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INTRODUCTION

If you ask me why I love my job as a scientist, I can’t help but think of the 

first scene in The Princess Bride. The movie opens with a grandfather (Peter 

Falk) about to read a book to his sick grandson (Fred Savage), and the skep-

tical kid asks, “Has it got any sports in it?” The grandfather replies, “Are 

you kidding? Fencing, fighting, torture, revenge, giants, monsters, chases, 

escapes, true love, miracles.” I might say as much about the biology covered 

in this book. In fact, I’d have to add a few words, like electrocution, zombi-

fication, deception, and centuries- old legends. Although true love may be 

absent, I’d argue it’s made up for by the beauty of the animals, which I have 

made a special effort to photograph so you can judge for yourself. I’d have 

to stop at miracles—I am a scientist, after all. That said, if there’s one word 

that best captures my own recurrent feeling about the process of discovery 

and the things I’m going to describe, it would be: “inconceivable.”

That may seem like an overly dramatic viewpoint for a scientist. But I’ve 

spent thousands of hours studying the brains and behaviors of unusual ani-

mals; I’m supposed to be an expert. Still, every time I investigate a new spe-

cies, my best guess about what the animal can do and how it can do it is 

wrong. And I’m wrong in the best possible way; the animals are always able 

to do something unexpected and more interesting than I’d imagined.

This book is my personal account of those unexpected and interesting 

things discovered during a career spent investigating biological mysteries. 

These discoveries are presented much as they happened, as a chronological 

series of case studies, beginning with my first forays into research as an 

undergraduate working at the National Zoo in Washington, DC, where I was 

tasked with collecting and studying the famously enigmatic star- nosed 
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mole, a small mammal with pink, fleshy tentacles surrounding its nose. Like 

any good mystery, there were many false starts and blind alleys along the 

way, but that only made me more curious. What exactly is the star and what 

is it used for? How and why did such a bizarre structure evolve? After many 

failed attempts to solve this mystery, I tried to move on. But like an obsessed 

cold- case detective, I eventually returned to the star- nosed mole in gradu-

ate school. With help from my mentor and other scientists, we eventually 

cracked the case, so to speak—discovering many astonishing things about 

the mole’s brain and behavior, not to mention how and why the star likely 

evolved. Along the way I discovered that you and I share some surprising 

habits with star-nosed moles.

The experience with star- nosed moles gave me a taste for unsolved bio-

logical mysteries and extreme adaptations. It inspired me to investigate 

other strange creatures, like tentacled snakes, water shrews, electric eels, 

zombie- making parasitoids, and even humans with some seemingly magical 

traditions. Electric eels, for example, turned out to be one of the most un-

derestimated creatures on our planet. That’s saying a lot, given their leg-

endary status as electricians capable of generating hundreds of volts for 

both offense and defense. For centuries it was assumed that an animal with 

such impressive weaponry had no need for sophisticated behavior. As I soon 

discovered, electrical power is only half the equation. The other half is, as 

they say, “all in the delivery.” The eel’s behavior allows it to use electricity 

to rival weapons from science fiction (I should know; I tested the eel’s elec-

trical weapon on my own arm). The eels demonstrate that even animals we 

have studied for centuries still hold secrets to be uncovered. And there’s 

another more specific lesson—where you find extreme anatomical traits, 

you can often expect to find equally extreme behaviors.

There’s more of course. If you want to learn about a predator that sets the 

ultimate trap—as if it can predict the future—or if you need to know the best 

strategies to avoid becoming a zombie, you’ll have to read on. Each of these 

cases reveals a masterpiece from evolution’s work. But there is more to learn 

from these animals than simply the details of particular adaptations, as 

wonderful as they may be. Just as studying one masterpiece in a museum 
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can teach us much about the artist, each of these specific systems can teach 

us generalities about animal behavior, brain organization, development, and 

evolution. This is an important and often unappreciated theme in science.

To mention just a few examples, much of what we know about how brain 

cells (neurons) conduct signals was figured out in squid, because they have 

giant nerve fibers, which evolved for super- fast escape from predators. The 

result was a giant leap forward in our understanding of all animal brains 

(not to mention the Nobel Prize for the scientists). Similarly, the means by 

which neurons most quickly communicate with one another (the electrical 

synapse) was discovered by studying the humble crayfish, which uses its 

fast- conducting neurons to escape predators (but as you’ll learn in chapter 

5, it’s not always fast enough). On the predator side, venoms of snakes and 

snails are a rich source of potential therapeutic agents. Some venoms are 

already being used to treat chronic pain, and many others are being inves-

tigated for potential stroke and cancer therapies. Even a predator as strange 

as an electric eel has advanced science immensely, first by inspiring Italian 

scientist Alessandro Volta to invent the battery in 1800, and much later by 

allowing the isolation of a key molecule (the acetylcholine receptor) that is 

required for virtually all skeletal muscle activity. I could go on. In short, you 

can’t swing a stick without hitting a major scientific advance that resulted 

from studying diverse and specialized animals. That’s true because all ani-

mals play by the same evolutionary rules. The result is what Richard 

Dawkins has so elegantly called “The Greatest Show on Earth.” One of my 

goals is to showcase some great performances from that show.

But I have another goal as well. I hope the reader will learn something 

not only about these incredible animals, but also about the process of dis-

covery. Like everyone else, I’m attracted to mysteries; that’s part of human 

nature. Whether it’s an unusual star in the heavens or an unusual star on a 

mole, outliers have always served as a beacon of sorts, compelling a much 

closer look. Over time I have found it’s not the mystery or the outlier that’s 

important, it’s the closer look. I say this because, as often as not, the most 

interesting thing about an animal is not evident from the outset of an in-

vestigation. Moreover, in my own experience, even the seemingly simple 
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species do something truly remarkable (keep this in mind when you read 

about “primitive” shrews, “common” moles, or even the lowly cockroach). 

I often think of an experiment as akin to looking through a pair of binocu-

lars. You see something at the edge of your vision and you put them to your 

eyes to get a closer look. But you never know what will come into focus, or 

what else might be in the picture.

Today’s student in biology might be skeptical; after all, scientists have 

been taking “a closer look” at biological systems for centuries. Why should 

we expect new discoveries to abound? Part of the answer lies in what I like 

to call the “marvels of modern technology.” Our metaphorical binoculars 

have vastly improved. Just as the Hubble Space Telescope has, literally and 

figuratively, changed our view of the universe, similar advances in the tech-

nologies for research into neuroscience, evolution, and behavior have 

opened new vistas for investigation and discovery. It’s a great time to be a 

scientist.

And that brings up another reason for writing this book. I’ve had many 

adventures conducting research, but you would never know this from my 

formal publications describing the results. Scientists are trained to write a 

bit like Mr. Spock, delivering a series of facts in the third- person, using the 

passive voice and certainly not betraying emotions. There’s good reason for 

this when it comes to technical literature, which needs brevity and a certain 

uniformity of style. But it gives the wrong impression. Not only does this 

leave out much of the backstory, there’s also no mention of the sense of 

wonder when the clouds part and Nature reveals one of her secrets. One of 

my goals is to share those experiences and hopefully change some percep-

tions about how discoveries happen and what it’s like to do research. But 

most importantly, I hope this small window into some remarkable animals 

will convince you that Nature is far more interesting than we imagine—and 

something to be treasured.

P.S.: I’m going to describe some things that seem (at least to me) extraor-

dinary. If you’d like to judge for yourself, then when you see a QR code in the 

book, use the camera in your smart phone to scan it, and it will take you to 

a movie showing the animals in action.
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