CONTENTS

List of Abbreviations ix
Preface to the New Edition xi
Preface xxiii
Introduction 3

PART ONE
THE SOCIAL CALCULUS 17

Chapter 1. Statistics as Social Science 18
 The Politics of Political Arithmetic 18
 The Numbers of a Dynamic Society 23

Chapter 2. The Laws That Govern Chaos 40
 Quetelet and the Numerical Regularities of Society 41
 Liberal Politics and Statistical Laws 55

Chapter 3. From Nature’s Urn to the Insurance Office 71

PART TWO
THE SUPREME LAW OF UNREASON 91

Chapter 4. The Errors of Art and Nature 93
 Quetelet: Error and Variation 100

Chapter 5. Social Law and Natural Science 110
 Molecules and Social Physics 111
 Galton and the Reality of Variation 128

PART THREE
THE SCIENCE OF UNCERTAINTY 149

Chapter 6. Statistical Law and Human Freedom 151
 The Opponents of Statistics 152
 Statistics and Free Will 162
 The Science of Diversity 171
 Statistik: Between Nature and History 177
Contents

Chapter 7. Time’s Arrow and Statistical Uncertainty in Physics and Philosophy 193
 Buckle’s Laws and Maxwell’s Demon 194
 Boltzmann, Statistics, and Irreversibility 208
 Peirce’s Rejection of Necessity 219

PART FOUR
Polymathy and Discipline 231

Chapter 8. The Mathematics of Statistics 233
 Lexis’s Index of Dispersion 240
 Edgeworth: Mathematics and Economics 255

Chapter 9. The Roots of Biometrical Statistics 270
 Galton’s Biometrical Analogies 270
 Regression and Correlation 286
 Pearson and Mathematical Biometry 296

Conclusion 315
Index 321
INTRODUCTION

Statistics has become known in the twentieth century as the mathematical tool for analyzing experimental and observational data. Enshrined by public policy as the only reliable basis for judgments as to the efficacy of medical procedures or the safety of chemicals, and adopted by business for such uses as industrial quality control, it is evidently among the products of science whose influence on public and private life has been most pervasive. Statistical analysis has also come to be seen in many scientific disciplines as indispensable for drawing reliable conclusions from empirical results. For some modern fields, such as quantitative genetics, statistical mechanics, and the psychological field of intelligence testing, statistical mathematics is inseparable from actual theory. Not since the invention of the calculus, if ever, has a new field of mathematics found so extensive a domain of application.

The statistical tools used in the modern sciences have virtually all been worked out during the last century. The foundations of mathematical statistics were laid between 1890 and 1930, and the principal families of techniques for analyzing numerical data were established during the same period. The achievement of the founders of mathematical statistics—Pearson, Spearman, Yule, Gosset, Fisher, and others—was formidable, and is justly venerated by their scientific heirs. There is, however, another story to be told, of the background that made this burst of statistical innovation possible. The development of statistics was necessarily preceded by its invention. This was the contribution of the nineteenth century, the culmination of a tradition of statistical thinking that embraced writers from a variety of backgrounds working in areas which were otherwise unconnected.

The invention of statistics was the recognition of a distinct and widely applicable set of procedures based on mathematical probability for studying mass phenomena. Statistics was and continues to be seen as especially valuable for uncovering causal relationships where the individual events are either concealed from view or are highly variable and subject to a host of influences. The identification of statistics as a category of knowledge was first of all a scientific accomplishment, and not a purely mathematical one. To be sure, the central role of probability theory in the history as well as the logic of statistics is plain. But most of the
probability mathematics needed by the founders of statistics had been available for almost a century, since the time of Laplace and Gauss. Indeed, practical techniques for the use of such mathematics in the analysis of numerical data were worked out with great sophistication during the early decades of the nineteenth century in the form of error theory, which was used widely in geodesy and observational astronomy. In retrospect, the history of error theory seems to abound in precursors to the principal accomplishments of mathematical statistics. If statistics were just mathematics, the “anticipations” of the error theorists would leave little basis for the claim that Quetelet, Lexis, and Galton were original thinkers in this field.

The identification of precursors, however, is almost always misleading, and it is no less so here. Identical mathematical formulations must yet be viewed as different if they are interpreted differently, especially when their purpose is scientific and not purely mathematical. As Stephen Stigler shows in his new book, the effective use of probabilistic techniques for estimating uncertainty in astronomy and geodesy was by no means sufficient to enable social scientists to apply similar analysis to the problems of their disciplines.1 Decades after a sophisticated theory of errors had been developed, there remained the great problem of finding points of contact between the mathematical formulas of error theory and the scientific objects of the social and biological sciences, where variation was genuine and important. Once Galton and Pearson had in some measure solved that problem, the formulations of the error theorists could readily be seen to be applicable. In this new context, however, the analysis of error had become something quite different, a method for studying the causes of variation, and not just for measuring it. Only through their successful application to the refractory but rich problems of the social and biological sciences did the probabilistic techniques of error analysis grow into the powerful and flexible method of analysis that we know as mathematical statistics.

The study of variable mass phenomena had different origins from mathematical probability and error theory. It began instead with the development of numerical social science and the formation of what was regarded during the late nineteenth century as the characteristically statistical viewpoint. John Theodore Merz recognized this viewpoint in his 1904 History of European Thought in the Nineteenth Century, which

1 See Stigler.
Introduction

includes a chapter on “the statistical view of nature.” Merz’s phrase referred not only to the mathematical techniques for analyzing data derived from probability theory, but also, and principally, to the strategy of investigation derived form the numerical science of society and of states. It was this science for which the term “statistics” had been adapted early in the nineteenth century. Its practitioners were initially called “statists,” and only late in the nineteenth century did they assume the title of statisticians.

It is no accident that a quantitative, empirical social science of the nineteenth century should have given its name to a branch of applied mathematics, for the contribution of “statists” to the style of reasoning associated with the new mathematics was a fundamental one. To begin, statists familiarized the scientific world and the educated public with the use of aggregate numbers and mean values for studying an inherently variable object. Statistical writers persuaded their contemporaries that systems consisting of numerous autonomous individuals can be studied at a higher level than that of the diverse atomic constituents. They taught them that such systems could be presumed to generate large-scale order and regularity which would be virtually unaffected by the caprice that seemed to prevail in the actions of individuals. Since significant changes in the state of the system would appear only as a consequence of proportionately large causes, a science could be formulated using relative frequencies as its elemental data.

Practicing statists, of course, did not identify their enterprise with any doctrine so abstract as this. Theirs was a world of progress and discontent, of surveys and census figures, into which advanced mathematics and abstruse philosophy rarely intruded. They were, for the most part, reformers and bureaucrats. As nineteenth-century liberals, they were impressed by the power and dynamism of that complex entity, society, and were pleased to find evidence that it exhibited a stability which seemed not to be dependent on the intermittent wisdom of governing authorities. Hence they were delighted by the uniformity from year to year which was found to characterize not only natural events like births and deaths, but also voluntary acts such as marriages and even seemingly senseless and irrational phenomena like crime and suicide. From this was born Adolphe Quetelet’s doctrine of “statistical law,” which held that these regularities would continue into the future because they

Introduction

arose necessarily from an underlying stability of the "state of society." Using statistics, it seemed to be possible to uncover general truths about mass phenomena even though the causes of each individual action were unknown and might be wholly inaccessible.

The doctrine that order is to be found in large numbers is the leitmotif of nineteenth-century statistical thinking. The regularity of crime, suicide, and marriage when considered in the mass was invoked repeatedly to justify the application of statistical methods to problems in biology, physics, and economics by writers like Francis Galton, James Clerk Maxwell, Ludwig Boltzmann, Wilhelm Lexis, and F. Y. Edgeworth. Indeed, the use of probability relationships to model real variation in natural phenomena was initially made possible by the recognition of analogies between the objects of these sciences and those of social statistics. We find them not only in veiled allusions; they are openly and explicitly developed in both popular and technical writings.

Thus this book is, in one sense, a history of the influence of ideas developed within social statistics. It is a study of the mathematical expression of what Ernst Mayr calls population thinking, a phrase which points no less clearly than statistics to sources in the human sciences. As in all noteworthy cases of intellectual influence, however, the beneficiaries here were no mere passive recipients of social-scientific dogma. The leading characters in this story were "moral statisticians," economists, kinetic gas theorists, and biometricians. The objects of their work required them to find some way of studying mass phenomena profitably without first having to attain detailed knowledge of the constituent individuals. They were successful precisely because they were able to adapt existing methods and concepts to new objects. In doing so, they contributed as much to the statistical method as to their particular fields.

Just as statistical reasoning was closely associated with the idea of large-scale regularity during the nineteenth century, the history of statistical mathematics before 1890 is, for the most part, a history of the normal or Gaussian distribution. This is the familiar bell-shaped curve, known to nineteenth-century writers as the astronomical error law. Although it had earlier been used in connection with the classical "doctrine of chances," it became closely associated with astronomy as a consequence of its incorporation into the method of least squares for reducing astronomical observations. Since stellar objects have a real po-

Introduction

sition at a given time, the existence of variation among observations was quite naturally interpreted as the product of error, and the error curve, accordingly, was conceived as descriptive of the imperfections of instruments and of the senses. The practical task of fitting curves of various sorts to astronomical observations, as well as the search for rigorous foundations for the method of least squares, led to much sophisticated mathematical work; but since the object of the exercise was always to manage or estimate error, there was little incentive to study variation for its own sake.

A major transition in thinking about the error law was initiated by the Belgian Adolphe Quetelet. Quetelet journeyed to Paris in 1823 to learn observational astronomy, but while there he was introduced to mathematical probability and was infected by the belief in its universal applicability, as championed by Laplace, Poisson, and Joseph Fourier. The new social science of statistics became for him a branch of the “social physics,” patterned closely on celestial physics, for which he wished to lay the foundation. Every possible concept from physics was given a social analogue in this gradualist metaphysic of society, and the error law finally found its place in 1844 as the formula governing deviations from an idealized “average man.” Quetelet interpreted the applicability of this law as confirmation that human variability was fundamentally error, but the effect of his discovery was to begin the process by which the error law became a distribution formula, governing variation which was itself seen to have far greater interest than any mere mean value.

The further development of statistical mathematics was, until the end of the nineteenth century, largely the result of work in other natural and social scientific disciplines. Quetelet’s belief in the widespread applicability of the error law to variation of all sorts, although not his interpretation of it, won acceptance by the ablest workers on statistical mathematics of the late nineteenth century. James Clerk Maxwell, who learned of Quetelet’s use of the error law from an essay review of one of Quetelet’s books by John Herschel, proposed that the same formula governed the distribution of molecular velocities in a gas. He, along with Ludwig Boltzmann, made of statistical gas theory one of the great achievements of late nineteenth-century physics and formed an important part of the background to the new quantum theory as well as to Willard Gibbs’s statistical mechanics. In social science, Wilhelm Lexis used similar formalism to provide a measure of the stability of statistical series, and Francis Edgeworth showed how error analysis and related tech-
Introduction

techniques might be applied fruitfully to problems in economics such as index numbers. Francis Galton, who was introduced to Quetelet's ideas by the geographer William Spottiswoode, employed the error curve in his study of heredity and, in the end, found that his index of hereditary regression was in fact applicable as a general tool of statistical mathematics to the study of variation in data of all sorts.

At the same time as the mathematics of statistics was being advanced through its application to new objects, the statistical approach began to be seen as distinctive and even as challenging for conventional views of science and of natural law. Quetelet's contemporaries held no uniform view as to the nature of statistical science, but they were all in accord that their discipline consisted of the application of the tried and true method of natural science to a social object. The assertion of what may be called statistical determinism in relation to man and society, however, provoked a backlash of opposition to statistics and a critical analysis of the nature of statistical reasoning. On one level, this reassessment led to wide adoption of the view that statistics could provide little of scientific worth so long as attention was focused on mean values rather than on variation. More abstractly, critics of the idea of statistical law put forward by Quetelet and the historian Henry Thomas Buckle began to argue that the statistical method was inherently an imperfect one, applicable precisely because the remoteness or intrinsic variability of the constituent objects rendered exact deterministic knowledge inaccessible. The elaboration of this view, especially by kinetic theorist and social thinkers, inaugurated what Ian Hacking calls the "erosion of determinism," which has profoundly influenced the scientific world view of the twentieth century.

The modern field of mathematical statistics arose from the diverse applications to which statistical ideas and methods were put during the nineteenth century. It became, under Pearson, Fisher, and others, a mathematical resource for a variety of disciplines for which numerical data could be obtained through experiment or observation. Before 1890, however, and indeed for some decades thereafter, statistical methods and concepts were developed not by mathematicians but by astronomers, social scientists, biologists, and physicists. The development of statistical thinking was a truly interdisciplinary phenomenon for which mathematics had no priority of position; new ideas and approaches arose as a result of the application of techniques borrowed from one or more disciplines to the very different subject matter of another. The great pi-
Introduction

oneers of statistical thinking were widely read generalists, interested in historical, philosophical, or social issues as well as in their research areas. As Karl Pearson himself pointed out in some lectures he gave on the history of statistics:

I ought, perhaps to apologise for carrying you so far afield in these lectures. But it is impossible to understand a man’s work unless you understand something of his environment. And his environment means the state of affairs social and political of his own age. You might think it possible to write a history of science in the 19th century and not touch theology or politics. I greatly doubt whether you could come down to its actual foundations, without thinking of Clifford and Du Bois Reymond and Huxley from the standpoint of theology and politics. What more removed from those fields than the subject of differential equations? What more removed from morality than the theory of Singular Solutions? Yet you would not grasp the work of De Saint-Venant or Boussinesq unless you realised that they viewed Singular Solutions as the great solution of the problem of Freewill, and I hold a letter of Clerk-Maxwell in which he states that their work on Singular Solutions is epoch making on this very account.4

Many contributed to a great range of scientific specialties, and all were alert to developments outside their own fields. The general development of a statistical method required effective communication between diverse studies, and this investigation reveals much about the links that have given science a certain measure of unity, making it more than a collection of isolated disciplines.

Statistics has been prominent not only on the margins between disciplines, but also in the nebulous and shifting border region that separates science from nonscience. Statistics has contributed essentially to a considerable expansion of the scientific domain, but it has been for two centuries or more a singularly problematical method of science. Probability was a suspect area of mathematics almost from the beginning, though from a purely technical standpoint its accomplishments were already impressive in the time of Montmort and De Moivre. Influential writers on error theory, such as Augustin Cauchy and James Ivory, ac-

Introduction

tected the method of least squares but refused to rest content with the probabilistic assumptions in its underpinnings.5 Laplace himself was inspired by his ambitions for probability to redefine scientific certainty—to limit perfect knowledge to an omniscient but imaginary demon, and to insist that while events in the world are completely determined by preexisting causes, our knowledge of their outcome is necessarily subject to a certain domain of error. The statistical approach also presented serious problems for the kinetic gas theory, which reduced the deterministic laws of thermodynamics to mere regularities. While Maxwell and Boltzmann labored to incorporate the necessary refinements into the kinetic theory, others, such as Planck's student Zermelo, argued that this connection with statistics invalidated atomism altogether.6

That probability seemed to imply uncertainty clearly discouraged its use by physicists. From the standpoint of social science, on the other hand, statistical method was synonymous with quantification, and while some were skeptical of the appropriateness of mathematics as a tool of sociology, many more viewed it as the key to exactitude and scientific certainty. Most statistical enthusiasts simply ignored the dependence of statistical reasoning on probability, and those who acknowledged it generally stressed the ties between probability and that most ancient and dignified among the exact sciences, astronomy. The social science of statistics, in the hands of Quetelet and his admirers, constituted a self-conscious attempt to imitate the successful strategy of natural science. Statistical quantification in social science was more commonly seen as exemplary than as problematical, and the aspirations of statistics reveal much about what were taken to be the essential features of science during the nineteenth century.

Finally, the history of statistics sheds light on the relations between abstract science and what are often seen as its applications. In truth, practice was decidedly ahead of theory during the early history of statistics, and "pure" or abstract statistics was the offspring, not the parent, of its applications. The statistical techniques and approaches that were invented by Lexis, Edgeworth, Galton, Pearson, and their successors reflected at once the particular problems to which statistical methods had

6 Ernst Zermelo, "Über mechanische Erklärungen irreversibler Vorgänge," \textit{Annalen der Physik}, 59 (1896), 793-801.
Introduction

been applied and the context of ideologies and philosophical attitudes within which statistics had been pursued. Mathematics and physics may, as the Comtean hierarchy of the sciences suggests, have logical primacy over biological and social science, but historically the situation is much more complex and interesting.

There are, to be sure, special reasons why statistical theory should be more powerfully affected by considerations external to its specific subject matter than other areas of mathematics or science. Its main task, after all, has been to provide analytical methods by which practitioners of other disciplines can analyze their numerical data, and the statistician's quest is as much for useful techniques as for timeless truths. Nevertheless, the history of statistics should not be seen in this respect as utterly unique, but as an ideal type for one aspect of the historical process through which modern science has evolved.

Some changes of terminology almost always accompany the emergence of new areas of science, especially when, as in the present case, a significantly new style of thought is involved. A preliminary discussion of some key terms ought therefore to be helpful.

"Statistics" as a plural means to us simply numbers, or more particularly, numbers of things, and there is no acceptable synonym. That usage became standard during the 1820s and 1840s. It seems almost impossible now to talk about such numbers and numerical tables published before that time without using this anachronistic term. That all generations previous to the 1820s managed to get by without it reveals dimly how different was the world they lived in—a world without suicide rates, unemployment figures, and intelligence quotients. To be sure, this prenumerate age was not entirely deprived of statistical tables, but the great explosion of numbers that made the term statistics indispensable occurred during the 1820s and 1830s. The demands it placed on people to classify things so that they could be counted and placed in an appropriate box on some official table, and more generally its impact on the character of the information people need to possess before they feel they understand something, are of the greatest interest and importance.

In the nineteenth century, statistics designated an empirical, usually quantitative, social science. Before that, it was an ill-defined science of states and conditions. The term only came to be applied commonly to a field of applied mathematics in the twentieth century. "Statistics"
Introduction

gained a wide meaning, by which it could be used to refer to mass phenomena of any sort, mainly by analogy with its social object. After the mid-nineteenth century, it became common to investigate collective phenomena using what came to be called the statistical method, the method of reasoning about events in large numbers without being troubled by the intractability of individuals.

The forms of “probability” are less troublesome for the nineteenth century, though probability did not come into its own as a branch of pure mathematics until quite recently. Laplace’s substitution of “calculus of probabilities” for the traditional “doctrine of chances” at the end of the eighteenth century was intended to make clear that rational belief or expectation rather than the outcome of games of chance was its proper object. Indeed, this view lingered on, but the mathematics of chance was almost unfailingly referred to as probability or calculus of probability after Laplace, and I see no reason to depart from the modern usage.

“Determinism” was until the mid-nineteenth century a theory of the will—a denial of human freedom—and some dictionaries still give this as its first meaning. Partly as a result of statistical discussion, it assumed during the 1850s and 1860s its modern and more general meaning, by which the future of the world is held to be wholly determined by its present configuration. It differs from fatalism in that it rests on natural laws of cause and effect rather than on some transcendant force. Its opposite, we may note, underwent a similar change. “Indeterminism” now refers to the view that some events in the world are not wholly determined by natural causes, but are, at least to some extent, irreducibly random or stochastic. Indeterminism may be contrasted with probabilism, which implies simply that our knowledge does not permit perfect prediction, though there may be no exceptions to complete causality in the world.

The phrase “law of large numbers” was coined by Poisson in 1835. To him, it referred to the proposition that the frequencies of events must, over the long run, conform to the mean of their probabilities when those probabilities fluctuate randomly around some fixed, underlying value. Virtually everyone else who recited the phrase in the nineteenth century made no distinction between Poisson’s theorem and the one in Jakob Bernoulli’s 1713 Ars Conjectandi, according to which the frequency of events must conform over the long run to the fixed probability governing each trial. It is most convenient here to adopt this undiscriminating usage, which really expresses simply the observed regu-
larity of statistical aggregates. More recently, Poisson's phrase has been used to denote the rule that errors of mean values conform to the normal distribution. I know of nobody who used the phrase in this way before Emile Dormoy in 1874, whose work is mentioned in chapter 8.

There are, incidentally, a number of terms for the normal distribution, but, fortunately, there is little opportunity for confusion. The standard nineteenth-century phrases were "error curve" and "error law"; the eponymous "Gaussian" became common in the late nineteenth century, and "normal law" was used by Pearson in 1894, as was "standard deviation." The nineteenth-century measure of the width of a distribution was the "probable error," the magnitude of error which precisely one-half of the measurements would, over the long run, exceed. These few terms, fortunately, nearly exhaust the technical vocabulary of nineteenth-century statistical thinking, apart from error theory and insurance mathematics. The technical and mathematical content in the following chapters is minimal, and, except for a few pages here and there, should be readily comprehensible even to readers with no mathematical training.
INDEX

(A Because this book has no bibliography, the index includes secondary as well as primary authors, but not editors and translators.)

Abich, O. H. W., 139
Abrams, Philip, 32
academic socialism (Kathedersozialismus), 181, 303
Ackerknecht, Erwin, 157
agriculture, statistics in, 318
Airy, George Biddell, 74, 94, 138, 271, 273, 295, 310
Albert, Prince Consort, 56, 165, 234
Alemberg, Jean le Rond d', 75, 155
Amaldi, E., 218
alogies: astronomical and physical, 52-55, 100, 105, 124, 165, 190, 312; biological, 44, 190; of constant and perturbing forces, 47-48, 50-51, 65, 108; of games of chance, 184, 308; of insurance, in physics, 113, 214-215; ironies of, 149-150; of kinetic theory, 258, 315-316; of social science, 290-293, 296; meteorological, 264, 267; miscellaneous, 231, 233; political, 282-283; of social statistics, 6, 55, 233-234, 279, 281-286. See also social physics
analysis of variance, 268, 315-316
Angermann, Erich, 181
Annales d'hygiène publique, 29-30, 34
Aman, Noé, 131
anthropometry, 107-109, 140, 145, 250, 291-292, 295, 312, 313
Arbuthnot, John, 22, 50
Archimedes, 163
Aristotle, 67, 103, 223
Ashton, Thomas S., 32
Astronomical Society, Royal, 74
astronomy: entanglements and correlations in, 273-274, 293, 295-296; and error law, 6-7, 95-96; mentioned, 84-220; model for social science, 43-44, 188; and probability, 73-74, 79, 84, 220; source of analogies, 47-48, 100, 106, 108; and statistical mathematics, 235, 239. See also analogies
atomism, 209; ancient, 197-199
average, inadequacy of, 171-173, 177, 179, 184. See also covariation, variation
average man: according to Quesnel, 7, 52-54, 56, 63; allusions to, 66, 140, 178, 204, 307; criticized, 156, 171, 172, 175, 182, 188; and error law, 92, 106-108; as moral idea, 101-103; revealed by composite photography, 140
Babbage, Charles, 31, 33, 74, 233
Bacon, Francis, 10, 114
Baily, Francis, 74
Baker, Keith, 23, 73
Balbi, A., 173
Bastiat, Frédéric, 65
Bateson, William, 30
Bayes, Thomas, 93
Bayesian statistics. See probability, inverse
Beamish, Richard, 45
Beeley, 301
Belgian revolution (1830), 46-47
Benoist de Châteauneuf, L. F., 173
Benham, Jeremy, 82
Berg, Maxine, 31, 32
Bernard, Claude, 160-162, 205
Bernoulli, Christoph, 36
Bernoulli, Daniel, 94, 97, 114, 239
Bernoulli, Jakob, 12, 50, 52, 72, 73, 77, 85, 120
Bertillon, Alphonse, 291, 292
Bertillon, Jacques, 291
Bertillon, Louis-Adolphe, 291
Bertrand, Joseph, 86, 208
Bessel, F. W., 96
Bichat, M. F. X., 155
Bienaymé, Irénée Jules, 105, 234, 258
binomial distribution, 93
Biometrika, 135, 297, 300, 306, 312
biometry, 132-133, 139-146, 269-271, 279-300, 307, 313, 316, 317
Bismarck, Otto von, 187

321

For general queries, contact webmaster@press.princeton.edu
Index

Black, Arthur, 299-300
Block, Maurice, 56, 240
Bodio, M. L., 109, 237, 303
Bohr, Niels, 218
Boltzmann, Ludwig, 125-128, 209-218; and Buckle, 70, 113-114; combinatorial derivation by, 127-128, 212; commitment to mechanics, 209-213; on error law as stable distribution, 126-127; on H (proportional to negative of entropy), 126-127, 212-214; liberalism of, 208-209; and Maxwell, 126-128, 208, 210-211, 216-217; mentioned, 6, 7; resists probabilism, 10, 193, 207-208; on reversibility paradox, 211-216, 224; on uncertainty in statistics, 216-217; use of statistical analogies, 112-113, 136, 208; on visible universe and thermodynamics, 215-216
Boole, George, 75, 79-82, 123, 164
Born, Max, 218
Bortkiewicz, Ladislaus von, 236, 237, 253, 254, 266
Bourguet, Marie-Noelle, 28
Boussinesq, Joseph, 9, 209, 206, 222-224
Bouvard, Alexis, 43, 47
Bowditch, Henry P., 300
Bowley, Arthur, 268
Box, Joan Fisher, 316
Bramble-Moore, Leslie, 311
Braun, Heinrich, 192
Bravais, Auguste, 273-274
Brentano, Franz Clemens, 208
Brentano, Lujo, 181, 182, 243
Breton, Philippe, 266
British Association, statistical section of, 31-33, 135
Broda, Engelbert, 209
Brown, J. A., 275, 278
Broussais, F.J.V., 155
Brown, Samuel, 65, 109
Brownian motion, 205, 217
Bruns, H., 239
Brush, Stephen G., 114, 115, 118, 124, 201, 212
Bryan, George, 213
Buck, Peter, 18, 23, 107
Buckle, Henry Thomas, 60-65; and Calvinism, 60; historical determinism of, 62, 64-65; mentioned, 219-227; plan for world history, 60-61; radical liberalism of, 61-62, 64-65; on science of history, 61, 64; on statistical laws, 8, 149, 163; use of statistics, 62, 64-65
—criticism of: in Britain, 164-167, 174, 176-177; by R. Campbell, 192, 241-242; by Galton, 272; in Germany, 168-172, 188, 246; by Lexis, 192, 249; by Maxwell, 70, 194-195, 123, 198, 204, 207
—influence of: on Boltzmann, 113-114; on philosophy, 83, 167-169, 223, 235; on social sciences, 65-70, 179, 191
Burbury, S. H., 213, 271
Burke, Edmund, 66
Burrow, John W., 57
Burt, Cyril, 314
Buys-Ballot, C. H. D., 116
Byrne, Patrick H., 218
Cabannes, P. J. G., 155
Cadwallader, Thomas, 220
Campbell, Lewis, 113, 123, 195, 199, 202
Campbell, Robert, 192, 241-242, 245
Cannan, Susan Faye, 45, 74
Caraman, Duce de, 90
Carbonelle, Ignace, 205
Carey, H. C., 190
Carlyle, Thomas, 16
Cambot, Sadi, 123, 224
Carus, Paul, 225
Casper, J. L., 179
Cassidy, James, 37
Cattell, James, 314
Cauchy, Augustin, 9-10
causality, criticism of, 218, 299, 307, 310
censuses, 17, 20, 25, 30-31, 37
centralization, and statistics, 17, 19, 23, 25-26, 68
Chabrol, comte de, 28, 97
Chalmers, Thomas, 40
Chambers, Frederick, 277
Chambers, Robert, 57
chance, meaning of, 72, 79, 149-150, 197, 309
Charles X (of France), 28, 101, 102
chi-square distribution, 310, 315
Christianity, and science, 132-134, 137, 196-198
Chapov, Aleksandr, 254
Clatusis, Rudolf, 115-117, 123, 125, 126, 210, 224

322
Clifford, William Kingdon, 9, 196, 299
Cohen, I. Bernard, 67
Cohen, Patricia Cline, 37
Coleman, William, 30, 160, 242
Collini, Stefan, 27
combinatorics, 125, 127
Common Sense Philosophy (Scottish), 81, 86, 164, 165, 194, 202, 225
composite photography, 139-140, 201, 272
Comte, Auguste, and Quetelet, 41, 155-156; criticism of probability, 84, 152, 155-156, 158; criticism of statistics, 155-156, 159-160, 162; hierarchy of sciences of, 11; as social scientist, 41, 55, 104, 177, 205, 302
conjectural history, 57
contingency analysis, 311, 315
continuity: biological, 301, 303; historical, 46-47; social, 55-56
Coo ten, Roger, 35
correlation, 143; in astronomy, 273-274 (see also entanglement); in biology, 290-292; coefficient of, 269, 310, 315; mathematical, 292-294, 206; in meteorology, 278-279; as philosophical concept, 307
Cournot, Antoine Augustin: as economist, 236, 262; interpretation of probability, 78, 84, 223; on mean values, 144, 172, 239; mentioned, 94, 205, 266; on uses of probability, 84, 234-235, 258, 261, 313
Cousin, Victor, 101, 102, 104
covariation, more interesting than regularity, 169, 184
Cowan, Ruth S., 120, 130, 132, 135
crime, statistics of, 28-30, 33-34, 64-65, 173-174
Cruevillier, Jean, 161
Cullen, Michael, 32, 34, 36
Culverwell, Edward, 213
Cuvier, Georges, 290
Cyclops, William, 165-166
Czoernig, Baron, 190
Dandelin, Germinal-Pierre, 47
Darwin, B., 158
Darwin, Charles: on chance, 134, 197; controversies concerning, 164, 196-197; on correlation, 290-291; mentioned, 131; on Fungeness, 279-281, 284; and population thinking, 134-135, 226; theory of evolution, 133-134, 209, 296, 308
Darwin, Erasmus, 131
Darwin, George, 299
Daston, Lorraine, 71-73
Daub, Edward, 126
Dave, George E., 194
De Candolle, Alphonse, 29, 173
De Decker, P., 163
demography, 240, 291
De la Rue, Warren, 276
Delaunay, Paul, 161
Delboeuf, Joseph, 222-224
Delsaui, Joseph, 205
Democritus, 168
De Moivre, Abraham: on error law, 93-94, 96, 99, 108, 121; on natural theology, 50; on probability, 9, 171
De Morgan, Augustus: criticized, 78-79, 80, 175; and Jevons, 176-177; subjective interpretation of probability, 74-76, 87, 149
Deparcieux, Antoine, 22
Dermis, William, 50
Destutt de Tracy, A.-L.-G., 84, 155
determinism: challenged, 149-150, 194; definitions of, 12; experimental, 160-161; Laplacian, 10, 72; statistical, 167, 169-170. See also indeterminism
Diamond, Marion, 36
Diamond, Solomon, 67
Dickens, Charles, 16, 57, 58
Dilthey, Wilhelm, 247
directionality of time, inconsistent with mechanics, 193, 224-225. See also reversibility paradox
dispersion, measures of, 144, 188, 192, 241-242, 245-246, 249
distributions, nonnormal, 264, 308-310
doctrine of chances. See probability
Dodgson, William, 276
Donkin, W. F., 79, 87, 122
Dormoy, Emile, 13, 245-246, 248, 249
Dostoevsky, Fyodor, 164
Double, F. J., 161
Draper, John, 205
Drinkwater, J. E., 31
Drobisch, Moritz Wilhelm: as economist,
Index

Drobisch, Moritz Wilhelm (cont.)

Droysen, Johann Gustav, 168
Du Bois-Reymond, Emil, 9, 160
Dufau, P. A., 183
Dupaquier, Michel, 291
Dupin, Charles, 24, 49
Durchkeim, Emile, 68, 69, 191

E, Boltzmann's. See H
clecticism, 101-102
cconomics: cycles in, 275; distributions in, 308; historical, 182, 186, 193, 242; hist-
torical, 182, 186, 193, 242; index numbers in, 261-264; liberal, opposition to, 311, 181-182, 187-188; Marx's, and statistical regularity, 66; mathematzation of, 255-259, 267-268; mentioned, 163, 168, 209, 248; and probability, 84, 268-269, 270; statistics, the empirical branch of, 27, 35-36, 67, 252; and statistics, Say on, 153-155
Edgeworth, Francis Ysidro, 255-269; aims of, 254-255; and analysis of variance, 268; on applications of probability, 256-257; contrasts error and variation, 260-261; on error law, 146, 260-261; on free will, 152, 259; and Galton, 258, 267-271, 208; on index numbers, 261-264; influence of, 268-269, 306, 308; interpretation of probability, 87, 259, 306; on maximization principles, 257; mentioned, 6, 10, 232, 317; on statistical regularity, 70, 259-260; use of analogies, 257-258, 279; use of significance tests, 7, 265-266
education, and crime, 28-29, 33-34, 173-174
Einstein, Albert, 217, 218
Eisenhart, Churchill, 96, 310
Eisenmann, Gottfried, 183
Elesh, David, 32
Elliot, George, 259
Ellis, Richard Leslie, 78-81, 85, 122
Emerson, Ralph Waldo, 210, 220
energeticism, 209
Engel, Ernst, 180, 181, 183, 187, 240
Engels, Friedrich, 55, 168
entanglement of observations, 270, 273-
274, 292, 293, 295
equipossibility, 73, 85, 86, 127, 306
Erasmus, Desiderius, 302
error law in astronomy, 6-7, 95-96; association with error, 4, 100, 294-296; criti-
1zed, 189, 261, 308-310; derivations of, 92, 95-96, 121-124, 126-128; difficulties of use in statistics, 45-46, 236-237; in geography, 138-139; importance for statistics, 5, 91; inverse application of and measurement, 141-143; in kinetic theory, 21-128; as law of heat diffusion, 98-99; as limit of binomial, 93-96, 99-100, 121; as measure of uncertainty, 94-98, 243-245, 265-266; in meteorology, 273; in method of least squares, 95-96; as model of mort-
tality, 250-251; names for, 13, 105; Que-
telet's reconceptualization of, 7, 91-92, 120, 271; as rationalization of disorder, 105, 137-138, 146; and unity of type, 108-109, 139-140, 251, 307-308
—applied to variation by Fourier, 98-99; by Galton, 129, 137-146; by Herschel, 121; by Lexis, 250-251, 309; by Maxwell, 116; by Pearson, 307-308; by Quetelet, 106-
108; by Spottiswoode, 138-139
—universality of Edgeworth on, 260-261; Fourier on, 99; Galton on, 139-141, 146; Herschel on, 122; Quetelet on, 108-109
Etienne, Louis, 65
eugenics, 129-130, 132, 137, 301, 316
Excrét, C.W.F., 118, 124, 195
experimental design, 317-318
Eyler, John, 36, 233

factor analysis, 314
Fallatti, Johannes, 38, 179
Fancher, Raymond E., 132
Farr, William, 36, 58, 129, 233, 271, 291
fatalism, 174
Fechner, Gustav Theodor, 139, 144, 238-
240, 265, 271
Ferrel, William, 279
Fick, Adolf, 238
Ficker, Adolf, 190
Filon, L.N.G., 310
Fischer, J. C., 169-170
Fisher, Irving, 314

For general queries, contact webmaster@press.princeton.edu
Index

Fisher, Ronald Aylmer, 3, 8, 268, 306, 315-319
Forbes, James David, 79-81, 123
Forman, Paul, 218
Forrest, Derek W., 132
Foullée, Alfred, 222
Fourier, Charles, 104
Fourier, Joseph: on error analysis, 97-98, 236, 245; on error law, 7, 98-100; and Quetelet, 43, 100; as social statistician, 28, 97, 186; theory of heat, 74, 98-99
Fox, J. J., 235-236
Fox, Robert, 114
free will: disproven by statistics, 63-64, 164; inspires reinterpretation of statistics, 149-150, 166-167, 170-171; and instabilities, 204-206; and singular solutions, 9, 205-206; yields regularities in mass, 50-51, 52, 120
defended against statistics: in Belgium, 163; in Britain, 163-167, 174-177, 193, 203-206, 241-242, 259; in Germany, 167-171, 178, 187-188, 240; in USA, 166, 221-222, 226
Fries, Jakob Friedrich, 78, 85-86
Froude, J. A., 88
Gabaglio, Antonio, 192, 253
Galloway, Thomas, 74, 76, 77
Galton, Francis, 128-146, 270-274, 277-300; advocacy of statistical mathematics, 207-208; and Buckle, 70; on composite photography, 139-140; as conservative, 130-131; on correlation, 143, 270, 290-294; disenchantment with Christianity, 132-134, 137; and Edgeworth, 258, 267-271, 298; on eugenics, 129-130, 133, 280-290; faith in error law, 91, 129, 137, 138, 146, 250, 251; family background, 131; on free will, 152, 207; friendships, 274, 277-278; as geographer, 132, 290; on Hereditary Genius, 140-142; inverse application of error law by, 141-143, 145-146; on log-normal distribution, 139, 238; and Maxwell, 205-207; mentioned, 6, 10, 230, 255, 317; as meteorologist, 272-273, 278-279; on method of intercomparison, 143-146; on Pangeneiesis, 270-286; and Pearson, 232, 297-301, 303-304, 306-308, 310, 312-315; on personality identification, 201-202; as psychologist, 137-138, 288-289; and Quetelet, 8, 128-129, 137-140, 146, 271, 272; reaction to Origin, 132-133; on reality of error law, 294-296; on regression, 286-290, 292; relation to social statistics, 135-137, 282-286; reluctance to use advanced mathematics, 299-300; on stability of type, 140, 289; on statistical analysis, 313; on statistical units, 142-143, 145-146; use of social analogies, 280-286; on variation, 4, 52, 110, 128-129, 138; wanderings, 132; youthful ambitions, 131-132; games of chance, 72, 84, 93
Garber, Elizabeth Wolfe, 118, 124
Garnier, J. G., 43
Garnier, Joseph, 236
Gasman, Daniel, 210
Gauss, Carl Friedrich, 4, 95, 96
Gaussian curve. See error law
Gavarret, Jules, 238
geography, 8, 139-139, 200
geology, 233-234
geometric mean, 139, 239, 262-263
Gibbs, J. Willard, 7, 215, 316
Gillispie, C. C., 57, 71, 118, 223
Gioja, Melchiorre, 53, 153
Gladstone, William, 200
Glaisier, James, 270
Glass, David V., 20
Godwin, William, 26
Goldmann, Lawrence, 31, 32
Goncourt, Edmond and Jules de, 230
Göring, Carl, 170
Gosset, W. S., 3, 317
Gould, Benjamin Aphthorp, 109
Gould, Stephen Jay, 130, 314
Gouraud, Charles, 91
Gower, Barry, 70
Graham, George, 58
Graumann, Carl F., 67
Granta, John, 18, 19, 22, 40
Greg, Samuel and W. R., 32
Guerry, André-Michel, 40, 173, 180
Guillard, Achille, 240, 291
Guy, William Augustus, 150, 236
H, Boltzmann’s (proportional to negative of entropy), 126-127, 212-214
Hacking, Ian, 8, 30, 150, 218

325
Index

Hagen, G.H.L., 96
Hain, Joseph, 245
Halbwachs, Maurice, 101
Halley, Edmond, 44, 58, 71
Hamilton, Sir William, 104, 195
Hamilton Dickson, J. D., 272, 295
Hankins, Frank, 43
heat: Fourier’s analysis of, 98-99; models of, 114-115
Heerwagen, Friedrich, 239
Hege, G.W.F., 167-168
Heidelberger, Michael, 134, 135, 161, 240
Heiss, Klaus-Peter, 243
Held, Adolf, 180, 187
Helferich, J.A.R. von, 174, 187
Helmholtz, Hermann von, 209
Henningsen, J.H.A., 275
Herapath, John, 114
Herbert, Johann Friedrich, 239
Héreau, E., 173
heredity: Galton’s statistical theory of, 279-286
Herivel, John, 97
Hermann, F.B.W. von, 187
HERschel, John, 118-122; on Darwin, 197; on error law, 7, 118-124; on probability, 74, 79, 83, 87, 119; and Quetelet, 119, 167, 220, 233; on statistical regularity, 120
heterogeneity, biological: intrinsic to society, 175-177; in medicine, as obstacle to statistics, 158-159, 160, 162; in society, as obstacle to statistics, 25, 151, 154-156, 170-172; in society, statistics well suited to, 183, 180, 244-245, 252
Heyde, C. G., 234
Heywood, Benjamin, 32
Hieber, Erwin, 210
Hildebrandt, Bruno, 180, 183
Hils, Victor L., 27, 32, 36, 120, 143, 313
historical economics, 182, 186, 193, 242
Hitler, Adolf, 303
Hobbes, Thomas, 19
Hodge, M.J.S., 134
holism, 168-170
Holland, Henry, 57
l’homme moyen. See average man
homogeneity: assumed in probability, 175; rejected by Pearson, 305-306. See also heterogeneity
Hooker, Joseph, 197
Hooker, R. H., 314
Hooper, Wynnard, 234
Houghton, Walter, 27
Humboldtian science. See quantitative natural history
Hull, David L., 18, 197
Hume, David, 20
Humphrey, Thomas M., 314
Hunt, Frederick Knight, 58
Hunter, William Wilson, 275, 277
Hutchison, Terence W., 181
Huth, Alfred Henry, 60
Huxley, Thomas Henry, 9, 196, 197, 226
hybridization, 282
idéologie, 154, 155
Inama-Sternegg, K. T. von, 190, 191
independence: biological, 292; statistical, 246
indeterminism: defined, 12; in philosophy, 222-227, 243; in physics, 217-218, 318. See also determinism
index numbers, economic, 261-264
indifference, principle of, 73, 82-83, 86
Ingram, J. K., 234
instability: and free will, 204-206; of society, 177
insurance: cited against prayer, 137; model for probability, 81, 83, 85, 87-88, 155, 221; in political arithmetic and statistics, 18, 20, 44, 50, 233, 240; probabilistic study of, 71, 74-76, 85, 97, 231, 237, 245; as source of analogies, 65, 113, 214-215; as vindication of probability, 120
intellectual aristocracy, 131
intelligence, concept of, 314
International Statistical Congress, 58-59, 139, 165, 234
International Statistical Institute, 237, 303
iron law of wages, 181-182
Ivory, James, 9-10
Jaffé, Edgar, 192
James, William, 221-222, 226
Janik, Allen, 209
Jenkin, Fleming, 203
Jessen, Willers, 238
Jevons, William Stanley; advocates mathematical social science, 259, 261, 313; on

326

For general queries, contact webmaster@press.princeton.edu
Index

Littré, Emile, 205
Loev, Richard, 276
logic, relation to probability, 81-82
log-normal distribution, 139
Lohff, Brigitte, 160
Loschmidt, Joseph, 211-213, 215, 224
Lotze, Hermann, 170, 171
Louis, Pierre Charles Alexander, 157-159, 161
Louis Philippe (of France), 101
Louis XVIII (of France), 28, 102
Low, Joseph, 153
Lubbock, John, 74
Lucas, M., 173, 174
Lucretius, 197, 198, 203, 204
Luther, Martin, 302
Lyell, Charles, 233-234
MacAlister, Donald, 271
Macaulay, Thomas Babington, 82
McGrath, William, 209
Machi, Ernst, 209, 209
MacKenzie, Donald, 131, 269, 272, 274, 205, 209, 300, 301, 303-305, 311, 317
McMullen, L., 317
Mailly, Ed., 47
Malthus, Thomas Robert, 20, 26, 27, 31, 134
Manning, Thomas, 220
Markov, A. A., 254
Marshall, Alfred, 257, 263
Marshall, Frederic, 234
Marx, Karl, 66, 168, 253, 303
mass phenomena, 6, 12, 183, 185, 252, 306
mathematization: of biology, 283-286, 297; of economics, 255-259; of social science, 42-46, 231, 261. See also quantification
Mauss, Henri, 192
Maxwell, James Clerk, 111-126, 164-208; acquaintance with probability, 123; as atomist, 108-199; begins work on kinetic theory, 117-118; and Boltzmann, 126-128, 208, 210-211, 216-217; and Buckle, 70, 194-195, 204; and R. Campbell, 241; “demon” of, 200, 207, 211; derivations of error law, 124-126; distribution law of, 92, 118-119, 124, 146, 212, 214; and R. A. Fisher, 316; on free will, 9, 150, 193, 195-196, 199, 202-206; and Galton, 205-207; and Herschel, 7, 118-119, 123, 123; on indeterminacy of statistical laws, 201-202, 206-207; mentioned, 6, 230, 259, 271; objects to scientific naturalism, 106-109; and Peirce, 224, 226, 227; on physical stability, 204-206; and Quetelet, 7, 110; religious and philosophical beliefs, 194-195; on science and religion, 199-200; sees second law as only probable, 10, 150, 193, 200-201; on statistical method, 111-112, 204; use of statistical analogies by, 111-112, 136, 201-202, 204, 279
Maxwell-Boltzmann distribution, 124-128
Mayr, Ernst, 67, 134
Mayr, Georg, 68, 185, 237
mean, true, vs. average, 107, 121
mean free path, 117
Mease, James, 37
measurement, 220, 226, 233, 265; of belief, 72-73, 84, 100, 259; of moral traits, 53; using error law, 141-143. See also quantification
median, 144, 145, 233, 240, 264, 268
medical statistics, 28-30, 157-163, 237-239, 242
Meldrum, C., 274, 275
Mendel, Gregor, 135
Mendoza, Eric, 114
mercantilism, 20
Merkel, Julius, 239
Merivale, Herman, 31, 65
Merriman, Mansfield, 310
Merz, John Theodore, 4-5
meteorology, 95, 138, 175, 272-279, 293, 313
Michell, John, 79
Mill, James, 82
Mill, John Stuart: criticism of subjective probability, 78, 82-83; frequency interpretation of, 82-83, 119, 221; influence of, 123, 168, 221, 227, 259; on statistical regularity, 66
Monist, The, 225
Montesquieu, C. S. Baron de, 20
Montmort, P. R. de, 9
moral statistics, 28-30, 33-34, 49, 64-65, 163-166, 247
Moray, Robert, 18-19
Moreau de Jonnès, Alexandre, 28-29, 236
Index

Morgan, Charles, 63-66, 173
Morley, Henry, 302
Morrell, Jack, 32
Moser, Ludwig, 186
Mosteller, Frederick, 237

Napoleon Bonaparte, 28, 66, 97
natural theology, 21
nature vs. nurture, 130
Neumann, Fr. J., 184
Neumann, Leopold, 39, 171, 180, 246
Neumann-Spallart, F. X. von, 190, 191
Newcomb, Simon, 202
Newton, Isaac, 46, 104, 201, 202, 239, 247
Nietzsche, Friedrich, 90, 148
Nieuwenhuyd, Bernard, 22
Nightingale, Florence, 36, 67, 272
normal curve (term), 312
normal curve. See error law
Norton, Bernard J., 299, 301, 303, 306
numerical method. See statistics, medical
Nye, Mary Jo, 205, 210

Oberschall, Anthony, 190
Oesterlen, Friedrich, 159
Oettingen, Alexander von, 68, 178, 188, 189, 249, 250
ogive, 145
Olson, Richard, 194
organicism, social, 178, 181, 182, 186, 188-189
Ostwald, Wilhelm, 209
Owen, Robert, 66

Packer, Barbara, 220
Pangeneusis, 279-286
Pankoke, Eckart, 181, 182
Pattison, Mark, 67
Peacock, George, 74
Pearson, Karl, 307-314; as academic entrepreneur, 232, 270, 301, 311-315; as advocate of statistical method, 297; ambitions for statistics, 311-314; as applied statistician, 312; belief in continuity, 301, 303, 304, 305, 307; broad interests of, 301-302; as coiner of terms, 13, 307, 312; contingency tables, 311; on correlation, 307, 310-311; on Darwin, 134-135; and Edgeworth, 261, 269, 306, 307; on error law and skew distributions, 262, 307-310; as eugenicist, 140, 304-305, 310-311; and Galton, 232, 297-301, 303-304, 306-308, 310, 312-315; and Gosset, 317; on history of statistics, 9, 273-274, 278; and Lexis, 309; on mathematics in biological and social science, 280, 297, 299, 300, 304, 307; on Maxwell, 9, 199-200; mentioned, 3, 4, 10, 255, 268, 282; on nature of science, 9, 304, 305-306, 308; opposition to individuality, 304, 307; positivism of, 297, 305-306, 308, 309; and Quetelet, 303, 304, 305, 307; religious views, 302; scientism of, 302-304, 306; as socialist, 303-304; and Yule, 311
Peel, J. D. Y., 57
Peirce, Benjamin, 220
Peirce, Charles Sanders, 219-227; belief in indeterminism, 150, 152, 224-227; and Cambridge, 219-220; and error theory, 220-221, 227; on fluctuations in nature, 225-226; on inconsistency of growth with law, 103, 224-225; mentioned, 202-203; on panspermism, 226; on relation of probability and community, 221; refutation of arguments for determinism by, 225; as scientist, 220-221, 265
Perazzo, Luigi, 100, 102
Perrin, Claude, 217
Perrot, Michelle, 30
Persons, Warren, 314
perturbational forces, 47-48, 60-61, 108
Petty, William, 18-20, 22, 25
Pinel, Philippe, 157
phenology, 35
physics, 98-100, 111-128, 195-219
Plackett, R. L., 96
Planck, Max, 10, 214, 217
poetry, statistical analysis of, 266, 268
Pogson, Norman, 239
Poincaré, Henri, 214
Poinson, Louis, 77, 84, 155
Poison, Siméon-Denis; on applications of probability, 7, 71, 72, 155, 244; on law of large numbers, 12-13, 52, 77, 85; as mathematician, 74, 237, 238, 245, 246, 248, 254; and Quetelet, 43; as subjectivist, 176

329
Poisson distribution, 117, 217
political arithmetic, 19-23
political economy. See economics
population, geometric growth of, 22
population thinking, 6, 134. See also statistical thinking
Porter, George Richardson, 31, 33, 34
Porter, T. M., 107, 118
Portlock, J. E., 41
positivism, 155-156, 209-210, 297, 305-306, 309
possibility, 73
prayer, efficacy of, 137
Price, L. L., 16
Price, Richard, 23
probability, mathematical: of causes, 73, 85, 94-95, 265-266; of causes, questioned, 78-80, 84; criticism of, 82, 155, 161; definitions, 12; in economics, 81, 268-269, 270; and frequencies, 75-76; frequency interpretation, 17, 80-88, 210, 252-253; inverse application of, 93; invoked to justify reliance on an average, 115, 117, 123-124, 210; judicial applications of, 45, 71, 77; judicial applications criticized, 84-85, 175; and logic, 81-82; skepticism of, 9, 84; subjective interpretation of, 71-75, 87, 176, 259; value for insurance, 71, 74; value for statistics, 45-46
probable error, 13, 144
professional middle classes, 303-304
progress, inevitability of, 108-109, 140
Provine, William B., 140, 301
psychical research, 266
psychology, 67, 137-139, 239-240, 265, 271, 288-289, 314
public health, 28-30
quantification: biological, 68, 138, 233; medical, 156-158; opposition to, 41-42, 154-156, 158-163; social, 10, 19-20, 233. See also mathematicization; measurement
quantitative natural history, 43-45, 119

Radcliffe, Gustav, 242
Raige-Delorme, Jacques, 238
random drift, 310
randomness, meaning of, 86. See also chance
Rayleigh, R. J. Strutt, Third Baron, 201
recurrence paradox, 214
Reden, F. W., 39, 184, 185
regression, 286-289, 292, 293-294
Rennisch, Eduard, 246, 247
Reichesberg, Natini, 191
Renouvier, Charles Bernard, 222-223, 226, 227, 259, 263
reversibility paradox, 211
Ricardo, David, 31

330
Index

Rickman, John, 30-31
Roberts, John, 49
Robertson, Croom, 301
Robertson, R. John, 49
Romanes, George John, 137
Roscher, Wilhelm, 183
Rousseau, Jean-Jacques, 20
Rudwick, Martin J. S., 234
Ruge, Arnold, 167-168
Rümelin, Gustav: critique of statistics, 184-186, 247; on definition of statistics, 183-184; influence of, 189-190, 192, 244; life of, 182-183; mentioned, 227
Sabine, Edward, 274
St. Simon, Claude Henri de, 41
St. Simonians, 30, 55, 132
St. Venant, A.C.J.B. de, 205, 206, 222
sampling, 236-237, 310
Sargent, William Lucas, 174
Say, Jean-Baptiste, 152-155, 158
Sehaarschmidt, C., 170
Schäfer, Ulla G., 182
Schaffle, Albert, 190
Schiller, Joseph, 161
Schimmer, G. A., 190, 191
Schöfer, August Ludwig, 24, 38
Schmoller, Gustav, 170, 180, 181, 183, 186, 243
Schneider, Ivo, 10, 93, 115, 116
Schols, Charles, 274
Schörske, Carl, 209
Schrödinger, Erwin, 218
Schuetz, Dr., 216
Schumpeter, Joseph, 269
Schuster, Arthur, 275
Schwabe, Samuel Heinrich, 274
Schweber, Silvan S., 135
scientific naturalism, 196-198
Scott, R. H., 273
Scoop, Poulett, 233, 234
Sedgwick, Adam, 35
Seneta, E., 234
Senior, Nassau, 57, 234
sex ratios at birth, 49-50, 94, 248-249
Shapin, Steven, 282
Sheehan, James, 168, 181, 182
Sheppard, W. F., 272, 297
Sheynin, O. B., 94, 238
Shoen, Harriet H., 56
Short, Thomas, 21
Siebeck, Hermann, 170
significance testing, 46, 243-245, 265-266
Sigwart, Christoph, 186
Sinclair, John, 24, 133
singularity, points of, 9, 205-206
skew distributions, 308-310
Smith, Adam, 153, 187
Smith, Crosbie, 74
Smith, Valentin, 148
Smoluchowski, Marian, 217
social laws, seen as impossible, 67, 185, 189
social mechanics. See social physics
social physics. based on average man, 52-53;
Conte on, 156; Edgeworth on, 257; as
system of analogies, 42, 46, 47
Social Science Congress, 136
socialist Darwinism, 304
society: idea of, 39, 63; primacy over state,
26-27, 56-57, 61, 180-181; reality of: justifies
statistics, 156-157; reality of: shown
by statistics, 52, 54, 68-69
sociology, 192-192
Soffer, Reba N., 226
Solar Physics Committee, 276-278
Sommer, Werner, 192
Spearman, Charles, 3, 314
Spencer, Herbert, 57, 68, 190, 225, 271
Spengler, Oswald, 218
"sports," 282
Spittiswoode, William, 8, 138, 139, 271
stability of type, 140, 289
standard deviation (coined), 312
Stanley, Lord, 57
statistical agencies, official, 28, 30-31, 38,
87
statistical investigation: in Britain, 30-37; in
France, 27-30; in Germany, 37-39; in
USA, 37
statistical law: in Britain, 57, 63; Quetelet's
idea of, 5-6, 44, 56
—rejection of, 179-180; by Bernard, 161; by
R. Campbell, 241-242; by Held, 187; by
Knapp, 186; by Lexis, 247-248; by Maxwell,
201; by Rehnisch, 246-247; by Rümelin,
184-185; by Say, 153; by Wagner,
168-169. See also statistical regularity
statistical mechanics, 215
statistical regularity, 5-6, 259; first noticed,
49-50; as foundation of frequency inter-
Index

statistical regularity (cont.)
pretation, 76-77, 78, 80-81, 85-86, 87-
88, 175; of immoral acts, 49-51, 62-63; as
justification for social science, 51-54, 62-
63, 66, 68-69; lacks causal necessity, 169-
171, 175, 177, 179, 247-248; less reveal-
ing than covariation, 169, 170, 180, 184;
and natural theology, 49-51; as new kind
of scientific principle, 62, 70, 185-186, 201-202, 206-207; as paradigm of induc-
tion, 220, 222; tells nothing about indi-
viduals, 166-167, 175, 184, 203, 222-
223, 247; uncertainty of, 70, 112. See
also statistical law
statistical seminar: in Berlin, 180, 187, 190;
in Vienna, 190
statistical societies: in France, 28-29; in
Germany, 38-39; in London, 30-36, 39,
50-60, 135, 234, 301; in Manchester, 31-
32, 175-176
statistical significance, tests of, 46, 94-98,
243-245, 265-266
statistical thinking, characterized, 35, 318-
319
statistical units, 142-143, 203, 289-290
statistics, definitions of, 11-12; defined
as social science, 24-25, 35-41, 183; defined
as mathematical method, 84, 111-112,
183, 204, 233-236; etymology of, 23-24,
38, 152-153
statistics, mathematical, 233-236; depend-
ence on applications, 8-10, 21-212, 220,
270-271, 293-294, 305, 312-313, 316;
first chair of, 315; phrase coined, 245; as
research field, 258-259, 267-268, 307-
314, 315-319
statistics, as method, 111-112, 204, 233-
236; challenged as useless, 8, 153-162;
criticized as mere empiricism, 40, 154,
168-159, 168
—applications of: to anthropology, 108-109,
140, 145, 250, 291-292, 205, 312, 313;
to astronomy, 6-7, 74, 84, 95-96, 220,
235, 239, 273-274, 293-296; to biology,
132-135, 139-146, 260-271, 279-300,
307-314, 316-317; to economics, 7-8, 66,
153-155, 181-189, 255-270, 275, 308; to
geography, 8, 138-139, 290; to geology,
233-234; to medicine, 28-30, 157-163,
237-239, 242; to meteorology, 95, 138,
175, 272-279, 293, 313; to physics, 98-
100, 111-112, 151-159; to psychology,
67, 137, 139, 239-240, 261, 270, 286-
289, 314; to quantitative natural history,
43-45, 119, 220; to sociology, 190-192
statistics, as social science: as agent of cen-
tralization, 17, 19, 23, 25-26, 68, as au-
tonomous discipline, 36-37, 39-39, 243,
245; leads to materialism, 40-49, 165,
165; liberal analogies based on, 47-48,
81-86; and liberalism, 5, 26-26, 36,
56-56, 169; and moral phenomena, 26-
30, 33-34, 49, 61-65, 163-166, 247;
source of analogies, 6, 54, 70, 111-114,
136, 297; as tool of reform, 34-35, 53-54
Stein, Lorenz von, 180, 254
Steinheil, Karl August, 239
Stephen, John Fitzgerald, 166-167
Stewart, Balfour, 190, 203, 204, 262, 275,
276
Stieda, Ludwig, 250
Stigler, Stephen, 4, 95, 96, 255, 256, 268,
269, 318
Stirling, James, 93, 128
Stock, C. S., 316
Stokes, George Gabriel, 117, 118, 239
Stone, Mervyn, 36, 67
Strachey, Richard, 277-279, 293
Strauss, David Friedrich, 187
Strong, John V., 75, 83
sunspot cycles, problem of, 274-278
Struik, Nicolaus, 22
Süssmilch, Johann Peter, 21-23, 26, 46, 50
Sykes, W. H., 31
* test, 315, 317
Taillandier, A., 28
Tait, Peter Guthrie, 112, 196, 199, 200,
203, 211
Taylor, William Cooke, 27
Tennyson, Alfred Lord, 199
Terman, Lewis, 131
Thackray, Arnold, 32
thermodynamics, second law of, 125-128,
200-201, 210-216
Thirion, Julien, 205
Thomson, William (Lord Kelvin), 200,
203, 207, 211, 224
Thorkildsen, Edward, 314
Todhunter, Isaac, 33, 95
Index

Tonnies, Ferdinand, 191
Tooke, Thomas, 66
Toulmin, Stephen, 209
Tröhler, Ulrich, 157
Turgot, A.R.J., 23, 71
Turner, Frank M., 197, 198
Turner, Stephen, 69
Twain, Mark, 90
Tyndall, John, 196-198, 205, 207

Ueberweg, Friedrich, 242
uncertainty, in physics, 104

Van Meenen, M., 163
variation: dismissed by Clausius, 116; importance of, 169, 179-180, 184, 189
— contrasted with error, 125, 202, 294-296; by Galton, 128-129, 206; by Jevons, 176-177; in meteorology, 274, 278
— modelled by error curve, 6, 7, 91-92, 110, 176; by Galton, 129, 137-146; by Herschel, 121; by Lexis, 250-251, 306; by Maxwell, 116; by Pearson, 307-308; by Quetelet, 106-108

Venn, John: on anthropometry, 271, 292; on free will, 174-176; on error law, 261; as frequentist, 81, 87, 175; influence of, 221, 227

Verein für Sozialpolitik, 39, 181, 243
Vetch, R. H., 277
Villerme, Louis René, 30, 47, 163
Virchow, Rudolf, 282
Vitry, Aubert de, 49

Wagner, Adolph: criticism of, 178, 179, 188, 249; as economist, 68, 181, 183; on free will, 169-179; mentioned, 68, 174; on statistical law, 168-169, 180, 189

Wahlberg, Emil Wilhelm, 178
Wahle, Richard, 171
Wahn, Johannes, 171
Walker, Helen M., 300
Wallace, Alfred Russel, 308
Wallace, Robert, 21
Wappäus, J. E., 178, 179, 186
Wargentin, Pehr Wilhelm, 22
Waterston, John James, 114
Watson, Henry W., 271, 294-296, 298
Weber, Ernst Heinrich, 239
Weber, Max, 192
Weldon, W. F. R.: as advocate of statistics, 296-297; and Biometrika, 134, 306; and Pearson, 299, 300, 301, 307, 312
Westergaard, Harald, 27, 191, 249
Whately, Richard, 82
Whewell, William, 33, 66, 67, 74, 163, 164
Whipple, G. M., 272, 278, 279
Williamson, Alexander, 302
Windelband, Wilhelm, 223
Wise, M. Norton, 192
Wissler, Clark, 314
Wittstein, Theodor, 245
Wołowski, M. L., 67
Woolhouse, W. S.B., 234
Wright, Sewall, 310
Wundt, Wilhelm, 67, 192, 239, 265
Wyrmbioff, G., 156

You Poh Seng, 237
Young, Thomas, 162-163
Yule, G. Udny, 3, 302, 311, 315

Zermelo, Ernst, 10, 209, 214, 215
Zeuner, Gustav Anton, 240