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6

1
What Is the Upper Limit?

The breath you just took contains over 400 parts of carbon 
dioxide per million molecules (ppm) of air.1  People living at 
the start of the Industrial Revolution would have inhaled about 
278 ppm. Since then, levels of CO2— the leading green house 
gas driving changes in the climate— are on course to double 
owing to the relentless burning of fossil fuels. In a worst-case 
scenario, CO2 concentrations will exceed 900 ppm by the year 
2100. Unfortunately, that scenario is within the realm of pos-
sibility. Carbon dioxide is the natu ral product of cellular respi-
ration in animals and plants. Fossil fuel emissions from  human 
activity over the past two centuries now threaten our atmo-
sphere, oceans, and life on Earth. In spite of the impacts— 
extreme heat and wildfires, catastrophic floods and storms, 
massive crop failures, and unrelenting biodiversity loss—some 
experts have made the claim that  human cognition operates on 
a very narrow spatiotemporal scale; we are unable to see— let 
alone deal with— the flood of changes that we have unleashed. 
Our horizons are so  limited, the argument goes,  because Homo 
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sapiens never evolved enough  mental bandwidth to apprehend 
a long- term  future. Our ancestral selves  were mainly preoccu-
pied with the “immediate band, immediate dangers, exploitable 
resources, and the pre sent time.”2 So  here we are, built to be 
blindsided in a new and hostile world. Yet the claim of cogni-
tive barriers is just that— a claim— and, in any case, overcoming 
such barriers to responding to all but our short- term needs is 
not the real challenge. Rather, we need to ask how narrowed 
self- understandings prevent us from efectively addressing the 
prob lem of climate change, leaving us stranded in a pre sent that 
may not be survivable.

More than a  century’s worth of research undercuts the idea 
that a bias  toward inaction in a high- CO2 world is preordained. 
During World War I, when submarines  were first widely 
deployed in warfare, a US Navy sanitary officer and surgeon 
named R. C. Holcomb worried about carbon dioxide displacing 
oxygen in breathable air in  these sealed underwater capsules. 
Carbon dioxide is a colorless and odorless gas, so it is tempting 
to think that its risks cannot be sensed. Holcomb questioned 
this assumption, writing, “We cannot forget that we are at the 
bottom of an aerial ocean and saturated with its gases.” He 
expressed concerns over “men obliged to breathe their own 
expired air over and over again.”3 More than a hundred years 
 later, we think of carbon dioxide in more distant (atmospheric) 
terms, an input to be tracked or mitigated in climate change sce-
narios. Its physiological impacts are harder to grasp. Holcomb 
made his observations at a time when, in military and medi-
cal spheres, new instruments  were being devised that could 
scrub carbon dioxide from closed environments. Consider the 
American pharmacologist Dennis Jackson, who wanted to 
make anesthesia gas accessible to his poorer surgical patients. 
Breathing chambers of the early twentieth  century delivered 
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expensive nitrous oxide, but 
they also leaked it. Hoping to 
make its delivery more effi-
cient, in 1914 Jackson in ven-
ted a closed cir cuit chamber to 
trap the nitrous oxide. But it 
also trapped patients’ exhaled 
carbon dioxide gas. When 
he added soda lime, which 
absorbed the gas, patients 
could rebreathe expired air. It 
so happened that the “Jackson 
CO2 Absorber” was in ven ted 
in St. Louis, a city once satu-
rated with coal smoke. The 
absorber worked so well that 
when Jackson tested it on 
himself, he reported having 
“the first breaths of absolutely 
fresh air he had ever enjoyed 
in that city.”4

Like atmospheres, our bodies require careful calibration 
between oxygen consumption and carbon dioxide produc-
tion. The amounts of carbon dioxide that are pre sent in our 
arterial blood and exhaled in our breath are always main-
tained reciprocally through a partial pressure gas exchange. 
This exchange is critical to survival. When the gas accumulates 
in our blood during sleep, our bodies signal an imbalance (by 
snoring, waking up, breathing abnormally deeply, or, if the 
lungs’ ability to remove CO2 is seriously impaired, exhibiting 
asthma or respiratory failure). Doctors use CO2 saturation 
as a prognosticator for “time to death” in terminal patients.5 

figure 1.1. Jackson CO2 Absorber 
(redrawn from image courtesy of Wood 
Library Museum).
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Too much CO2 in the blood is a sure sign of imminent cardiac 
arrest or death.

So immediate are visceral responses to carbon dioxide over-
load that researchers have attributed to it involuntary reac-
tions of all kinds. In work that was a precursor to his studies 
on “voodoo” death,6 Walter B. Cannon, a professor of physiol-
ogy at Harvard from 1906 to 1942, experimented on dogs to 
show how distress and panic increase the body’s production 
of carbon dioxide, which he famously called the fight- or- flight 
response. “ Great exertion, such as might attend flight or con-
flict,” he wrote, “would result in an excessive production of 
carbon- dioxide.”7 More recently, researchers have found that 
they can simulate a variety of  mental infirmities, from anxi-
ety and panic disorders to combat- related stress reactions, by 
exposing  human subjects to carbon dioxide– enriched air.8

Distress, an induced panic, or even cardiac arrest: our bod-
ies respond to this insensible gas,  whether  we’re conscious of 
its presence or not. Given the wide- ranging efects CO2 has 
on biology, we can ask how much of a threat to physiological 
equilibrium we are willing to tolerate. In one re spect, it is dif-
ficult to say: while the unconscious systems of our bodies are 
 adept at signaling intolerance, the conscious ones are often too 
sluggish to recognize or fend of the danger. 

Let’s then move from the autonomic realm to the question 
of how awareness and assessment of CO2’s risks have evolved, 
drawing examples from modern agriculture and war. In 1954, 
when two Kansan farmworkers descended into a silo full of 
beans, barley, and oats, the gas released from the fermenting 
silage killed them. Silos notoriously contain high amounts of 
carbon dioxide, giving no warning of their lethality to  people 
entering them.9 So farmworkers developed homespun tech-
niques to test for gas buildup before entering  these structures. 
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One involved lowering a candle into a silo to see  whether its 
flame died out (this occurs when carbon dioxide gas displaces 
oxygen needed for combustion). Another entailed suspending 
a warm- blooded animal in the structure to see  whether it fell 
unconscious. When the sentinels’ limp bodies  were fished out 
of the silos, it was found that “an exposed guinea pig was uncon-
scious within 30 seconds and a rabbit within 60 seconds.”10

In an early study (1914) of a carbon dioxide accident on a 
farm, investigators found four men dead in a silo in Athens, 
Ohio. Coworkers reported that  these men had entered the silo 
to tamp down new silage, but “within about five minutes the 
men inside  were not responding to the shouts of their cowork-
ers.” Accident investigators noted CO2’s ability to trick the 
senses, writing that a “more peaceful and inviting scene could 
not be  imagined than the warm, pleasant smelling green silage 
within.”11 Sensory trickery of this kind also has its uses: for 
de cades, farm man ag ers have been exposing livestock to high 
levels of carbon dioxide to anesthetize them before slaughter, a 
method that animal welfare advocates consider more humane 
than electrical stunning.12

As examples from agriculture illustrate, knowledge of 
the efects of carbon dioxide is carved into modern life. That 
 humans can do no more than deny them  because we as a spe-
cies cannot see past our arms does not add up. History, too, 
refutes this notion. When incendiary bombs  were dropped dur-
ing World War II, Eu ro pean cities  were flooded with clouds 
of toxic gas (including CO and CO2), killing untold numbers 
of  people for whom overcrowded air- raid shelters provided 
no escape.13 In July 1943, the air raids on Hamburg ignited 
massive fires. The author of The Night Hamburg Died (1960) 
describes what tran spired in the shelters from  these torrents: 
“Sealed into their cellars, huddling  behind heavy doors, they 
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have closed themselves of from the outer world and the oceans 
of fire splashing around and over their warrens. No flame ever 
touches them, but not a man,  woman, or child survives. Not a 
single living soul. Not a  human being, an animal, not even the 
smallest rodent, not a single insect, survives.”14

 There was also neither warning nor escape when, on 
August 21, 1986, an under ground  bubble of carbon dioxide 
erupted in Lake Nyos, an active crater lake in Cameroon, 
releasing a low- hanging gas cloud that killed over seventeen 
hundred  people.15 One survivor, knocked unconscious for 
several hours, described his experience when he woke up: “I 
could not speak . . .  I could not open my mouth  because then I 
smelled something terrible . . .  I heard my  daughter snoring in 
a terrible way, very abnormal.” He continued: “When crossing 
to my  daughter’s bed . . .  I collapsed and fell . . .  My  daughter 
was already dead . . .  I got my motorcycle . . .  As I rode . . .  I 
 didn’t see any sign of any living  thing.”16

An American biologist who studied the Lake Nyos disaster 
(and another at Lake Monoun in Cameroon two years  later) 
conveyed to me some of the physical and sensorial aspects 
of total exposure: “At the heart of the cloud released during 
the Lake Nyos and Lake Monoun disasters, the concentra-
tion of CO2 was 100%— that is, the CO2 had displaced all of 
the normal air that we breathe.” Concentrations of CO2 above 
15–20  percent  will cause sufocation and death in animals and 
 humans.17 In a lower range of 10–15  percent, delusions can set 
in.  Here, as the scientist described to me, “CO2 can act as a 
sensory hallucinogen, such that  people feel and smell  things 
that  aren’t  really  there.” Where the CO2 concentration hovered 
just below the lethal limit, some Lake Nyos survivors reported 
smelling rotten eggs or gunpowder and feeling very warm. “The 
rotten eggs smell is unmistakably a smell of sulfur gases and 
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feeling warm is also associated with volcanoes producing heat,” 
he noted. “However, our analyses showed that  there  were no 
sulfur gases released (or very  little) during the disaster, and 
that the gas burst was not associated with heat release from a 
volcano.”18

In other words, the gas cloud the biologist describes was full 
of sensory bewilderments, resulting from a freak geophysical 
event the likes of which most of us  will never experience. But 
I knew someone who may have lived through something com-
parable. My  father was a twelve- year- old child refugee from a 
small village in Ukraine— one among hundreds of thousands 
who fled the country for displaced persons camps in West-
ern Eu rope when the Soviet and German forces met in 1944. 
Allied forces conducted aerial bombing raids, targeting indus-
trial plants and railway stations as well as fleeing civilians, as 
he would point out. The civilian refugees  were a hundred miles 
into their trek when one of the bombs from a shuttle bombing 
operation fell near a border town, hitting an under ground tun-
nel that served as a makeshift bomb shelter. His older  sisters had 
not made it to the overcrowded shelter- turned- death- pit— but 
he had. Through a child’s eyes, he described to me what it was 
like to be packed inside and, in his words, “what  people’s lungs 
look like when they are gasping for breath.” By some miracle, the 
 little boy found himself near a tiny airhole. Taking in small sips of 
fresh air, he observed the terrifying distensions all around him. 
He lost consciousness and, along with other presumed-dead 
bodies, his was thrown onto a flatbed truck. The high- pitched 
voice of his oldest  sister calling out his name (Misio!) awoke 
him, and then (a detail that as a child I could hardly fathom) he 
stood up from the pile of bodies and got of the truck. The small 
amount of oxygen from that hole in the tunnel prevented the 
extreme CO2 concentrations from killing him.
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This near- fatality conjoins histories of  human breath and 
pyrogeographies of modern warfare. In his essay “Air War 
and Lit er a ture,” the writer W. G. Sebald depicts the absolute 
destruction wrought by the Allies’ aerial bombing of Eu ro pean 
cities in World War II.  There was a narrative vacuum. German 
writers, Sebald argued, “would not or could not describe the 
destruction of the German cities as millions experienced it.” The 
bombings left “31.1 cubic meters of rubble for  every person in 
Cologne and 42.8 cubic meters of rubble for  every inhabitant 
of Dresden.”19 Adding to the physical destruction, the Hamburg 
air raids produced a massive urban firestorm, five kilo meters in 
height and covering seventeen square miles.20 Winds produced 
a high- velocity fire whirl that still perplexes fire scientists  today. 
Of Hamburg’s obliteration by fire, Sebald wrote: “At one twenty 
a.m., a firestorm of an intensity that no one would ever before 
have thought pos si ble arose. . . .  At its height, the storm lifted 
gables and roofs from buildings, flung raft ers and . . .  billboards 
through the air, tore trees from the ground and drove  human 
beings before it like living torches.”21 Scenes like  these, along 
with unrecognizable ecological synergies, are at the heart of 
 these overlooked embodiments of total war.

An estimated forty- five thousand died in the aerial bomb-
ings. Their incendiary efects, along with  those of nuclear weap-
ons, led to an “unpre ce dented boom in the research of wildland 
fires.”22 But the boom was short- lived. In the 1950s and 1960s, 
when Cold War researchers  were conceiving of radioactive fall-
out shelters to protect  people in the wake of nuclear attacks, they 
overlooked the fact that shelters would ultimately be “useless, 
largely  because of firestorms.”23 They narrowed the scope of the 
 hazard to a mechanical balancing of oxygen supply with carbon 
dioxide removal in closed environments. How long could occu-
pants live in a nuclear fallout shelter? Studies tested chemical 
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carbon dioxide removal as a method of prolonging occupancy 
 after breathable air dissipated. In one study, two adults sat in a 
fallout shelter as researchers monitored oxygen consumption 
and carbon dioxide accumulation.24 In hour one of occupancy, 
the oxygen remained at 20  percent. In hours two and three, it 
dropped to 19  percent. In hour four, it was at 18.5  percent. Car-
bon dioxide concentrations  rose steadily, from 0.5  percent in 
hour one to 1.7  percent in hour four. In a bomb shelter packed 

figure 1.2. Bombing of Hamburg. Avro Lancaster heavy bomber, World War II, 
1939–1945 (Science & Society Picture Library).
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with hundreds of  people, this rate of increase would likely result 
in CO2 gas concentrations in the range of 10  percent, if not more, 
certainly high enough to cause them to fall unconscious or die.

As with any other noxious gas, carbon dioxide is classified as 
an occupational  hazard; its levels are monitored and federally 
regulated in vari ous industrial settings to insure safe respiration. 
The US Department of  Labor, for example, considers 400 ppm 
to be the outdoor norm for CO2 exposure, and 800 ppm the 
indoor norm. According to a CO2 monitor salesman I spoke 
with, 1,500 ppm “is when you start to see efects.” In fact, the 
majority of his sales  were to school districts  because of con-
cerns about the dangers of carbon dioxide to  children’s school 
per for mance: “We need to break up the CO2 concentration 
in schools.” At 5,000 ppm, metabolic stress and narcosis or a 
depressed state of consciousness can set in.

Seen through its somatic history, carbon dioxide comes to 
be palpable through industrial techniques and standards devel-
oped to exploit its potentials, mitigate its harms, or protect 
breath. That history consigns  humans and nonhumans (rodents, 
 cattle, and refugees) to the structures of research and the rubble 
of modern war. It also becomes an exercise in securing what 
the phi los o pher Achille Mbembe calls “the universal right to 
breath.” Following the death of George Floyd, whose public 
assassination by police chokehold ignited protests against racist 
policing and anti- Blackness around the world, Mbembe writes, 
“Caught in the stranglehold of injustice and in equality, much of 
humanity is threatened by a  great [sufocation]” and this sense 
“spreads far and wide.”25

 Today, threats to breath are all around as “[w]e are adding 
planet- warming carbon dioxide to the atmosphere at a rate faster 
than at any point in  human history since the beginning of indus-
trialization.”26 CO2 toxicity has been calculated extensively (from 



16 ChaPter 1

the science of the fight- or- flight response to occupational safety 
and even bomb shelter survival). When it comes to planetary risk, 
a terrible disjuncture remains between the scale of the threat and 
the pace of collective eforts to stop its cascading impacts.  There 
is a failure of imagination, which the writer Amitav Ghosh calls a 
“ great derangement,” when it comes to connecting the burning 
of fossil fuels and CO2 rise to our altered pre sent. Politicians 
with no vision beyond the next election cycle normalize the 
derangement, or the idea that our horizons, so truncated,  will 
never allow us to meet conditions where they are.

Meanwhile, as we  will see in this book, earth scientists are 
getting a better  handle on how increases in CO2 and other fos-
sil fuel emissions threaten to destabilize entire Earth systems. 
Having passed a par tic u lar threshold, ocean acidification— 
caused by the overabundance of CO2 in the seas— will trigger 
widespread fish extinctions due to diminishing coral reef eco-
systems (which sustain roughly 10  percent of the world’s fish-
eries). On land, rising temperatures associated with increasing 
CO2 concentrations threaten to wipe out agricultural produc-
tion in some areas.27

Carbon dioxide is absorbed in the atmosphere and by forests 
and oceans. But what kinds of worlds  will be habitable once 
parts of the Earth system have lost their ability to “scrub” car-
bon dioxide? Researchers are unsure about where the CO2  will 
go. The  future of Earth’s CO2- ofsetting reservoirs (or carbon 
sinks) is uncertain— nearly a third of them are saturated or have 
dis appeared. This occurs at a time when CO2 levels routinely 
exceed 400 ppm, higher than  they’ve been since “three to five 
million years ago— before modern  humans existed.”28

I mea sured levels of the gas in my everyday (pre- COVID) 
surroundings with a handheld CO2 monitor that I purchased 
online.  There was a surprising amount of variability. The CO2 
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in my small office mea sured 608 ppm; a lecture hall, 955 ppm; 
a room where I met with a group of incoming college students, 
1,027 ppm. When I stuck the monitor outside my office win-
dow, it read 388 ppm. At home, levels varied from 402 ppm to 
1,339 ppm. When I exhaled right into the monitor, it jumped 
to 3,994 ppm. Variability, I learned, is the very  thing that has 
allowed land animals to survive in milieus with relatively high 
levels of CO2— and  humans to dominate the planet. If the CO2 
is too high in one setting— say, in a classroom or office—we 
 will know it (perhaps not consciously) and eventually leave the 
room or open a win dow for fresh air. Even if we start hyperven-
tilating, we can usually recover, which, strictly speaking, means 
returning our partial pressure of carbon dioxide (a mea sure of 
carbon dioxide in arterial blood) to a normal level.

As air- breathers,  humans have a high partial pressure of 
carbon dioxide (Pco2). Our bodies are equipped to deal with 
variable CO2 levels. In the constant adjustment to variability, 
we normally have the luxury of forgetting that without such 
adjustment, we would soon be dead. Contrast this with aquatic 
animals, for whom “the diference in Pco2 between inspired 
and expired medium,” in this case,  water, is much smaller.29 The 
smallest rise in CO2 in any aquatic system can trigger a state 
called hypercapnia, from the Greek hyper (over) and kapnos 
(smoke) and occasion a massive fish die- of. Aside from the 
very few fish that can air- breathe (using their mouths, esophagi, 
or stomachs to trap air when  water becomes oxygen- deprived), 
water- dwellers, for the most part,  can’t compensate for vari-
ability in their aquatic environments the way that air- breathers 
can, nor can they escape  water in which they cannot breathe. 
Readers may have seen the workings of hypercapnia in oxygen- 
depleted ponds or lakes. One day, every thing seems normal, as 
life teems just beneath the surface; the next day, fish underbel-
lies cover the entire lake as far as the eye can see.
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We may find comfort in the fact that we are not fish. Air is a 
much more forgiving medium than  water as far as respiratory 
physiology goes. But when it comes to  humans and fish, how 
should we conceptualize diferences in survival capacities amid 
elevated CO2 levels? Is it a  matter of physiological diference 
(that confers some seemingly inherent advantage in one kind of 
animal and not another)? Or is it a  matter of an environmental 
diference (that  will always provide one kind of animal and not 
another with escape hatches within variable milieus)? Setting 
species- specific distinctions aside, is  there a place and time in 
which  human and fish fates might converge, pushing us  toward 
some edge, some horizon beyond which existence ceases to be 
 viable— call it extinction— without our even noticing?

figure 1.3. Lake ecosystem regime shift  after  human pollutants decrease oxygen 
levels, Rio de Janeiro, 2013 (Reuters/ Alamy/Sergio Moraes).
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