr origin (*Labrosse*, 2015), perhaps consistent with anomalously low magnetic field strength at \sim 500 Ma (*Bono et al.*, 2019).

Properties in Fig. 1.9 are shown on a log scale for depth since the most interesting changes in velocities within the mantle happen in the upper ~700 km, which we focus on here. Figure 1.9 also shows the *preliminary reference Earth model* (PREM; *Dziewoński & Anderson*, 1981), which is mainly based on *normal modes*. Modes are global planetary oscillations that are excited by large earthquakes and can be described with spherical harmonics, like quantum mechanical orbitals, as the vibrations at various natural frequencies, *eigenfunctions*, combining to a range of possible oscillations. The surface displacements of spheroidal oscillations look like the examples of Fig. 1.8, but there are also toroidal types of oscillations, associated with twisting of the Earth.

Figure 1.10: Left: Density ρ (mean density $ρ_E$) and mass, in terms of total, M_E , below a given depth, as a function of depth. Density jumps at phase transitions are important for mantle convection, and likely overestimated in the case of the 670 km for PREM (cf. §12.12; *Shearer & Flanegan*, 1999). Right: Gravitational acceleration relative to the surface, $g_E = 9.807 \text{ m/s}^2$, and pressure. All based on integration of ρ(z) from PREM (*Dziewoński & Anderson*, 1981) as in Fig. 1.9, cf. eqs. (1.8) and (1.39).

Higher-frequency (larger ℓ) normal modes localize deformation at the planet's surface, and their superpositions can also be identified as *surface waves*.

As the name implies, those waves require a free surface to vibrate. The displacement types of surface waves can be further divided into waves that oscillate in the horizontal, orthogonal to the propagation path (*Love waves*). Those waves require sphericity or a velocity increase with depth to exist, and consist of horizontally polarized shear, SH, waves and surface underside reflections of those (multiples). *Rayleigh waves* oscillate in the vertical and are a combination of vertically polarized shear, SV, and compressional, P, waves and can exist on any free surface, including a half-space. Love waves propagate faster than Rayleigh waves in the uppermost mantle, i.e., $v_{SH} > v_{SV}$, an example of the polarization dependence of wave speeds, or *seismic anisotropy* (§9.6).

1.3.2 Pressure and mass within the Earth

Since wave speeds depend on elastic moduli and density, eq. (1.38), the 1-D models of Fig. 1.9 provide further constraints for our aliens' assessments of Earth's internal mass distribution (Expanded details 3) and thus pressure conditions (Fig. 1.10). Whatever their density model, when ρ is integrated from the core up to radius r to obtain the mass underneath,

$$M(r) = 4\pi \int_0^r \rho(r)r^2 dr$$
 and $M_E = M(R_E) = \frac{4\pi}{3}R_E^3 \rho_E$, (1.39)

the total mass of the Earth, M_E , needs to match the orbital constraints (§1.2). The mean density of Earth, $\rho_E = \langle \rho \rangle$, for an equivalent sphere is $\rho_E \approx 5513$ kg/m³. Plotting against depth, M(r), yields the first curve in Fig. 1.10, which tells the aliens that only $\sim \frac{1}{3}$ of our planet's total mass, $M_E \approx 5.972 \cdot 10^{24}$ kg, is within the core, even though its iron-dominated composition has roughly three times the density of mantle rocks, which is $\langle \rho_m \rangle \approx 4454$ kg/m³. The mantle and crust contribute $M_m \approx 4 \cdot 10^{24}$ kg (67%) and $M_c \approx 2.8 \cdot 10^{22}$ kg (0.5%), respectively. These numbers matter for the assessment of composition and origin of the planet.

The gravitational acceleration due to the mass within an object is given by eq. (1.8). Figure 1.10 shows that g(r) in the core roughly displays the linear increase that would be expected from $M \propto r^3$. However, the reduced densities of the mantle lead to a \sim constant g within the mantle, with a volume-averaged mean value of $\langle g_m \rangle \approx 10.007 \text{ m/s}^2$, close to the surface value. The aliens can then also use eq. (1.3) to find the pressure conditions throughout the Earth (Fig. 1.10). For the upper mantle, p increases by \sim 3.1 GPa per 100 km; depths z in km can be converted to p in GPa and vice versa as

$$p \approx -0.04809 + 0.03077z + 7.30972 \cdot 10^{-6}z^2$$
 or $z \approx 2.98129 + 31.698p - 0.15771p^2$,

which are coarse approximations (e.g., at the surface, *p* should be zero).

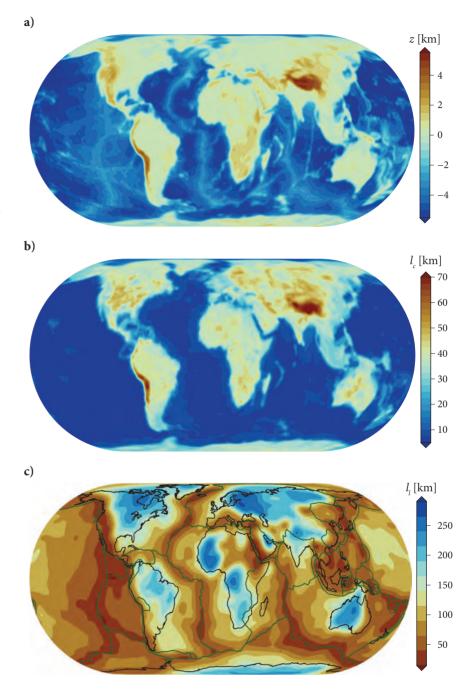
1.3.3 Complexities in the 1-D model

Considering shallow seismic wave speeds (Fig. 1.9), our aliens notice a sharp jump at ~ 25 km. This is the assumed depth of a global crust-mantle interface for PREM, the *Moho*, first inferred by *Mohorovičić* (1910) based on *P* wave refraction from a single earthquake. The Moho marks a compositional change, from the basaltic- and granitic-type crust of oceanic and continental lithosphere, respectively, to the peridotitic, i.e., olivine- and pyroxene-dominated, mantle. PREM also divides the crust between an upper and lower part, whereas AK135 has only a single crustal layer of 18 km thickness. For the lithosphere, such global averages mean little, as discussed next.

1.3.3.1 The lithosphere and its topography

Using detailed regional seismological constraints, one finds that oceanic crust is of roughly constant thickness of ~ 7 km (Fig. 1.11b). This indicates that the fractionation process at midoceanic ridges is sampling an underlying upper mantle of fairly constant temperature overall (§10.3.4.2). There are, however, important local deviations, e.g., due to volcanic pulses leading to oceanic plateaus, as well as regional or temporal fluctuations of upper mantle temperature.

Within the continents, crustal thickness can be highly variable between $\sim\!10\ldots75$ km (Fig. 1.11b). Comparison of long-wavelength topography and crustal thickness estimates from seismology (Fig. 1.11a, b) leads our observers to expect that Airy isostasy does in fact broadly hold in continents. Particularly in continents, the depth of the lithosphere (or "plates") is hard to define (Fig. 1.11c) since, to first order, the lithosphere is a mechanical layer. However, in oceanic lithosphere, the thermal, half-space cooling model can explain much of the surface topography through Pratt-type density variations (§7.3.2). A process difference between oceanic and continental lithosphere is that, once continental lithosphere is formed, it is then mainly floating at the surface because of compositional effects. This is partially because of its thick crust and partially because of melt depletion of its mantle-lithospheric part, in particular for old, cratonic regions (§10.4). Some continental material gets recycled into the mantle, but continental lithosphere is typically not subducted wholesale.


Partly as a consequence of such compositional heterogeneity, upon closer inspection, isostatic balance is often not exactly true. Figure 1.12 shows a global scatter plot for crustal thickness vs. rock-equivalent topography, z_{RET} . The latter removes the effect of water layers covering negative topography following eq. (1.6):

$$z_{\text{RET}} = z_{\text{bed}} + \frac{\rho_w}{\rho_c} \Delta W, \tag{1.40}$$

where z_{bed} is the bedrock elevation and ΔW the water layer thickness; it is the equivalent topography if water is replaced by an average crust.

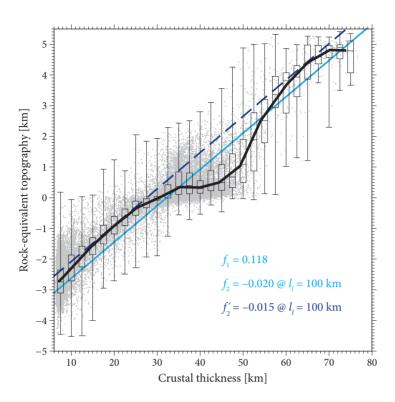

There is an overall, broadly linear, isostatic trend (Fig. 1.12), but there is also large scatter and potentially different tectonic domains with different scalings (*Gvirtzman et al.*, 2016; *Ingalls et al.*, 2016). In particular, typical continental elevations of ~ 500 m correspond to a wide range of

Figure 1.11: a) Bedrock-equivalent topography (Hirt & Rexer, 2015), eq. (1.40), up to degree $\ell = 200$, and smoothed by a cos² filter. **b)** Crustal thickness from an update of the CRUST1 model (Laske et al., 2013) with regional studies (from Faccenna & Becker, 2020), filtered as for b). c) Lithospheric thickness model based on seismic tomography and the method of Steinberger & Becker (2018), their mean model with an attempt to remove subduction zone effects (see Steinberger & Becker, 2018). Note that lithospheric thickness estimates are highly uncertain, in particular close to orogens.

crustal thicknesses, which motivates the exploration of the sources of nonisostatic elevation. We can compute the deviation between actual topography and an isostatic model topography, z_{iso} ; this difference here defines *residual topography*. As per eq. (1.6), a change in crustal and lithospheric thickness, respectively, is expected to lead to isostatic elevation changes according to

$$\Delta z_c = f_1 \, \Delta l_c \quad \text{or} \quad \Delta z_l = f_2 \, \Delta l_l,$$
 (1.41)

Figure 1.12: Relationship between crustal thickness (Fig. 1.11c) and rock-equivalent topography (eq. 1.40, Fig. 1.11a). Bar whisker plots (min and max as error bars, 25% and 75% quartiles as boxes) and black line are for the median at 2.5 and 5 km thickness bin width, respectively, and the blue line is a linear best fit. The $f_{1,2}$ values, eq. (1.6), are for an equivalent H'=-1.8 km and $l_l=100$ km ($l_l=97.5$ km is the mean of Fig. 1.11d). Dark blue dashed line corresponds to $f_2'=-0.015$, which better matches the roughly linear regions at $l_c\sim 20$ and ~ 60 km. Compare to the synthetic columns and $f_{1,2}$ values of oceanic and continental domains in Fig. 1.4.

and the best-fit values of Fig. 1.12 are $f_1 \approx 0.12 \dots 0.17$ and $f_2 \approx -0.02$ and correspond to plausible, globally averaged density values (Fig. 1.4).

1.3.3.2 The asthenosphere

Below the Moho, the PREM model has another discontinuity at 220 km (Fig. 1.9): the *Lehmann discontinuity*. This depth and property jump is mainly a somewhat arbitrary choice of this particular model, and the velocity jump is not globally systematic. However, 1-D seismic velocities show a dip around $\sim 100...300$ km depth, particularly underneath oceanic plates, and regionally, there are sharp velocity contrasts at similar depths. Those may in some way (e.g., thermally, by means of partial melt variations, or mechanically) be associated with the transition between the lithosphere and the asthenosphere, sometimes referred to as the *lithosphere-asthenosphere boundary* (LAB; *Fischer et al.*, 2010).

As mechanical terms, the L and the A are associated with relatively strong and weak parts of the mantle, deforming within mantle convection. Our aliens might thus study fluid dynamics and the deformation behavior of rocks in their laboratory by subjecting them to different deformation rates and varying pressures and temperatures. Depending on their patience, they might have to extrapolate their results over vast orders of magnitude since Earth's deformation is quite slow on experimental timescales. However, it is thought that the strength contrast between the asthenosphere and lithosphere is mainly achieved by temperature-dependent creep behavior of peridotitic mantle material (§5.1.6 and §7.3.2), with some contributions from composition and volatile variations. We can then associate the tectonic plates with the lithosphere, and the only compositionally distinct layer in Fig. 1.3 would be the crust. Figure 1.11c shows one seismology-based estimate of lithospheric thickness, based on the link between temperature and seismic velocity. However, there are many uncertainties, and the thickness estimate depends on which constraints are used to define the LAB (*Rychert et al.*, 2020).

The mantle deforms by means of solid-state, slowly creeping flow, and a fluid's resistance to shear is called the *viscosity*. There is a moderate increase of viscosity with depth within the mantle, but most of the interior is low viscosity compared to the strong lithospheric plates on top, by several orders of magnitude (§9). We could thus associate the asthenosphere with all of the mantle below the lithosphere. However, the term more commonly refers to the depths of \sim 100 to \sim 300 km, where seismic velocity actually decreases slightly with depth (see v_S in Fig. 1.9 at \sim 200 km), the *low-velocity zone* of the upper mantle.

Most of seismic wave propagation happens elastically with tiny, reversible, elastic deformation of the rock through which the wave passes. However, dissipative processes lead to a reduction of wave amplitudes with distance besides the purely geometric spreading of energy. Such damping, or *attenuation*, of wave motion is frequency dependent (it increases with shorter periods) and also depends on depth and material properties (§4.4). Attenuation estimates thus provide additional constraints on the subsurface state (e.g., temperature, fluids, and melting), but this requires interpreting amplitudes rather than travel times, which is more complex as an inverse problem. That said, asthenospheric depths are found to be highly attenuating. The origin of this and the decrease of velocities with depth in the asthenosphere remains debated; it is probably not purely the effects of temperature and pressure causing this change, but small fractions of partial melting and anelastic processes close to the melting temperature likely contribute (§10.3.4; *Stixrude & Lithgow-Bertelloni*, 2005; *Takei*, 2017).

1.3.4 Thermal background state of the mantle

Our aliens thus cannot understand seismic structure without also figuring out internal temperatures. Below the low-velocity zone from \sim 200 km to the core-mantle boundary, we are seeing a monotonous increase in both v_P and v_S . Why is not obvious from eq. (1.38). Pressure increases with depth because of the overburden of overlying rock layers (Fig. 1.10); this squeezes mass into a tighter volume. Temperature also increases because of this pressure effect by means of *adiabatic compression* (Expanded details 3), but as Fig. 1.9 shows, the effect of pressure overwhelms that of temperature, and density does increase with depth in the mantle. Since velocities increase rather than decrease, this means that the increase of the elastic parameters with depth due to pressure is even greater.

An adiabatic process, or isentropic process, is one where there is no exchange of heat with the surrounding medium. The mantle adiabat describes the background increase of temperature within the mantle with depth only due to the effects of pressure. Using thermodynamics, one can show that this gradient can be linked to seismological properties; it works out to be $\sim 0.3^{\circ} \text{C/km}$ (Expanded details 3). This approach allows our aliens to add temperature to their Earth model (Fig. 1.13). The adiabatic gradient alone would predict an increase of temperature throughout the mantle of $\sim 1000~\text{K}$.

Dynamically, the 1-D average temperature within the mantle, the *geotherm*, is also expected to reflect the *thermal boundary layers* (TBLs) that arise due to mantle convection and show much stronger temperature gradients, $\approx 13.5^{\circ}$ C/km for the top ~ 100 km (§7.4.3). In fact, lithospheric plates and their motions are part of the top, cold thermal boundary dynamics of convection. Assuming an asthenospheric temperature of 1350° C below the plates (Table 1.1), using this as the TBL temperature difference, and assuming symmetry between the top and bottom layers adds $\sim 2700^{\circ}$ C to the adiabatic increase, so the aliens expect a core-mantle boundary temperature of $\sim 3700^{\circ}$ C. Table 1.1 lists some additional constraints on the mantle geotherm, which overall are consistent with the high end of our convective plus adiabatic estimates. For the mantle, the symmetry between top and bottom TBL that purely bottom-heated, isoviscous convection would produce is an overestimate, and we expect the lower TBL to have a smaller temperature contrast because of significant internal heating (§8.1.1 and §10.1.4).

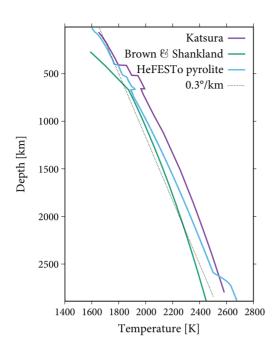


Figure 1.13: Adiabatic (i.e., constant entropy, no heat exchange) geotherm, accounting for latent heat due to phase transitions (Fig. 1.14), eq. (1.56), from *Katsura* (2022) for dry pyrolite, compared to seismology-based estimates from *Brown & Shankland* (1981), and pyrolite estimate as used for Fig. 1.9 (*Stixrude & Lithgow-Bertelloni*, 2011, 2022). For the latter, potential temperature, i.e., the intersection of the adiabat with the surface, is chosen as 1377°C. Also shown is a nominal adiabatic gradient, eq. (1.47), of 0.3°/km.

Boundary/region	Depth [km]	T [°C]	Reference	
asthenospheric (potential) temperature				
half-space cooling (HSC)	~5	1365±10	Carlson & Johnson (1994)	
petrological	50	1314±36(12)	Brown Krein et al. (2021)	
petrological, v_S , HSC	\sim 100	1383±40	Dalton et al. (2014)	
phase transition anchor points (Fig. 1.14)				
olivine-wadsleyite	410	1490±45	Katsura et al. (2004)	
post-spinel	660	1600±50	Katsura et al. (2004)	
post-perovskite	2884	3730±200	Hernlund et al. (2005)	

Table 1.1: Temperature constraints (modified from *Jaupart et al.*, 2007) with median \pm one standard deviation recomputed for *Dalton et al.* and *Brown Krein et al.* for the same ridge segments (in parentheses: only considering the median cluster for *Brown Krein et al.*); cf. Fig. 1.13. For half-space cooling, see §7.3.2, eq. (7.53).

EXPANDED DETAILS 3: Thermodynamics of the adiabatic mantle temperature gradient

The *Maxwell equations* of thermodynamics can be written for the change of the *enthalpy*, H, type of energy, defined as internal energy, U, plus the product of pressure, p, and volume, V, H = U + pV. We can write the change in temperature, T (always in units of K for thermodynamics) due to change in pressure at constant *entropy*, S, as

$$\left(\frac{\partial T}{\partial p}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{p}.$$
(1.42)

With mass $m = \rho V$, the total heat produced, ΔQ , relates to the change in temperature and entropy as

$$\Delta Q = mc_{D} \Delta T = V \rho c_{D} \Delta T = T \Delta S \tag{1.43}$$

for a reversible process, with *heat capacity* at constant pressure, c_p , which is defined through the limit case of the amount of heat ΔQ needed to raise temperature by ΔT at fixed pressure:

$$c_p = \lim_{\Delta T \to 0} \left(\frac{\Delta Q}{\Delta T} \right)_p, \tag{1.44}$$

where $c_p \sim 1000$ J/K/kg. The change in volume relates to change in temperature as

$$\Delta V = \alpha V \Delta T$$

with *thermal expansivity* α , which links temperature and volume, or density, variations at constant pressure as

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p} = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_{p}; \quad d\rho = -\rho \alpha \, dT \quad \text{or} \quad d \ln \rho = -\alpha \, dT.$$
 (1.45)

A typical value for the mantle is $\alpha_m \approx 2 \cdot 10^{-5} \text{ K}^{-1}$ (§4.4.3).

Plugging in those two relationships, we can rewrite eq. (1.42) for the increase of T with p as

$$\left(\frac{\partial T}{\partial p}\right)_{\text{ad}} = \frac{\alpha T}{\rho c_p}.\tag{1.46}$$

For a hydrostatic fluid, $dp = \rho g dz$, such that the *adiabatic gradient* of temperature with depth is

$$\left| \left(\frac{\partial T}{\partial z} \right)_{\text{ad}} = \frac{\alpha g T}{c_p} \right|. \tag{1.47}$$

This change in temperature is purely due to compressibility, and gradients are of order 0.3 K/km in much of the mantle, with values of \sim 0.6 K/km in the shallowest depths (Fig. 1.13).

Assuming homogeneity, we can integrate eq. (1.47) from the surface, *potential temperature*, $T_P(0)$, to a temperature at depth, T(z), and simplify (§C.1.2, §C.2.4):

$$\int_{T_P}^T \frac{dT'}{T'} = \frac{\alpha g}{c_p} \int_0^z dz' \to \ln T - \ln T_P = \frac{\alpha g}{c_p} z \to \frac{T}{T_P} = \exp\left(\frac{g\alpha}{c_p}z\right). \tag{1.48}$$

Eq. (1.48) can be viewed as a way to correct some upper mantle temperature at depth, T, to its surface value, T_p , due to an adiabatic upwelling, without exchange of heat, i.e., constant entropy. Figure 1.13 shows that the actual adiabatic temperature profile does not follow this exponential shape because material parameters are depth dependent and phase transitions add complexity.

Eq. (1.47) is a combination of thermodynamic parameters and g, but we can further link the gradient to seismic parameters to build a planetary model. The *Grüneisen parameter*, γ ,

relates changes in volume to the properties of the crystal lattice and can be written as

$$\gamma = \frac{\alpha K_S}{\rho c_p} = \frac{K_S}{K_S^c} \quad \text{with} \quad K_S^c = \frac{\rho c_p}{\alpha}, \tag{1.49}$$

where K_S is the bulk modulus, or *incompressibility* (cf. eq. 3.6), denoted by subscript S for constant entropy:

$$K_{S} = \rho \left(\frac{\partial p}{\partial \rho}\right)_{S} = -V \left(\frac{\partial p}{\partial V}\right)_{S}. \tag{1.50}$$

The γ parameter is thus a nondimensional incompressibility with characteristic scale K_S^c , and $\gamma \approx 1...1.1$ throughout the mantle. One can also define an *Anderson-Grüneisen parameter*, γ_T , based on the change of expansivity as a function of volume change,

$$\frac{\alpha}{\alpha_0} = \left(\frac{V}{V_0}\right)^{\gamma_T},\tag{1.51}$$

where γ_T has been suggested to be \sim 5 (e.g., discussion in *Katsura et al.*, 2004). Based on γ of eq. (1.49), we can then rewrite eqs. (1.46) or (1.47) as

$$\left(\frac{\partial T}{\partial p}\right)_{\text{ad}} = \frac{\gamma T}{K_S} \quad \text{or} \quad \left(\frac{\partial T}{\partial z}\right)_{\text{ad}} = \frac{\gamma gT}{\phi},$$
 (1.52)

where ϕ is the *seismic parameter*:

$$\phi = v_B^2 = \frac{K_S}{\rho} = v_P^2 - \frac{4}{3}v_S^2 \tag{1.53}$$

with the *bulk sound velocity*, v_B , cf. eq. (1.38). These relationships provide the desired link between seismic constraints (Fig. 1.9) and thermal properties (§4.4.3), and can be used to integrate temperature down the adiabat. The Grüneisen parameter is often assumed to be \sim constant within the mantle (Fig. 1.13), and also arises in *Birch*'s (1952) *Adams-Williamson equation*, which, using eqs. (1.49) and (1.53), states that

$$\frac{\mathrm{d}\rho}{\mathrm{d}z} = -\frac{\rho g}{\phi} \quad \text{or} \quad \frac{1}{\rho} \frac{\mathrm{d}\rho}{\mathrm{d}z} = -\frac{\alpha g}{c_p \gamma},$$
 (1.54)

where the LHS can be integrated to yield an estimate of ρ as a function of depth, given ρ_0 and depth-dependent g and the seismically constrained ϕ :

$$\frac{1}{\rho} d\rho = -\frac{g(r)}{\phi(r)} dr \rightarrow \log \left(\frac{\rho}{\rho_0}\right)(r) = -\int_{r_0}^r \frac{g(r)}{\phi(r)} dr.$$

If we plug the definition of K_s into eq. (1.52), we can also relate temperature and density change as

$$\frac{\mathrm{d}T}{T} = \gamma \, \frac{\mathrm{d}\rho}{\rho}$$

or, after integration of both sides,

$$T = T_0 \left(\frac{\rho}{\rho_0}\right)^{\gamma} ,$$

where the subscript zero refers to the values at zero pressure.

1.3.5 Composition and mantle phase transitions

Given their knowledge of thermodynamics and seismic constraints, our aliens have thus assembled a density, pressure, and temperature model of our planet. What is Earth made out of, though, i.e., which compositions fit the isostatic topography variations, as well as the bulk mass and the depth dependence as seen in their reference model?

They could drill, but that is tough (since T and p increase significantly with depth), and none of our deep drilling efforts has penetrated the continental Moho yet. They could also conduct experiments using different compositions, but what speeds up the search is the consideration of comparable objects. For Earth, we consider two types of meteorites as representative: in very broad strokes, iron-type meteorites for the core, which is made out of iron and some lighter element (Li & Fei, 2005; $Hirose\ et\ al.$, 2013; sulfur, carbon, oxygen, and hydrogen have been suggested) and silicictype meteorites (carbonaceous chondrites) to define the $bulk\ silicate\ Earth$ (BSE; $McDonough\ & Sun$, 1995; $Palme\ & O'Neill$, 2005; §10.1.7).

Overall, mantle composition is like a peridotite rock. From the BSE, convection has extracted the oceanic and continental crust (§10.1.7), leaving a relatively depleted upper mantle component sampled by spreading centers, a midocean-ridge basalt (MORB) reservoir. From dredged samples, one can estimate the *depleted midocean-ridge mantle* (DMM; *Workman & Hart*, 2005), and estimate a hypothetical pyrolite material to match DMM, e.g., by mixing a fraction f_b of basalt produced with the $(1-f_p)$ fraction of depleted harzburgite residuum, $f_b \approx 0.2$ (*Xu et al.*, 2008). Such f_b values are broadly consistent with seafloor creation rates and operation of plate tectonics over $\gtrsim 3$ Gyr (*Phipps-Morgan & Morgan*, 1999).

Figure 1.9 compares thermodynamic estimates for pyrolite with the seismic models; there is a good fit overall, within uncertainties (*Cammarano et al.*, 2005). However, turned around, seismic models do not provide sufficient constraints to resolve some of the more subtle questions, e.g., the degree of compositional variations from a mean bulk composition (*Mattern et al.*, 2005; *Stixrude & Lithgow-Bertelloni*, 2012). There is also significant uncertainty about BSE composition itself. All of this means that we have a good overall understanding of the rocky mantle composition and what happens when fractionation modifies it. Yet, questions such as the degree of internal heating in the lower mantle and the degree to which compositional anomalies matter for midmantle convection remain open.

With these caveats in mind, we can return to the sharp increases in velocities and density seen in the transition zone (Fig. 1.9), typically defined to be below the asthenosphere, $\gtrsim 300~\rm km$ and $\lesssim 700~\rm km$. In between, PREM identifies jumps at 410 km and 670 km, where the lower boundary is closer to 660 km according to more modern estimates. Those jumps are, to first order, not related to any compositional change, but rather a transition of the same pyrolitic material to closer packing due to *phase transitions* (Fig. 1.14). The pressure at which a phase transition occurs (and hence the depth) depends on the temperature via the *Clapeyron slope*,

$$\Gamma = \frac{\mathrm{d}p}{\mathrm{d}T_{\text{transition}}},\tag{1.55}$$

(continued...)

Index

A'a flow, 397	seismic, 106	batch melting, 453	butterfly effect, 40
A-type CPO, 386	seismic, extrinsic, 385	beach ball pattern, 84	Båth's law, 139
absolute plate motion, 43, 389	seismic, intrinsic, 386	Beaumont number, 598	
absorption frequencies, 195	viscous, 130, 176	bending	Carreau fluid, 183
acceleration, 6	antiderivatives, 683	moment, 111	Cartesian
accretion, 325	antisymmetric tensor, 68	stresses, 110	decomposition, 693
accretionary	antithetic shears, 472	Big Five, 413	reference frame, 695
margin, 500	aphroditoid, 657	biharmonic stream function	Cathles parameter, 263
orogeny, 568, 570	apparent	equation, 252	Cauchy
acoustic emissions, 117	polar wander, 37	bimodality, 710	deformation tensor, 669
activation enthalpy, 326	stress, 153	Bingham fluid, 184	relation, 73
active rifting, 416	Archean cratonic lithosphere, 464	black smokers, 450	stress tensor, 72, 74
Adams-Williamson equation, 31	area under the curve $f(x)$, 683	block	cellular automaton, 136
adiabatic	areoid, 657	model, 146	central
compression, 28	Argand number, 257	rotations, 70	finite difference, 290
gradient, 30	arithmetic mean, 224, 707	Bode plot, 193	limit theorem, 710
process, 28	arrest zone, 150	body	central Atlantic magmatic
adjoint equations, 363	Arrhenius relationship, 208	forces, 74	province, 414
admittance, 116, 366	aspect ratio, 311	waves, 22	centrifugal acceleration, 14
advected, 64	asperities, 136, 538	Boltzmann's constant, 269	Chablis model, 457
advection, 269	associated Legendre functions,	Bouguer gravity anomaly, 21	chain rule, 681
advective time derivative, 63	704	boundary	chaos, 40
aftershock, 137	asthenosphere, 7, 196, 313	condition, Dirichlet, 279	chaotic mixing, 411
afterslip, 171, 204, 536	astrobiology, 644	condition, flux, 279	characteristic
aging law, 161	attenuation, 28	condition, von Neumann, 279	earthquakes, 137
Airy	of seismic waves, 192	conditions, 243	equation, 693
functions, 667	relationship, 489	element methods, 149	temperature for internal
isostasy, 8	Australian-Antarctic discordance,	Boussinesq approximation, 304	heating, 308
Amontons-Coulomb law, 120	362	box model, 639	chondrites, 409
Ampère's law, 39	avalanches, 336	breakdown stress drop, 158	chrons, 36
amplitude, complex number, 679	average elastic thickness, 116	brittle	circulation, 357
ancient reservoir, 409	averaging, self-consistent, 226	deformation, 98	Clairaut's theorem, 16
Anderson-Grüneisen parameter,	Avogadro number, 208	ductile transition, 228	Clapeyron slope, 32, 299
31	axial	strength, 120	clock advance, 123
andesite, 396	magma chamber, 443	Bruns' formula, 20	clustering, 137
andesitic, 519, 610	summit caldera, 443	bulge	coaxial, 83
anelastic	axially symmetric, 71	flexural, 111	Coble creep, 209
behavior, 196	azimuthal anisotropy, 382	peripheral, 111	coefficient
creep, 189		bulging, 211	of friction, 120
liquid approximation, 323	<i>b</i> value, 135	bulk	of variation, 142, 707
angle of repose, 120	back-slip model, 145	modulus, 104	cohesion, 120
angular	band-limited expansion, 19	silicate Earth, 32, 274	cohesive
frequency, 677	Barrovian pattern, 582	sound velocity, 31, 197	strength, 118
momentum, 12	barystatic term, 267	buoyancy number, 333	zone, 150
anharmonic behavior, 196	basalt, 396	Burgers	colatitude, 695
anisotropy, 271	basins and ranges, 436	body, 191	collisional-type orogeny, 572
elastic, 105	basis vectors, 694	vector, 209	common component, 412

836 INDEX

compatibility equations,	stiffness, 164	timescale, 283	magnetic, 236
666	taper, 504	dilation, 67, 102	elastic
compensated linear vector dipole,	taper theory, 574, 587	rate, 69	modulus, 100
80	cross product, 689	dipole moment of density	rebound theory, 140
compensated typography, 113	crustal-scale thrust wedges, 575	distribution, 21, 256	electrical conductivity, 236
compensation, 113	crystallographically preferred	direct effect, 161	ellipsoid, 13
compensation depth, 6	orientations, 210	directional data, 707	elliptic, 19
complementary error function,	Curie temperature, 36	Dirichlet boundary condition, 279	ellipticity parameter, 106
285	curl, 699	discharge, 595	elongation, 64, 669
completeness, 135	curvature, 111	discontinuities, 59	EM-1, 412
complex conjugate, 678		discretization, 289	EM-2, 412
complex number, 678	damage, 117, 183	dispersion, 195	en echelon, 472
concavity parameter, 596	rheologies, 352	relation, 677	endothermic, 33
concept of a continuum, 60	zone, 127	displacement, 61	energy
conduction, 269	damped wave equation, 288	gradient tensor, 68	flux, 269
equation, 278	damping ratio, 192	dissipation	rate, 269
conductive gradient, 280	Darcy law, 272	number, 324	engineering shear strain, 65
conductivity tensor, 271	data assimilation, 357	viscous, 179, 528	enthalpy, 29
conservation	Deborah number, 187	dissolution creep, 207	entropy, 29, 271
of energy, 666	Debye peak, 194	divergence, 699, 706	epicenter, 133
general law, 663	decadic log, 676	theorem, 701	epidemic-type aftershock
of heat energy, 302	decay constant, 276	dot product, 688	sequence, 139
of mass, 241, 664	décollement, 126	double couple, 84	episodic tremor and slip, 539
of momentum, 241, 664	decompression melting, 452	downscale, 52	equation of state, 31
of momentum for convection,	deformation	Drucker-Prager criterion, 182	equatorial moments, 13
664	maps, 226	ductile deformation, 98	erodability, 595
of momentum for the wave	rate tensor, 69, 668	dunite, 446	erosion number, 596
equation, 665	tensor, 668	DUPAL anomaly, 412	erosional efficiency, 596
constant strain-rate test, 185	degree, 19, 703	duplexes, 502	erosive margins, 500
constitutive laws, 98	of compensation, 113	dyadic product, 68, 690	error function, 285
continental	dehydration embrittlement, 541	dynamic	Euclidean space, 695
drift, 34	dehydration strengthening, 328	equilibrium, 73	Euler
keels, 464	delamination, 582	flattening parameter, 14	angles, 692
levering, 266	density, 7	friction, 140	equations of motion, 664
roots, 464	depleted mid-ocean-ridge mantle,	pressure, 176, 182, 240	formula, 678
undertow, 609	274	stress drop, 158	pole, 62
continental-type orogeny, 568	depleted midocean-ridge mantle,	topography, 249, 362	vector, 62
continuity equation, 241, 664	32	viscosity, 176	Eulerian reference frame, 63
control variable, 169	depocenters, 502		eustatic term, 267
conveyor belt, 629	depozones, 572	early enriched reservoir, 409	evolution
coordinate system, 694	derivative, 680	earthquake, 130	effect, 161
Cordillera-type orogeny, 568, 570	material, 64	early warning, 143	laws, 161
core complex	operator, 680	prediction, 143	exhumation, 601
metamorphic, 423	partial, 680	simulators, 491	exoplanets, 644
oceanic, 445	total, 680	eduction, 607	exothermic, 33
Coriolis force, 235	detachment faults, 423, 445, 574	effective	expectation operator, 707
corner flow, 253	determinant, 80, 687	erosional efficiency, 596	explicit finite difference method,
corner frequency, 159	deterministic chaos, 40	medium, 119	290
coronas, 4	deviatoric	normal stress, 121	explosive style, 396
Couette flow, 244	second invariant, 179	principal stresses, 122	exposure, 470
Coulomb stress, 123	strain, 67	slab viscosity, 530	extended rare earth diagram, 274
Courant-Friedrichs-Lewy	strain rate, 70	effusive style, 396	extension, 64
condition, 291	stress, 76	eigenfunctions, 23	extremophiles, 451
cracklike rupture, 158	dextral, 472	eigensystem, 75, 693	extrinsic seismic anisotropy, 385
creep test, 189	diagenesis, 207	eigenvalues, 693	extroversion, 632
Cretaceous superchron, 36, 651	differential stress, 76	eigenvectors, 693	
critical	diffuse deformation, 493	Einstein summation convention,	factorial, 682
Rayleigh number, 306	diffusion	67, 242, 688	failure envelope, 120
slip distance, 159	equation, 282	Ekman number, 236	fast azimuths, 385

fatigue, 119	free-air gravity anomalies, 18, 20	Griffith cracks, 125	parameter space, 321
fault	frequency, 677	Griffith criterion, 118	rheological, 350
mirror, 127	frequency-magnitude	grounding line, 267	
plane ambiguity, 85, 93	relationship, 134	growth rate, 304, 671	identity matrix, 691
readiness, 470	friction	Gutenberg discontinuity, 465	ill-determined problem, 694
valving, 125	dynamic, 140	8	impedance, 22, 465
felsic, 396	kinetic, 140	habitability, 645	in-sequence propagation, 573
fiber stresses, 110	frictional sliding, 120	Hagen-Poiseuille flow, 245	incompatible elements, 274
Fick	fully compensated topography, 8,	Hale-Shaw flow, 254	incompressibility, 31, 104
first law, 272	113	half-life, 276	incompressible fluid, 70, 104, 176
second law, 278	fundamental equation of geodesy,	hanging wall, 76	index fossils, 651
field boundary	20	harmonic	infinite Prandtl number
approach, 221	20	functions, 304, 305	approximation, 235
model, 223	gas constant 200		infinitesimal deformation, 61
fingerprinting, 267	gas constant, 208	mean, 224, 708	
0 1	Gauss	harmonics, 676	initial condition, 283
finite	distribution, 709	harzburgite, 446, 460	inner derivative, 681
difference, 289	integral, 683	Haskell constraint, 260	inner product, 179, 688, 691
strain, 668	theorem, 701	hazard, 469	instability growth rate, 304, 671
strain ellipsoid, 71, 669	geocentric	healing, 183	instantaneous solution, 241
strain tensor, 70	axial dipole hypothesis, 37	heat	integrable singularity, 118, 685
first invariant, 79	latitude, 13	capacity, 30, 278, 666	integral, 683
fission tracks, 276	geodynamo, 36	flow paradox, 173	intensity, 133
fixed point, 164	geographic latitude, 13	flux, 270	interferometric synthetic aperture
fixist, 567	geoid	pipe, 638	radar, 152
flat slab, 612	anomalies, 16	pipe mode, 347	interferometry, 153
flat slab subduction, 525	undulation, 20	heating rate, 273	internal
flattening, 71	geometric	Helmholtz decomposition, 706	friction, 192
dynamic, 14	flattening, 14	high plateaus, 575	friction angle, 120
geometric, 14	mean, 225, 708	hillslope diffusion, 596	heat production, 273
gravity, 15	geoneutrinos, 276	HIMU, 412	heating Rayleigh number, 308
flexural	geosyncline, 569	hold time, 159	intraplate orogeny, 572
parameter, 111	geotherm, 28, 279, 280	homogenization, 61, 225	intrinsic seismic anisotropy,
rigidity, 110	geothermometers, 592	homologous temperature, 208	386
Flinn diagram, 670	giant impactor hypothesis, 325	homopolar dynamo, 39	introversion, 632
flip-flopping, 445	Gibbs phenomenon, 703	Hooke's law, 100	invariant, 79, 687
flood basalt, 397	glacial buzz saw, 586	hotspot, 43, 324, 396	first, 79
flower structures, 472	global	reference frame, 43	second, 78
flux boundary condition, 279	isostatic adjustment, 263	swell, 401	third, 80
flysch to molasse, 572	mantle circulation, 357	tracks, 396	inverse theory, 707
focal zone, 412	navigation satellite system, 59	Howard's conjecture, 315	inviscid, 235
fold-thrust belts, 572, 573	positioning system, 59	hydraulic conductivity, 272	irrotational, 70, 706
thick skinned, 574	Goetze number, 424	•	
thin skinned, 574	Goldilocks zone, 645	hydrostatic bulge, 15	isentropic process, 28
foot wall, 76		0	isopycnic buoyancy, 463
	Grüneisen parameter, 30	equilibrium equation, 7	isostasy, 6, 109
forbidden zone, 515	gradient of a vector field, 68, 699	geoid, 16	isotropic strain, 68
foreland basin, 572	gradient operator, 12, 698	pressure, 121	-
foreshock, 139	grain boundary	stress state, 76	J ₂
forward finite difference, 289	migration, 211	hydrothermal deficit, 450	gravity, 14
fossil bulge, 16	sliding, 211	hyperarid, 613	stress, 80
Fourier	gravitational	hyperbolic	Jacobian, 668
coefficients, 702	acceleration, 7	equation, 665	jelly sandwich, 579
law, 271	constant, 11	functions, 678	joints, 125
series, 702	energy, 11	hyperextended margin,	
fractional melting, 453	potential energy, 256	419	keel, 464
fracture mechanics, 118	sliding, 297	hypocenter, 133	Kelvin-Voigt element, 189
Frank-Kamenetskii	gravity	hypsometric curves, 4	kinematic viscosity, 234
approximation, 327	anomaly, 20	hysteresis, 346	kinetic friction, 140
Fréchet kernel, 362	flattening, 15	heat transport state, 346	kinetics, 336
free slip, 245	Green's functions, 148, 374	mechanical, 180	knickpoint, 597

838 INDEX

W 1 5 co coo	M	1.11	D. 1. 225
Kronecker δ , 68, 689	MacCullagh's formula, 13	mobilistic, 567	Rossby, 236
kurtosis, 710	mafic, 396	mode switches, 492 modulo function, 698	Urey, 641 numerical modeling, 289
Lagrangian	magmons, 452 magnetic	Moho, 25	Nusselt number, 311
reference frame, 63	diffusivity, 236	Mohr	russeit humber, 311
strain tensor, 668	Ekman number, 236	circle, 122	obducted, 446
Lamé constant, 101	permeability, 39	Coulomb failure criterion, 120	obduction, 499
laminar mixing, 411	Reynolds number, 236	molasse, 572	ocean siphoning, 266
Laplace	magnitude, 133	mole, 208	oceanic
equation, 18	of completeness, 135	moment	core complex, 445
operator, 700	complex number, 679	of inertia, 12	spreading centers, 37
large	mantle	magnitude, 133	octahedral stress, 80
igneous provinces, 397	adiabat, 28	release rate, 91	Omori-Utsu law, 137
ion lithophile, 517	conveyor belt, 358	tensor, 85, 86	operational earthquake
low shear wave velocity	plumes, 396	multiplication operator, 682	forecasting, 490
provinces, 52	wind, 359	multitaper, 703	operators, 698
last glacial maximum, 259	Marangoni-Bénard convection,	mylonite, 130	optimally oriented faults, 123
latent heat, 33, 514	309		order, 19, 703
latitude, 695	marble-cake model, 411	Nabarro-Herring creep, 209	orientational data, 707
geocentric, 13	mass extinction, 413	nappes, 567	orogenic belts, 567
geographic, 13	material derivative, 63, 666	natural	orogeny, 567
least-squares solution, 694	matrix, 687	frequency, 192	accretionary-type, 568, 570
left-stretch tensor, 669	identity, 691	logarithm, 676	collisional-type, 568, 572
Legendre functions, 704	inverse, 691	strain, 670	continental-type, 568
Lehmann discontinuity, 27, 465	orthogonal, 692	Navier-Stokes equation, 233, 238,	Cordilleran type, 568, 570
Leibniz notation, 681	Maxwell	664	subduction-type, 568
Levi-Cività	body, 185	net rotation, 43, 389	Orowan's equation, 209
permutation symbol, 689	equations, 29	neutral line, 110	orthogonal, 686, 692, 695, 702
tensor, 689	time, 185	neutrinos, 276	basis, 693
lherzolite, 509	mean	Newtonian, 175	basis functions, 702
limit cycles, 164	arithmetic, 224, 707 geometric, 225, 708	fluid, generalized, 180	orthonormal, 694
line of nodes, 692 line of sight, 153	harmonic, 224, 708	no-net-rotation, 45 no-slip boundary condition, 240	orthoversion, 633 oscillator
linear, 71	mean-mantle fixed reference	non-coaxial, 83	damped, 192
elasticity, 100	frame, 44	nonvolcanic tremors, 539	driven, 193
fracture mechanics, 118	mechanical	norm, 686	outer
liquidus, 451, 517	hysteresis, 180	normal	derivative, 681
lithosphere, 7, 293	lithosphere, 293	distribution, 709	product, 690
asthenosphere boundary, 27	twinning, 207	modes, 23	rise, 112
delamination, 582	median, 710	strain, 64	overdetermined, 694
lithostatic stress state, 76	megathrust, 131, 534	stress, 72, 73	overshoot, 158
local Rayleigh number, 315	melting, 453	normalized vectors, 686	overturn time, 317, 321, 559
locking depth, 146	memory, 351	nucleation length, 169	
log-normal distribution, 710	metamorphic	number	P shears, 472
logarithmic strain, 670	core complexes, 423	Argand, 257	p values, 709
logic tree, 489	facies, 510	buoyancy, 333	paleobotany, 592
longitude, 695	metastability, 337	Deborah, 187	paleomagnetic, 36
longitudinal strain, 101, 102	Mg-#, 463	dissipation, 324	paleoseismology, 142
Lorenz force, 39	midlithospheric discontinuity, 465	Ekman, 236	Pangea, 34
Love	midocean-ridge basalts, 274	erosion, 596	parabolic, 278
parameters, 106	mid-pleistocene transition, 259	Goetze, 424	parameter space, 306
waves, 24	Milankovitch cycles, 259	Nusselt, 311	partial derivatives, 680
low Urey number problem,	mixed-determined, 694	Peclet, 249	partial melt fractions, 451
643	mixing	Prandtl, 235	passive
low-angle normal faults, 416	chaotic, 411	Rayleigh, bottom-heated, 304	margin, 545
low-velocity zone, 28	laminar, 411	Rayleigh, internal heating,	rifting, 416, 430
L-S tectonites, 71	mobile	309	upwellings, 396
L-tectonites, 71	belts, 520 lid, 330	Rayleigh, local, 315	Pearson correlation coefficient,
Lyapunov exponent, 40	nu, 550	Reynolds, 234	711

Peclet number, 249	primordial reservoir, 409	real surface spherical harmonics,	Rodrigues's formula, 704
pelitic rocks, 128	principal	703	root mean square (RMS), 707
peridotite, 446	axis system, 75	receiver functions, 465	roots, 464
period, 677	strain axes, 71, 669	recovery, 210	Rossby number, 236
doubling road to chaos, 40	principal moments of inertia,	recrystallization, 211	rotation, 61
periodic	13	reference	tensor, 669
isotropic two-layered model,	pro wedge, 572	ellipsoid, 16	vectors, 685
385	probabilistic seismic hazard	geoid, 14, 16	rotation-rate tensor, 70
orbits, 40	assessment, 489	gravitational acceleration, 15	rules of plate tectonics, 42
peripheral bulge, 111	probability density function, 709	reference frame	rupture, 171
permeability, 272	process zone, 127, 150	Eulerian, 63	barriers, 538
perturbation growth rate, 304, 671	product	Lagrangian, 63	
phase	cross, 689	reflection, 22	S-tectonites, 71
buoyancy parameter, 333	dot, 688	refraction, 22	Sarle's bimodality coefficient,
complex numbers, 679	dyadic, 690	regularization, 61, 694	710
delay, 677	inner, 688	relative sea level, 266	scalar
space, 41, 164	vector, 689	relaxation	field, 12, 685
transitions, 32	product rules, 684	of stress, 187	schlieren, 411
velocity, 677	propagating wave, 677	time, 185	scientific notation, 675
phonon, 270	pseudotachylites, 127	relaxed modulus, 190	screw dislocation, 126
Piola-Kirchhoff stress tensor, 73	pull-apart basins, 472	reservoir	sea level equation, 266
plane	pulselike ruptures, 158	ancient, 409	sea surface
strain, 71, 81, 104	pure shear, 82	early enriched, 409	equipotential, 16
stress, 81, 104	purely deviatoric deformation	primordial, 409	height, 16
plastic dissipation, 118	states, 82	residence time, 314	seafloor spreading hypothesis,
plate model, 455	Pythagoras, 676	residual topography, 26, 362	38
plate reorganization, 545		resonance, 193	seaward dipping reflectors, 419
plume	quadratic elongation, 669	frequency, 193	second
head, 397	quality factor, 192	peak, 193	deviatoric invariant, 179
tail, 397	quasi-static approach, 164	retardation time, 189	invariant, 78
point mass potential, 12		retro wedge, 572	secondary creep, 191
point source approximation, 153	R shears, 472	Reuss average, 224	sectoral spherical harmonics, 705
Poisson's	radial	reversal timescale, 651	secular cooling, 275, 641
equation, 18	anisotropy, 106, 382	reverse faults, 76	seismic
ratio, 101	correlation functions, 54	Reynolds number	anisotropy, 24, 106, 385, 386
polar decomposition, 693	strain, 101	magnetic, 236	coupling, 89
polar moment, 13	radian, 676	thermal, 249	gap, 489
polflucht, 34	radiation, 269	viscous, 234	moment, 85, 133
poloidal, 45	radiation efficiency, 154	Reynolds transport theorem, 663	parameter, 31
potential field, 706	radioactive decay, 276	rheology, 98	period, 141
pore pressure factor, 121	radiometric dating, 276	Richter rolls, 459	potency, 85
postglacial rebound, 263	radius of curvature, 111	ridge	wave equation, 665
postrift stage, 419	rake, 72	push, 257, 297	seismicity, 133
potential, 12	rank <i>n</i> tensor, 701	transform faults, 475	seismogram, 133
anomaly, 20	rank sorted, 710	Riedel structures, 472	seismotectonic, 89
temperature, 30	rare earth element, 274	rift, 415	self-consistent average, 119
power law, 179	rate-and state-dependent friction,	rifting	self-consistent
power per degree ℓ and unit area,	160	active, 416	averaging, 225
705	Rayleigh	passive, 416	self-organized critical state, 136
Prandtl number, 235	number, 249	right-hand rule, 689, 695	sensitivity kernel, 362
Pratt isostasy, 8	number, bottom-heated, 304	right-handed system, 695	separation of variables, 186, 288,
preliminary reference Earth	number, internal heating, 309	right-stretch tensor, 669	305
model, 23	number, local, 315	Ring of Fire, 546	series approximations, 682
pressure, 6	number, power-law-based,	ringing, 703	serpentinite, 446, 476
dynamic, 176	332	risk, 469	shallow slip deficit, 493
pressure solution, 207	waves, 24	rock	shape
primary creep, 191	Rayleigh-Bénard problem, 238,	equivalent topography, 114	factors, 71, 670
primitive, 409	303	rock uplift, 592	preferred orientation, 384
mantle, 274	Rayleigh-Taylor instability, 670	rock-equivalent topography, 25	ratios, 78

840 INDEX

shear	equilibrium state, 73	delamination, 582	relaxation, 419
delamination, 582	fatigue, 119	initiation, 350, 544	Reynolds number, 249
modulus, 101	friction, 140	orogeny, 568, 570	runaway, 543
strain, 65	stress drop, 141, 157	subduction-transform edge	thermochemical boundary layer,
strain, engineering, 65	statistical moments, 710	propagator, 487	464
stress, 72	Stefan problem, 288	subgrain	thermochronology, 592
viscosity, 176	stepovers, 472	boundaries, 210	thermodynamic pressure, 177
zone, 211	stick-slip cycle, 140	rotation, 211	thermostat, 641
similarity variable, 283	sticky air, 251	summation operator, 682	thin viscous sheet models, 255
simple shear, 82, 102	Stokes	supercycles, 492	third invariant, 80
singular matrix, 692	condition, 178	superswells, 362	Thixotropy, 177
singular value decomposition,	equation, 241, 242	surface	thrust faulting, 76
694	law, 248	gravity anomaly, 21	time-predictable model, 141
singularity, 685	Navier equation, 233	uplift, 591	toroidal, 45
sinistral, 472	sinker velocity, 248	-	
	•	waves, 24	flow, 338
site amplification, 133	theorem, 701	symmetric tensor, 67	potential field, 706
skew symmetric, 68	Stokeslet, 248	synchronous	torque balance, 373
skewness, 710	storage capacities, 371	deformation model, 221	total derivative, 680
skin depth, 288	strain, 64	model for recrystallization,	trace, 79, 687
slab	intensity, 670	223	traction, 72
flat, 612	partitioning, 472, 481, 484	syn-rift deposits, 417	transcurrent faults, 467
ponding, 557	tensor, 66, 67	synthetic motion, 472	transfer
pull, 297, 527	strain rate, 62	système international (SI), xxv	faults, 467
stagnation, 557	strain-dependent weakening, 183		function, 114
slablets, 559	strain-rate tensor, 69, 70	tapering, 703	transform faults, 467
slip law, 161	strange attractor, 41	Taylor expansion, 66, 682	transformational faulting,
slip-predictable model, 141	stream	tectonic	543
slip-weakening law, 157	function, 252	accretion, 500	transient time, 559
slope, 680	power, 595	erosion, 500	translation, 61
slow slip event, 172, 536, 539	strength, 228	melanges, 601	transpression, 472
small amplitude, 304	excess, 157	tremor, 539	transtension, 472
small-scale convection, 458	stress, 72	tectosphere, 463	transverse strains, 102
Snell's law, 22	compatibility equations, 667	tensor, 70, 685, 701	transversely isotropic, 106
solenoidal, 70, 706	concentration factor, 117	antisymmetric, 68	traps, 398
solid spherical harmonics, 19	differential, 76	deformation rate, 69	true polar wander, 17, 47, 266
solidus, 451, 517	diffusivity, 200	displacement gradient, 68	turbulent
soliton, 452	intensity factor, 118	finite strain, 66	mixing, 411
solution of the wave equation,	relaxation test, 187	infinitesimal strain, 67	twinning, 207
679	shadow, 123	invariants, 79	two-phase flow, 452
Spearman rank-order correlation,	singularity, 118	left-stretch, 669	F
711	tensor, 72	norm, 85, 687	U-Pd dating, 276
spherical harmonics, 703	tensor, Cauchy, 72	right-stretch, 669	ultralow-velocity zone (ULVZ),
spheroid, 13	tensor, Piola-Kirchhoff, 73	rotation rate, 70	413
spidergram, 274	stress drop, 140	strain, 66	ultracataclasites, 128
spin tensor, 70	dynamic, 158	strain, 60 strain-rate, 69, 70	
spreading	static, 157		unclamping, 123 underdetermined, 694
centers, 439	stretch, 64	stress, 72	undershoot, 158
		symmetric, 68	· ·
ridges, 439	stretching factors, 421	tesseral functions, 705	uniaxial, 71
spring slider system, 164	strict isopycnic hypothesis, 463	test volume, 74	compression, 83
square matrix, 687	strike, 72	Theia, 325	strain, 102, 104
stagnant lid regime, 330	strike-slip faults, 76	thermal	stress, 101, 102
stagnation	strip-yield model, 150	blanketing, 350	tension, 83
distance, 254	Student's	boundary layer, 28, 286, 310	unit
point, 254	<i>t</i> -distribution, 711	catastrophe, 642	circle, 678
staircase trajectory, 126	<i>t</i> -test, 709	conductivity, 270	hyperbola, 678
standard deviation, 707, 709	stylolites, 207	diffusivity, 278	vectors, 686
standard linear solid, 189	subadiabatic, 323	expansivity, 30, 249, 304	universal flexural profile, 112
state variable, 160	subduction	lithosphere, 293	universal gravitational constant,
static	channel, 500, 601	parameter, 504	10

unrelaxed modulus, 190	viscosity, 28	vorticity, 706	WGS-84, 14
Urey ratio, 641	frequency-dependent, 195	tensor, 70	white smokers, 451
	viscous, 528	vulnerability, 470	Wilson cycles, 47
vacancies, 209	anisotropy, 176		world
variance, 707	dissipation, 179	Wadati-Benioff zone, 496	geodetic system, 12
reduction, 694	drag, 234	water	stress Map, 93
vector, 6, 685	Voigt	concentration, 217	uncertainty, 47
calculus, 698	average, 107, 224	fugacity, 213, 217	
field, 61, 685	notation, 106	wattmeter model, 221, 223	xmas-tree diagram, 231
norm, 686	Reuss-Hill average, 225	wave	
spherical harmonics, 706	volumetric heating rate, 273	number, 305, 677	yield criteria, 181
vectorial tomography, 382	von Mises	solution, 679	Young's modulus, 101
velocity, 62	criterion, 181	vector, 679	
gradient matrix, 69	plasticity, 182	wave length, 677	zero
strengthening, 162	stress, 80	wavelet analysis, 703	curl, 45
weakening, 162	von Neumann boundary	weakly isopycnic, 464	divergence, 45
viscoplastic, 184	conditions, 279	weakly isopycnic state, 462	zonal spherical harmonics, 19, 705