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CHAPTER 1
Mathematics and Physics

1.1 Introduction

When Isaac Newton showed the intimate connection between celestial
mechanics and math by extending the inverse-square law of gravity from
mere earthly confines to the entire universe, and when James Clerk Max-
well used math to join together the erstwhile separate subjects of mag-
netism and electricity, they gave science two examples of the mutual
embrace (to use Maxwell’s words) of math and physics. They had per-
formed what are today called the first two unifications of mathematical
physics.

Two centuries separated those two unifications, but the next one came
much faster, with Albert Einstein’s connection of space and time in the
special theory of relativity and then, soon after, together with gravity in
the general theory, less than a century after Maxwell. Again, it was
mathematics that was the glue that sealed the union, but now there was
a significant difference. With Newton and Maxwell, the required math
was already known to physicists beforehand; but with Einstein, it was
not. Einstein was an excellent applied mathematician, but he was not a
creator of new math and so, in the early 1900s, he was in a semi-desperate
state.

As Einstein himself put it, “I didn’t become a mathematician because
mathematics was so full of beautiful and difficult problems that one might
waste one’s power in pursuing them without finding the central prob-
lem.”! When he needed tensor calculus to codify the physical principles
of general relativity, he had to plead for aid from an old friend, a former
fellow student who had helped him pass his college math exams.? As one
of Einstein’s recent biographers has memorialized this interesting situa-
tion, when he realized he didn’t have the necessary math to express his
insights into the physics of gravity, Einstein exclaimed “Grossman,
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you’ve got to help me or I will go crazy.”® And, good friend that he was,
Einstein’s pal Marcel did help. And that’s how Einstein learned how to
mathematically express what he knew physically, and thus were born the
beautiful, coupled, nonlinear partial differential equations of general
relativity that generations of theoretical physicists have wrestled with
now for over a century.

I tell you all this for two reasons. First, it’s not to tease the memory
of Einstein (who was, I surely don’t have to tell you, a once-in-a-century
genius), but rather to heap praise on the mathematicians—people like
the German Bernhard Riemann (1826-1866) and the Italians Gregorio
Ricci-Curbastro (1853—-1925) and Tullio Levi-Civita (1873-1941)—who
had developed the math needed by Einstein long before Einstein knew
he would need it. And second, because there is an earlier, equally dra-
matic but not so well-known occurrence of this sort of anticipatory good
fortune in mathematical physics. It is that earlier story that has inspired
this book.

1.2 Fourier and The Analytical Theory of Heat

Sometime around 1804 or so (perhaps even as early as 1801), the French
mathematical physicist and political activist Jean Baptiste Joseph Fou-
rier (1768—1830)—who came perilously close to being separated from
his world-class brain by the guillotine during the Terror of the French
Revolution*—began his studies on how heat energy propagates in solid
matter. In other words, it was then that he started pondering the physics
of hot molecules in bulk (and so now you can see where the first half of
the title of this book comes from). In the opening of his masterpiece,
The Analytical Theory of Heat (1822), about which I'll say more in just
a bit, Fourier tells us why he decided to study heat: “Heat, like gravity,
penetrates every substance of the universe. . . . The object of our work
is to set forth the mathematical laws [of heat]. The theory of heat will
hereafter form one of the most important branches of general physics.”
A few years after beginning his studies (1807), he had progressed far
enough to write a long report of his work called On the Propagation of
Heat in Solid Bodies, which received some pretty severe criticism.
The critics weren’t quacks, but rather included such scientific luminar-
ies as Joseph-Louis Lagrange (1736—1813) and Pierre-Simon Laplace
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(1749-1827), who, while certainly pretty smart fellows themselves,
nonetheless stumbled over the sheer novelty of Fourier’s math. Fourier,
you see, didn’t hesitate to expand arbitrary periodic functions of space
and time in the form of infinite sums of trigonometric terms (what we
today call Fourier series). Lagrange and Laplace just didn’t think that
was possible. Fourier, of course, was greatly disappointed by the skepti-
cism. But fortunately, he was not discouraged by the initial lack of en-
thusiasm. He didn’t give up, and continued his studies of heat in matter.>

In 1817 Fourier’s talent was formally recognized, and he was elected
to the French Academy of Sciences, becoming in 1822 the secretary to
the mathematical section. That same year finally saw the official publi-
cation of his work on heat, a work that is still an impressive read today.
In The Analytical Theory of Heat, Fourier included his unpublished 1807
effort, plus much more on the representation of periodic functions as in-
finite sums of trigonometric terms. His mathematical discoveries on
how to write such series were crucial in his additional discoveries on how
to solve the fundamental physics equation of heat flow, the aptly named
heat equation, which is (just to be precise) a second-order partial dif-
ferential equation. (This will prove to be not so scary as it might ini-
tially sound.)

In the following chapters of the first part of this book, we’ll develop
Fourier’s math, then derive the heat equation from first principles
(conservation of energy), and then use Fourier’s math to solve the heat
equation and to numerically evaluate some interesting special cases
(including a calculation of the age of the Earth). Then, in the penulti-
mate chapter of the book, I'll show you how the man who did that cal-
culation of the age of the Earth—the Irish-born Scottish mathematical
physicist and engineer William Thomson (1824-1907)—discovered a
quarter-century after Fourier’s death that the heat equation is also the
defining physics, under certain circumstances, of a very long submarine
telegraph cable (in particular, the famous trans-Atlantic electric cables
of the mid-19th century).

Thomson, who was knighted by Queen Victoria in 1866 for his cable
work (and later, in 1892, was elevated to the peerage to become the famous
Lord Kelvin), directly used and credited Fourier’s mathematics in his
pioneering study of electric communication cables. The Atlantic cables,
in particular, lay deep (in places, up to 15,000 feet beneath the surface)
in the cold waters of the Atlantic. And since electric current is caused by
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the motion of electrons, you now see where the second half of the title
of this book comes from.

Telegraphy was the very first commercial application of electricity,
being introduced in England by railroad operators as early as 1837. This
date is doubly impressive when it is remembered that the electric bat-
tery (voltaic pile) had been invented by the Italian Alessandro Volta
(1745—1827) less than 40 years before. Then, less than 70 years after the
battery, messages were being routinely sent through a submarine cable
thousands of miles long lying nearly 3 miles beneath the stormy Atlan-
tic Ocean, an accomplishment that struck the imaginations of all but the
dullest like a thunderbolt—it was nothing less than a miracle—and the
men behind the creation of the trans-Atlantic cable became scientific and
engineering superstars. What you’ll read in this book is the mathemati-
cal physics of what those men did, based on the mathematical physics of
Fourier’s theory of the flow of heat energy in matter.

The technical problems discussed in this book are routinely attacked
today by electrical engineers using a powerful mathematical technique
generally called the operational calculus (specifically, the Laplace trans-
form). The transform had been around in mathematics long before the
engineers became aware of it in the 1930s, but it was not the tool Fou-
rier and Thomson used to solve the equations they encountered. They
instead used the classical mathematical techniques of their day, what is
called time domain mathematics, rather than the modern transform do-
main approach of engineers. Fourier and Thomson were enormously
clever analysts, and since my intention in this book is to weave the his-
torical with the technical, everything you read here is just how either man
might have written this book. There are lots of other books available that
discuss the transform approach, and I'll let you look one up if you're
curious.

Now, before we do anything else, let me first show you a little math
exercise that is embedded, with little fanfare, in The Analytical Theory
of Heat, one that uses nothing but high school AP-calculus. It illustrates
how an ingenious mind can extract amazing results from what, to less
clever minds, appears to be only routine, everyday stuff. What I am about
to show you is a mere half page in Analytical Theory, but 'm going to
elaborate (that is, inflate) it all just a bit to make sure I cover all bets. My
reference is the classic 1878 English translation from the original French
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by Alexander Freeman (1838—1897), who was a Fellow at St. John’s Col-
lege, Cambridge. (You can find exactly what Fourier wrote on page 153
of the 1955 Dover Publications reprint—itself now a minor classic—of
Freeman’s translation.) Going through this preliminary exercise will
sharpen your appreciation for the genius of Fourier.

1.3 A First Peek into Fourier’s Mathematical Mind

We'll start with something you could just look up in a math handbook,
but, since I want to impress you with how a good high school student
(certainly a college freshman) could do all that follows with nothing but
a stick to write with on a sandy beach, let’s begin by deriving the indefi-
nite integration formula

Ji =tan"'(x) + C,
1+ x?

where C is an arbitrary constant.
Look at Figure 1.3.1, which shows a right triangle with perpendicu-
lar sides 1 and x, and so geometry (the Pythagorean theorem) says the

hypotenuse is ¥1+ x2. The base angle is denoted by 6, and so we have,
by construction,

(1.3.1) x=tan (60).

If we differentiate (1.3.1) with respect to x, we’ll get

de . de
d 4 [ sin() cos2(0) — +sin%(0) —
l=—tan(0)=— = dx dx
dx dx | cos(0) cos?(0)
or,
= d cos*(6) +sin’(6)
dx cos?(0)
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(S}

1+x

1
FIGURE 1.3.1. A right triangle, with x any positive value.
or, recalling the identity cos*(6) +sin*(0) =1,

o

1 :ﬁ(1+x2).
d

dx{ | 2 x
1+ x2

That is,
(1.3.2) 49 = ! .
dx  1+x?
But from (1.3.1), we have
O=tan™ (x)

and so, putting that into (1.3.2), we have

itanfl(x): ! ,
dx 1+x?

which, when integrated indefinitely, instantly gives us our result:

(1.3.3) tan~! (x)+ C = j —
+Xx

where C is some (any) constant.
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1-x

X

FIGURE 1.3.2. Another right triangle.

Okay, put (1.3.3) aside for now, and look at Figure 1.3.2, which shows
aright triangle with a hypotenuse of 1, and one of the perpendicular sides

as x. Thus, the other perpendicular side is V1—x2. Since Euclid tells us

that the two acute angles sum to % radians, we can immediately write

T V1-x? X
(1.3.4) —=tan™! +tan~! .

2 X 1-x2
If we write

1-x?
u= ,
X

then (1.3.4) becomes the identity

(1.3.5) §= tan~"{u} + tan! {1}

u

Okay, put (1.3.5) aside for now, and turn your attention to the claim

1
1+ u?

(1.3.6) =1-w+ut—u+---.

Do you see where this comes from? If not, just multiply through by 1+ u?,
and watch how (1.3.6) reduces to 1 =1, which is pretty hard to deny! (Or,
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just do the long division on the left of (1.3.6) directly.) Now, integrate
both sides of (1.3.6) which, recalling (1.3.3), says

]

“ :tan*‘(u)+C:u—lu3+lu5—lu7+~--.
1+u? 3 5 7

When u=0, it’s clear that the infinite sum on the right is zero, and since
tan~!(0)=0, then C=0. That is,

1 1 1
(1.37) tan~'(uW)=u——wP+—w——ul+---.
3 5 7

In particular, if we set u= 1, then (1.3.7) reduces to the beautiful (if com-
putationally useless way to compute 7, because convergence is ex-
tremely slow)

tan_1(1)=£=1—l+l—l+"',
4 3.5 7

a result discovered by other means in 1682 by the German mathemati-
cian Gottfried Wilhelm von Leibniz (1646—1716). It is interesting to note,
in passing, the similar-looking series discovered in 1668 by the Danish-
born mathematician Nicolaus Mercator (1620-1687):

1n(2):1_l+l_l+l_...
2 3 4 5

Since (1.3.7) is an identity in u, it remains true if we replace every u
with % and so

3 5 7
(1.3.8) tan—l[lJ=l_l[lJ +l[lj _l[lJ N
u u 3\u S5\u T\ u

Thus, from (1.3.5), (1.3.7), and (1.3.8), we have
b4 1 1 5 1 I 5 1
“=lu+—|—-—| P+ — |+ | P+ — |-
2 u) 3 w) 5 uw
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Then, as Fourier wrote, “if we now write e-‘*/‘—l[: e™, in modern nota-
tion, where i =4/—1] instead of u . . . we shall have”

. . 1 . . 1 . )
E: (exx+e—tx) _ _(et3x+ e—sz)+ _(eISx+ e—th) -
2 3 5

Using a famous identity (sometimes called a “fabulous formula™)” due
to the Swiss mathematician Leonhard Euler (1707-1783), who published
it in 1748,

e'f=cos(0) +i sin(8),

it follows that

™+ e " =2co0s(x), e3* + e73* = 2c0s (3x), 3 + €73 = 2¢cos (5x), . . .,

and so on. Using this, Fourier then immediately wrote
T 1 1 1

(1.39) —=cos(x)——cos(3x)+—cos(5x)——cos(7x)+- - -,
4 3 5 7

which is one of his famous infinite sums of trigonometric functions that
Lagrange so objected to in 1807. This gives Leibniz’s sum when x=0,
but now we see that Fourier has gone far beyond Leibniz, declaring
that the sum is Z = 0.785 for lots of other values of x as well. This is,
I think you’ll agree, a pretty remarkable claim!

With the invention of electronic computers and easy-to-use pro-
gramming languages, it is a simple matter to experiment numeri-
cally with (1.3.9), and Figure 1.3.3 shows what (1.3.9) looks like,
where the right-hand-side of (1.3.9) has been calculated from the first
100 terms of the sum (that is, up to and including @cos(l%x)) for
each of 20,000 values of x uniformly distributed over the interval
-10<x< 10.
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Suppose a function f(#) is written in the form of a power series.
That is,

f(t)=C0+C1t+C2t2+- 3 '+Cntn+~ ..

It’s a freshman calculus exercise to show that all the coefficients
follow from the general rule

L EL s

| n
n!| dt 0

that is, by taking successive derivatives of f (f), and after each dif-
ferentiation, setting =0. (The n=0 case means, literally, don’t dif-
ferentiate, just set 7=0.) In this way, it is found, for example, that

1 1
Sin(t)=t——'t3+—t5—~-,
1 1
cos(f)=1-—r2+—t*—- -,
2! 4!
1 1 1 1
F=llcb e —ifar — e A — P oo o
2! 3! 4! 5!
Now, in the last series, set t=ix. Then
; L | L S LDy S | RO
er =1+ix+— (ix)* +— (@x)’ +— (@x)* +— (@x)> +- - -
2! 3! 4! 5!

1 1 1 1
=l+ix——x>—i —x3+—x*+i—x>+- -
2! 3! 4! 5!

=(l—lx2+ix4—---J+i[x—ix3+ix5+--)
2! 4! 3! 5!

=cos(x)+isin(x).

This is an identity in x, and so continues to hold if we replace every
x with a @ to give us our result: /= cos(0) +isin(H).
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FIGURE 1.3.3. A computer-generated plot of Fourier’s equation (1.3.9).

As you can see from Figure 1.3.3, the numerical “evidence” does
appear to suggest that Fourier’s math is correct—sort of (this numeri-
cal experiment means, admittedly, very little, if anything, to a pure
mathematician, but it is quite compelling for physicists and engineers).
The sum flips back and forth between two values,? % and —%, with the
swings occurring at odd multiples of % for x. As Fourier states in Ana-
lytical Theory (page 144 in Freeman’s translation), “the [sum] is %n’
if [x] is included between 0 and %n’, but. . .is —%n’, if [x] is included
between %n’ and %77:.” Figure 1.3.3 also suggests that Fourier’s
comment implies that he did not actually make such a plot, because if
he had, he would certainly have noticed all the dramatic oscillatory
behavior around the transition points. In fact, Fourier made no com-
ment at all on this hard-to-miss feature. For some reason, making
such a plot wasn’t done until 1848(!), when the twenty-two-year-old
Henry Wilbraham (1825-1883) finally did so; his plots clearly show

the oscillations.
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After publishing his discovery in the Cambridge and Dublin Mathe-
matical Journal, Wilbraham, a recent graduate of Trinity College, Cam-
bridge, authored a few more mathematical papers and then, for some
unknown reason, disappeared from the world of mathematics. When the
oscillations were rediscovered again, many years later, they were named
after somebody else: they are now called the Gibbs phenomenon, after
the American mathematical physicist J. W. Gibbs (1839-1903), who
briefly commented on them in an 1899 letter to the British science jour-
nal Nature. The oscillations occur in any Fourier series that represents a
discontinuous function.” Mathematicians have known since 1906 that
such a Fourier series converges to the average of the function’s values on
each side of the discontinuity when the series is evaluated at the point of
discontinuity.

A dramatic calculation, one that also appears in Analytical Theory, is
based on the integration of (1.3.9), which results in

(1.3.10) zx =sin (x) — Lsin(3x) + Lsin(5)c) - Lsin(7x) +ee,
4 32 52 72

where the arbitrary constant of integration is zero (do you see why?—
Evaluate (1.3.10) for x=0). (Figure 1.3.4, a plot of the right-hand side of
(1.3.10), shows that while (1.3.9) is discontinuous, its integral is continu-
ous.) If we substitute x = % in (1.3.10), we get

2
(1.3.11) PR S S S
2 57

Now, a quarter century before Fourier’s birth, one of the great un-
solved problems that had been taunting mathematicians for centuries
was the calculation of

S:1+L+L+i+i+....
22 32 42 52

The calculation of S had quickly become the next obvious problem to
attack after the surprising discovery by the 14th-century French math-
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FIGURE 1.3.4. Integral of the right-hand side of (1.3.9).

ematician and philosopher Nicoleo Oresme (1320—1382) that the sum
(called the harmonic series), defined as

H=1+l+l+l+l+...’
2 3 4 5

diverges. This is a counterintuitive result for most people, because the
terms seem to add so very slowly (for the partial sum to exceed 15 takes
more than 1.6 million terms, and to reach a partial sum of 100 takes more
than 1.5 x 10* terms).

To prove that H=co is not hard. Simply write H as

H:1+l+ l+l + l+l+l+l
2 3 4 5 6 7 8
+ (next 8 terms) + (next 16 terms) +- - -,

and then observe that

1 (1 1 1 1 1 1
H>1+—+| —+— |+| —4+—+—+— |+ -,
2 (4 4 8 8 8 8
where each new pair of parentheses contains twice as many terms as the

previous pair, and each term in a pair is replaced with the last (smallest)
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term in the pair. The sum of the terms in each modified pair is then 1,
and so we have formed a lower bound on H that is the sum of an infinite
number of %s. That is, H is “greater than infinity,” so to speak, which is

just an enthusiastic way of saying H itself blows up.
But that’s not what happens with S, which can be written as

(1.3.12) S=[1+L+L+L+~~-j+[i+i+i+m].
32 52 72 22 42 62

But since

1 1 1 1 1 1

cee= + + +

22 42 62 @2x1D? (2x2)? (2x3)?
:L 1+L+L+L+L+... :lS,
2 22 3 4 9 4

then using (1.3.11) and (1.3.12), we have

2
s="41g
§ 4

This is easily solved to give the finite sum of

(1.3.13) S=[ij[ﬂ—2]=ﬂ—2,
30 8) 6

a result due (via other, more complicated means) to Euler; this discovery
(in 1734, 400 years after Oresme) made Euler a superstar in the world of
mathematics.'” Still, zhis derivation is pretty straightforward, depending
essentially on nothing much more than the elementary properties of right
triangles. With Fourier’s approach to the problem, any college freshman
today can do in minutes what it took a genius like Euler years to do three
centuries ago.

Of particular fascination to Euler and his fellow mathematicians must
have been that pi is squared. We are used to seeing pi, alone, in many
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“ordinary” applications (27zr and 7r?, for example, for the circumfer-
ence and area, respectively, of a circle with radius r), but 7> was some-
thing new. As the English mathematician Augustus de Morgan (1806—
1871) is said to have remarked about pi, alone, its appearance in
mathematics is so common that one imagines “it comes on many occa-
sions through the window and through the door, sometimes even down
the chimney.” But not pi squared."
Here’s another quick calculation using Euler’s fabulous formula:

(€M)= {cos(?) +i sin()}* = e = cos(nt) +i sin(nt).
This result,
(1.3.14) {cos(t) +i sin(f)}" = cos(nt) + i sin(ni),
is called De Moivre’s theorem,'? and it is highly useful in both numeri-
cal computations and in theoretical analyses. You can find several ex-
amples in a previous book of mine'? of the theorem’s value in avoiding
lots of grubby numerical work, so let me show you here an application

of (1.3.14) in a theoretical context.
In both pure mathematics and physics, the expressions

S,(0)= 2::1 r*cos(nt)
and
Sy(6)=2." r'sin(nr)
often occur, where r is some real number in the interval 0<r<1. (Do
you see why this restriction? Think about convergence.) We can find
closed-form expressions for these two infinite sums as follows. We start
by defining
— < on— 2 34...
S—anlz =z+z°+ 20+
with

z=r{cos(®) +i sin(®)}.
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S is simply a geometric series, easily evaluated in the usual way by mul-
tiplying through by z. This gives

S z rcos(t)+1irsin(z)
C1—z 1—rcos(t)—irsin(r)

Multiplying top and bottom of the right-hand side by the conjugate'* of
the bottom gives

g {rcos(t)+irsin(¢)}{l—rcos(¢t)+irsin(t)}

{1—rcos(t)}>+r2sin’(z)
which reduces to

P rcos(t)—r?+irsin(t)

1-2rcos(t)+r?
Now, by De Moivre’s theorem, we also have
S=Y "= r'{cos()+isin(®)}"=),"_ r'{cos(nr)+i sin(n)},
and so
S=8,+iS,.
Equating the imaginary parts of our two results for S gives

- r sin(t)
S,0)=," risin(n)=————,0<r<1.
(0=, 1-2rcos(t)+r?

And equating real parts, we have

o rcos(t)—r?
Sl(t)=z _rcos(nt)=—— ,0<r<l1.
n=l 1-2rcos(t)+r?
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With a bit of additional algebra, S,(?) is often expressed in the alter-
native form:

rcos(t)—r? [ 2rcos(t)—2r? 11 1=r2=1+2rcos(t)—r?

1
1-2rcos(t)+r? ) 1-2rcos(t)+r2 | 2 1-2rcos(t)+r?

1—r2 1-2rcos(t)+r?

2| 1=2rcos(t)+r* 1-2rcos(t)+r?

1-r2

1
2| 1=2rcos(t)+r?

and so we have

s,m=Y" r"cos(m)—l R et S . 0<r<l1
‘ =l 2| 1=2rcos®)+r2 | 27

The quantity

1-r?

1-2rcos(t)+r?

occurs often enough in advanced mathematics that it has been given its
own name: Poisson’s kernel.13

Well, okay, all of this is undeniably fun stuff, but it is relatively
lightweight compared to what Fourier did mathematically for physics in
Analytical Theory. As a quick flip through the rest of this book will
show you, there are a lot of equations in it. At the beginning of Analytical
Theory, in what he called a “Preliminary Discourse,” Fourier explained
to his readers why that was equally so in his book, and his words explain
why it is true for this book as well. As he wrote, ‘“Profound study of na-
ture is the most fertile source of mathematical discoveries. . . . Mathe-
matical analysis is as extensive as nature itself.” So, all the math you’ll
read here isn’t here because I want to make your life difficult—it’s here
because that’s the way the world is made.

To lay the foundation of Fourier’s mathematics will take a couple more
chapters and so, with no further delay, let’s get started.
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