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CHAPTER 1

HISTORICAL DEVELOPMENT

The story of how people hit on the highly nonintuitive world picture
of quantum mechanics, in which the physical state of a system is rep-
resented by an element in an abstract linear space and its observable
properties by operators in the space, is fascinating and exceedingly com-
plicated. The theory could not have been deduced from experiment, for
the elements of the linear space are in principle not observable. It is also
true that the theory did not arise from one person’s great insight, as
happened in Einstein’s discovery of general relativity theory. The much
greater change from the classical world picture of Newtonian mechanics
and general relativity to the quantum world picture came in many steps
taken by many people, often against the better judgment of participants.

The goal of this chapter is to show how classical physicists could
have hit on wave mechanics. The strategy is to select topics that still
are (or ought to be) part of the fundamental lore of any modern physicist.
There are three major elements in the story. The first is the experimental
evidence that the energy of an isolated system can only assume special
discrete or quantized values. The second is the idea that the energy
is proportional to the frequency of a wave function associated with the
system. (This is the famous de Broglie relation E = hv, for energy E and
frequency v). The third is the connection between the de Broglie relation
and energy quantization through the mathematical result that a wave
equation with fixed boundary conditions allows only discrete quantized
values of the frequency of oscillation of the wave function (as in the
fundamental and harmonics of the vibration of a violin string). Some
substantial computations are presented in this chapter, but the physics
is introduced piecemeal, as needed. The principles of wave mechanics are
collected in the next chapter, and are generalized to an abstract linear
space in chapter 3.
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4 Chapter 1

1  Energy Quantization and Heat Capacities

The Boltzmann Distribution

Consider an object—an atom, molecule, rock—in a mechanically stable
state and well isolated from its surroundings. In classical or quantum
theory the object has a definite energy, E, that is conserved. Also, if
the object consists of several weakly coupled parts FE is the sum of the
energies of the parts. In classical mechanics, F can assume any value
from some minimum to the maximum allowed by stability. In quantum
theory the possible values of the energy are discrete, or quantized,

E=E;, i=0,1,2,..., (1.1)

with Ej the ground state energy, F; the energy in the first excited state,
and so on. This remarkable quantization concept first appeared in 1900,
in Planck’s derivation of the blackbody radiation spectrum, as described
in section 2. We will consider first the relevance of energy quantization
to heat capacities of material objects, because the analysis is a little less
lengthy.

To describe what happens when an object is heated to a given tem-
perature 7', let us imagine we have a statistical ensemble of M > 1 me-
chanically identical copies of the object, each of which has been placed in
contact with a heat reservoir at temperature 7', allowed to come to equi-
librium, and then isolated. The reservoir is a macroscopic body much
larger than the object. The ensemble might literally be a collection of
objects, such as a large number of nearly free atoms, or we can think of
the ensemble as representing one almost isolated object that is sampled
at widely separated times.

The accidents of interaction of each object with the enormous num-
ber of atoms in the reservoir determine the probability distribution of
final energies of the objects in the ensemble. Let NV; be the number of
the M objects that are found to be in the i*" energy level. Then in the
limit M — oo the probability of finding that a randomly chosen object
from the ensemble is in level ¢ is defined to

P, = N;/M. (1.2)

The value of M is required to suppress sampling fluctuations. If the
ensemble represents one object sampled at many different times, P; is
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the probability that the object observed at a randomly chosen time is
found to be in level 1.

It will be assumed that the probability P; in equation (1.2) depends
only on the temperature T' of the reservoir and on the energy E; of
the object (or more generally on the conserved quantities, which could
include particle number), so at fixed temperature T the probability P;
is some function of energy,

P, = F(E;). (1.3)

This assumption is justified below, in section 26 on measurement theory.
For now the problem is to find the function F(E;).

Suppose the object consists of two weakly interacting parts, 1 and
2, so the allowed values of the energy of the object are of the form

E; = E}! + E}, (1.4)

for all combinations a, b of energy levels E} of part 1 and E? of part 2.
The probability that part 1 is found to have energy E! is P} = F(E}),
and part 2 has energy E? with probability P? = F(E?). Since the two
parts are not interacting, the probability that one part has a given energy
cannot depend on what the energy of the other part happens to be,
that is, the parts are statistically independent. Since probabilities for
independent events multiply, the probability that the object that consists
of the two parts is in the energy level E; in equation (1.4) is

P, = Plp2. (1.5)
By equation (1.3) this is
F(EL + E2) = F(EL)F(EY). (1.6)

Since this equation is supposed to hold whatever the energies, we can

write it as
F(Ea + Eb) = F(Ea)F(Ea)’ (17)

for any values of E, and Ej.

If it is not obvious that the solution to the functional equation (1.7)

is an exponential, take the logarithm and differentiate with respect to
Ea or Eb:

1 dF 1 dF 1 dF

ilogF(E) -

i, F(B)dE ~ F(E.)dB, ~ FEnag, ~ 18
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6 Chapter 1

where £ = E, + F,. Here and always the natural logarithm is written
as log F. The first step follows from the chain rule in calculus. The
second step follows from equation (1.7), and the third step follows by
differentiating with respect to F; instead of E,. The final step is to
define the expression to be equal to the negative of 3, the minus sign
being chosen to make the solution (eq. [1.9]) look sensible.

We see from the third part of equation (1.8) that 8 cannot depend
on Ep, and from the fourth part that it cannot depend on F,. That
means [ is a constant. The solution to equation (1.8) therefore is

P=F(E) x e PE. (1.9)
With B positive, the probability P in equations (1.3) and (1.9) ap-

proaches zero at £ — oo, as is reasonable.
We will define the temperature T of the reservoir by the equation

1
B = T (1.10)
where Boltzmann’s constant is
k=1.38x 10" ergdeg™!, (1.11)

and the temperature is measured in degrees Kelvin. (Recall that zero
degrees Centigrade is 273° K.) This has the reasonable feature that the
higher the temperature the higher the probable values of the energy.
Equation (1.10) is equivalent to the more formal definition of tempera-
ture in statistical mechanics.
The definition of temperature in equation (1.10) brings equation
(1.9) to
P o e B/FT, (1.12)

This is the Boltzmann probability distribution for the energy E of an
object prepared by allowing it to relax to thermal equilibrium with a
heat reservoir at temperature 7.

The normalization condition on the Boltzmann distribution is that
the probabilities summed over all possible values of the energy have to
add to unity:

Y P=1 (1.13)
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A useful symbol for expressing the normalization is the partition func-
tion,
Z=3 PP =" B/iT, (1.14)
i i

in terms of which the form of the normalized Boltzmann distribution is
e—Ei/kT

R= —

(1.15)

The mean thermal energy of the object is the result of averaging
the energies across the ensemble. Thus, if N; of the M objects in the
ensemble have energy E;, the arithmetic mean value or expectation value
of the energies of the objects is

2 EiNi
— = _________’L - 1-
(B) =U = =i (116)
With P, = N;/M (eq. [1.2]), the average is
U=Y EpP. (1.17)
For the Boltzmann distribution (1.15), this is
.e—BE;
v = =Le (1.18)

= e

where (3 always means 1/kT (eq. [1.10]). Finally, using the partition
function (1.14), we can write this expression for the average energy in
the handy form

d
U= —d—ﬂ-logZ. (1.19)

Here and always log means the natural logarithm.

The Thermal Energy of a Simple Harmonic Oscillator

The Hamiltonian (the expression for the total energy) of a one-
dimensional simple harmonic oscillator with displacement variable z(t)
is

2 2
p Kz
H=—+——,
2m 2 (1.20)
w = 271w = (K/m)Y/2.
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8 Chapter 1

The momentum is p = mz = mdz/dt, with m the mass, so the kinetic
energy is p?>/2m. The spring constant is K, and the potential energy is
Kz2/2. As is readily checked, the natural frequency of the oscillator is
w = (K/m)'/? (units of radians per second) or v = w/(2r) (units of
cycles per second = Hertz).

As discussed in the next section and in section 37, an electromag-
netic radiation field can be described as a set of simple harmonic oscil-
lators, one for each mode of oscillation. In working through the theory
of thermal blackbody radiation, Planck introduced the constraint, as an
intermediate step in the calculation, that the energy of each oscillator is
only allowed to assume the discrete values

E,, = nhv = nhw, n=0,1,2,.... (1.21)

(We will use h and i = h/2m, as convenient.) Planck’s sensible plan was
to take the limit A — 0 at the end of the calculation, but he noticed that
the predicted blackbody spectrum would agree with the measurements
if instead he took h to be a nonzero constant,
h= % = 1.05457 x 10~%" ergs. (1.22)

The value quoted here is the modern result. The only other improvement
to the energy spectrum (allowed values of the energy) of a simple har-
monic oscillator is to replace the integers n with n + 1/2. The additive
constant of course does not affect a heat capacity (which is the rate of
change of mean energy with temperature).

Einstein proposed that Planck’s quantization rule might apply to
a material oscillator such as an atom oscillating about its equilibrium
position in a solid. Let us see how that would affect the heat capacity.

With Planck’s quantization rule (1.21), the partition function (eq.
[1.14]) for a one-dimensional simple harmonic oscillator is

Z= ie“"’“’/kT =) 4m, (1.23)
0

with A = e ?*/kT = ¢=Bh¥_ The trick for evaluating this sum is to note
that we can write it

Z=1+A+A>+A3+...
=1+A[l+A+A%+..] (1.24)
=1+ AZ.
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Thus we see that the sum is

1 1 1

Z=1~A:1—e—ﬁ’“’:1—e—’w/k7" (1.25)
Equation (1.19) gives the mean thermal energy,
d —Bhy
U= a8 log(1—e ). (1.26)
On differentiating this expression out we get
hv

This is the wanted expression for the mean thermal energy of a one-
dimensional simple harmonic oscillator with natural frequency v at tem-
perature 7.

The classical limit is obtained at high temperature, kT > hv. When
hv /KT is small, the Taylor series expansion of the exponential in equa-
tion (1.27), keeping only the first nontrivial term, is

hv

hv/kT 1 )
e + T

(1.28)

This brings equation (1.27) to
U =kT. (1.29)

The heat capacity in this limit is C = dU/dT = k. This is a special case
of the classical energy equipartition theorem. The theorem says that for
every quadratic term in position or momentum in the Hamiltonian there
is a contribution ¥7"/2 to the mean thermal energy of the system. There
are two quadratic terms in equation (1.20), giving a net value of kT,
which checks equation (1.29). Of course, a reasonable quantum theory
must agree with classical physics in the high energy limit where we know
classical physics works.

In the opposite low temperature limit, k7" < hv, the mean energy
in equation (1.27) is suppressed by the exponential in the denominator,
as is the heat capacity. That is, Planck’s energy quantization assump-
tion in equation (1.21) leads to a characteristic temperature T, = hv/k
for an oscillator with natural frequency v. If the temperature is much
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larger than T, the energy quantization is scarcely noticeable, and we see
classical behavior. If the temperature is well below T, the situation is
decidedly nonclassical: the oscillator is forced to the ground state that
has the minimum allowed value of the energy. As discussed next, a sim-
ilar effect applies to the kinetic energy of tumbling of a molecule in a
gas.

Heat Capacity of Molecular Hydrogen

From the energy equipartition theorem of classical statistical mechanics
we would have expected that the mean thermal energy of a gas of N
hydrogen molecules is

1

U =§N kT3 (for the kinetic energy of translation in 3 dimensions)
+ 2 (for rotation of the axis in two directions)
+ 2 (for vibration along the axis)

+ 1 (for rotation about the axis)],

(1.30)
plus maybe more for vibrations of the internal structures of the individ-
ual atoms.

At T < 100K the measured heat capacity is dU/dT ~ 3Nk/2, so
the hydrogen molecules act like a gas of pointlike particles, the only
energy being the kinetic energy of translation. Following the discussion
of the simple harmonic oscillator, we conclude that the energy levels
corresponding to the kinetic energy of translation are close together
compared to kT at T' ~ 100 K, so classical energy equipartion applies to
the motions of the molecules, and that the energy levels corresponding to
the other modes of motion in equation (1.30) are more broadly separated,
so these modes are not appreciably excited at T~ 100 K.

At T ~ 200 to 400K the heat capacity of molecular hydrogen gas
is close to dU/dT ~ 5Nk/2, which is that of a classical gas of rigid
dumbbells (the first two lines of eq. [1.30]). This means the energy of
the first rotationally excited state of the molecule exceeds that of the
ground state by the amount

E,— Eg~kTr, Tg~ 200K. (1.31)
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The allowed values of angular momentum in quantum mechanics will
be computed in section 17. A useful order of magnitude approximation
is Bohr’s assumption, that the rotationally excited states are spaced at
increments of angular momentum equal to /. (This is discussed in section
4 below.) Let us check that these numbers make sense.

If the hydrogen molecule has angular momentum # in the first ro-
tationally excited state, and the moment of inertia of the molecule is I,
then the kinetic energy of rotation in this state is

52
= — ~ kT, 1.32

U R o7 R ( 3 )
with T ~ 200K . The first equation is the classical expression for kinetic
energy of rotation. The second equation with equation (1.11) for k£ and
(1.22) for h gives I ~ 2x 107%! gcm?. We are only interested in checking
the orders of magnitude, so let us approximate the moment of inertia of
the molecule as I ~ m,r?, where

m, =1.67 x 107%¢ (1.33)

is the proton mass and r is the separation of the two protons in the
molecule. That gives r ~ 3 x 1072 cm = 0.3 A. The size of a hydrogen
atom is set by the Bohr radius (eq. [4.9] below). Our result is about half
a Bohr radius, reasonably close considering the rough approximations.

At T ~ 2000K the heat capacity approaches that of a classical gas
of dumbbells each of which can vibrate in length. This means the first
vibrationally excited state of the molecule has energy roughly an order
of magnitude above the first rotationally excited state. At T' ~ 3000 K
the gas dissociates into atomic hydrogen.

Einstein and Debye Solids

A solid stores energy in the vibrations of the atoms about their equilib-
rium positions. In the simplest approximation, which Einstein consid-
ered, each atom vibrates with the same frequency, v, in each of three
dimensions, so a solid containing N atoms can be thought of as 3N one-
dimensional simple harmonic oscillators. The thermal energy of the solid
is then, by equation (1.27),

3Nhv

U= ehv/kT _ 1

(1.34)
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The high temperature limit is U = 3NkT, as in equations (1.28) and
(1.29), so the heat capacity at high temperature is the classical energy
equipartition expression

ou

C= 9T = 3NEk. (1.35)
By 1900 it was known that equation (1.35) is a good approximation to
the heat capacities of solids at room temperature (this is the empirical
law of Dulong and Petit), but Nernst had found that the heat capacity
drops well below this value at low temperature, approaching zero at
T — 0. Einstein (1907) showed how the energy quantization assumption
allows us to understand the decrease of heat capacity at low temperature:
the heat capacity in equation (1.34) is strongly suppressed at T' < hv/k.

Though the Einstein model gives the right qualitative picture, it
says the heat capacity goes to zero at low temperature much faster than
the measurements. It is easy to see why. When an atom moves it can
bring its neighbors with it. This lowers the restoring force, which greatly
lowers the frequency. That is, a solid acts like a collection of oscillators
with a wide range of different frequencies. The lower frequency modes
of oscillation are thermally excited at lower temperatures, so the heat
capacity varies more slowly with temperature than it would if all the
frequencies were the same. The Debye model to be discussed next ap-
proximates the low frequency modes of vibration of the solid as sound or
pressure waves. The computation is lengthy but worth knowing, because
it is used not only here but in the theory of blackbody radiation (section
2) and radiative transitions (section 37).

The low frequency modes that can be excited at low temperatures
have long wavelengths and so are not much affected by the fact that the
mass is in discrete lumps, in the atoms. For these long wavelength modes
it is a good approximation to treat the solid as a continuous fluid, with
smoothly varying mass density p(r,t) and velocity v(r,t).

The mass and velocity functions obey two equations that express
mass conservation and momentum conservation. The former is

op
N +V.pv=0, (1.36)
while Newton’s law F = ma generalizes for a fluid to
68—: +(v-V)v=-VP/p. (1.37)
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The pressure is P, and —VP is the pressure force per unit volume.
This force per unit volume divided by the mass per unit volume is the
acceleration of a given fluid element. On the left-hand side of equation
(1.37), 0v /0t is the rate of change of the fluid velocity at a fixed point,
and the second term converts this to the rate of change of velocity of a
fixed fluid element. This combination is called the convective derivative.
We see the same combination in the mass conservation equation (1.36)
if we rewrite it as

% +v-Vp=—pV-v. (1.38)
Gauss’s law can be used to rewrite the mass conservation equation
as
%=i/dvp:/dv.a£=_/dvv-pv
dt dt at (1.39)

z—fdAn-pv.

The last integral is over a fixed surface that contains mass M. The last
line says the time rate of change of M is fixed by the surface integral of
the mass flux,

F =pv, (1.40)

which is the rate at which mass is flowing through the surface.
We are interested in low amplitude vibrations, for which v is small
and p close to homogeneous, so we will write the mass density as

p(r,t) = po(1 + 8(r,1)), (1.41)
where p, is the constant mean value, and keep only terms of first order
in the perturbations 6 or v. In this approximation, we can write the

pressure as
, dP

s d P :
As indicated, we are assuming the pressure P is a single valued function
of density alone. The function has been expanded in a Taylor series,
keeping only the constant part at § = 0 and the first order correction.
In this order in perturbation theory, where we drop terms of order 62,
vé, and v2, equations (1.37) and (1.38) become

P=P(p)=P,+c2p,6, ¢ (1.42)

ﬁz_v.v,

g (1.43)
ov __ 2

rrie c; V.
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We can eliminate the velocity by taking the time derivative of the first
equation and the divergence of the second, and exchanging order of
differentiation. The result is

9?6

o8 = c2V?6. (1.44)

To see why equation (1.44) is called a wave equation note that, as
is readily checked, a solution is

6 = F(z — cst), (1.45)

where F' is a differentiable function of the single variable w = x—c,4t, and
x is the position along the x axis in a cartesian coordinate system. This
solution represents a pressure wave moving without change of shape at
the speed of sound, cs, in the z direction.

The allowed frequencies of sound waves in an isolated solid depend
on its shape. To simplify things, let us consider a cube of the solid
with volume V, side L = V'/3. The surface will be assumed to be free,
meaning that the pressure at the surface vanishes. Therefore the constant
P, in equation (1.42) has to vanish, and é has to vanish at the surface. A
set of solutions of the wave equation that satisfy this boundary condition
is

6 = Acos(wt — @) sin(kgx) sin(kyy) sin(k, 2), (1.46)

where A and ¢ are constants. This function satisfies the wave equation
(1.44) if the frequency w satisfies the relation

w=kes,  k*=kE+kE+EL (1.47)

To assign the boundary condition é = 0, equation (1.46) places the sides
of thecubeat z=0andz=L;y=0andy=L;and z=0and z = L.
Then we satisfy the boundary conditions if the constants k;, k,, and
k. are chosen so kL, kyL, and k,L are integer multiples of 7. We will
write these conditions as

koL = nom, na=0,1,2..., (1.48)

where the index a = 1,2,3 refers to the z, y, and z components. (A
word about notation: a vector may be specified by a boldface symbol,
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as r, or by its components, as r = (z,y, z), or by the index notation 7,
with r; =z, ro =y, and 73 = 2.)

Equations (1.46) to (1.48) describe the normal modes of pressure
oscillations of the solid in the fluid model, which we have noted is a good
approximation at low temperatures where only the low frequency long
wavelength modes are excited. (In a normal mode each mass element
vibrates with the same frequency, as in eq. [1.46]. The word normal
refers to the orthogonality relations discussed in section 12.) Since each
mode behaves as a simple harmonic oscillator, we will follow Planck
and Einstein in assuming that the allowed values of the energy of each
mode are quantized, E = hv = hw, where w is the classical frequency
of vibration of the mode (eq. [1.21]). (This assumption is justified in
section 12 below.) Then at temperature 7" the mean thermal energy of
the solid is given by equation (1.27):

hwn
U= Z ehon/KT _ 1" (1.49)
Ne >0

The sum is over the triplets of nonnegative integers, with w, given by
equations (1.47) and (1.48),

TCs
i5

(nZ +n2 +n2)Y/2 (1.50)

wWp =

The sum in equation (1.49) can be approximated by an integral, as
follows. Let us write the change in k, in equation (1.48) when n, is
incremented by unity, to n, + 1, as

Akg = (1.51)

™
I

Then we can write the sum over n, as

L e
= ;ZAka ~ —7;/0 dkq. (1.52)

The last step is a good approximation if the temperature is not exceed-
ingly low, so that the sum extends to large n, before the exponential
in the denominator in equation (1.49) becomes large. In this case the
fractional increment in k, on each increment of n, is small, so the sum
is well approximated as an integral.
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In three dimensions, equation (1.52) generalizes to

L3 /
== d3k. 1.53
Z 73 ka>0 ( )

At this point it is convenient to introduce new and even simpler
boundary conditions. If the thermal energy is dominated by modes with
wavelengths much shorter than the size of the solid, the heat capacity
cannot depend on the shape of the object—we just have to specify some
shape in order to fix definite boundary conditions for the wave equation.
Mathematically convenient boundary conditions are that the solid fills
a space periodic in a cube of width L, volume V = L3, so the point
(z,y, 2) is the same as the point (z + L,y,2) and so on for the other
three directions. We can write solutions to the wave equation that satisfy
these periodic boundary conditions as the real part of

§ocekTwt = ke, (1.54)
The periodic boundary condition is that § cannot change if  is shifted
to x + L, so the propagation vector k has to satisfy

o] A (1.55)

ko 17 or 17

Here n means the triplet of integers n, of either sign,
neg =0,£1,4+2,.... (1.56)

Note that in the standing wave solution in equation (1.46) negative
and positive integers (which means negative and positive k,) are phys-
ically equivalent, the only difference being a change of sign which can
be absorbed in the phase ¢. Equation (1.54) represents a running wave,
so a change of sign of n, means a change in the direction the wave is
running, which is a physical difference. Thus here we must sum over
all eight octants of n, while the sum in equation (1.53) is over the first
octant only. A second difference is that here the increment in k, for a
unit increment of n, is, by equation (1.55),

Akg = = (1.57)
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twice the value in equation (1.51). Thus with periodic boundary condi-
tions the sum over modes is approximated as the integral

3= (2‘;)3 / k. (1.58)

The integral is over all octants, 8 times the volume of the integral over
the first octant in equation (1.53). This cancels the extra factor 23 in
the denominator in equation (1.58).

Collecting equations (1.49) and (1.58), we see that the thermal en-
ergy of the solid is

14 3 hw
U= Ok /d kehw/kT - (1.59)

Because of the appearance of the factor V from the conversion of the
sum to an integral, this equation says the energy per unit volume, U/V/,
is independent of the volume of the solid, which makes sense.

Since the integrand in equation (1.59) depends only on the magni-
tude of k, we can write the volume element as d3k = 4nk?dk. Then with
w = kes (eq. [1.54]) and the change of variables

y= Pk (160)

(and taking care not to confuse Boltzmann’s constant and the magnitude
of the propagation vector) we get

_ V(ED)* [ yPdy
U= 271'2(7103)3/0 w1 (1.61)
The dimensionless integral is
o 3 4
ydy _m
/O ru_T (1.62)

The final step is to note that energy can be stored also in shear
waves, of which there are two for every pressure wave (shear in the
two orthogonal directions perpendicular to the propagation vector k),
so we should multiply U by three and replace cs with a mean velocity ¢,
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suitably averaged over pressure and shear modes. This gives the Debye
equation,
U =2 (kT)*

V 10 (heo)®

(1.63)

It will be recalled that this equation applies at low temperature where
only long wavelength modes are excited. It gives a good approximation
to the low temperature heat capacity of many solids. In others there
are significant additional contributions, such as from thermal motions of
electrons.

2  Blackbody Radiation

What Was Known in 1900

Consider a black cavity with walls at temperature 7" and a small hole
to let us sample the radiation it contains. “Black” means that any light
that enters the hole from outside is absorbed; any radiation coming out
was emitted by the walls. At thermal equilibrium, the radiation energy
with frequency in the range w to w + dw found in the volume element
dV in the cavity is

du = u,,dVdw. (2.1)

As indicated, the energy has to be proportional to the size dV of the
volume element and to the bandwidth dw. The constant of proportion-
ality, u,,, is the spectral energy density, the energy per unit volume and
unit bandwidth.

The second law of thermodynamics says u, can only depend on w
and on the wall temperature, T, independent of the nature of the wall.
For we can imagine connecting two cavities made of different materials
at the same temperature by a light pipe that passes only frequencies in
the range w to w + dw. If the radiation energy densities were different
in the two cavities, we would find that heat is moving spontaneously
from one reservoir to another at the same temperature, which alas is
forbidden by the second law.

The net energy density is

u= / uy,dw = aT*. (2.2)
0
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This T* law was found empirically by Stefan (1879) and derived (apart
from the value of Stefan’s constant, a) by Boltzmann (1884) from ther-
modynamics.

A Quick Review of Electromagnetism

As a first step in the derivation of u,,, let us write down Maxwell’s equa-
tions. We will use Gaussian cgs units, where the electric and magnetic
fields satisfy

V-E =47p, V-B=0,

10B
E4+-——= .
V x +c¢9t 0, (2.3)
10E A4r
B--——=—
Ae c Ot c

The charge density is p, and the charge conservation equation is

op .
5t-+V'_]——-O, (2.4)

where j is the current density. This can be compared to equation (1.36)
for mass conservation. The force on a charge g moving at velocity v is

F=q(E+vxB/c). (2.5)

The charge is measured in electrostatic units, where the static electric
field at position r relative to a point charge ¢ is

qr

The electric and magnetic fields have the same units; for B the unit is
called a Gauss. The velocity of light is c.
To get the electromagnetic wave equation we need the identity

Ax(BxC)=B(A-C)-C(A-B). (2.7)

This also applies to the gradient operator and a vector function of posi-
tion, as long as we are careful not to change the order of differentiation.
Thus we find from equation (2.7)

V x (VxE)=V(V-E)-V2E. (2.8)
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In a pure radiation field there are no charges or currents: p = 0 and
j =0. In this case the result of taking the curl of the third of Maxwell’s
equations (2.3), applying the identity (2.8), and then simplifying with
the help of the other Maxwell equations is

W = szzE. (29)

This is a wave equation for each component of the electric field, as in
equation (1.44).

Just as for sound waves in a solid (eq. [1.54]), we can write a complete
set of solutions to the vector wave equation (2.9) as the real part of

E =E, T vt (2.10)

where E, is a complex constant vector. This expression in the wave
equation (2.9) gives the relation

w = ke. (2.11)

To describe radiation in a cavity, let us adopt the periodic boundary
conditions from the last section. Then the propagation vector k has to
satisfy (eq. [1.55])

ko =2mno/L,  ma=0,+1,+2,.... (2.12)

There also is a transversality condition: on substituting equation
(2.10) into the condition V - E = 0 in the absence of charges we get

k-E, =0. (2.13)

This says the electric field E has to be perpendicular to the direction k
of propagation of the wave.

It is left as an exercise to get the magnetic field B in terms of E,
and k.

The Planck Spectrum

Planck’s blackbody spectrum follows by the same procedure used in the
last section to find the low temperature heat capacity of a solid. The
increment of k, per unit increment of the integer n, is dko = 2m/L
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(egs. [1.57], [2.12]), so the number of independent modes of oscillation
of the electromagnetic field with wave number k in the range d3k is
dN = 2—V——d3—k. (2.14)
(2m)? '
This is a factor of two larger than in equation (1.58) because, by the
transversality condition (2.13), there are two independent (orthogonal)
directions for the electric field E for given k, so there are two independent
modes of oscillation for given k. Summing over directions gives d3k =
4nk%dk. Using k = w/c (eq. [2.11]), we find that the number of modes
with frequency between w and w + dw is

Vw?dw
dN = ———.
m2c3

(2.15)
On multiplying this by the mean energy per mode (eq. [1.27]), and di-
viding by the volume V', we arrive at the thermal energy per unit volume
and per unit frequency interval,

du 1 hw3

dw w203 ehw/kT _ 1 (2.16)

U=
This is the Planck blackbody radiation spectrum.
In the classical limit, hw < kT, we have as before e™/kT ~ 1 +
hw/kT (eq. [1.28]), so equation (2.16) becomes

aa 2
_ KT (2.17)

Uo =53
Planck’s constant does not appear in this Rayleigh-Jeans law, as ex-
pected because the equation can be derived from classical statistical
mechanics.
The net energy density is obtained by integrating equation (2.16)
over all frequencies. On changing variables to x = hw/kT and using
equation (1.62) we get

B 0o _ 7T2 (k‘T)4

This is the Stefan-Boltzmann law. Using the measured values of Stefan’s
constant a, the frequency at the peak of the spectrum (2.16) at a given

For general queries, contact webmaster@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

22 Chapter 1

temperature, and the velocity of light ¢, Planck could solve for Boltz-
mann’s constant £ and %; both were within 2 percent of the modern
values.

Planck emphasized that, if his approach has any validity, A ought to
show up somewhere else in physics. Einstein gave the first two examples:
heat capacities, as discussed in the last section, and the photoelectric
effect to be discussed next.

3  Photons

Light shining on a metal knocks out electrons. Einstein (1905) proposed
an interpretation of this effect based on Planck’s prescription F = nhw
(eq. [1.21]) for the energy of an oscillator. Planck’s prescription indicates
that light can only transfer energy in discrete units—photons, or quanta
of the electromagnetic field—of amount Aw. If one of these units of energy
is given to an electron in a metal, then the electron ought to leave the
metal with energy

E<hw-9, (3.1)

where @ is the binding energy (the work required to pull an electron
out of the metal). The inequality takes account of the fact that the
electron may lose energy before reaching the surface. By 1917, Millikan
had found that there is a linear relation between the maximum energy of
the electrons released and the frequency of the incident light, consistent
with equation (3.1), and had found that the slope % of the relation agrees
with Planck’s value within the errors, again about 1 percent.

As discussed in chapter 8, the relativistic relation between the energy
E of a particle, its momentum p, and its rest mass m is

E? = p*c® + m?c*. (3.2)
If the energy in light acts as discrete units, photons, perhaps the photons
move as particles. Because these particles would have to move at the
velocity of light, their rest mass would have to vanish, m = 0. The

relativistic relation (3.2) indicates E = pc for massless particles. Thus a
photon with energy E = hw would be expected to have momentum

p=FE/c=hw/c. (3.3)
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Einstein was cautious about referring to the momentum of a photon;
that it really has momentum in agreement with this equation was made
clear by the Compton effect, that refers to the recoil of an electron that
scatters a photon, as follows.

Imagine a photon of energy pc and momentum p incident on an
electron of mass m that initially is at rest. The net energy and momen-
tum of the system are therefore E = pc + mc? and p. If the photon
scatters off the electron and leaves with momentum p’, then to conserve
momentum the electron must end up with momentum P = p — p’. The
final energy, which must be the same as the initial, is

E =pc+mc® =p'c+[(p - p')2c? + m3cH/2. (3.4)

On subtracting p’c, squaring, and simplifying we get

/ mcp

== 3.5
mc+p—pcosf’ G2

p

where 0 is the angle between p and p’.
Using equation (3.3), we can write equation (3.5) as a relation be-
tween the initial and final frequencies w and w’ of the photon,

h
R + W(l — cos ). (3.6)

Compton experimentally found this relation between the initial and final
frequencies and the scattering angle, . This shows that light does scatter
like a gas of massless particles, photons, with the usual relation (3.2)
between energy and momentum.

4  Spectra and Energy Quantization of Atoms

The Combination Principle

A hot dilute gas of atoms or molecules emits light at sharply defined
frequencies, v;. The set of values of these frequencies for a given material
can be written as differences among a list of quantities called terms:

Vv, = Ta - Tﬁ- (41)
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This provides a handy way to record the frequencies, because a list of
terms gives a much longer list of term differences. But this combina-
tion principle also is telling us something about physics. If we multiply
equation (4.1) by Planck’s constant, we get

Ei = hl/i = h(Ta - Tg) (42)

Since hy; is the energy of the photon produced by the atom, this equation
suggests the possible values of the energy of the atom are the discrete,
or quantized, quantities F, = hT,. The atom would produce a photon
with frequency v; when it makes a transition from the energy level o
to the level 8 in equation (4.2). This is yet another example of energy
quantization.

In atomic hydrogen, the terms have the particularly simple form

T, = Re/n®, n=12,3,..., (4.3)

where R is called the Rydberg constant. The frequencies corresponding
to transitions from term n > 2 to term n’ = 2 are the Balmer series,

1 1
=Rc |~ — = 4.4
v=Re|1- 3, (1.4
with n = 3 giving the prominent red line seen in the spectrum of atomic
hydrogen. The next series to be discovered in atomic hydrogen were

the Paschen series n — n/ = 3, in the infrared, and the Lyman series,
n — n/ = 1, in the ultraviolet.

The Bohr Model

Equation (4.3) is so simple it ought to be understandable. Bohr found the
first successful model. He started with the assumption that the angular
momentum, L, of the electron in orbit around the proton in a hydrogen
atom is quantized,

L = nh, n=123,.... (4.5)

The original reasons for this assumption, adduced by Bohr and Ehren-
fest, are not worth going into here.
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Following Bohr, let us imagine the electron with charge —e is moving
in a circular orbit of radius a at speed v around a fixed proton in a hy-
drogen atom. (The proton is fixed because it is much more massive than
the electron.) The proton has charge e. The balance of the electrostatic
force of attraction of the electron to the proton and the acceleration of
the electron moving in a circle is

AL (4.6)

where m is the mass of the electron. Bohr’s condition (4.5) says the
angular momentum of the electron

L = mav = nh, (4.7)

where n is a positive integer. The result of eliminating the velocity from
these equations is
a = n2a,, (4.8)

where the Bohr radius is

h2
2o = — =53 x10"%cm. (4.9)

The energy of the electron is the sum of its kinetic and potential energies,

e e e*m 1
b= = T T TR (4.10)
where the last steps follow from equations (4.6), (4.8), and (4.9).

We have argued that the energy AE = E,, — E, released in the
transition of an atom from level n to level n’ is given to a photon with
frequency w = AE/h, so the frequencies of the radiation emitted by the
atom are predicted from equation (4.10) to be

w= %733 <(—n1,—)2 - %) : (4.11)

With Planck’s value for h, Bohr found excellent agreement with the
measured frequencies in the spectrum of atomic hydrogen. This was
considered a great but certainly mysterious triumph.
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5 Matter Waves

The de Broglie Relations

Since light, which clearly exhibits the properties of a wave (interference
and all that), can also act like a gas of particles, as discussed in section
3, one might guess that material particles exhibit wave properties. The
connection between the energy and momentum of a particle like an elec-
tron and the frequency and wavelength of the wave associated with the
particle was introduced by de Broglie.

Let us begin with some definitions. Consider the plane wave function

P ox e?, ¢=k-r—wt. (5.1)

The propagation vector in this function is k, the magnitude of k is the
wavenumber, and the angular frequency of the wave is w. An example
is the pressure wave discussed in section 1 (eq. [1.54]). We will assume
here that w depends on the magnitude of k alone; the function w = w(k)
is called the dispersion relation.

As indicated in figure 5.1, the positions r at which the phase ¢
at a fixed time ¢ has a fixed value define a plane perpendicular to the
propagation vector k. (This is because a displacement of r in a direction
perpendicular to k does not change the value of k - r in eq. [5.1]). The
distance between planes with ¢ differing by 27 at a fixed instant of time
is the wavelength,

A =2r/k. (5.2)

A surface of fixed phase advances along the direction of k at the phase
velocity,

vp = w/k, (5.3)

as one sees by considering the displacement ér that would balance the
time shift 6¢ to hold ¢ in equation (5.1) constant.

We saw in section 2 that the dispersion relation for a photon is w =
ke (eq. [2.11]). According to the Planck relation (1.21), the photon has
energy F = hw, and equation (3.3) says the photon has momentum p =
E/c = hw/c = hk. De Broglie proposed that electrons may exhibit the
same wave-particle duality with the same de Broglie relations between
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Prom ¢

|

A= 2T/k

Fig. 5.1 The propagation vector for a plane wave is k. The positions r that lie in a
plane of constant phase at a given instant of time satisfy r - k = constant. The plane
of constant phase is normal to the propagation vector k. Two planes of constant
phase with phase difference 27 are separated by the wavelength A = 27 /k.

energy and frequency, and momentum and propagation vector,

FE = hw,
(5.4)
p = hk.
The wavelength (5.2) is then
A =2n/k=27h/p=h/p. (5.5)

This is equivalent to the second of the de Broglie relations (5.4).

The de Broglie momentum relation offers a way to understand the
Bohr-Ehrenfest angular momentum condition in equation (4.5). Equa-
tion (4.6) refers to an electron moving around a circle of radius a. Imag-
ine the electron is represented by a wave with wavelength A = h/p (eq.
[5.5]) that runs around the circle. We want the wave to be continuous,
so there has to be an integral number, n, of wavelengths around the
circumference of the circle:

circumference = 2ma = nA. (5.6)
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The de Broglie relation (5.5) thus says the angular momentum of the
particle is
L = ap = ah/A = nh/27 = nh. (5.7)

This is equation (4.5).

A nonrelativistic particle of mass m moving with momentum p has
kinetic energy E = p?/2m. Thus the dispersion relation derived from
the de Broglie relations (5.4) is

E  hk?
The phase velocity (eq. [5.3]) in this case is v, = w/k = hk/2m = p/2m.
This differs from the usual relation between momentum and velocity by
a factor of two. However, as we will now discuss, that is because we need
another measure for the velocity.

Group Velocity of a Wave Packet

De Broglie assumed that the plane waves (5.1) can be superimposed
(added together) to get more general wave functions, of the form

Y(r,t) = / d3k f(k)ekr—wk)t (5.9)

The factor f(k) is the weight assigned to each plane wave. With periodic
boundary conditions, the allowed values of k are discrete, as discussed in
section 1 (eq. [1.55]), so with periodic boundary conditions the integral
(5.9) would be replaced with a sum.

Now let us choose the function f(k) so ¢ is a wave packet, which
is to say ® is fairly sharply peaked at one position. This is done by
taking f(k) to be bell-shaped, with its maximum at k = k,, having a
width Ak in all three directions, and with f rapidly approaching zero at
|k —ko| > Ak. To find the values of r and ¢ for which v is large, consider
the phase

o=k -r—w(k)t, (5.10)

in the exponential in the integral in equation (5.9). For most choices of
r and t, the phase ¢ varies rapidly as k varies over the range Ak around
k, where f is appreciably large. This variation of ¢ makes e*® oscillate,
and the oscillation makes the integral ¢ small. But if ¢ as a function
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of ¢ (k)

PR BT S Y

10

?MI\M ALY MI\M?
IR Y V\/\/\»( il
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Fig. 5.2 Behavior of e*?() near an extremum of the function ¢(k). The upper
curve shows the parabola ¢(k), in radians, as a function of wave number, k. The
bottom curve shows the real part of e“”(k), in arbitrary units. This function oscillates
rapidly except near the extremum of ¢(k).

of k happens to have an extremum at k = k,, the oscillation of e*¢
near k = k, is suppressed, because ¢ varies only slowly with k£ near the
extremum. This is illustrated in figure 5.2. When the oscillation of e*®
is suppresed where f(k) is large, the integral ¢ is large.

The condition for a large value of ¥(r,t) is then that ¢ have an
extremum at k ~ k,. This means the first derivative of ¢ vanishes at
k ~ k,. Since we want ¢ to be an extremum with respect to variations
of each component of k, large ¢ requires

Y

gg[k-r—w(k)t]zﬂ at k =ko. (5.11)

This is three equations, @ = 1,2,3 representing the three orthogonal
components of k. On differentiating out equation (5.11), we see that the
peak of ¢ is at

r = Vg, (5.12)
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where the group velocity is

Bw_dwak

YT Oka  dk Ok,

(5.13)

The result of differentiating the expression k? = k:g with respect to
the component k&, is

Ok kg
S 5.14
Okq k (5:.14)
This brings the group velocity (5.13) to
dw k
Wt (5.15)
with k = k,. The magnitude of this expression is
dw
vy = o (5.16)

The speed of motion of a wave packet thus is determined by the disper-
sion relation w(k).

The group velocity (5.3) agrees with the phase velocity (5.16) if
w o« k, as in a pressure or electromagnetic wave (eq. [1.54]). For the
nonrelativistic de Broglie dispersion relation in equation (5.8), the mag-

nitude of the group velocity is
dw hk p
BT T m T m (5.10)

This is the usual relation between velocity and momentum.

6  Schrodinger’s Equation

Single-Particle Wave Equation

Schrodinger in 1926 wrote down the differential equation satisfied by
the matter wave associated with a nonrelatistic particle moving in a
potential well. He was guided by an analogy Hamilton had noted between
the motion of a particle in classical mechanics and the short wavelength
limit of the motion of a light wave in a medium with index of refraction
that is a function of position. There is another clue. As we have seen in
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sections 1 and 4, the allowed values of the energy of an isolated atom
are quantized. According to de Broglie’s relation F = hw (eq. [5.4]),
that means the matter wave associated with the atom can only oscillate
at discrete frequencies. One gets discrete frequencies from the solutions
to a wave equation with fixed boundary conditions, as we saw in the
normal mode analyses in sections 1 and 2 (eq. [1.50]). Thus a theory for
the discrete energies might be based on a wave equation.
By de Broglie’s relations, a wave with energy E oscillates with fre-
quency w = E/h,
P o e, (6.1)

The wave function therefore satisfies the differential equation

., 0y

h— = E1. 2

ik = By (62)
If the wave has momentum p, de Broglie’s relations say it has wave

number k = p/h. That means the wave function varies with position as
P o ek, (6.3)

as in equation (5.1). Equation (6.3) satisfies the relation
—ihVy = hk ¢ = py. (6.4)

Applying this equation twice, and recalling that the kinetic energy is
E = p?/2m, one might guess that the wave equation for a free particle
with energy E would be

P’ h’ 2

EYp=—1¢=——V<. 6.5
=gt = -5V (6.5)
A particle in a potential well, such as an electron in a hydrogen
atom, has potential energy, V(r), as well as kinetic energy. Schrodinger
generalized the wave equation for the case of a particle with energy F
and potential energy V(r) by adding the potential energy to the kinetic

energy in equation (6.5), to get

h2
By = -V + V(r)y, (6.6)
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This is Schrédinger’s equation for a single particle with definite energy
E.

The more general time-dependent Schrodinger equation is obtained
by eliminating E from equations (6.2) and (6.6), to get

2
haa—‘f = [—:—mv“’ + V(r)] . (6.7)

We arrived at equation (6.7) from equations (6.2) and (6.5), in which
the system has a definite energy, E. We will assume that the more general
solutions to this equation, where 9 does not vary with time as e ~*Ft/%,
also are allowed. (Thus has the interesting consequence, that Schrodinger
was reluctant to accept, that in states represented by such solutions the
system does not have a definite energy.)

It is customary to write equation (6.7) in the form

9y

Zha

= Hv, (6.8)
for the time-dependent case, and, when the energy is known to be E,

Hvy = Ev. (6.9)
Here H is the derivative operator

2

Hi= —:—V2+V( ). (6.10)
In equation (6.9) it is understood that the wave function for the system
is of the form v (r)e~*F*/" where (r) is a time-independent solution
to equation (6.9). This requires that V' be a function of position alone;
when V varies with time energy is not conserved, and one must use the
more general equation (6.8).

The Schrodinger differential equation (6.8) has to be supplemented
with boundary conditions. For a bounded system like a hydrogen atom
it is reasonable to require that the 1) wave be bounded too, that is, that
1 go to zero at large distance from the proton. This will be formalized
in section 8 in the condition that the wave function, v, for a physical
system be square integrable, that is, that the integral of |¢|? over all
space be finite.

(continued...)
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absorption cross section, 384

adjoint, 93, 180; in polar coordinates,
172

ammonia inversion oscillation, 86, 162

Angstrom, 82

angular frequency, 26; positive, 290

angular momentum, 11, 25, 123; addi-
tion of, 136, 165, 214, 312; commuta-
tion relations for, 124; conservation of,
134; eigenvalues of, 129; ladder opera-
tors for, 127, 165, 312; and rotations,
133, 197. See also orbital angular mo-
mentum; spin angular momentum

annihilation operator, 295

anticommutator, 117, 407

barrier penetration. See tunneling
basis, 102

Bell’s inequality, 252

binding energy, 35

blackbody radiation, 18
Bohm-Aharonov effect, 155

Bohr model, 24

Bohr radius, 25

Boltzmann constant, 6

Boltzmann distribution, 7, 241

Born approximation, 374, 394
Born-Oppenheimer approximation, 348
bracket, 178

bra vector, 177

Breit-Wigner resonance line shape, 391

canonical momentum, 148; and velocity,
154

canonical quantization, 152

carbon, 344

circular polarization, 290, 321

cold fusion, 52

collapse of the wave function, 51, 236

combination principle, 23

commutator, 37

compatible observables, 109, 188

complementarity principle, 246

completeness, 101, 184

Compton effect, 23

Index

Compton wavelength, 58, 283

conservation of angular momentum, 134;
of linear momentum, 121; of mass, 12;
of parity, 119

creation operator, 295

de Broglie relations, 27, 404

de Broglie wavelength, 27, 83, 404

Debye heat capacity, 12, 77, 83

decay from hyperfine state, 303; from
resonance state, 393

degenerate perturbation theory, 271

density matrix, 239

deuteron, 52, 87, 229; and neutron-
proton scattering, 397; spin of, 315

differential cross section, 365

dipole electromagnetic field, 274

Dirac delta function, 62

Dirac equation, 406

Dirac matrices, 408

dispersion relation, 26

double slit experiment, 243

effective charge, 328

effective potential for central force, 142

Ehrenfest’s theorem, 113

eigenfunctions, 33, 95; simultaneous, 98

eigenvalue, 33, 97; continuous, 106, 184

eigenvalue equation, 33, 72, 78, 95, 182

eigenvector, 181

electric dipole moment, 266

electric dipole radiation rate, 319

electric dipole transition, 317; selection
rules for, 320

electron charge, 58; magnetic moment,
200; mass, 82; spin, 198

electron configuration, 333

electron volt, 82

energy eigenvalue equation, 32, 192

energy quantization, 4, 24, 31, 41

energy variational principle, 323

EPR effect, 246

equipartition, 9

exclusion principle, 333

expectation value, 7, 70; time evolution
of, 113. See also observable

For general queries, contact webmaster@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

418 Index

fine-structure, 341

fine-structure constant, 283

first-order perturbation theory, 261

flux density of mass, 12; of particles, 364;
of probability, 50

Fourier transform, 60; and Dirac delta
function, 63

four-vector, 403

gauge transformation for the electromag-
netic field, 149; for the wave function,
154

Gaussian wave function, 84, 88

generators for rotation, 133; for transla-
tion, 121

group velocity, 30, 47

gyromagnetic ratio, 200

Hamiltonian, 110, 148, 192; for particle
in magnetic field, 151

heat capacity of Debye solid, 18; of Ein-
stein solid, 11; of molecular hydrogen,
10

Heisenberg representation, 112; for
quantum field, 292

helium, 326

hermitian adjoint, 186

hidden variables, 252

hydrogen atom, 33, 143; wave functions
of, 145; 2s state of, 310

hydrogen molecule, 10, 82, 347, 357

hyperfine structure, 228; in atomic hy-
drogen, 273; in deuterium, 315

induced transition, 288, 299
inner product, 71, 92

ket vector, 177
Kronecker delta function, 61

Lagrangian, 147; for particle in magnetic
field, 149

Landé g-factor, 316

Laplacian in polar coordinates, 141, 173

Legendre polynomial, 161

linear independence, 97

linearity of probability amplitude, 234

linear space, 91, 175

lithium, 337

Lorentz transformation, 402

magnetic dipole interaction, 200, 275,
311

magnetic dipole moment, 199; for
deuteron, 315; in Dirac equation, 413;
for electron, 200; for proton, 275

magnetic resonance, 309

many-particle system, 73, 196

matrix eigenvalue equation, 78, 99

matrix mechanics, 185

Maxwell’s equations, 19

measurement theory, 231

mixed state, 237

momentum eigenfunction, 72; measure-
ment, 64; operator, 71; wave function,
67,195, 226

normalization, 48, 106, 191; of continu-
ous eigenvectors, 184
normal modes, 15, 81

observable, 105, 188; expectation value
of, 71, 107, 190

operator, 36, 92, 179; matrix element of,
185

optical theorem, 366

orbital angular momentum, 123; eigen-
functions for, 132

orthogonality, 61, 182; of eigenvectors,
97

oscillator, 36, 167; coherent states of,
169; and the electromagnetic field,
292; energy levels of, 40; ladder oper-
ators of, 39, 293; position matrix ele-
ments of, 294; squeezed states of, 170;

thermal energy of, 9; wave function of,
84

parity, 115; conservation of, 119

partial wave, 362, 377; expansion of
plane wave, 379, 386; phase shift of,
381, 387

Pauli spin matrices, 207

periodic boundary condition, 16

permutation symbol, 125

perturbation theory, 259

phase velocity, 26

phonon, 77

photoionization, 22, 318

photon, 22, 295; spin of, 291

Planck constant, 8

Planck spectrum, 21
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plane wave, 26; as momentum eigen-
state, 72; as sum of spherical waves,
379, 386

polar coordinates, 130

polarizability tensor, 269

position observable, 193

position representation, 187

position translation operator, 121

precession, 167, 212, 227

probability, 4; conservation of, 49, 191;
distribution of, 67, 105, 189; flux of, 50

probability amplitude, 189, 208; linearity
of, 234

probability in quantum mechanics, 48,
231

propagation vector, 26

proton magnetic moment, 275; mass, 11;
spin, 198

pure state, 232

p-wave, 146

radial wave function, 34, 142; and proba-
bility, 89

Rayleigh-Jeans spectrum, 21

reduced mass, 76

resonant scattering, 391; and time delay,
393

rotation operator, 134; for spin one-half,
209

Rutherford cross section, 377

Rydberg, 331

scalar product. See inner product

scattering, 359; boundary condition for,
361, 371

scattering amplitude, 361

scattering cross section, 365

Schrodinger representation, 110, 191

Schrodinger’s cat, 248

Schrédinger’s equation, 32, 110, 192;
radial form of, 34, 142

selection rules, 291, 320

self-adjoint operator, 93, 160, 181

shadow scattering, 385

singlet spin state, 217

solid angle, 365

spherical Bessel function, 378

spherical harmonic, 132

spherical wave. See partial wave

spin angular momentum, 196; in Dirac
equation, 410

Index 419

spin one matrices, 227

spin one-half matrices, 207

spin-orbit interaction, 339; in Dirac
equation, 415

spin wave function, 277, 334

spontaneous transition, 299

square potential well, 44, 85, 87

standard deviation, 88

Stark effect, 266

state vector, 188; and measurements, 51,
232; time-dependence of, 111, 192

Stefan-Boltzmann law, 21

Stern-Gerlach effect, 202, 232

stimulated transition. See induced tran-
sition

sum over momentum states, 17, 21, 302

s-wave, 146; part of plane wave, 381;
phase shift, 381

symmetries and conservation laws, 119

term symbol, 335

time-dependent perturbation theory, 283
time translation operator, 111, 191
transition probability, 287

triangle rule for angular momentum, 137
triplet spin state, 217

tunneling, 54, 163, 393

two-particle system, 74, 139

uncertainty in energy and time, 287, 393
uncertainty principle, 68, 224
unitary transformation, 95, 191

virial theorem, 353

wave equation for radiation, 20; for
sound, 14

wave function, 91, 187; nodes of, 43; nor-
malization of, 48, 106; radial, 34, 142

wavelength, 26

wave mechanics, 91, 187, 192

wavenumber, 26

wave packet, 28, 46, 65, 360, 392; for
minimum energy-momentum uncer-
tainty, 88

Wigner-Eckart theorem, 316

Wigner’s friend, 248

WKB approximation, 44

Zeeman effect, 264; in hyperfine splitting
in atomic hydrogen, 228
zero point energy, 40, 357
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