Contents

	Preface		xvii
	Pre	erequisites and Notation	xvii
	Us	es for This Book	xviii
	Wł	nat This Book Is Not	xix
PART I	PRELIN	MINARIES	1
CHAPTER 1	Introdu	ction	3
	1.1 Ho	w This Book Informs the Social Sciences	5
	1.2 Ho	w This Book Informs the Digital Humanities	8
	1.3 Ho	w This Book Informs Data Science in Industry	
	and	d Government	9
	1.4 A (Guide to This Book	10
	1.5 Co	nclusion	11
CHAPTER 2	Social S	Science Research and Text Analysis	13
	2.1 Dis	scovery	15
	2.2 Me	easurement	16
	2.3 Inf	erence	17
	2.4 So	cial Science as an Iterative and	
	Cu	mulative Process	17
	2.5 An	Agnostic Approach to Text Analysis	18
	2.6 Dis	scovery, Measurement, and Causal Inference:	
	Но	w the Chinese Government Censors Social	
	Me		20
	2.7 Six	Principles of Text Analysis	22
	2.7	1 Social Science Theories and Substantive	
	0 -	Knowledge are Essential for Research Design	22
	2.7	2 lext Analysis does not Replace Humans—It	
	0 -	Augments Them	24
	2.7	3 Building, Refining, and Testing Social Science	00
	0 -	Ineories Requires Iteration and Cumulation	26
	2.7	4 IEXT ANALYSIS IVIETNOUS DISTIIL GENERALIZATIONS	
	0 -	Trom Language	28
	2.7	the Best Method Depends on the Task	29

viii Contents

	 2.7.6 Validations are Essential and Depend on the Theory and the Task 2.8 Conclusion: Text Data and Social Science 	30 32
PART II	SELECTION AND REPRESENTATION	33
CHAPTER 3	 Principles of Selection and Representation 3.1 Principle 1: Question-Specific Corpus Construction 3.2 Principle 2: No Values-Free Corpus Construction 3.3 Principle 3: No Right Way to Represent Text 3.4 Principle 4: Validation 3.5 State of the Union Addresses 3.6 The Authorship of the Federalist Papers 3.7 Conclusion 	35 35 36 37 38 38 39 40
CHAPTER 4	 Selecting Documents 4.1 Populations and Quantities of Interest 4.2 Four Types of Bias 4.2.1 Resource Bias 4.2.2 Incentive Bias 4.2.3 Medium Bias 4.2.4 Retrieval Bias 4.3 Considerations of "Found Data" 4.4 Conclusion 	41 42 43 43 44 44 45 46 46
CHAPTER 5	 Bag of Words 5.1 The Bag of Words Model 5.2 Choose the Unit of Analysis 5.3 Tokenize 5.4 Reduce Complexity 5.4.1 Lowercase 5.4.2 Remove Punctuation 5.4.3 Remove Stop Words 5.4.4 Create Equivalence Classes (Lemmatize/Stem) 5.4.5 Filter by Frequency 5.5 Construct Document-Feature Matrix 5.6 Rethinking the Defaults 5.6.1 Authorship of the Federalist Papers 5.6.2 The Scale Argument against Preprocessing 5.7 Conclusion 	48 49 50 52 52 52 53 54 55 55 57 57 57 58 59
CHAPTER 6	 The Multinomial Language Model 6.1 Multinomial Distribution 6.2 Basic Language Modeling 6.3 Regularization and Smoothing 6.4 The Dirichlet Distribution 6.5 Conclusion 	60 61 63 66 66 69

CHAPTER 7	 The Vector Space Model and Similarity Metrics 7.1 Similarity Metrics 7.2 Distance Metrics 7.3 tf-idf Weighting 7.4 Conclusion 	70 70 73 75 77
CHAPTER 8	Distributed Representations of Words	78
	8.1 Why Word Embeddings	79
	8.2 Estimating Word Embeddings	81
	8.2.1 The Self-Supervision Insight	81
	8.2.2 Design Choices in Word Embeddings	81
	8.2.3 Latent Semantic Analysis	82
	8.2.4 Neural Word Embeddings	82
	8.2.5 Pretrained Embeddings	84
	8.2.6 Rare Words	84
	8.2.7 An Illustration	85
	8.3 Aggregating Word Embeddings to the	
	Document Level	86
	8.4 Validation	87
	8.5 Contextualized Word Embeddings	88
	8.6 Conclusion	89
CHAPTER 9	Representations from Language Sequences	90
	9.1 Text Reuse	90
	9.2 Parts of Speech Tagging	91
	9.2.1 Using Phrases to Improve Visualization	92
	9.3 Named-Entity Recognition	94

9.4	Dependency Parsing	95
9.5	Broader Information Extraction Tasks	96
9.6	Conclusion	97

PART III DISCOVERY

99

ix

CHAPTER 10	Principles of Discovery	103
	10.1 Principle 1: Context Relevance	103
	10.2 Principle 2: No Ground Truth	104
	10.3 Principle 3: Judge the Concept, Not the Method	105
	10.4 Principle 4: Separate Data Is Best	106
	10.5 Conceptualizing the US Congress	106
	10.6 Conclusion	109
CHAPTER 11	Discriminating Words	111
	11.1 Mutual Information	112
	11.2 Fightin' Words	115
	11.3 Fictitious Prediction Problems	117
	11.3.1 Standardized Test Statistics as Measures	
	of Separation	118

x Contents

	 11.3.2 χ² Test Statistics 11.3.3 Multinomial Inverse Regression 11.4 Conclusion 	118 121 121
CHΔPTER 12	Clustering	123
CHAITER 12	12.1 An Initial Example Using k -Means Clustering	123
	12.1 An initial Example Using K Means elastering	127
	12.3 Approaches to Clustering	127
	12.3.1 Components of a Clustering Method	128
	12.3.2 Styles of Clustering Methods	130
	12.3.3 Probabilistic Clustering Models	132
	12.3.4 Algorithmic Clustering Models	134
	12.3.5 Connections between Probabilistic and	
	Algorithmic Clustering	137
	12.4 Making Choices	137
	12.4.1 Model Selection	137
	12.4.2 Careful Reading	140
	12.4.3 Choosing the Number of Clusters	140
	12.5 The Human Side of Clustering	144
	12.5.1 Interpretation	144
	12.5.2 Interactive Clustering	144
	- · · · ·	
CHAPTER 13	Iopic Models	147
	13.1 Latent Dirichlet Allocation	147
	12.1.2 Example: Discovering Credit Claiming for Eiro	149
	Grants in Congressional Press Balaases	1/19
	13.2 Interpreting the Output of Topic Models	140
	13.3 Incorporating Structure into I DA	153
	13.3.1 Structure with Upstream. Known Prevalence	
	Covariates	154
	13.3.2 Structure with Upstream, Known Content	
	Covariates	154
	13.3.3 Structure with Downstream, Known Covariates	156
	13.3.4 Additional Sources of Structure	157
	13.4 Structural Topic Models	157
	13.4.1 Example: Discovering the Components	
	of Radical Discourse	159
	13.5 Labeling Topic Models	159
	13.6 Conclusion	160
CHAPTER 14	Low-Dimensional Document Embeddings	162
	14.1 Principal Component Analysis	162
	14.1.1 Automated Methods for Labeling Principal	
	Components	163
	14.1.2 Manual Methods for Labeling Principal	
	Components	164

Contents xi

14.1.3 Principal Component Analysis of Senate Press

	Releases 14.1.4 Choosing the Number of Principal Components 14.2 Classical Multidimensional Scaling 14.2.1 Extensions of Classical MDS 14.2.2 Applying Classical MDS to Senate Press Releases 14.3 Conclusion	164 165 167 168 168 169
PART IV	MEASUREMENT	171
CHAPTER 15	 Principles of Measurement 15.1 From Concept to Measurement 15.2 What Makes a Good Measurement 15.2.1 Principle 1: Measures should have Clear Goals 15.2.2 Principle 2: Source Material should Always be Identified and Ideally Made Public 15.2.3 Principle 3: The Coding Process should be Explainable and Reproducible 15.2.4 Principle 4: The Measure should be Validated 15.2.5 Principle 5: Limitations should be Explored, Documented and Communicated to the Audience 15.3 Balancing Discovery and Measurement with Sample Splits 	173 174 174 175 175 175 175 175 176
CHAPTER 16	 Word Counting 16.1 Keyword Counting 16.2 Dictionary Methods 16.3 Limitations and Validations of Dictionary Methods 16.3.1 Moving Beyond Dictionaries: Wordscores 16.4 Conclusion 	178 178 180 181 182 183
CHAPTER 17	 An Overview of Supervised Classification 17.1 Example: Discursive Governance 17.2 Create a Training Set 17.3 Classify Documents with Supervised Learning 17.4 Check Performance 17.5 Using the Measure 17.6 Conclusion 	184 185 186 186 187 187 188
CHAPTER 18	Coding a Training Set 18.1 Characteristics of a Good Training Set 18.2 Hand Coding 18.2.1 1: Decide on a Codebook 18.2.2 2: Select Coders 18.2.3 3: Select Documents to Code 18.2.4 4: Manage Coders 18.2.5 5: Check Reliability	189 190 191 191 191 191 192 192

xii Contents

	18.2.6 Managing Drift	192
	18.2.7 Example. Making the News	192
	18.4 Supervision with Found Data	195
	18.5 Conclusion	196
		100
CHAPTER 19	Classifying Documents with Supervised Learning	197
	19.1 Naive Bayes	198
	19.1.1 The Assumptions in Naive Bayes are Almost	200
	10.1.2 Naive Revea is a Concrative Medel	200
	19.1.2 Naive Bayes is a Generative Model	200
	19.2 Machine Learning	201
	19.2.1 Fixed Basis Functions	202
	19.2.2 Adaptive Basis Functions	205
	19.2.3 Quantification	206
	19.2.4 Concluding Thoughts on Supervised Learning	
	with Random Samples	207
	19.3 Example: Estimating Jihad Scores	207
	19.4 Conclusion	210
CHAPTER 20	Checking Performance	211
	20.1 Validation with Gold-Standard Data	211
	20.1.1 Validation Set	212
	20.1.2 Cross-Validation	213
	20.1.3 The Importance of Gold-Standard Data	213
	20.1.4 Ongoing Evaluations	214
	20.2 Validation without Gold-Standard Data	214
	20.2.1 Surrogate Labels	214
	20.2.2 Partial Category Replication	215
	20.2.3 Nonexpert Human Evaluation	215
	20.2.4 Correspondence to External Information	215
	20.3 Example: validating Jinau Scores	210
		217
CHAPTER 21	Repurposing Discovery Methods	219
	21.1 Unsupervised Methods Tend to Measure Subject	
	Better than Subtleties	219
	21.2 Example: Scaling via Differential Word Rates	220
	21.3 A Workflow for Repurposing Unsupervised Methods	
	for Measurement	221
	21.3.1 1: Split the Data	223
	21.3.2 2. FILLITE MODEL 21.3.3. Validate the Model	223 222
	21.3.5 5. valuate the model 21.3.4 A: Fit to the Test Data and Revalidate	223 225
	214 Concerns in Repurposing Unsupervised Methods	225
	for Measurement	225
	21.4.1 Concern 1: The Method Always Returns a Result	226
	•	

-	
Contents	XII

	 21.4.2 Concern 2: Opaque Differences in Estimation Strategies 21.4.3 Concern 3: Sensitivity to Unintuitive Hyperparameters 21.4.4 Concern 4: Instability in results 21.4.5 Rethinking Stability 21.5 Conclusion 	226 227 227 228 229
Part V	INFERENCE	231
CHAPTER 22	 Principles of Inference 22.1 Prediction 22.2 Causal Inference 22.2.1 Causal Inference Places Identification First 22.2.2 Prediction Is about Outcomes That Will Happen, Causal Inference is about Outcomes from 	233 233 234 235
	Interventions 22.2.3 Prediction and Causal Inference Require Different Validations	235 236
	22.2.4 Prediction and Causal Interence Use Features	237
	22.3 Comparing Prediction and Causal Inference22.4 Partial and General Equilibrium in Prediction and	238
	Causal Inference 22.5 Conclusion	238 240
CHAPTER 23	 Prediction 23.1 The Basic Task of Prediction 23.2 Similarities and Differences between Prediction and Measurement 	241 242 243
	23.3 Five Principles of Prediction 23.3.1 Predictive Features do not have	244
	23.3.2 Cross-Validation is not Always a Good Measure of Predictive Power	244
	 23.3.3 It's Not Always Better to be More Accurate on Average 23.3.4 There can be Practical Value in Interpreting 	246
	Models for Prediction 23.3.5 It can be Difficult to Apply Prediction	247
	to Policymaking 23.4 Using Text as Data for Prediction: Examples 23.4.1 Source Prediction 23.4.2 Linguistic Prediction 23.4.3 Social Forecasting 23.4.4 Nowcasting 23.5 Conclusion	247 249 253 254 256 257

xiv Contents

CHAPTER 24	 Causal Inference 24.1 Introduction to Causal Inference 24.2 Similarities and Differences between Prediction and Measurement, and Causal Inference 24.3 Key Principles of Causal Inference with Text 24.3.1 The Core Problems of Causal Inference Remain, even when Working with Text 24.3.2 Our Conceptualization of the Treatment and Outcome Remains a Critical Component of Causal Inference with Text 24.3.3 The Challenges of Making Causal Inferences with Text Underscore the Need for 	259 260 263 263 263 263
	Sequential Science 24.4 The Mapping Function 24.4.1 Causal Inference with <i>g</i> 24.4.2 Identification and Overfitting 24.5 Workflows for Making Causal Inferences with Text 24.5.1 Define <i>g</i> before Looking at the Documents 24.5.2 Use a Train/Test Split 24.5.3 Run Sequential Experiments 24.6 Conclusion	264 266 267 268 269 269 269 269 271 271
CHAPTER 25	Text as Outcome 25.1 An Experiment on Immigration 25.2 The Effect of Presidential Public Appeals 25.3 Conclusion	272 272 275 276
CHAPTER 26	Text as Treatment 26.1 An Experiment Using Trump's Tweets 26.2 A Candidate Biography Experiment 26.3 Conclusion	277 279 281 284
CHAPTER 27	 Text as Confounder 27.1 Regression Adjustments for Text Confounders 27.2 Matching Adjustments for Text 27.3 Conclusion 	285 287 290 292
PART VI	CONCLUSION	295
CHAPTER 28	 Conclusion 28.1 How to Use Text as Data in the Social Sciences 28.1.1 The Focus on Social Science Tasks 28.1.2 Iterative and Sequential Nature of the Social Sciences 28.1.3 Model Skepticism and the Application of Machine Learning to the Social Sciences 	297 298 298 298 298 299

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher		
	Contents	XV
28.2 Applying Our Principles beyond Text Data 28.3 Avoiding the Cycle of Creation and Destruction	299	
in Social Science Methodology	300	
	202	
Acknowledgments	303	
Bibliography	307	
Index	331	

CHAPTER 1

Introduction

This is a book about the use of texts and language to make inferences about human behavior. Our framework for using text as data is aimed at a wide variety of audiences—from informing social science research, offering guidance for researchers in the digital humanities, providing solutions to problems in industry, and addressing issues faced in government. This book is relevant to such a wide range of scholars and practitioners because language is an important component of social interaction—it is how laws are recorded, religious beliefs articulated, and historical events reported. Language is also how individuals voice complaints to representatives, organizers appeal to their fellow citizens to join in protest, and advertisers persuade consumers to buy their product. And yet, quantitative social science research has made surprisingly little use of texts—until recently.

Texts were used sparingly because they were cumbersome to work with at scale. It was difficult to acquire documents because there was no clear way to collect and transcribe all the things people had written and said. Even if the texts could be acquired, it was impossibly time consuming to read collections of documents filled with billions of words. And even if the reading were possible, it was often perceived to be an impossible task to organize the texts into relevant categories, or to measure the presence of concepts of interest. Not surprisingly, texts did not play a central role in the evidence base of the social sciences. And when texts were used, the usage was either in small datasets or as the product of massive, well-funded teams of researchers.

Recently, there has been a dramatic change in the cost of analyzing large collections of text. Social scientists, digital humanities scholars, and industry professionals are now routinely making use of document collections. It has become common to see papers that use millions of social media messages, billions of words, and collections of books larger than the world's largest physical libraries. Part of this change has been technological. With the rapid expansion of the internet, texts became much easier to acquire. At the same time, computational power increased—laptop computers could handle computations that previously would require servers. And part of the change was also methodological. A burgeoning literature—first in computer science and computational linguistics, and later in the social sciences and digital humanities—developed tools, models, and software that facilitated the analysis and organization of texts at scale.

Almost all of the applications of large-scale text analysis in the social sciences use algorithms either first developed in computer science or built closely on those developments. For example, numerous papers within political science—including many of our

4 Chapter 1

own—build on topic models (Blei, Ng, and Jordan, 2003; Quinn et al., 2010; Grimmer, 2010; Roberts et al., 2013) or use supervised learning algorithms for document classification (Joachims, 1998; Jones, Wilkerson, and Baumgartner, 2009; Stewart and Zhukov, 2009; Pan and Chen, 2018; Barberá et al., 2021). Social scientists have also made methodological contributions themselves, and in this book we will showcase many of these new models designed to accomplish new types of tasks. Many of these contributions have even flowed from the social sciences to computer science. Statistical models used to analyze roll call votes, such as Item Response Theory models, are now used in several computer science articles (Clinton, Jackman, and Rivers, 2004; Gerrish and Blei, 2011; Nguyen et al., 2015). Social scientists have broadly adapted the tools and techniques of computer scientists to social science questions.

However, the knowledge transfer from computer science and related fields has created confusion in how text as data models are applied, how they are validated, and how their output is interpreted. This confusion emerges because tasks in academic computer science are different than the tasks in social science, the digital humanities, and even parts of industry. While computer scientists are often (but not exclusively!) interested in information retrieval, recommendation systems, and benchmark linguistic tasks, a different community is interested in using "text as data" to learn about previously studied phenomena such as in social science, literature, and history. Despite these differences of purpose, text as data practitioners have tended to reflexively adopt the guidance from the computer science literature when doing their own work. This blind importing of the default methods and practices used to select, evaluate, and validate models from the computer science literature can lead to unintended consequences.

This book will demonstrate how to treat "text as data" for *social science tasks* and *social science problems*. We think this perspective can be useful beyond just the social sciences in the digital humanities, industry, and even mainstream computer science. We organize our argument around the core tasks of social science research: *discovery*, *measurement*, *prediction*, and *causal inference*. Discovery is the process of creating new conceptualizations or ways to organize the world. Measurement is the process where concepts are connected to data, allowing us to describe the prevalence of those concepts in the real world. These measures are then used to make a causal inference about the effect of some intervention or to predict values in the future. These tasks are sometimes related to computer science tasks that define the usual way to organize machine learning books. But as we will see, the usual distinctions made between particular types of algorithms—such as supervised and unsupervised—can obscure the ways these tools are employed to accomplish social science tasks.

Building on our experience developing and applying text as data methods in the social sciences, we emphasize a sequential, iterative, and inductive approach to research. Our experience has been that we learn the most in social science when we refine our concepts and measurements iteratively, improving our own understanding of definitions as we are exposed to new data. We also learn the most when we consider our evidence sequentially, confirming the results of prior work, then testing new hypotheses, and, finally, generating hypotheses for future work. Future studies continue the pattern, confirming the findings from prior studies, testing prior speculations, and generating new hypotheses. At the end of the process, the evidence is aggregated to summarize the results and to clarify what was learned. Importantly, this process doesn't happen within the context of a single article or book, but across a community of collaborators.

This inductive method provides a principled way to approach research that places a strong emphasis on an evolving understanding of the process under study. We call this

understanding theory—explanations of the systematic facets of social process. This is an intentionally broad definition encompassing formal theory, political/sociological theory, and general subject-area expertise. At the core of this book is an argument that scholars can learn a great deal about human behavior from texts but that to do so requires an engagement with the context in which those texts are produced. A deep understanding of the social science context will enable researchers to ask more important and impactful questions, ensure that the measures they extract are valid, and be more attentive to the practical and ethical implications of their work.

We write this book now because the use of text data is at a critical point. As more scholars adopt text as data methods for their research, a guide is essential to explain how text as data work in the social sciences differs from its work in computer science. Without such a guide, researchers outside of computer science solving problems run the risk of applying the wrong algorithms, validating the wrong quantities, and ultimately making inferences not justified by the evidence they have acquired.

We also focus on texts because they are an excellent vehicle for learning about recent advances in machine learning. The argument that we make in this book about how to organize social science research applies beyond texts. Indeed, we view our approach as useful for social science generally, but particularly in any application where researchers are using large-scale data to discover new categories, measure their prevalence, and then to assess their relationships in the world.

1.1 How This Book Informs the Social Sciences

A central argument of this book is that the goal of text as data research differs from the goals of computer science work. Fortunately, this difference is not so great that many of the tools and ideas first developed in other fields cannot be applied to text as data problems. It does imply, however, that we have to think more carefully about what we learn from applying those models.

To help us make our case, consider the use of texts by political scientist Amy Catalinac (Catalinac, 2016*a*)—a path-breaking demonstration of how electoral district structure affects political candidates' behavior. We focus on this book because the texts are used clearly, precisely, and effectively to make a social science point, even though the algorithm used to conduct the analysis comes from a different discipline. And importantly, the method for validation used is distinctively social scientific and thorough.

Catalinac's work begins with a puzzle: why have Japanese politicians allocated so much more attention to national security and foreign policy after 1997, despite significant social, political, and government constraints on the use of military and foreign policy discussions put in place after World War II? Catalinac (2016*a*) argues that a 1994 reform in how Japanese legislators are elected explains the change because it fundamentally altered the *incentives* that politicians face. Before the 1994 reform, Japanese legislators were elected through a system where each district was represented by multiple candidates and each party would run several candidates in each district trying to get the majority of the seats. Because multiple candidates from the same party couldn't effectively compete with their co-partisans on ideological issues, representatives tried to secure votes by delivering the most pork—spending that has only local impact, such as for building a bridge—to the district as possible. The new post-1994 reform system eliminated multi-member districts and replaced them with a parallel system: single-member districts—where voters cast their ballot for a candidate—and representatives

Figure 1.1. An example of a candidate manifesto of Kanezo Muraoka from 2003, Figure 3.7 from Catalinac (2016*a*).

for the whole country—where voters cast their ballot for a party and the elected officials are chosen from the party's list. This new system allowed the parties to impose stricter ideological discipline on their members and the choices of voters became less about the individual personalities and more about party platforms. Thus, the argument goes, the reform changed the legislators' *incentives*. Focusing on local issues like pork was now less advantageous than focusing on national issues like foreign policy.

The argument proceeds through iteration and induction. To begin understanding the effect of the change in electoral rules on electoral strategy, Catalinac collected an original dataset of 7,497 Japanese Diet candidate manifestos. The manifestos are nearly ideal data for her study: they are important to candidates and voters, under the control of candidates, and available for all candidates for all elections for a period before and after the shift in electoral rules. We discuss the principles for data collection in Chapter 4, but Catalinac's exemplary work shows that working with text data does not mean that we must opt for the most convenient data. Rather, Catalinac engaged in a painstaking data collection process to find the manifestos through archival visits and digitize them through manual transcription. This process alone took years.

With the data in hand, Catalinac uses an inductive approach to learn the categories in her data she needs to investigate her empirical puzzle: what elected officials are discussing when they run for office. Catalinac uses a well-known statistical model, *Latent Dirichlet Allocation* (LDA)—which we return to in Chapter 13—to discover an underlying set of topics and to measure the proportion of each manifesto that belongs to each topic. As Catalinac describes,

Typically, the model is fit iteratively. The researcher sets some number of topics; runs the model; ascertains the nature of the topics outputted by reading the words and documents identified as having high probabilities of belonging to each of the topics; and decides whether or not those topics are substantively meaningful.... My approach was also iterative and guided by my hypotheses. (Catalinac, 2016*a*, p. 84)

As we describe in Chapter 4, discovery with text data does not mean that we begin with a blank slate. Catalinac's prior work, qualitative interviews, and expertise in Japenese politics helped to shape the discoveries she made in the text. We can bring this prior knowledge to bear in discovery; theory and hunches play a role in defining our categories, but so too does the data itself.

Catalinac uses the model fit from LDA to measure the prevalence of candidates' discussions of pork, policy, and other categories of interest. To establish which topics capture these categories, Catalinac engages in extensive validation. Importantly, her validations are not the validations most commonly conducted in computer science, where LDA originated. Those validations tend to focus on how LDA functions as a language model—that is, how well it is able to predict unseen words in a document. For Catalinac's purposes, it isn't important that the model can predict unseen words—she has all the words! Instead, her validations are designed to demonstrate that her model has uncovered an organization that is interesting and useful for her particular social scientific task: assessing how a change in the structure of districts affected the behavior of candidates and elected officials. Catalinac engages in two broad kinds of validation. First, she does an in-depth analysis of the particular topics that the model automatically discovers, reading both the high probability words the model assigns to the topic and the manifestos the model indicates are most aligned with each topic. This analysis assures the reader that her labels and interpretations of the computer-discovered topics are both valid and helpful for her social scientific task. Second, she shows that her measures align with well-known facts about Japanese politics. This step ensures that the measures that come from the manifestos are not idiosyncratic or reflecting a wildly different process than that studied in other work. It also provides further evidence that the labels Catalinac assigns to texts are valid reflections of the content of those texts.

Of course, Catalinac is not interested in just categorizing the texts for their own sake—she wants to use the categories assigned to the texts as a source of data to learn about the world. In particular, she wants to estimate the causal effect of the 1994 electoral reform on the shift in issues discussed by candidates when they are running. To do this, she uses her validated model and careful research design to pursue her claim that the electoral reform causes average candidates to shift from a focus on pork to a focus on national security. This is a particularly challenging setting for causal inference, because the reform changes across all districts at the same time. After showing that, in practice, there is a substantial increase in the discussion of national security following the 1994 reforms, Catalinac moves to rule out alternative explanations. She shows that there is no sudden influx of candidates that we would expect to discuss national security. Nor, she argues, does this increase in the importance of national security merely reflect an ideological shift in the parties. And she argues that there is no evidence that voters suddenly want candidates who prioritize national security.

Our brief examination of Catalinac (2016*a*) reveals how sequence, iteration, and induction can lead to substantively interesting and theoretically important research. Further, Catalinac illustrates a point that we will return to throughout the book, that validations for text as data research are necessary and look quite different from validations in computer science. Rather than a focus on prediction, text as data researchers are much more interested in how well their models provide insights into concepts of interest, how well measurement tools sort documents according to those rules, and how well the assumptions needed for accurate causal inference or prediction are met. These points travel well beyond political science, to other social scientists studying human behavior including sociology (DiMaggio, 2015; Evans and Aceves, 2016; Franzosi, 2004), economics (Gentzkow, Kelly, and Taddy, 2019), psychology (Schwartz et al., 2013), and law (Livermore and Rockmore, 2019).

1.2 How This Book Informs the Digital Humanities

Our view of how to apply text as data methods was developed and refined through our experience with social science research. But we will argue that our approach to text as data can provide useful insights into other fields as well. In parallel to the meteoric rise of text as data methods within the social sciences, there has been rapidly growing interest in using computational tools to study literature, history, and the humanities more generally. This burgeoning field, termed *Digital Humanities*, shares much in common with text as data in the social sciences in that it draws on computational tools to answer classic questions in the field.

The use of text as data methods has drawn considerable funding and has already made impressive contributions to the study of literature (Jockers, 2013; Piper, 2018; Underwood, 2019). Computational tools have been used to study the nature of genres (Rybicki and Eder, 2011), poems (Long and So, 2016), the contours of ideas (Berry and Fagerjord, 2017), and many other things (Moretti, 2013). To reach their conclusions, scholars working in this area follow many of the same procedures and use similar tools to those in the social sciences. They represent their texts using numbers and then apply models or algorithms that originate in other fields to reach substantive conclusions.

Even though scholars in the Digital Humanities (DH) come from a humanistic tradition, we will show how the goals of their analysis fit well within the framework of our book. And as a result, our argument about how to use text as data methods to make valid inferences will cover many of the applications of computational tools in the humanistic fields. A major difference between DH and the social sciences is that digital humanists are often interested in inferences about the particular text that is being studied, rather than the text as an indicator of some other, larger process. As a result, digital humanities have thus far tended to focus on the discovery and measurement steps of the research process, while devoting less attention to making causal inferences or predictions. Digital humanists use their large corpora to make new and important discoveries about organizations in their texts. They then use tools to measure the prevalence of those quantities, to describe how the prevalence of the characteristics has changed over time, or to measure how well defined a category is over time.

As with any field that rises so suddenly, there has been considerable dissent about the prospect of the digital humanities. Some of this dissent lies well outside of the scope of our book and focuses on the political and epistemological consequences of opening up the humanities to computational tools. Instead we will engage with other critiques of digital humanities that stipulate to the "rules" laid out in computational papers. These critics argue that the digital humanities is not capable of achieving the inferential goals it lays out and therefore the analysis is doomed from the start. A recent and prominent objection comes from Da (2019), who summarizes her own argument as,

In a nutshell the problem with computational literary analysis as it stands is that what is robust is obvious (in the empirical sense) and what is not obvious is not robust, a situation not easily overcome given the nature of literary data and the nature of statistical inquiry. (Da, 2019, p. 45)

Da (2019)'s critique goes to the heart of how results are evaluated and relies heavily on procedures and best practices imported from computer science (as does, it is worth noting, much of the work she is critiquing). As we have argued above, directly importing rules from other fields to studying texts in new domains can be suboptimal. When we directly import the recommendations from computer science and statistics to text-based inferences in the humanities or social sciences we might make problematic inferences, recommendations that are misguided, or misplaced assessments about the feasibility of computational analysis for a field.

Yet Da's critique is a useful foil for illuminating a key feature of our approach that departs from much of the work in the digital humanities. In Chapter 2, we offer six core principles which reflect a broader "radically agnostic" view of text as data methods. We reject the idea that models of text should be optimized to recover one true underlying, inherent organization in the texts—because, we argue, no one such organization exists. In much of the digital humanities, and Da's critique, there is an implicit assumption that the statistical models or algorithms are uncovering an ideal categorization of the data that exists outside of the research question asked and the models estimated. This approach is in tension with much of the theoretical work in the humanities, but seemingly arises because this is a motivating assumption in much of computer science and statistics, where it provides a convenient fiction for evaluating model performance.

On our account, organizations are useful if they help us to uncover a categorization of the data that is useful for answering a research question. If two models disagree on how to categorize texts, there is no sense in determining which one is any more "right" than the other. We would not, for example, want to argue that an organization of texts based on the expression of positive or negative emotion is more right than an organization based on the topic of the text. Rather, we will argue that some organizations are more useful than others for addressing a particular question. For example, we might argue that a model is particularly useful for studying genre, because it provides an organization that leads the researcher to an insight about the trajectory of books that would have been impossible otherwise. Once you have an organization, you can find the best *measurement* of that particular categorization. You can then test the measurement with extensive validation. But because there is a multiplicity of useful and valid organizations, a method that does not provide a "robust" answer to how texts should be organized will be less concerning than critics argue. What becomes important is the credibility of the validations once an organization has been selected and its utility in answering the research question.

We also will emphasize throughout our book that text as data methods should not displace the careful and thoughtful humanist. And there is no sense in which inferences should be made in the field of digital humanities without the reader directly involved. This emphasis on using computational methods to improve inferences will help allay some concerns about the role of digital humanities scholarship. The computational tools should not replace traditional modes of scholarship. When used well, computational tools should help provide broader context for scholars, illuminate patterns that are otherwise impossible to identify manually, and generally amplify—rather than replace—the human efforts of the scholars using them.

1.3 How This Book Informs Data Science in Industry and Government

Computational tools have also revolutionized how companies use text as data in their products and how government uses text to represent the views of constituents. The applications of these tools are nearly endless in industry. Companies use messages that users post on their website to better target advertisements, to make suggestions about

new content, or to help individuals connect with elected officials. In government, there is the chance to use text as data methods to better represent the views of constituents publicly commenting on proposed rule changes at bureaucratic agencies or expressing their views to elected officials.

The stakes are high when applying text as data methods to industrial-scale problems. Perhaps the most politically sensitive application of text as data methods is content moderation: the attempt by social media companies (and sometimes governments) to regulate the content that is distributed on their platform. In the wake of the Russian misinformation campaign in the 2016 US election, social media companies faced increased pressure to identify and remove misinformation from their sites, to report on the effect of misinformation that occurred during the campaign, and to demonstrate that new procedures were fair and did not disproportionately target particular ideologies. The tools used to identify this content will appear throughout this book and will draw on a similar set of computational resources that we introduce.

Beyond the questions of political sensitivity, the application of text as data methods will also be high stakes because of the large amounts of money that will be spent based on the recommendations of the systems. For example, trading firms now use computational tools to guide their investments or to quickly learn about content from central bankers. Text as data methods also help drive advertising decisions that represent a massive share of the economy. Getting these decisions "right," then, is important for many business practices.

Our book is useful for data scientists, because these tasks are inherently social science tasks. Moderating content to suppress misinformation or hate speech is fundamentally a measurement task. When companies decide which ads will cause the largest increase in sales for their clients, they are engaged in causal inference. And when traders make decisions based on the content of documents or statements from officials, they are engaged in prediction. Recognizing the omnipresence of social science within industry is essential, because many data scientists receive their professional training outside of the social sciences. These fields do an excellent job of providing the computational tools necessary for working with the massive datasets that companies create, but often fail to expose researchers to core design principles behind the tasks those tools are built for.

This book, and indeed its very organizational structure, is designed to remove focus from the individual models and computational tools and refocus on the differences between tasks like discovery and measurement or prediction and causal inference. Identifying these differences is essential, because the different tasks imply that different models should be used, different information sets should be conditioned upon, and different assumptions are needed to justify conclusions.

1.4 A Guide to This Book

Our book spans fields within the social sciences, digital humanities, computer science, industry, and government. To convey our view on how to work with text as data in these disparate fields, we provide a different organization of our book. While most computational social science books organize the manuscript around algorithms, in this book we organize the book around tasks. We focus on tasks to emphasize what is different when social scientists approach text as data research. This also enables us to explain how the same algorithm can be used to accomplish different tasks and how validations for an algorithm might differ, depending on the goal at hand when applying that algorithm. We organize our book around five key tasks: representation, discovery, measurement, prediction, and causal inference. Underlying this task-based focus is a set of principles of text analysis that we outline in Chapter 2. There, we explain our *radically agnostic* approach to text as data inference. We generally reject the view that there is an underlying structure that statistical models applied to text are recovering. Rather, we view statistical models as useful (and incomplete) summaries of the text documents. This view provides us with important insights into how to validate models, how to assess models that provide different organizations, and the role of humans within the research process.

In Part 2 we discuss selection and representation: the process of acquiring texts and then representing the content quantitatively. When selecting texts, basic principles of sample selection matter a great deal, even though there is a temptation to select content that is most conveniently available. When representing texts, we explain how different representations provide different useful insights into the texts and set the stage for future models in the book.

Part 3 introduces a series of models for discovery. By discovery we mean the use of models to uncover and refine conceptualizations, or organizations of the world. We show how a wide array of models can help suggest different organizations that can help researchers gain new insights into the world. We begin with methods used to uncover words that are indicative of differences between how two groups speak. These methods can be used to compare groups of documents—for example, legislators from two different political parties—or to help label categorizations inferred from other inductive methods. We then discuss some computer-assisted techniques for discovery, including models for partitioning data that exhaustively assign each observation to a single category. We then explain how clustering methods can be extended to admixture models, which represent each document as proportionally assigned to different categories. Finally, we describe methods for embedding documents into lower-dimensional spaces, which can shed light on underlying continuous variables in the data.

Part 4 describes our approach to measurement: assessing the prevalence of documents within a set of categories or assessing their location along a predetermined spectrum. We explain how to combine human judgment with machine learning methods to extend human annotations coded in a training set to a much larger dataset. When performing measurement, we explain how a discovery method can be repurposed to measure a category of interest. We include an extensive discussion of how to validate each of these measures, no matter what method produced them.

Building on the concepts and measures we have described, Part 5 explains how to apply the methods for prediction and causal inference. First, we describe how to use text as data methods to make predictions about how the world will be in the future. We discuss different types of predictive tasks and highlight how the threats to inference may vary with the setting. Next, we describe how to use the measures from texts as either the outcome or the intervention variable to make causal inferences. We explain the particular concerns that can emerge when text methods are used and provide a set of tools for assessing when a stringent set of assumptions is met.

1.5 Conclusion

There is immense promise with text as data research. With large amounts of data, complicated models, and custom measures, there is also the possibility of using these methods and getting the research wrong. Text is complicated and meaning is often

12 Chapter 1

subtle. The risk is that if scholars overclaim on what text methods can do, they will undermine the case for using text methods.

Our book is intended as a guide for researchers about what is feasible with text as data methods and what is infeasible. We want to help readers learn about the immense set of tasks that text as data methods can help them accomplish. At the same time, we also want to help our readers to recognize the limits of text methods. We start out on this goal in the next chapter, where we articulate the basic principles that will guide our approach to text as data research.

Index

Abello, James, 45 accuracy: confusion matrices, 212; cross-validation, 213, 245; Google Flu Trends, 256; paradox, 246; training set, 186; validation set, 212 Achen, Christopher H., 13 affinity propagation, 135 AFGP. See Assistance to Firefighters Grant Program (AFGP) Aggarwal, Charu C., 207 agnostic approach, 11, 18-20; text as data methods, 30; text analysis methods, 29 Ahmed, Amr, 260 AIC. See Akaike Information Criterion (AIC) Airoldi, Edoardo M., 158, 160, 260 Akaike Information Criterion (AIC), 141 à la carte embeddings, 85 Aletras, Nikolaos, 254 annotations, 11, 123, 172n2, 193, 194 APIs. See Application Programming Interfaces (APIs) Application Programming Interfaces (APIs), 46 Arora, Sanjeev, 85n1, 227 artisanal data, 25 Assistance to Firefighters Grant Program (AFGP), 151 ATE. See average treatment effect (ATE) Athey, Susan, 248 automatic generalization, 80 average treatment effect (ATE), 268, 272, 277, 278; causal inference, 228, 238, 267; linear regression, 262; STM model, 292; unbiased estimation of, 286 bag of words model, 48-49; default procedure, 57-59; document-feature matrix, 55-57; language creation with, 61; reduce complexity, 52-55; tokenize, 50-52; unit of analysis, 49-50 Bail, Christopher, 91, 169 Banerjee, Arindam, 133 Barberá, Pablo, 190, 191 basis functions, 204; adaptive, 205-206; fixed, 203-205 Baumgartner, Frank, 16 Bayesian hierarchical model, 66, 147 Bayesian inference, 67, 68; cluster data, 141; with Dirichlet prior, 115

Bayesian Information Criterion (BIC), 141 Bearman, Peter S., 38, 93, 169 Beauchamp, Nicholas, 183, 254-256 Belloni, Alexandre, 288 benchmarks, 255 Bengio, Yoshua, 82, 206 Berliner, Daniel, 44 Berry, Christopher R., 108 bet on sparsity principle, 205 betweenness centrality, 170 bias: incentive, 44; sample selection, 42; types of, 43-46 BIC. See Bayesian Information Criterion (BIC) big data, 24, 298, 301 bigrams, 51 Bischof, Jonathan, 160 Bishop, Christopher, 207 Blaydes, Lisa, 25, 42, 157 Blei, David M., 60, 153, 155, 156, 157n5, 287 Bojanowski, Piotr, 84 Boydstun, Amber E., 192, 193, 269 Brachman, Jarret, 217 Broadwell, Peter, 45 Carlson, David, 195 Casas, Andreu, 228 Catalinac, Amy, 5-7, 41, 153, 224, 266 categorical distribution, 61 causal inferences, 15-17, 20-22, 234-238, 260-263; assumptions, 106; mapping function, 266-269; vs. prediction, 263; principles of, 263-266; workflows for, 269-271 CBOW. See continuous bag of words (CBOW) model Chancellor, Stevie, 248 Chang, Charles, 206 Chang, Jonathan, 139, 142 Chen, Kai, 80 Chernozhukov, Victor, 288 Chinese government censors, social media, 20-22 Christian societies, 42 Chuang, Jason, 93

Classical Multidimensional Scaling (MDS), 167–169; extensions of, 168; to senate press releases, 168–169

332 Index

classifiers, 184, 200; linear, 201-202; precision of, 247; softmax, 201 clustering algorithms, 12, 73, 123, 124, 131, 134-135, 137; affinity propagation, 135; approaches to, 127-143; document dissimilarity, 128-129; hierarchical clustering, 135-136; human side of, 144-145; k-means clustering, 124-127; partition quality, 129-130; probabilistic clustering models, 132-134; representations for, 127; styles of, 130-132 coders, 172, 190-192 Cohen, Mark A., 272, 273 Cointet, Jean-Philippe, 38, 93, 169 Colaresi, Michael, 115, 116, 181 community detection algorithms, 169 computational abductive analysis, 159 conditional ignorability, 286 confusion matrix, 212 congressional record, 185 conjugate prior, 67 conservative coalition, 106 contextual integrity, 37 continuous bag of words (CBOW) model, 83 convergent validity, 214 Corrado, Greg S., 80 cosine distance, 72-74 Courville, Aaron, 206 cross-validation, 213, 245 Da, Nan Z., 8-9 Danforth, Christopher M., 43, 180 Dean, Jeff, 80 deductive approach, 27 deep learning revolution, 206 Deerwester, Scott, 82 default procedure, 57; authorship of the federalist papers, 57-58; scale argument against preprocessing, 58-59 Denny, Matthew J., 19, 228 dependency parsing, 95-96 Devlin, Jacob, 88 DH. See digital humanities (DH) Dhillon, Inderjit, 133 dictionary methods, 180-183; limitations and validations of, 181-182 Diermeier, Daniel, 181 digital humanities (DH), 8-9 DiMaggio, Paul, 153 Dirichlet distribution, 66-69 discovery principles: context relevance, 103-104; judge the concept, not the method, 105; no ground truth, 104-105; separate data is best, 106 discursive governance, 185 distributed representations, 79 distributional hypothesis, 78 doc2vec. 86 document-feature matrix, 55-57; down-weighting frequent words, 75; Latent Semantic Analysis (LSA), 82; Naive Bayes, 198

Dodds, Peter Sheridan, 43, 180 downstream covariate model, 156 dummy variable, 61 Duneier, Mitchell, 179, 180 Dynamic Weighted Nominal Three-Step Estimation (DW-NOMINATE) algorithm, 107, 108 Egami, Naoki, 260, 266-269, 272, 273, 276-278 Eisenstein, Jacob, 90, 207, 260 EM algorithm. See Expectation-Maximization (EM) algorithm entropy, 112; conditional, 113 Erlich, Aaron, 44 Euclidean distance, 74 Expectation-Maximization (EM) algorithm, 133, 134 expressed ideology, 208 extrinsic evaluations, 87 face validity, 31 Faruqui, Manaal, 84 fastText embeddings, 84 Federalist papers, 39-41, 57-58; document-feature matrix of, 75; extraction tasks, 96; prediction, 249; stop words and common words in, 76; three-word vocabulary, 64, 71; word counts for, 64 Federal Open Market Committees (FOMC), 44 feedback loops, 248 Felter, Joseph, 217 feminist movements, 112 Fenno, Richard F., 108 fictitious prediction problems, 112, 116-118 Fightin' words, 111, 115-116 fishing, 268, 299 flat vs. hierarchical clustering method, 132 FOMC. See Federal Open Market Committees (FOMC) Fong, Christian, 209, 260, 269, 278, 279, 281-283 Foreign Affairs, 38 Foulds, James, 225 found data, 46, 195 Fowler, Anthony, 27, 108 FPCILV. See Fundamental Problem of Causal Inference with Latent Variables (FPCILV) Franco, Annie, 272, 275-276 Freedman, Michael, 104, 159 Freedom of Information Act, 43-44 frequency inverse document frequency weighting, 75. See also tf-idf weighting FREX, 160 Friedman, Jerome, 205 Fundamental Problem of Causal Inference with Latent Variables (FPCILV), 268 fuzzy clustering, 131

g, 266–269 game-theoretic model, 13

Jaros, Kyle, 94, 95

Jones, Bryan, 16

Jarvis, Stephen, 254

Jerzak, Connor T., 207

Jordan, Michael, 201

Index 333

Ganesh, Ananya, 88 Garg, Nikhil, 86 Garry, John, 182, 183 generalization error, 243 Gentzkow, Matthew, 117, 118 GFT algorithm. See Google Flu Trends (GFT) algorithm ghetto, 179, 180 Ghosh, Joydeep, 133 ghost stories, 45 Gill, Michael, 43, 260 Gillion, Daniel Q., 185-188, 266 Ginsberg, Jeremy, 256 GloVe, 83 Goertz, Gary, 214 gold-standard data, without validation: correspondence to external information, 215; nonexpert human evaluation, 215; partial category replication, 215; surrogate labels, 214-215 gold-standard data, with validation, 211-212; crossvalidation, 213; importance of, 213-214; ongoing evaluations, 214; validation set, 212-213 Goodfellow, Ian, 206 Google Flu Trends (GFT) algorithm, 256 Google Ngrams corpus, 43 government censorship, 20 GPUs. See Graphics Processing Units (GPUs) graph-cutting algorithms, 136 Graphics Processing Units (GPUs), 88 gray zone, 214 grounded theory, 14, 100, 104, 159 Hall, Andrew B, 43, 260 hand coding: check reliability, 192; codebook, 191; document selection, 191-192; drift, types of, 192; Making the News, 192-193; manage coders, 192; select coders, 191 Hansen, Christian, 288 harmful language, 36 Hastie, Trevor, 205 Healy, Andrew J., 27, 28 Heer, Jeffrey, 93 Holland, Paul W., 236 Hopkins, Daniel J., 24, 206, 207 Hu, Yuening, 157 Hvitfeldt, Emil, 206 hypothesis validity, 31, 215 ideal point, 107 ideological dominance assumption, 221 industrial-scale problems, 10 information extraction tasks, 96-97 International Relations (IR), 287 intrinsic evaluations, 87 IR. See International Relations (IR) IRT. See item response theory (IRT) Isaac, William, 248

item response theory (IRT), 220

Jursfsky, Dan, 90 Kang, Jun Seok, 254 Karell, Daniel, 104, 159 Kaufman, Aaron Russell, 300 Keith, Katherine, 96 Kelly, Bryan, 117 Keohane, R. O., 171, 176 Khodak, Mikhail, 85 King, Gary, 20, 21, 24, 124, 127, 139, 145, 171, 176, 206-207, 219 k-means clustering, 124–127 Knox, Dean, 300 Kraft, Peter, 300 Krippendorff, Klaus, 190 Kristensen, Evald Tang, 45 label fidelity, 32 labeling topic models, 159-161 Lafferty, John D., 155, 157n5 language model, 7, 63-66. See also multinomial language model laplace smoothing, 166 Latent Dirichlet Allocation (LDA), 6, 7, 18, 147-153; content covariates, 154-156; downstream covariate model, 156; example, 149-151; incorporating structure into, 153-154; interpretation, 151-153; prevalence covariate topic models, 154; structure, additional sources of, 157; supervised LDA (sLDA), 156 latent semantic analysis, 82 Laver, Michael, 182, 183 LDA. See Latent Dirichlet Allocation (LDA) Le, Quoc, 86 lemmatizing, 54, 58, 78 Lim, Chloe, 272, 275-276 linear classifier, 201-202 linear regression, 60, 77, 119, 137, 197, 203, 226, 227, 235, 242, 262, 263, 285, 288 linguistic prediction, 242, 253-254 loss function, 197, 202-204, 242 Loughran, Tim, 181, 269 Lu, Ying, 207 Lucas, Christopher, 155, 300 Lum, Kristian, 248 Lundberg, Ian, 37 MacRae, Duncan, 106 Madison. Airoldi, 249 Maeda, Ko, 220 Malhotra, Neil, 27, 28 Maliniak, Daniel, 285, 287, 288, 292

Manning, Christopher D., 84, 93

mapping function, 266-269 Martin, James, 90 Masterson, Michael, 206 Mayhew, David, 124, 126 Mcauliffe, Jon D., 156 McCallum, Andrew, 88, 153, 260 McCants, William, 217 McDonald, Bill, 181, 269 McGhee, Eric, 99 McQueen, Alison, 24, 25, 42, 157 MDS. See Classical Multidimensional Scaling (MDS) means vs. mediods clustering method, 131-132 measurement, 9, 16-17, 20-22; model, 4, 38 measurement principles: clear goals, 175; coding process, 175; from concept to, 174; discovery and, 176-177; good measurement, 174-175; limitations, 176; source material, 175; validation, 175 medium bias, 44-45 Messing, Solomon, 151 Mikolov, Tomas, 80, 86 Mimno, David, 138, 153, 260 Minkowski distance metrics, 74 MNIR. See Multinomial Inverse Regression (MNIR) Mo, Cecilia Hyunjung, 27, 28 Monroe, Burt, 115, 116, 181, 220 Montagnes, B. Pablo, 27 Montgomery, Jacob M., 139, 195 Morgan, Stephen L., 260 Mosteller, Frederick, 39-41, 64, 65, 75, 249 Mozer, Reagan, 287 multinomial inverse regression (MNIR), 121 multinomial language model: Dirichlet distribution, 66-69; language model, 63-66; multinomial distribution, 61-63; regularization and smoothing, 66 multinomials clustering model, 133 Murphy, Kevin P., 207 Muslim societies, 42 mutual information, 112-114 Nag, Manish, 153 naive assumption, 198 Naive Bayes (NB), 198-200; adaptive basis functions, 205-206; assumptions in, 200; fixed basis functions, 203-205; generative model, 200-201; linear classifier, 201-202; machine learning, 202-203; quantification, 206-207 named-entity recognition (NER), 94-95 National Football League (NFL) games, 27-28 natural language processing, 30, 34, 82, 87, 88, 94, 97, 254 Nay, John J., 254 NB. See Naive Bayes (NB) negative advertisement, 23 Nelson, Laura K., 104, 112, 113, 115, 116, 119 - 122NER. See named-entity recognition (NER)

Neuendorf, Kimberly A., 190, 192 neural word embeddings, 82-84 Ng, Andrew, 201 n-grams approach, 51 Nielsen, Richard A., 196, 207-210, 216-218, 260, 266, 285, 287, 290, 292 Nissenbaum, Helen, 37 no right way to represent text, 37 no values-free corpus construction, 36-37 nowcasting process, 231, 256-257 observational data, 21 OCR technology. See optical character recognition (OCR) technology one-hot encoding, 61 O'Neil, Cathy, 248 optical character recognition (OCR) technology, 34, 50 optimization, 130 out of sample, 213, 235, 236, 239, 255, 298 Pan, Jennifer, 20, 21, 94, 95, 97 PAP. See pre-analysis plan (PAP) partition quality, 129-130 parts of speech (POS) tagging, 90, 91-94 PCA. See principal component analysis (PCA) Pechenick, Eitan Adam, 43, 180 Pennington, Jeffrey, 84 policy agendas, 16 population of interest, 42-43 POS tagging. See parts of speech (POS) tagging potential outcomes, 261-264, 267-269, 278, 286 Powers, Ryan, 285, 287, 288, 292 pragmatic approach, 29 pre-analysis plan (PAP), 265 precision: of classifier, 247; confusion matrices, 212 prediction, 233-234; vs. causal inference, 238-239 predictions, 17, 26-27; basic task of, 242-243; linguistic prediction, 253-254; and measurement, 243-244; principles of, 244-248; social forecasting, 254-256; task, 184 pretrained embeddings, 84 principal component analysis (PCA), 162-167; automated methods for, 163-164; manual methods for, 164; number of, 165-167; of senate press releases, 164-165 prior distribution, 66 probabilistic, soft, mean-based, and flat clustering method (mixture of multinomials clustering model), 133 probabilistic and algorithmic clustering connections: model selection, 137-140; number of clusters, 140-143; reading the documents, 140 probabilistic approaches, 131 probabilistic clustering models, 132-134 probabilistic vs. algorithmic clustering method, 131 Procter, Rob, 254 Proksch, Sven-Oliver, 220, 221

Index 335

quantification, 206-207 quantities of interest, 42-43 question-specific corpus construction, 35-36 Quinn, Kevin, 115, 116, 144, 153, 181, 260 rare words, 84-85 ReadMe algorithm, 207 recall, confusion matrices, 212 reduce complexity: create equivalence classes, 54-55; filter by frequency, 55; lowercase, 52; remove punctuation, 52-53; remove stop words, 53-54 Reilly, Shauna, 254 representations: ethical issues, 36; lower-dimensional, 28; of text, 30 research design, 22-24; full-cycle, 14; KPR's research design, 22 resource bias, 43-44 retrieval bias, 45-46 retrofitting, 84 Richey, Sean, 254 Riffe, Daniel, 190 Rule, Alix, 38, 93, 169 rule-based algorithm, 91 Rust, Roland T., 272, 273 Salganik, Matthew, 37 Schnabel, Tobias, 87 Schonhardt-Bailey, Cheryl, 44 Schrodt, Philip A., 189 Sebeok, Thomas A., 174 semantic validity, 215 Sen, Maya, 300 sensitivity analysis, 236 Shapiro, Jesse M., 118 Silge, Julia, 206 similarity metrics, 70-73. See also vector space model singular value decomposition (SVD), 82, 290 skip-gram, 86 Slapin, Jonathan B., 220, 221 sLDA. See supervised LDA (sLDA) Smith, David, 91 Smyth, Padhraic, 225 Socher, Richard, 84 social forecasting, 254 social media, 10, 16; Chinese government censors, 20 - 22social prediction, 242 social process: systematic facets of, 5 social sciences, 5-7; iterative and cumulative process, 17-18; theories, 29 softmax classifier, 201 soft vs. hard clustering method, 131 SOTU. See State of the Union (SOTU) source prediction, 241, 249-253 Spirling, Arthur, 19, 77, 228 Sra, Suvrit, 133 State of the Union (SOTU), 38-39 Steen, Sara, 272, 273

stemming, 54, 55 STM. See structural topic models (STM) stop words, 53, 54 Stramp, Nicholas, 91 Strezhnev, Anton, 207 Strubell, Emma, 88 structural approach, 19 structural topic models (STM), 157-159, 192 supervised classification: check performance, 187; classify documents with, 186; discursive governance, 185-186; measurement, 187-188; training set, 186 supervised LDA (sLDA), 156 supervised learning, 4, 21, 207-210; Jihad scores, 207-209; machine learning, 202-207; Naive bayes, 198-202 Sutskever, Ilya, 80 SVD. See singular value decomposition (SVD) Taddy, Matt, 117, 121 Tangherlini, Timothy R., 45 task-based approach, 29, 30, 298 Taylor, J. Benjamin, 254 test data, 177 text analysis, principles of: best method depends on the task, 29-30; building, refining, and testing social science theories, 26-28; essential and depend on the theory, 30-32; social science theories and substantive knowledge, 22-24; text analysis, 24-26; text analysis methods, 28-29 text reuse, 90-91 tf-idf weighting, 75-77 Thurstone, L. L., 195 Tibshirani, Robert, 205 Tingley, Dustin, 160, 227 Tkachenko, Nataliya, 254 tokenization, 50-52 topic: content of, 153; different versions of the same, 153; prevalence of, 153 topic models: labeling topic models, 159-161; Latent Dirichlet Allocation (LDA), 147-153; structural topic models, 157-159 Torres, Michelle, 300 training, 86, 88, 255; cost implications of, 88; Naive Bayes, 199, 201 training data, 177, 213, 214-216; coders, 192; harmful language in, 36; machine learning algorithm, 91; sIBP process, 282; validation, 187, 225 training set, coding: characteristics of, 190; crowdsourcing, 193-195; hand coding, 190-193; supervision with found data, 195-196 transfer learning, 79 trigrams, 51 Twitter data, 36 Tyler, Matthew, 209, 260, 269, 278, 279, 281-283 unigrams, 51, 92, 93, 124, 255

unit of analysis, 49–50

unsupervised methods, 79, 219–220; concerns in repurposing, 225–229; fit the model, 223; hand coding, 223–224; hypothesis validity, 224; model-based assessments, 224–225; split the data, 223; surrogate labels, 224; test data and revalidate, 225; validate the model, 223–225; workflow for repurposing, 221–225 upstream covariate models, 153

upstream covariate models, 15

US Congress, 106–109

validation methods, 9, 31, 38; cross-validation, 213, 245; of dictionary methods, 181–182; measurement principles, 175; word embedding estimation, 87–88 validation set, 212–213

variational inference, 133

vector space model: distance metrics, 74–75; similarity metrics, 70–73; tf-idf weighting, 75–77

- Veitch, Victor, 287
- Verba, S., 171, 176
- virgin texts, 183
- vocabulary, 50–52, 54–56, 58, 61, 64, 71, 78–80, 82; distinctive words, 144; distribution of, 158; domain-specific vocabulary, 84 von Mises-Fisher model, 129, 133–134

Wallace, David L., 39–41, 64, 65, 75, 249 Wallach, Hanna M., 25, 225 Walter, Barbara F., 285, 287, 288, 292 Wang, Yixin, 287 Westwood, Sean J., 151 Wilkerson, John, 16, 91, 228 Winship, Christopher, 260 Wittgenstein, Ludwig, 79 word2vec, 83 word counting: dictionary methods, 180-183; keyword counting, 178-180 word embedding estimation: aggregation, 86-87; contextualize, 88-89; design choices in, 81-82; illustration, 85-86; latent semantic analysis, 82; neural word embeddings, 82-84; pretrained embeddings, 84; rare words, 84-85; self-supervision insight, 81; validation, 87-88 Wordfish, 221 wordscores algorithm, 182-183 word segmentation model, 50 Xing, Eric P., 260 Yih, Wen-tau, 80

Zeps, Valdis J., 174 Zhang, Han, 97 Zweig, Geoffrey, 80 χ2 test statistics, 119–121

Ying, Luwei, 139