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24CHAPTER TWENTY-FOUR

From Special to General Relativity
The Theory of Relativity confers an absolute meaning on a magnitude which in classical theory has only

a relative significance: the velocity of light. The velocity of light is to the Theory of Relativity as the
elementary quantum of action is to the Quantum Theory: it is its absolute core.

MAX PLANCK (1949)

24.124.1 Overview

We begin our discussion of general relativity in this chapter with a review, and elab-
oration of relevant material already covered in earlier chapters. In Sec. 24.2, we give
a brief encapsulation of special relativity drawn largely from Chap. 2, emphasizing
those aspects that underpin the transition to general relativity. Then in Sec. 24.3 we
collect, review, and extend the fundamental ideas of differential geometry that have
been scattered throughout the book and that we shall need as foundations for the
mathematics of spacetime curvature (Chap. 25). Most importantly, we generalize dif-
ferential geometry to encompass coordinate systems whose coordinate lines are not
orthogonal and bases that are not orthonormal.

Einstein’s field equation (to be studied in Chap. 25) is a relationship between the
curvature of spacetime and the matter that generates it, akin to the Maxwell equations’
relationship between the electromagnetic field and the electric currents and charges
that generate it. The matter in Einstein’s equation is described by the stress-energy
tensor that we introduced in Sec. 2.13. We revisit the stress-energy tensor in Sec. 24.4
and develop a deeper understanding of its properties.

In general relativity one often wishes to describe the outcome of measurements
made by observers who refuse to fall freely—for example, an observer who hovers in a
spaceship just above the horizon of a black hole, or a gravitational-wave experimenter
in an Earthbound laboratory. As a foundation for treating such observers, in Sec. 24.5
we examine measurements made by accelerated observers in the flat spacetime of
special relativity.

24.224.2 Special Relativity Once Again

Our viewpoint on general relativity is unapologetically geometrical. (Other view-
points, e.g., those of particle theorists such as Feynman and Weinberg, are quite differ-
ent.) Therefore, a prerequisite for our treatment of general relativity is understanding
special relativity in geometric language. In Chap. 2, we discussed the foundations of
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BOX 24.1. READERS’ GUIDE

. This chapter relies significantly on:
– Chap. 2 on special relativity, which now should be regarded

as Track One.
– The discussion of connection coefficients in Sec. 11.8.

. This chapter is a foundation for the presentation of general relativity
theory and cosmology in Chaps. 25–28.

special relativity with this in mind. In this section we briefly review the most important
points.

We suggest that any reader who has not studied Chap. 2 read Sec. 24.2 first, to
get an overview and flavor of what will be important for our development of general
relativity, and then (or in parallel with reading Sec. 24.2) read those relevant sections
of Chap. 2 that the reader does not already understand.

24.2.1 24.2.1 Geometric, Frame-Independent Formulation

review of the geometric,
frame-independent
formulation of special
relativity

In Secs. 1.1.1 and 2.2.2, we learned that every law of physics must be expressible
as a geometric, frame-independent relationship among geometric, frame-independent
objects. This is equally true in Newtonian physics, in special relativity, and in general
relativity. The key difference between the three is the geometric arena: in Newto-
nian physics, the arena is 3-dimensional Euclidean space; in special relativity, it
is 4-dimensional Minkowski spacetime; in general relativity (Chap. 25), it is 4-
dimensional curved spacetime (see Fig. 1 in the Introduction to Part I and the
associated discussion).

Principle of Relativity—
laws as geometric relations
between geometric objects

In special relativity, the demand that the laws be geometric relationships among
geometric objects that live in Minkowski spacetime is the Principle of Relativity; see
Sec. 2.2.2. Examples of the geometric objects are:

examples of geometric
objects: points, curves,
proper time ticked by
an ideal clock, vectors,
tensors, scalar product

1. A point P in spacetime (which represents an event); Sec. 2.2.1.

2. A parameterized curve in spacetime, such as the world line P(τ )of a particle,
for which the parameter τ is the particle’s proper time (i.e., the time measured
by an ideal clock1 that the particle carries; Fig. 24.1); Sec. 2.4.1.

1. Recall that an ideal clock is one that ticks uniformly when compared, e.g., to the period of the light
emitted by some standard type of atom or molecule, and that has been made impervious to accelerations.
Thus two ideal clocks momentarily at rest with respect to each other tick at the same rate independent of
their relative acceleration; see Secs. 2.2.1 and 2.4.1. For greater detail, see Misner, Thorne, and Wheeler
(1973, pp. 23–29, 395–399).
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FIGURE 24.1 The world line P(τ ) of a particle in Minkowski spacetime and the tangent
vector �u= dP/dτ to this world line; �u is the particle’s 4-velocity. The bending of the
world line is produced by some force that acts on the particle, such as the Lorentz force
embodied in Eq. (24.3). Also shown is the light cone emitted from the event P(τ = 1).
Although the axes of an (arbitrary) inertial reference frame are shown, no reference
frame is needed for the definition of the world line, its tangent vector �u, or the light cone.
Nor is one needed for the formulation of the Lorentz force law.

3. Vectors, such as the particle’s 4-velocity �u= dP/dτ [the tangent vector to the
curve P(τ )] and the particle’s 4-momentum �p =m�u (with m the particle’s
rest mass); Secs. 2.2.1 and 2.4.1.

4. Tensors, such as the electromagnetic field tensor FFF ( , ); Secs. 1.3 and 2.3.

Recall that a tensor is a linear real-valued function of vectors; when one puts vectors
�A and �B into the two slots of FFF , one obtains a real number (a scalar) FFF ( �A, �B) that

is linear in �A and in �B so, for example: FFF ( �A, b �B + c �C)= bFFF ( �A, �B)+ cFFF ( �A, �C).
When one puts a vector �B into just one of the slots of FFF and leaves the other empty, one
obtains a tensor with one empty slot, FFF ( , �B), that is, a vector. The result of putting a
vector into the slot of a vector is the scalar product: �D( �B)= �D . �B = ggg( �D , �B), where
ggg( , ) is the metric.

spacetime metricIn Secs. 2.3 and 2.4.1, we tied our definitions of the inner product and the
spacetime metric to the ticking of ideal clocks: If ��x is the vector separation of two
neighboring events P(τ ) and P(τ +�τ) along a particle’s world line, then

ggg(��x , ��x)≡��x .��x ≡−(�τ)2. (24.1)

This relation for any particle with any timelike world line, together with the linearity
of ggg( , ) in its two slots, is enough to determine ggg completely and to guarantee that
it is symmetric: ggg( �A, �B)= ggg( �B , �A) for all �A and �B . Since the particle’s 4-velocity �u is

�u= dP
dτ

= lim
�τ→0

P(τ +�τ)− P(τ )
�τ

≡ lim
�τ→0

��x
�τ

, (24.2)

Eq. (24.1) implies that �u . �u= ggg(�u, �u)=−1 (Sec. 2.4.1).
light cone; timelike, null,
and spacelike vectors

The 4-velocity �u is an example of a timelike vector (Sec. 2.2.3); it has a negative
inner product with itself (negative “squared length”). This shows up pictorially in the
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fact that �u lies inside the light cone (the cone swept out by the trajectories of photons
emitted from the tail of �u; see Fig. 24.1). Vectors �k on the light cone (the tangents
to the world lines of the photons) are null and so have vanishing squared lengths:
�k . �k = ggg(�k , �k)= 0; vectors �A that lie outside the light cone are spacelike and have
positive squared lengths: �A . �A> 0 (Sec. 2.2.3).

An example of a physical law in 4-dimensional geometric language is the Lorentz
force law (Sec. 2.4.2):

Lorentz force law
d �p
dτ
= qFFF ( , �u). (24.3)

Here q is the particle’s charge (a scalar), and both sides of this equation are vectors,
or equivalently, first-rank tensors (i.e., tensors with just one slot). As we learned in
Secs. 1.5.1 and 2.5.3, it is convenient to give names to slots. When we do so, we can
rewrite the Lorentz force law as

dpα

dτ
= qFαβuβ . (24.4)

Here α is the name of the slot of the vector d �p/dτ , α and β are the names of the slotsslot-naming index notation

of FFF , β is the name of the slot of u. The double use of β with one up and one down
on the right-hand side of the equation represents the insertion of �u into the β slot
of FFF , whereby the two β slots disappear, and we wind up with a vector whose slot is
named α. As we learned in Sec. 1.5, this slot-naming index notation is isomorphic to
the notation for components of vectors, tensors, and physical laws in some reference
frame. However, no reference frames are needed or involved when one formulates the
laws of physics in geometric, frame-independent language as above.

Those readers who do not feel completely comfortable with these concepts, state-
ments, and notation should reread the relevant portions of Chaps. 1 and 2.

EXERCISES Exercise 24.1 Practice: Frame-Independent Tensors
Let AAA, BBB be second-rank tensors.
(a) Show that AAA + BBB is also a second-rank tensor.
(b) Show that AAA⊗ BBB is a fourth-rank tensor.
(c) Show that the contraction of AAA⊗ BBB on its first and fourth slots is a second-rank

tensor. (If necessary, consult Secs. 1.5 and 2.5 for discussions of contraction.)
(d) Write the following quantities in slot-naming index notation: the tensor AAA ⊗ BBB,

and the simultaneous contraction of this tensor on its first and fourth slots and
on its second and third slots.

24.2.2 24.2.2 Inertial Frames and Components of Vectors, Tensors, and Physical Laws

inertial reference frame

In special relativity, a key role is played by inertial reference frames, Sec. 2.2.1. An
inertial frame is an (imaginary) latticework of rods and clocks that moves through
spacetime freely (inertially, without any force acting on it). The rods are orthogonal to
one another and attached to inertial-guidance gyroscopes, so they do not rotate. These
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rods are used to identify the spatial, Cartesian coordinates (x1, x2, x3)= (x , y , z) of
an event P [which we also denote by lowercased Latin indices xj(P), with j running
over 1, 2, 3]. The latticework’s clocks are ideal and are synchronized with one another
by the Einstein light-pulse process. They are used to identify the temporal coordinate
x0 = t of an event P: x0(P) is the time measured by that latticework clock whose
world line passes through P, at the moment of passage. The spacetime coordinates
of P are denoted by lowercased Greek indices xα, with α running over 0, 1, 2, 3. An
inertial frame’s spacetime coordinates xα(P) are called Lorentz coordinates or inertial Lorentz (inertial)

coordinatescoordinates.
In the real universe, spacetime curvature is small in regions well removed from

concentrations of matter (e.g., in intergalactic space), so special relativity is highly
accurate there. In such a region, frames of reference (rod-clock latticeworks) that are
nonaccelerating and nonrotating with respect to cosmologically distant galaxies (and
hence with respect to a local frame in which the cosmic microwave radiation looks
isotropic) constitute good approximations to inertial reference frames.

orthonormal basis vectors
of an inertial frame

Associated with an inertial frame’s Lorentz coordinates are basis vectors �eα that
point along the frame’s coordinate axes (and thus are orthogonal to one another) and
have unit length (making them orthonormal); see Sec. 2.5. This orthonormality is
embodied in the inner products

�eα . �eβ = ηαβ , (24.5)

where by definition:

η00 =−1, η11= η22 = η33=+1, ηαβ = 0 if α �= β . (24.6)

Here and throughout Part VII (as in Chap. 2), we set the speed of light to unity (i.e.,
we use the geometrized units introduced in Sec. 1.10), so spatial lengths (e.g., along geometrized units
the x-axis) and time intervals (e.g., along the t-axis) are measured in the same units,
seconds or meters, with 1 s= 2.99792458× 108 m.

In Sec. 2.5 (see also Sec. 1.5), we used the basis vectors of an inertial frame to
build a component representation of tensor analysis. The fact that the inner products
of timelike vectors with each other are negative (e.g., �e0 . �e0 =−1), while those of
spacelike vectors are positive (e.g., �e1 . �e1= +1), forced us to introduce two types
of components: covariant (indices down) and contravariant (indices up). The co-
variant components of a tensor are computable by inserting the basis vectors into covariant and contra-

variant components of
vectors and tensors

the tensor’s slots: uα = �u(�eα)≡ �u . �eα; Fαβ = FFF (�eα , �eβ). For example, in our Lorentz
basis the covariant components of the metric are gαβ = ggg(�eα , �eβ) = �eα . �eβ = ηαβ .
The contravariant components of a tensor were related to the covariant components
via “index lowering” with the aid of the metric, Fαβ = gαμgβνF

μν, which simply
said that one reverses the sign when lowering a time index and makes no change of
sign when lowering a space index. This lowering rule implied that the contravariant
components of the metric in a Lorentz basis are the same numerically as the covariant
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components, gαβ = ηαβ , and that they can be used to raise indices (i.e., to perform
the trivial sign flip for temporal indices): Fμν = gμαgνβFαβ . As we saw in Sec. 2.5,
tensors can be expressed in terms of their contravariant components as �p = pα�eα,
and FFF = Fαβ�eα ⊗ �eβ , where⊗ represents the tensor product [Eqs. (1.5)].

We also learned in Chap. 2 that any frame-independent geometric relation among
tensors can be rewritten as a relation among those tensors’ components in any
chosen Lorentz frame. When one does so, the resulting component equation takes
precisely the same form as the slot-naming-index-notation version of the geometric

component equations
are same as slot-naming-
index-notation equations relation (Sec. 1.5.1). For example, the component version of the Lorentz force law

says dpα/dτ = qFαβuβ , which is identical to Eq. (24.4). The only difference is the
interpretation of the symbols. In the component equation Fαβ are the components
of FFF and the repeated β in Fαβuβ is to be summed from 0 to 3. In the geometric
relation Fαβ means FFF ( , ), with the first slot named α and the second β , and the
repeated β in Fαβuβ implies the insertion of �u into the second slot of FFF to produce a
single-slotted tensor (i.e., a vector) whose slot is named α.

As we saw in Sec. 2.6, a particle’s 4-velocity �u (defined originally without the aid
of any reference frame; Fig. 24.1) has components, in any inertial frame, given by
u0 = γ , uj = γ vj , where vj = dxj/dt is the particle’s ordinary velocity and γ ≡components of 4-velocity

in an inertial frame 1
/√

1− δijvivj . Similarly, the particle’s energyE ≡ p0 ismγ , and its spatial momen-
tum is pj =mγvj (i.e., in 3-dimensional geometric notation: p=mγ v). This is an

3 + 1 split example of the manner in which a choice of Lorentz frame produces a “3+1” split of the
physics: a split of 4-dimensional spacetime into 3-dimensional space (with Cartesian
coordinatesxj ) plus 1-dimensional time t = x0; a split of the particle’s 4-momentum �p
into its 3-dimensional spatial momentum p and its 1-dimensional energy E = p0; and
similarly a split of the electromagnetic field tensor FFF into the 3-dimensional electric
field E and 3-dimensional magnetic field B (cf. Secs. 2.6 and 2.11).

The Principle of Relativity (all laws expressible as geometric relations between
geometric objects in Minkowski spacetime), when translated into 3+1 language, says
that, when the laws of physics are expressed in terms of components in a specificPrinciple of Relativity

restated: laws take same
form in every inertial frame

Lorentz frame, the form of those laws must be independent of one’s choice of frame.
When translated into operational terms, it says that, if two observers in two different
Lorentz frames are given identical written instructions for a self-contained physics
experiment, then their two experiments must yield the same results to within their
experimental accuracies (Sec. 2.2.2).

Lorentz transformations The components of tensors in one Lorentz frame are related to those in another
by a Lorentz transformation (Sec. 2.7), so the Principle of Relativity can be restated
as saying that, when expressed in terms of Lorentz-frame components, the laws ofPrinciple of Relativity

restated: laws are Lorentz
invariant

physics must be Lorentz-invariant (unchanged by Lorentz transformations). This is the
version of the Principle of Relativity that one meets in most elementary treatments of
special relativity. However, as the above discussion shows, it is a mere shadow of the
true Principle of Relativity—the shadow cast into Lorentz frames when one performs
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a 3+1 split. The ultimate, fundamental version of the Principle of Relativity is the one
that needs no frames at all for its expression: all the laws of physics are expressible as ultimate version of

Principle of Relativitygeometric relations among geometric objects that reside in Minkowski spacetime.

24.2.324.2.3 Light Speed, the Interval, and Spacetime Diagrams

One set of physical laws that must be the same in all inertial frames is Maxwell’s
equations. Let us discuss the implications of Maxwell’s equations and the Principle
of Relativity for the speed of light c. (For a more detailed discussion, see Sec. 2.2.2.)
According to Maxwell, c can be determined by performing nonradiative laboratory
experiments; it is not necessary to measure the time it takes light to travel along some
path; see Box 2.2. The Principle of Relativity requires that such experiments must give
the same result for c, independent of the reference frame in which the measurement light speed is the same in

all inertial framesapparatus resides, so the speed of light must be independent of reference frame. It is
this frame independence that enables us to introduce geometrized units with c = 1.

Another example of frame independence (Lorentz invariance) is provided by the
interval between two events (Sec. 2.2.3). The components gαβ = ηαβ of the metric
imply that, if��x is the vector separating the two events and�xα are its components
in some Lorentz coordinate system, then the squared length of ��x [also called the
interval and denoted (�s)2] is given by

interval between two
events

(�s)2 ≡��x .��x = ggg(��x , ��x)= gαβ�x
α�xβ

=−(�t)2 + (�x)2 + (�y)2 + (�z)2.
(24.7)

Since ��x is a geometric, frame-independent object, so must be the interval. This
implies that the equation (�s)2 =−(�t)2 + (�x)2 + (�y)2 + (�z)2 by which one
computes the interval between the two chosen events in one Lorentz frame must give
the same numerical result when used in any other frame (i.e., this expression must be
Lorentz invariant). This invariance of the interval is the starting point for most intro- invariance of the interval

ductions to special relativity—and, indeed, we used it as a starting point in Sec. 2.2.
spacetime diagramsSpacetime diagrams play a major role in our development of general relativity.

Accordingly, it is important that the reader feel very comfortable with them. We
recommend reviewing Fig. 2.7 and Ex. 2.14.

EXERCISESExercise 24.2 Example: Invariance of a Null Interval
You have measured the intervals between a number of adjacent events in spacetime
and thereby have deduced the metric ggg . Your friend claims that the metric is some
other frame-independent tensor g̃gg that differs from ggg . Suppose that your correct
metric ggg and his wrong one g̃gg agree on the forms of the light cones in spacetime
(i.e., they agree as to which intervals are null, which are spacelike, and which are
timelike), but they give different answers for the value of the interval in the spacelike
and timelike cases: ggg(��x , ��x) �= g̃gg(��x , ��x). Prove that g̃gg and ggg differ solely by
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a scalar multiplicative factor, g̃gg = aggg for some scalar a. We say that g̃gg and ggg are
conformal to each other. [Hint: Pick some Lorentz frame and perform computations
there, then lift yourself back up to a frame-independent viewpoint.]

Exercise 24.3 Problem: Causality
If two events occur at the same spatial point but not simultaneously in one inertial
frame, prove that the temporal order of these events is the same in all inertial frames.
Prove also that in all other frames the temporal interval �t between the two events
is larger than in the first frame, and that there are no limits on the events’ spatial or
temporal separation in the other frames. Give two proofs of these results, one algebraic
and the other via spacetime diagrams.

24.3 24.3 Differential Geometry in General Bases and in Curved Manifolds

The differential geometry (tensor-analysis) formalism reviewed in the last section is
inadequate for general relativity in several ways.

First, in general relativity we need to use bases �eα that are not orthonormal (i.e.,
for which �eα . �eβ �= ηαβ). For example, near a spinning black hole there is much
power in using a time basis vector �et that is tied in a simple way to the metric’s
time-translation symmetry and a spatial basis vector �eφ that is tied to its rotational
symmetry. This time basis vector has an inner product with itself �et . �et = gt t that is
influenced by the slowing of time near the hole (so gt t �= −1); and �eφ is not orthogonal
to �et (�et . �eφ = gtφ �= 0), as a result of the dragging of inertial frames by the hole’s spin.
In this section, we generalize our formalism to treat such nonorthonormal bases.

Second, in the curved spacetime of general relativity (and in any other curved
space, e.g., the 2-dimensional surface of Earth), the definition of a vector as an arrow
connecting two points (Secs. 1.2 and 2.2.1) is suspect, as it is not obvious on what
route the arrow should travel nor that the linear algebra of tensor analysis should be
valid for such arrows. In this section, we refine the concept of a vector to deal with
this problem. In the process we introduce the concept of a tangent space in which the
linear algebra of tensors takes place—a different tangent space for tensors that live at
different points in the space.

Third, once we have been forced to think of a tensor as residing in a specific tangent
space at a specific point in the space, the question arises: how can one transport tensors
from the tangent space at one point to the tangent space at an adjacent point? Since
the notion of a gradient of a vector depends on comparing the vector at two different
points and thus depends on the details of transport, we have to rework the notion of
a gradient and the gradient’s connection coefficients.

Fourth, when doing an integral, one must add contributions that live at different
points in the space, so we must also rework the notion of integration.

We tackle each of these four issues in turn in the following four subsections.
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24.3.124.3.1 Nonorthonormal Bases

Consider an n-dimensional manifold, that is, a space that, in the neighborhood of
manifoldany point, has the same topological and smoothness properties as n-dimensional

Euclidean space, though it might not have a locally Euclidean or locally Lorentz
metric and perhaps has no metric at all. If the manifold has a metric (e.g., 4-
dimensional spacetime, 3-dimensional Euclidean space, and the 2-dimensional sur-
face of a sphere) it is called “Riemannian.” In this chapter, all manifolds we consider
will be Riemannian.

At some point P in our chosen n-dimensional manifold with metric, introduce
a set of basis vectors {�e1, �e2, . . . , �en} and denote them generally as �eα. We seek to
generalize the formalism of Sec. 24.2 in such a way that the index-manipulation rules tensors in a nonortho-

normal basisfor components of tensors are unchanged. For example, we still want it to be true that
covariant components of any tensor are computable by inserting the basis vectors
into the tensor’s slots, Fαβ = FFF (�eα , �eβ), and that the tensor itself can be reconstructed
from its contravariant components: FFF = Fμν�eμ ⊗ �eν. We also require that the two
sets of components are computable from each other via raising and lowering with the
metric components: Fαβ = gαμgβνF

μν. The only thing we do not want to preserve
is the orthonormal values of the metric components: we must allow the basis to
be nonorthonormal and thus �eα . �eβ = gαβ to have arbitrary values (except that the
metric should be nondegenerate, so no linear combination of the �eαs vanishes, which
means that the matrix ||gαβ|| should have nonzero determinant).

dual sets of basis vectorsWe can easily achieve our goal by introducing a second set of basis vectors, denoted
{�e1, �e2, . . . , �en}, which is dual to our first set in the sense that

�eμ . �eβ ≡ ggg(�eμ, �eβ)= δμβ . (24.8)

Here δαβ is the Kronecker delta. This duality relation actually constitutes a definition
of the eμ once the �eα have been chosen. To see this, regard �eμ as a tensor of rank
one. This tensor is defined as soon as its value on each and every vector has been
determined. Expression (24.8) gives the value �eμ(�eβ)= �eμ . �eβ of �eμ on each of the
four basis vectors �eβ ; and since every other vector can be expanded in terms of
the �eβs and �eμ( ) is a linear function, Eq. (24.8) thereby determines the value
of �eμ on every other vector.

The duality relation (24.8) says that �e1 is always perpendicular to all the �eαs except
�e1, and its scalar product with �e1 is unity—and similarly for the other basis vectors.
This interpretation is illustrated for 3-dimensional Euclidean space in Fig. 24.2. In
Minkowski spacetime, if the �eα are an orthonormal Lorentz basis, then duality dictates
that �e0 =−�e0, and �ej =+�ej .

The duality relation (24.8) leads immediately to the same index-manipulation
formalism as we have been using, if one defines the contravariant, covariant, and
mixed components of tensors in the obvious manner:

covariant, contravariant,
and mixed components of
a tensor

Fμν = FFF (�eμ, �eν), Fαβ = FFF (�eα , �eβ), Fμβ = FFF (�eμ, �eβ); (24.9)
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→e3 →e3

→e1

→e1

→e2

FIGURE 24.2 Nonorthonormal basis vectors �ej in Euclidean
3-space and two members �e1 and �e3 of the dual basis. The
vectors �e1 and �e2 lie in the horizontal plane, so �e3 is orthogonal
to that plane (i.e., it points vertically upward), and its inner
product with �e3 is unity. Similarly, the vectors �e2 and �e3 span
a vertical plane, so �e1 is orthogonal to that plane (i.e., it points
horizontally), and its inner product with �e1 is unity.

see Ex. 24.4. Among the consequences of this duality are the following:

covariant and contra-
variant components
of the metric

1. The matrix of contravariant components of the metric is inverse to that of
the covariant components, ||gμν|| = ||gαβ||−1, so that

gμβgβν = δμν . (24.10)

This relation guarantees that when one raises an index on a tensor Fαβ with
gμβ and then lowers it back down with gβμ, one recovers one’s original
covariant components Fαβ unaltered.

reconstructing a tensor
from its components

2. One can reconstruct a tensor from its components by lining up the indices
in a manner that accords with the rules of index manipulation:

FFF = Fμν�eμ ⊗ �eν = Fαβ�eα ⊗ �eβ = Fμβ�eμ ⊗ �eβ . (24.11)

component equations
are same as slot-naming-
index-notation equations

3. The component versions of tensorial equations are identical in mathematical
symbology to the slot-naming-index-notation versions:

FFF ( �p , �q)= Fαβpαpβ . (24.12)

Associated with any coordinate system xα(P) there is a coordinate basis whose
basis vectors are defined by

coordinate basis �eα ≡ ∂P
∂xα

. (24.13)

Since the derivative is taken holding the other coordinates fixed, the basis vector �eα
points along the α coordinate axis (the axis on which xα changes and all the other
coordinates are held fixed).

1162 Chapter 24. From Special to General Relativity

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



→e�

→e� = ∂P/∂�

→eφ = ∂P/∂φ
→eφ

→eφ̂

FIGURE 24.3 A circular coordinate system {! , φ} and its
coordinate basis vectors �e! = ∂P/∂! , �eφ = ∂P/∂φ at
several locations in the coordinate system. Also shown is the
orthonormal basis vector �e

φ̂
.

In an orthogonal curvilinear coordinate system [e.g., circular polar coordinates orthogonal curvilinear
coordinates(! , φ) in Euclidean 2-space; Fig. 24.3], this coordinate basis is quite different from

the coordinate system’s orthonormal basis. For example, �eφ = (∂P/∂φ)! is a very
long vector at large radii and a very short one at small radii; the corresponding
unit-length vector is �e

φ̂
= (1/!)�eφ = (1/!)∂/∂φ (i.e., the derivative with respect

to physical distance along the φ direction). By contrast, �e! = (∂P/∂!)φ already has
unit length, so the corresponding orthonormal basis vector is simply �e!̂ = �e! . The
metric components in the coordinate basis are readily seen to be gφφ =! 2, g!! = 1,
and g!φ = gφ! = 0, which are in accord with the equation for the squared distance
(interval) between adjacent points: ds2= gijdx

idxj = d! 2+! 2dφ2. Of course, the
metric components in the orthonormal basis are g

î ĵ
= δij .

Henceforth, we use hats to identify orthonormal bases; bases whose indices do
not have hats will typically (though not always) be coordinate bases.

We can construct the basis {�eμ} that is dual to the coordinate basis {�eα} =
{∂P/∂xα} by taking the gradients of the coordinates, viewed as scalar fields xα(P):

the basis dual to a
coordinate basis�eμ = �∇xμ. (24.14)

It is straightforward to verify the duality relation (24.8) for these two bases:

�eμ . �eα = �eα . �∇xμ = ∇�eαxμ = ∇∂P/∂xαxμ =
∂xμ

∂xα
= δμα . (24.15)

In any coordinate system, the expansion of the metric in terms of the dual basis,
ggg = gαβ�eα ⊗ �eβ = gαβ �∇xα ⊗ �∇xβ , is intimately related to the line element ds2 =
gαβdx

αdxβ . Consider an infinitesimal vectorial displacement d �x = dxα(∂/∂xα). In-
sert this displacement into the metric’s two slots to obtain the interval ds2 along
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d �x. The result is ds2 = gαβ∇xα ⊗ ∇xβ(d �x , d �x) = gαβ(d �x . ∇xα)(d �x . ∇xβ) =
gαβdx

αdxβ :
the line element for the
invariant interval along a
displacement vector

ds2 = gαβdx
αdxβ . (24.16)

Here the second equality follows from the definition of the tensor product⊗, and the
third from the fact that for any scalar field ψ , d �x . ∇ψ is the change dψ along d �x.

Any two bases {�eα} and {�eμ̄} can be expanded in terms of each other:

transformation matrices
linking two bases �eα = �eμ̄Lμ̄α , �eμ̄ = �eαLαμ̄. (24.17)

(By convention the first index on L is always placed up, and the second is always
placed down.) The quantities ||Lμ̄α|| and ||Lαμ̄|| are transformation matrices, and
since they operate in opposite directions, they must be the inverse of each other:

Lμ̄αL
α
ν̄ = δμ̄ν̄ , Lαμ̄L

μ̄
β = δαβ . (24.18)

These ||Lμ̄α|| are the generalizations of Lorentz transformations to arbitrary bases
[cf. Eqs. (2.34) and (2.35a)]. As in the Lorentz-transformation case, the transforma-
tion laws (24.17) for the basis vectors imply corresponding transformation laws for
components of vectors and tensors—laws that entail lining up indices in the obvious
manner:

transformation of tensor
components between
bases

Aμ̄ = Lαμ̄Aα , T μ̄ν̄ρ̄ = Lμ̄αLν̄βLγ ρ̄T αβγ ,
and similarly in the opposite direction.

(24.19)

For coordinate bases, these Lμ̄α are simply the partial derivatives of one set of
coordinates with respect to the other:

transformation matrices
between coordinate bases Lμ̄α = ∂x

μ̄

∂xα
, Lαμ̄ = ∂x

α

∂xμ̄
, (24.20)

as one can easily deduce via

�eα = ∂P
∂xα

= ∂x
μ

∂xα

∂P
∂xμ

= �eμ∂x
μ

∂xα
. (24.21)

In many physics textbooks a tensor is defined as a set of componentsFαβ that obey
the transformation laws

Fαβ = Fμν ∂x
μ

∂xα

∂xν

∂xβ
. (24.22)

This definition (valid only in a coordinate basis) is in accord with Eqs. (24.19) and
(24.20), though it hides the true and very simple nature of a tensor as a linear function
of frame-independent vectors.
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EXERCISESExercise 24.4 Derivation: Index-Manipulation Rules from Duality
For an arbitrary basis {�eα} and its dual basis {�eμ}, use (i) the duality relation (24.8),
(ii) the definition (24.9) of components of a tensor, and (iii) the relation �A . �B =
ggg( �A, �B) between the metric and the inner product to deduce the following results.
(a) The relations

�eμ = gμα�eα , �eα = gαμ�eμ. (24.23)

(b) The fact that indices on the components of tensors can be raised and lowered
using the components of the metric:

Fμν = gμαFα
ν , pα = gαβp

β . (24.24)

(c) The fact that a tensor can be reconstructed from its components in the manner
of Eq. (24.11).

Exercise 24.5 Practice: Transformation Matrices for Circular Polar Bases
Consider the circular polar coordinate system {! , φ} and its coordinate bases and
orthonormal bases as shown in Fig. 24.3 and discussed in the associated text. These
coordinates are related to Cartesian coordinates {x , y} by the usual relations: x =
! cos φ, y =! sin φ.
(a) Evaluate the components (Lx! , etc.) of the transformation matrix that links the

two coordinate bases {�ex , �ey} and {�e! , �eφ}. Also evaluate the components (L!x,
etc.) of the inverse transformation matrix.

(b) Similarly, evaluate the components of the transformation matrix and its inverse
linking the bases {�ex , �ey} and {�e!̂ , �e

φ̂
}.

(c) Consider the vector �A ≡ �ex + 2�ey. What are its components in the other two
bases?

24.3.224.3.2 Vectors as Directional Derivatives; Tangent Space; Commutators

As discussed in the introduction to Sec. 24.3, the notion of a vector as an arrow
connecting two points is problematic in a curved manifold and must be refined. As
a first step in the refinement, let us consider the tangent vector �A to a curve P(ζ )
at some point Po ≡ P(ζ = 0). We have defined that tangent vector by the limiting
process:

tangent vector to a curve�A≡ dP
dζ

≡ lim
�ζ→0

P(�ζ)− P(0)
�ζ

(24.25)

[Eq. (24.2)]. In this definition the difference P(ζ ) − P(0) means the tiny arrow
reaching from P(0)≡ Po to P(�ζ). In the limit as �ζ becomes vanishingly small,
these two points get arbitrarily close together. In such an arbitrarily small region of
the manifold, the effects of the manifold’s curvature become arbitrarily small and
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ζ = –0.5

ζ =  0.5ζ = 0

dP—
dζ

A
→

 =

FIGURE 24.4 A curve P(ζ ) on the surface of a sphere and the
curve’s tangent vector �A= dP/dζ at P(ζ = 0)≡ Po. The
tangent vector lives in the tangent space at Po (i.e., in the flat
plane that is tangent to the sphere there, as seen in the flat
Euclidean 3-space in which the sphere’s surface is embedded).

negligible (just think of an arbitrarily tiny region on the surface of a sphere), so the
notion of the arrow should become sensible. However, before the limit is completed,
we are required to divide by �ζ , which makes our arbitrarily tiny arrow big again.
What meaning can we give to this?

One way to think about it is to imagine embedding the curved manifold in
a higher-dimensional flat space (e.g., embed the surface of a sphere in a flat 3-
dimensional Euclidean space, as shown in Fig. 24.4). Then the tiny arrow P(�ζ)−
P(0) can be thought of equally well as lying on the sphere, or as lying in a surface
that is tangent to the sphere and is flat, as measured in the flat embedding space. We
can give meaning to [P(�ζ)− P(0)]/�ζ if we regard this expression as a formula
for lengthening an arrow-type vector in the flat tangent surface; correspondingly, we
must regard the resulting tangent vector �A as an arrow living in the tangent surface.

tangent space at a point The (conceptual) flat tangent surface at the point Po is called the tangent space
to the curved manifold at that point. It has the same number of dimensions n as the
manifold itself (two in the case of the surface of the sphere in Fig. 24.4). Vectors at Po
are arrows residing in that point’s tangent space, tensors at Po are linear functions of
these vectors, and all the linear algebra of vectors and tensors that reside at Po occurs
in this tangent space. For example, the inner product of two vectors �A and �B at Po
(two arrows living in the tangent space there) is computed via the standard relation
�A . �B = ggg( �A, �B) using the metric ggg that also resides in the tangent space. (Scalars

reside in both the manifold and the tangent space.)
This pictorial way of thinking about the tangent space and vectors and tensors that

reside in it is far too heuristic to satisfy most mathematicians. Therefore, mathemati-
cians have insisted on making it much more precise at the price of greater abstraction.
Mathematicians define the tangent vector to the curve P(ζ ) to be the derivative d/dζ
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that differentiates scalar fields along the curve. This derivative operator is well defined
by the rules of ordinary differentiation: if ψ(P) is a scalar field in the manifold, then
ψ[P(ζ )] is a function of the real variable ζ , and its derivative (d/dζ )ψ[P(ζ )] eval-
uated at ζ = 0 is the ordinary derivative of elementary calculus. Since the derivative
operator d/dζ differentiates in the manifold along the direction in which the curve is
moving, it is often called the directional derivative along P(ζ ). Mathematicians notice directional derivative

that all the directional derivatives at a point Po of the manifold form a vector space
(they can be multiplied by scalars and added and subtracted to get new vectors), and
so the mathematicians define this vector space to be the tangent space at Po.

This mathematical procedure turns out to be isomorphic to the physicists’ more
heuristic way of thinking about the tangent space. In physicists’ language, if one intro-
duces a coordinate system in a region of the manifold containing Po and constructs
the corresponding coordinate basis �eα = ∂P/∂xα, then one can expand any vector
in the tangent space as �A= Aα∂P/∂xα. One can also construct, in physicists’ lan-
guage, the directional derivative along �A; it is ∂ �A ≡ Aα∂/∂xα. Evidently, the com-
ponents Aα of the physicist’s vector �A (an arrow) are identical to the coefficients Aα

in the coordinate-expansion of the directional derivative ∂ �A. Therefore a one-to-one
correspondence exists between the directional derivatives ∂ �A at Po and the vectors
�A there, and a complete isomorphism holds between the tangent-space manipula-

tions that a mathematician performs treating the directional derivatives as vectors,
and those that a physicist performs treating the arrows as vectors.

tangent vector as
directional derivative
along a curve

“Why not abandon the fuzzy concept of a vector as an arrow, and redefine the vector
�A to be the same as the directional derivative ∂ �A?” mathematicians have demanded

of physicists. Slowly, over the past century, physicists have come to see the merit in
this approach. (i) It does, indeed, make the concept of a vector more rigorous than
before. (ii) It simplifies a number of other concepts in mathematical physics (e.g., the
commutator of two vector fields; see below). (iii) It facilitates communication with
mathematicians. (iv) It provides a formalism that is useful for calculation. With these
motivations in mind, and because one always gains conceptual and computational
power by having multiple viewpoints at one’s fingertips (see Feynman, 1966, p. 160),
we henceforth shall regard vectors both as arrows living in a tangent space and as
directional derivatives. Correspondingly, we assert the equalities:

∂P
∂xα

= ∂

∂xα
, �A= ∂ �A, (24.26)

and often expand vectors in a coordinate basis using the notation

�A= Aα ∂

∂xα
. (24.27)

This directional-derivative viewpoint on vectors makes natural the concept of the commutator of two vector
fieldscommutator of two vector fields �A and �B : [ �A, �B] is the vector that, when viewed
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3A
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, B
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A
→

A
→

B
→
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→

FIGURE 24.5 The commutator [ �A, �B]of two vector fields. The vectors are assumed to be so small
that the curvature of the manifold is negligible in the region of the diagram, so all the vectors can
be drawn lying in the manifold itself rather than in their respective tangent spaces. In evaluating
the two terms in the commutator (24.28), a locally orthonormal coordinate basis is used, so
Aα∂Bβ/∂xα is the amount by which the vector �B changes when one travels along �A (i.e., it is
the rightward-and-downward pointing dashed arrow in the upper right), and Bα∂Aβ/∂xα is
the amount by which �A changes when one travels along �B (i.e., it is the rightward-and-upward
pointing dashed arrow). According to Eq. (24.28), the difference of these two dashed arrows is
the commutator [ �A, �B]. As the diagram shows, this commutator closes the quadrilateral whose
legs are �A and �B . If the commutator vanishes, then there is no gap in the quadrilateral, which
means that in the region covered by this diagram, one can construct a coordinate system in
which �A and �B are coordinate basis vectors.

as a differential operator, is given by [∂ �A, ∂ �B]—where the latter quantity is the same
commutator as one meets elsewhere in physics (e.g., in quantum mechanics). Using
this definition, we can compute the components of the commutator in a coordinate
basis:

[ �A, �B]≡
[
Aα

∂

∂xα
, Bβ ∂

∂xβ

]
=
(
Aα
∂Bβ

∂xα
− Bα ∂A

β

∂xα

)
∂

∂xβ
. (24.28)

This is an operator equation where the final derivative is presumed to operate on a
scalar field, just as in quantum mechanics. From this equation we can read off the
components of the commutator in any coordinate basis; they areAαBβ ,α − BαAβ ,α,
where the comma denotes partial differentiation. Figure 24.5 uses this equation to
deduce the geometric meaning of the commutator: it is the fifth leg needed to close a
quadrilateral whose other four legs are constructed from the vector fields �A and �B . In
other words, it is “the change in �B relative to �A,” and as such it is a type of derivative
of �B along �A, called the Lie derivative: L �A �B ≡ [ �A, �B] (cf. footnote 2 in Chap. 14).

The commutator is useful as a tool for distinguishing between coordinate bases
and noncoordinate bases (also called nonholonomic bases). In a coordinate
basis, the basis vectors are just the coordinate system’s partial derivatives, �eα = ∂/∂xα,coordinate bases have

vanishing commutators and since partial derivatives commute, it must be that [�eα , �eβ]= 0. Conversely (as
Fig. 24.5 shows), if one has a basis with vanishing commutators [�eα , �eβ]= 0, then it
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is possible to construct a coordinate system for which this is the coordinate basis. In
a noncoordinate basis, at least one of the commutators [�eα , �eβ] will be nonzero.

24.3.324.3.3 Differentiation of Vectors and Tensors; Connection Coefficients

In a curved manifold, the differentiation of vectors and tensors is rather subtle. To
elucidate the problem, let us recall how we defined such differentiation in Minkowski
spacetime or Euclidean space (Sec. 1.7). Converting to the notation used in Eq. (24.25),
we began by defining the directional derivative of a tensor field FFF (P) along the tangent
vector �A= d/dζ to a curve P(ζ ):

directional derivative of a
tensor field∇ �AFFF ≡ lim

�ζ→0

FFF [P(�ζ)]− FFF [P(0)]
�ζ

. (24.29)

This definition is problematic, because FFF [P(�ζ)] lives in a different tangent space
than does FFF [P(0)]. To make the definition meaningful, we must identify some con-
nection between the two tangent spaces, when their points P(�ζ) and P(0) are
arbitrarily close together. That connection is equivalent to identifying a rule for trans-
porting FFF from one tangent space to the other.

In flat space or flat spacetime, and when FFF is a vector �F , that transport rule is
obvious: keep �F parallel to itself and keep its length fixed during the transport. In other
words, keep constant its components in an orthonormal coordinate system (Cartesian
coordinates in Euclidean space, Lorentz coordinates in Minkowski spacetime). This
is called the law of parallel transport. For a tensor FFF , the parallel transport law is the
same: keep its components fixed in an orthonormal coordinate basis.

Now, just as the curvature of Earth’s surface prevents one from placing a Cartesian
coordinate system on it, so nonzero curvature of any other manifold prevents one
from introducing orthonormal coordinates; see Sec. 25.3. However, in an arbitrarily
small region on Earth’s surface, one can introduce coordinates that are arbitrarily close
to Cartesian (as surveyors well know); the fractional deviations from Cartesian need
be no larger than O(L2/R2), where L is the size of the region and R is Earth’s radius
(see Sec. 25.3). Similarly, in curved spacetime, in an arbitrarily small region, one can
introduce coordinates that are arbitrarily close to Lorentz, differing only by amounts
quadratic in the size of the region—and similarly for a local orthonormal coordinate
basis in any curved manifold.

When defining ∇ �AFFF , one is sensitive only to first-order changes of quantities,
not second, so the parallel transport used in defining it in a flat manifold, based
on constancy of components in an orthonormal coordinate basis, must also work
in a local orthonormal coordinate basis of any curved manifold: In Eq. (24.29), one
must transport FFF from P(�ζ) to P(0), holding its components fixed in a locally
orthonormal coordinate basis (parallel transport), and then take the difference in the
tangent space at Po = P(0), divide by �ζ , and let �ζ → 0. The result is a tensor at
Po: the directional derivative ∇ �AFFF of FFF .
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Having made the directional derivative meaningful, one can proceed as in Secs. 1.7
and 2.10: define the gradient of FFF by ∇ �AFFF = �∇FFF ( , , �A) [i.e., put �A in the last—gradient of a tensor field
differentiation—slot of �∇FFF ; Eq. (1.15b)].

As in Chap. 2, in any basis we denote the components of �∇FFF by Fαβ ;γ . And as in
Sec. 11.8 (elasticity theory), we can compute these components in any basis with the
aid of that basis’s connection coefficients.

In Sec. 11.8, we restricted ourselves to an orthonormal basis in Euclidean space
and thus had no need to distinguish between covariant and contravariant indices;
all indices were written as subscripts. Now, dealing with nonorthonormal bases in
spacetime, we must distinguish covariant and contravariant indices. Accordingly, by
analogy with Eq. (11.68), we define the connection coefficients �μαβ as

connection coefficients for
a basis and its dual ∇β�eα ≡ ∇�eβ �eα = �μαβ�eμ. (24.30)

The duality between bases �eν . �eα = δνα then implies

∇β�eμ ≡ ∇�eβ �eμ =−�μαβ�eα . (24.31)

Note the sign flip, which is required to keep ∇β(�eμ . �eα) = 0, and note that the
differentiation index always goes last on �. Duality also implies that Eqs. (24.30) and
(24.31) can be rewritten as

�μαβ = �eμ . ∇β�eα =−�eα . ∇β�eμ. (24.32)

With the aid of these connection coefficients, we can evaluate the components
Aα;β of the gradient of a vector field in any basis. We just compute

Aμ;β�eμ = ∇β �A= ∇β(Aμ�eμ)= (∇βAμ)�eμ + Aμ∇β�eμ
= Aμ ,β�eμ + Aμ�αμβ�eα
= (Aμ ,β + Aα�μαβ)�eμ. (24.33)

In going from the first line to the second, we have used the notation

Aμ ,β ≡ ∂�eβAμ; (24.34)

that is, the comma denotes the result of letting a basis vector act as a differential operator
on the component of the vector. In going from the second line of (24.33) to the third, we
have renamed some summed-over indices. By comparing the first and last expressions
in Eq. (24.33), we conclude that

components of the
gradient of a vector field

Aμ;β = Aμ ,β + Aα�μαβ . (24.35)

The first term in this equation describes the changes in �A associated with changes of its
componentAμ; the second term corrects for artificial changes ofAμ that are induced
by turning and length changes of the basis vector �eμ. We shall use the short-hand
terminology that the second term “corrects the index μ.”

1170 Chapter 24. From Special to General Relativity

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



By a similar computation, we conclude that in any basis the covariant components
of the gradient are

Aα;β = Aα ,β − �μαβAμ, (24.36)

where again Aα ,β ≡ ∂�eβAα. Notice that, when the index being corrected is down [α
in Eq. (24.36)], the connection coefficient has a minus sign; when it is up [μ in Eq.
(24.35)], the connection coefficient has a plus sign. This is in accord with the signs in
Eqs. (24.30) and (24.31).

These considerations should make obvious the following equations for the com-
ponents of the gradient of a second rank tensor field:

components of the
gradient of a tensor field

Fαβ ;γ = Fαβ ,γ + �αμγFμβ + �βμγFαμ,

Fαβ ;γ = Fαβ ,γ − �μαγFμβ − �μβγFαμ,

Fαβ ;γ = Fαβ ,γ + �αμγFμβ − �μβγFαμ. (24.37)

Notice that each index of FFF must be corrected, the correction has a sign dictated by
whether the index is up or down, the differentiation index always goes last on the �,
and all other indices can be deduced by requiring that the free indices in each term
be the same and all other indices be summed.

If we have been given a basis, then how can we compute the connection coeffi-
cients? We can try to do so by drawing pictures and examining how the basis vectors
change from point to point—a method that is fruitful in spherical and cylindrical co-
ordinates in Euclidean space (Sec. 11.8). However, in other situations this method is
fraught with peril, so we need a firm mathematical prescription. It turns out that the
following prescription works (see Ex. 24.7 for a proof).

1. Evaluate the commutation coefficients cαβρ of the basis, which are defined
by the two equivalent relations:

commutation coefficients
for a basis

[�eα , �eβ]≡ cαβρ�eρ , cαβ
ρ ≡ �eρ . [�eα , �eβ]. (24.38a)

(Note that in a coordinate basis the commutation coefficients will vanish.
Warning: Commutation coefficients also appear in the theory of Lie groups;
there it is conventional to use a different ordering of indices than here:
cαβ

ρ
here = cραβLie groups.)

2. Lower the last index on the commutation coefficients using the metric com-
ponents in the basis:

cαβγ ≡ cαβρgργ . (24.38b)

3. Compute the quantities

formulas for computing
connection coefficients�αβγ ≡ 1

2
(gαβ ,γ + gαγ ,β − gβγ ,α + cαβγ + cαγβ − cβγα). (24.38c)
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Here the commas denote differentiation with respect to the basis vectors as
though the metric components were scalar fields [as in Eq. (24.34)]. Notice
that the pattern of indices is the same on the gs and on the cs. It is a
peculiar pattern—one of the few aspects of index gymnastics that cannot
be reconstructed by merely lining up indices. In a coordinate basis the c
terms will vanish, so �αβγ will be symmetric in its last two indices. In an
orthonormal basis gμν are constant, so the g terms will vanish, and �αβγ
will be antisymmetric in its first two indices. And in a Cartesian or Lorentz
coordinate basis, which is both coordinate and orthonormal, both the c
terms and the g terms will vanish, so �αβγ will vanish.

4. Raise the first index on �αβγ to obtain the connection coefficients

�μβγ = gμα�αβγ . (24.38d)

In a coordinate basis, the �μβγ are sometimes called Christoffel symbols,
though we will use the name connection coefficients independent of the
nature of the basis.

The first three steps in the above prescription for computing the connection
coefficients follow from two key properties of the gradient �∇ . First, the gradient of
the metric tensor vanishes:

vanishing gradient of the
metric tensor

�∇ggg = 0. (24.39)

Second, for any two vector fields �A and �B , the gradient is related to the commutator by

relation of gradient to
commutator

∇ �A �B − ∇ �B �A= [ �A, �B]. (24.40)

For a derivation of these relations and then a derivation of the prescription 1–4, see
Exs. 24.6 and 24.7.

The gradient operator �∇ is an example of a geometric object that is not a tensor.
The connection coefficients�μβγ = �eμ .

(
∇�eγ �eβ
)

can be regarded as the components
of �∇ ; because it is not a tensor, these components do not obey the tensorial transforma-
tion law (24.19) when switching from one basis to another. Their transformation law
is far more complicated and is rarely used. Normally one computes them from scratch
in the new basis, using the above prescription or some other, equivalent prescription
(cf. Misner, Thorne, and Wheeler, 1973, Chap. 14). For most curved spacetimes that
one meets in general relativity, these computations are long and tedious and therefore
are normally carried out on computers using symbolic manipulation software, such as
Maple, Matlab, or Mathematica, or such programs as GR-Tensor and MathTensor that
run under Maple or Mathematica. Such software is easily found on the Internet using
a search engine. A particularly simple Mathematica program for use with coordinate
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bases is presented and discussed in Appendix C of Hartle (2003) and is available on
that book’s website: http://web.physics.ucsb.edu/~gravitybook/.

EXERCISESExercise 24.6 Derivation: Properties of the Gradient �∇
(a) Derive Eq. (24.39). [Hint: At a point P where �∇ggg is to be evaluated, introduce a

locally orthonormal coordinate basis (i.e., locally Cartesian or locally Lorentz).
When computing in this basis, the effects of curvature show up only to second
order in distance from P. Show that in this basis, the components of �∇ggg vanish,
and from this infer that �∇ggg , viewed as a frame-independent third-rank tensor,
vanishes.]

(b) Derive Eq. (24.40). [Hint: Again work in a locally orthonormal coordinate basis.]

Exercise 24.7 Derivation and Example: Prescription
for Computing Connection Coefficients
Derive the prescription 1–4 [Eqs. (24.38)] for computing the connection coefficients
in any basis. [Hints: (i) In the chosen basis, from �∇ggg = 0 infer that �αβγ + �βαγ =
gαβ ,γ . Notice that this determines the part of �αβγ that is symmetric in its first
two indices. Show that the number of independent components of �αβγ thereby
determined is 1

2n
2(n+ 1), where n is the manifold’s dimension. (ii) From Eq. (24.40)

infer that �γβα − �γαβ = cαβγ , which fixes the part of � antisymmetric in the last
two indices. Show that the number of independent components thereby determined
is 1

2n
2(n − 1). (iii) Infer that the number of independent components determined

by (i) and (ii) together is n3, which is the entirety of �αβγ . By somewhat complicated
algebra, deduce Eq. (24.38c) for�αβγ . (The algebra is sketched in Misner, Thorne, and
Wheeler, 1973, Ex. 8.15.) (iv) Then infer the final answer, Eq. (24.38d), for �μβγ .]

Exercise 24.8 Practice: Commutation and Connection Coefficients
for Circular Polar Bases
Consider the circular polar coordinates {! , φ} of Fig. 24.3 and their associated bases.
(a) Evaluate the commutation coefficients cαβ

ρ for the coordinate basis
{�e! , �eφ}, and also for the orthonormal basis {�e!̂ , �e

φ̂
}.

(b) Compute by hand the connection coefficients for the coordinate basis and also for
the orthonormal basis, using Eqs. (24.38). [Note: The answer for the orthonormal
basis was worked out pictorially in our study of elasticity theory; Fig. 11.15 and
Eq. (11.70).]

(c) Repeat this computation using symbolic manipulation software on a computer.

Exercise 24.9 Practice: Connection Coefficients for Spherical Polar Coordinates
(a) Consider spherical polar coordinates in 3-dimensional space, and verify that the

nonzero connection coefficients, assuming an orthonormal basis, are given by
Eq. (11.71).
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(b) Repeat the exercise in part (a) assuming a coordinate basis with

er ≡ ∂

∂r
, eθ ≡ ∂

∂θ
, eφ ≡ ∂

∂φ
. (24.41)

(c) Repeat both computations in parts (a) and (b) using symbolic manipulation
software on a computer.

Exercise 24.10 Practice: Index Gymnastics—Geometric Optics
This exercise gives the reader practice in formal manipulations that involve the
gradient operator. In the geometric-optics (eikonal) approximation of Sec. 7.3, for
electromagnetic waves in Lorenz gauge, one can write the 4-vector potential in the
form �A= �Aeiϕ, where �A is a slowly varying amplitude and ϕ is a rapidly varying
phase. By the techniques of Sec. 7.3, one can deduce from the vacuum Maxwell equa-
tions that the wave vector, defined by �k ≡ �∇ϕ, is null: �k . �k = 0.

(a) Rewrite all the equations in the above paragraph in slot-naming index notation.
(b) Using index manipulations, show that the wave vector �k (which is a vector field,

because the wave’s phaseϕ is a scalar field) satisfies the geodesic equation∇�k�k = 0
(cf. Sec. 24.5.2). The geodesics, to which �k is the tangent vector, are the rays
discussed in Sec. 7.3, along which the waves propagate.

24.3.4 24.3.4 Integration

Our desire to use general bases and work in curved manifolds gives rise to two new
issues in the definition of integrals.

The first issue is that the volume elements used in integration involve the Levi-
Civita tensor [Eqs. (2.43), (2.52), and (2.55)], so we need to know the components
of the Levi-Civita tensor in a general basis. It turns out (see, e.g., Misner, Thorne,
and Wheeler, 1973, Ex. 8.3) that the covariant components differ from those in an
orthonormal basis by a factor

√|g| and the contravariant by 1/
√|g|, where

g ≡ det ||gαβ|| (24.42)

is the determinant of the matrix whose entries are the covariant components of
the metric. More specifically, let us denote by [αβ . . . ν] the value of εαβ . . .ν in an
orthonormal basis of our n-dimensional space [Eq. (2.43)]:

[12 . . . n] =+1,

[αβ . . . ν] =

⎧⎪⎨⎪⎩
+1 if α , β , . . . , ν is an even permutation of 1, 2, . . . , n
−1 if α , β , . . . , ν is an odd permutation of 1, 2, . . . , n
0 if α , β , . . . , ν are not all different.

(24.43)
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(In spacetime the indices must run from 0 to 3 rather than 1 to n= 4.) Then in a
general right-handed basis the components of the Levi-Civita tensor are

components of Levi-Civita
tensor in an arbitrary basisεαβ . . .ν =

√|g| [αβ . . . ν], εαβ . . .ν =± 1√|g| [αβ . . . ν], (24.44)

where the± is plus in Euclidean space and minus in spacetime. In a left-handed basis
the sign is reversed.

As an example of these formulas, consider a spherical polar coordinate system
(r , θ , φ) in 3-dimensional Euclidean space, and use the three infinitesimal vectors
dxj(∂/∂xj) to construct the volume element d [cf. Eq. (1.26)]:

dV = ε

(
dr
∂

∂r
, dθ ∂

∂θ
, dφ ∂

∂φ

)
= εrθφdrdθdφ =√g drdθdφ = r2 sin θdrdθdφ .

(24.45)

Here the second equality follows from linearity of ε and the formula for computing
its components by inserting basis vectors into its slots; the third equality follows from
our formula (24.44) for the components. The fourth equality entails the determinant
of the metric coefficients, which in spherical coordinates are grr = 1, gθθ = r2, and
gφφ = r2 sin2 θ ; all other gjk vanish, so g = r4 sin2 θ . The resulting volume element
r2 sin θdrdθdφ should be familiar and obvious.

The second new integration issue we must face is that such integrals as∫
∂V
T αβdβ (24.46)

[cf. Eqs. (2.55), (2.56)] involve constructing a vector T αβdβ in each infinitesimal
region dβ of the surface of integration ∂V and then adding up the contributions
from all the infinitesimal regions. A major difficulty arises because each contribution
lives in a different tangent space. To add them together, we must first transport them
all to the same tangent space at some single location in the manifold. How is that
transport to be performed? The obvious answer is “by the same parallel transport
technique that we used in defining the gradient.” However, when defining the gradient,
we only needed to perform the parallel transport over an infinitesimal distance, and
now we must perform it over long distances. When the manifold is curved, long-
distance parallel transport gives a result that depends on the route of the transport,
and in general there is no way to identify any preferred route (see, e.g., Misner, Thorne,
and Wheeler, 1973, Sec. 11.4).

As a result, integrals such as Eq. (24.46) are ill-defined in a curved manifold. The integrals in a curved
manifold are well defined
only if infinitesimal
contributions are scalars

only integrals that are well defined in a curved manifold are those such as
∫
∂V S

αdα,
whose infinitesimal contributions Sαdα are scalars (i.e., integrals whose value is a
scalar). This fact will have profound consequences in curved spacetime for the laws of
conservation of energy, momentum, and angular momentum (Secs. 25.7 and 25.9.4).
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EXERCISES Exercise 24.11 Practice: Integration—Gauss’s Theorem
In 3-dimensional Euclidean space Maxwell’s equation ∇ . E= ρe/ε0 can be combined
with Gauss’s theorem to show that the electric flux through the surface ∂V of a sphere
is equal to the charge in the sphere’s interior V divided by ε0:∫

∂V
E . d�=

∫
V
(ρe/ε0) dV . (24.47)

Introduce spherical polar coordinates so the sphere’s surface is at some radius r = R.
Consider a surface element on the sphere’s surface with vectorial legs dφ∂/∂φ and
dθ∂/∂θ . Evaluate the components dj of the surface integration element d�=
ε(. . . , dθ∂/∂θ , dφ∂/∂φ). (Here ε is the Levi-Civita tensor.) Similarly, evaluate dV
in terms of vectorial legs in the sphere’s interior. Then use these results for dj and
dV to convert Eq. (24.47) into an explicit form in terms of integrals over r , θ , and φ.
The final answer should be obvious, but the above steps in deriving it are informative.

24.4 24.4 The Stress-Energy Tensor Revisited

In Sec. 2.13.1, we defined the stress-energy tensor TTT of any matter or field as a
symmetric, second-rank tensor that describes the flow of 4-momentum through
spacetime. More specifically, the total 4-momentum �P that flows through some small
3-volume � (defined in Sec. 2.12.1), going from the negative side of � to its positive
side, is

stress-energy tensor TTT ( , �)= (total 4-momentum �P that flows through �); T αββ = Pα

(24.48)

[Eq. (2.66)]. Of course, this stress-energy tensor depends on the location P of the
3-volume in spacetime [i.e., it is a tensor field TTT (P)].

From this geometric, frame-independent definition of the stress-energy tensor,
we were able to read off the physical meaning of its components in any inertial
reference frame [Eqs. (2.67)]: T 00 is the total energy density, including rest mass-
energy; T j0 = T 0j is the j -component of momentum density, or equivalently, the
j -component of energy flux; and T jk are the components of the stress tensor, or
equivalently, of the momentum flux.

In Sec. 2.13.2, we formulated the law of conservation of 4-momentum in a local
form and a global form. The local form,

local form of 4-momentum
conservation

�∇ . TTT = 0, (24.49)

says that, in any chosen Lorentz frame, the time derivative of the energy density plus
the divergence of the energy flux vanishes, ∂T 00/∂t + ∂T 0j/∂xj = 0, and similarly
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for the momentum, ∂T j0/∂t + ∂T jk/∂xk = 0. The global form,
∫
∂V T

αβdβ = 0
[Eq. (2.71)], says that all the 4-momentum that enters a closed 4-volume V in space-
time through its boundary ∂V in the past must ultimately exit through ∂V in the future
(Fig. 2.11). Unfortunately, this global form requires transporting vectorial contribu-
tions T αβdβ to a common location and adding them, which cannot be done in a
route-independent way in curved spacetime (see the end of Sec. 24.3.4). Therefore (as
we shall discuss in greater detail in Secs. 25.7 and 25.9.4), the global conservation law
becomes problematic in curved spacetime.

The stress-energy tensor and local 4-momentum conservation play major roles in
our development of general relativity. Almost all of our examples will entail perfect
fluids.

Recall [Eq. (2.74a)] that in the local rest frame of a perfect fluid, there is no
energy flux or momentum density, T j0 = T 0j = 0, but there is a total energy density
(including rest mass) ρ and an isotropic pressure P :

T 00 = ρ , T jk = Pδjk . (24.50)

From this special form ofT αβ in the fluid’s local rest frame, one can derive a geometric,
frame-independent expression for the fluid’s stress-energy tensor TTT in terms of its 4-
velocity �u, the metric tensor ggg , and the rest-frame energy density ρ and pressure P :

stress-energy tensor for a
perfect fluidTTT = (ρ + P)�u⊗ �u+ P ggg ; T αβ = (ρ + P)uαuβ + P gαβ (24.51)

[Eq. (2.74b)]; see Ex. 2.26. This expression for the stress-energy tensor of a perfect
fluid is an example of a geometric, frame-independent description of physics.

The equations of relativistic fluid dynamics for a perfect fluid are obtained by
inserting the stress-energy tensor (24.51) into the law of 4-momentum conservation
�∇ . TTT = 0, and augmenting with the law of rest-mass conservation. We explored this
in brief in Ex. 2.26, and in much greater detail in Sec. 13.8. Applications that we have
explored are the relativistic Bernoulli equation and ultrarelativistic jets (Sec. 13.8.2)
and relativistic shocks (Ex. 17.9). In Sec. 13.8.3, we explored in detail the slightly subtle
way in which a fluid’s nonrelativistic energy density, energy flux, and stress tensor arise
from the relativistic perfect-fluid stress-energy tensor (24.51).

These issues for a perfect fluid are so important that readers are encouraged
to review them (except possibly the applications) in preparation for our foray into
general relativity.

Four other examples of the stress-energy tensor are those for the electromagnetic
field (Ex. 2.28), for a kinetic-theory swarm of relativistic particles (Secs. 3.4.2 and
3.5.3), for a point particle (Box 24.2), and for a relativistic fluid with viscosity and
diffusive heat conduction (Ex. 24.13). However, we shall not do much with any of
these during our study of general relativity, except viscosity and heat conduction in
Sec. 28.5.
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BOX 24.2. STRESS-ENERGY TENSOR FOR A POINT PARTICLE

For a point particle that moves through spacetime along a world line P(ζ )
[where ζ is the affine parameter such that the particle’s 4-momentum is
�p = d/dζ , Eq. (2.14)], the stress-energy tensor vanishes everywhere except
on the world line itself. Correspondingly, TTT must be expressed in terms of a
Dirac delta function. The relevant delta function is a scalar function of two
points in spacetime, δ(Q, P), with the property that when one integrates
over the point P, using the 4-dimensional volume element d (which in any
inertial frame just reduces to d = dtdxdydz), one obtains∫

V
f (P)δ(Q, P)d = f (Q). (1)

Here f (P) is an arbitrary scalar field, and the region V of 4-dimensional
integration must include the point Q. One can easily verify that in terms of
Lorentz coordinates this delta function can be expressed as

δ(Q, P)= δ(tQ − tP)δ(xQ − xP)δ(yQ − yP)δ(zQ − zP), (2)

where the deltas on the right-hand side are ordinary 1-dimensional Dirac
delta functions. [Proof: Simply insert Eq. (2) into Eq. (1), replace d by
dtQdxQdyQdzQ, and perform the four integrations.]

The general definition (24.48) of the stress-energy tensor TTT implies that
the integral of a point particle’s stress-energy tensor over any 3-surface S that
slices through the particle’s world line just once, at an event P(ζo), must be
equal to the particle’s 4-momentum at the intersection point:∫

S
T αβdβ = pα(ζo). (3)

It is a straightforward but sophisticated exercise (Ex. 24.12) to verify that the
following frame-independent expression has this property:

TTT (Q)=
∫ +∞
−∞

�p(ζ )⊗ �p(ζ ) δ[Q, P(ζ )]dζ . (4)

Here the integral is along the world line P(ζ ) of the particle, and Q is the
point at which TTT is being evaluated. Therefore, Eq. (4) is the point-particle
stress-energy tensor.
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EXERCISESExercise 24.12 Derivation: Stress-Energy Tensor for a Point Particle
Show that the point-particle stress-energy tensor (4) of Box 24.2 satisfies that box’s
Eq. (3), as claimed.

Exercise 24.13 Example: Stress-Energy Tensor for a Viscous Fluid
with Diffusive Heat Conduction
This exercise serves two roles: It develops the relativistic stress-energy tensor for a
viscous fluid with diffusive heat conduction, and in the process it allows the reader to
gain practice in index gymnastics.

In our study of elasticity theory, we introduced the concept of the irreducible
tensorial parts of a second-rank tensor in Euclidean space (Box 11.2). Consider a
relativistic fluid flowing through spacetime with a 4-velocity �u(P). The fluid’s gradient
�∇�u (uα;β in slot-naming index notation) is a second-rank tensor in spacetime. With
the aid of the 4-velocity itself, we can break it down into irreducible tensorial parts as
follows:

uα;β =−aαuβ + 1
3
θPαβ + σαβ + ωαβ . (24.52)

Here: (i)

Pαβ ≡ gαβ + uαuβ (24.53)

is a tensor that projects vectors into the 3-space orthogonal to �u (it can also be regarded
as that 3-space’s metric; see Ex. 2.10); (ii) σαβ is symmetric, trace-free, and orthogonal
to the 4-velocity; and (iii) ωαβ is antisymmetric and orthogonal to the 4-velocity.
(a) Show that the rate of change of �u along itself, ∇�u�u (i.e., the fluid 4-acceleration)

is equal to the vector �a that appears in the decomposition (24.52). Show, further,
that �a . �u= 0.

(b) Show that the divergence of the 4-velocity, ∇ . �u, is equal to the scalar field θ that
appears in the decomposition (24.52). As we shall see in part (d), this is the fluid’s
rate of expansion.

(c) The quantities σαβ and ωαβ are the relativistic versions of a Newtonian fluid’s
shear and rotation tensors, which we introduced in Sec. 13.7.1. Derive equations
for these tensors in terms of uα;β and Pμν.

(d) Show that, as viewed in a Lorentz reference frame where the fluid is moving with
speed small compared to the speed of light, to first order in the fluid’s ordinary
velocity vj = dxj/dt , the following statements are true: (i) u0= 1, uj = vj ; (ii) θ
is the nonrelativistic rate of expansion of the fluid, θ =∇ . v ≡ vj ,j [Eq. (13.67a)];
(iii) σjk is the fluid’s nonrelativistic shear [Eq. (13.67b)]; and (iv) ωjk is the fluid’s
nonrelativistic rotation tensor [denoted rij in Eq. (13.67c)].

(e) At some event P where we want to know the influence of viscosity on the fluid’s
stress-energy tensor, introduce the fluid’s local rest frame. Explain why, in that
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frame, the only contributions of viscosity to the components of the stress-energy
tensor are T jkvisc =−ζθgjk − 2μσjk, where ζ and μ are the coefficients of bulk
and shear viscosity, respectively; the contributions to T 00 and T j0 = T 0j vanish.
[Hint: See Eq. (13.73) and associated discussions.]

(f) From nonrelativistic fluid mechanics, infer that, in the fluid’s rest frame at P,
the only contributions of diffusive heat conductivity to the stress-energy tensor
are T 0j

cond = T j0
cond =−κ∂T /∂xj , where κ is the fluid’s thermal conductivity and

T is its temperature. [Hint: See Eq. (13.74) and associated discussion.] Actually,
this expression is not fully correct. If the fluid is accelerating, there is a correction
term: ∂T /∂xj gets replaced by ∂T /∂xj + ajT , where aj is the acceleration. After
reading Sec. 24.5 and especially Ex. 24.16, explain this correction.

(g) Using the results of parts (e) and (f), deduce the following geometric, frame-
invariant form of the fluid’s stress-energy tensor:

Tαβ = (ρ+P)uαuβ +P gαβ − ζθgαβ − 2μσαβ − 2κu(αPβ)μ(T;μ+ aμT ). (24.54)

Here the subscript parentheses in the last term mean to symmetrize in the α and
β slots.

From the divergence of this stress-energy tensor, plus the first law of thermo-
dynamics and the law of rest-mass conservation, one can derive the full theory of
relativistic fluid mechanics for a fluid with viscosity and heat flow (see, e.g., Misner,
Thorne, and Wheeler, 1973, Ex. 22.7). This particular formulation of the theory, in-
cluding Eq. (24.54), is due to Carl Eckart (1940). Landau and Lifshitz (1959) have
given a slightly different formulation. For discussion of the differences, and of causal
difficulties with both formulations and the difficulties’ repair, see, for example, the
reviews by Israel and Stewart (1980), Andersson and Comer (2007, Sec. 14), and
López-Monsalvo (2011, Sec. 4).

24.5 24.5 The Proper Reference Frame of an Accelerated Observer

Physics experiments and astronomical measurements almost always use an apparatus
that accelerates and rotates. For example, if the apparatus is in an Earthbound labo-
ratory and is attached to the laboratory floor and walls, then it accelerates upward
(relative to freely falling particles) with the negative of the “acceleration of gravity,”
and it rotates (relative to inertial gyroscopes) because of the rotation of Earth. It is use-
ful, in studying such an apparatus, to regard it as attached to an accelerating, rotating
reference frame. As preparation for studying such reference frames in the presence
of gravity, we study them in flat spacetime. For a somewhat more sophisticated treat-
ment, see Misner, Thorne, and Wheeler (1973, pp. 163–176, 327–332).

Consider an observer with 4-velocity �U , who moves along an accelerated world
line through flat spacetime (Fig. 24.6) so she has a nonzero 4-acceleration:

�a = �∇ �U �U . (24.55)
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FIGURE 24.6 The proper reference frame of an accelerated observer. The spatial basis vectors �ex̂ ,
�eŷ , and �eẑ are orthogonal to the observer’s world line and rotate, relative to local gyroscopes,
as they move along the world line. The flat 3-planes spanned by these basis vectors are surfaces
of constant coordinate time x 0̂≡ (proper time as measured by the observer’s clock at the event
where the 3-plane intersects the observer’s world line); in other words, they are the observer’s
slices of simultaneity and “3-space.” In each of these flat 3-planes the spatial coordinates {x̂,
ŷ, ẑ} are Cartesian, with ∂/∂x̂ = �ex̂ , ∂/∂ŷ = �eŷ , and ∂/∂ẑ= �eẑ.

Have that observer construct, in the vicinity of her world line, a coordinate system proper reference frame of
an accelerated observer{xα̂} (called her proper reference frame) with these properties: (i) The spatial origin

is centered on her world line at all times (i.e., her world line is given by xĵ = 0).
(ii) Along her world line, the time coordinate x 0̂ is the same as the proper time ticked
by an ideal clock that she carries. (iii) In the immediate vicinity of her world line, the
spatial coordinates xĵ measure physical distance along the axes of a little Cartesian
latticework that she carries (and that she regards as purely spatial, which means it
lies in the 3-plane orthogonal to her world line). These properties dictate that, in
the immediate vicinity of her world line, the metric has the form ds2 = η

α̂β̂
dxα̂dxβ̂ ,

where η
α̂β̂

are the Lorentz-basis metric coefficients, Eq. (24.6); in other words, all
along her world line the coordinate basis vectors are orthonormal:

g
α̂β̂
= ∂

∂xα̂
. ∂

∂xβ̂
= η

α̂β̂
at xĵ = 0. (24.56)

Moreover, properties (i) and (ii) dictate that along the observer’s world line, the basis
vector �e0̂≡ ∂/∂x 0̂ differentiates with respect to her proper time, and thus is identically
equal to her 4-velocity �U :

�e0̂ =
∂

∂x 0̂
= �U . (24.57)

rotating and nonrotating
proper reference frames

There remains freedom as to how the observer’s latticework is oriented spatially.
The observer can lock it to the gyroscopes of an inertial-guidance system that she
carries (Box 24.3), in which case we say that it is “nonrotating”; or she can rotate it
relative to such gyroscopes. For generality, we assume that the latticework rotates.
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BOX 24.3. INERTIAL GUIDANCE SYSTEMS

Aircraft and rockets often carry inertial guidance systems, which consist of
an accelerometer and a set of gyroscopes.

The accelerometer measures the system’s 4-acceleration �a (in relativistic
language). Equivalently, it measures the system’s Newtonian 3-acceleration a
relative to inertial coordinates in which the system is momentarily at rest. As
we see in Eq. (24.58), these quantities are two different ways of thinking about
the same thing.

Each gyroscope is constrained to remain at rest in the aircraft or rocket
by a force that is applied at its center of mass. Such a force exerts no torque
around the center of mass, so the gyroscope maintains its direction (does not
precess) relative to an inertial frame in which it is momentarily at rest.

As the accelerating aircraft or rocket turns, its walls rotate with some
angular velocity �� relative to these inertial-guidance gyroscopes. This is the
angular velocity discussed in the text between Eqs. (24.57) and (24.58).

From the time-evolving 4-acceleration �a(τ) and angular velocity ��(τ), a
computer can calculate the aircraft’s (or rocket’s) world line and its changing
orientation.

Its angular velocity, as measured by the observer (by comparing the latticework’s
orientation with inertial-guidance gyroscopes), is a 3-dimensional spatial vector � in
the 3-plane orthogonal to her world line; and as viewed in 4-dimensional spacetime,
it is a 4-vector ��whose components in the observer’s reference frame are�ĵ �= 0 and
�0̂ = 0. Similarly, the latticework’s acceleration, as measured by an inertial-guidance
accelerometer attached to it (Box 24.3), is a 3-dimensional spatial vector a that can be
thought of as a 4-vector with components in the observer’s frame:

a0̂ = 0, aĵ = (ĵ -component of the measured a). (24.58)

This 4-vector is the observer’s 4-acceleration, as one can verify by computing the
4-acceleration in an inertial frame in which the observer is momentarily at rest.

constructing coordinates
of proper reference frame

Geometrically, the coordinates of the proper reference frame are constructed as
follows. Begin with the basis vectors �eα̂ along the observer’s world line (Fig. 24.6)—
basis vectors that satisfy Eqs. (24.56) and (24.57), and that rotate with angular velocity
�� relative to gyroscopes. Through the observer’s world line at time x 0̂ construct the
flat 3-plane spanned by the spatial basis vectors �e

ĵ
. Because �e

ĵ
. �e0̂ = 0, this 3-plane

is orthogonal to the world line. All events in this 3-plane are given the same value of
coordinate time x 0̂ as the event where it intersects the world line; thus the 3-plane is
a surface of constant coordinate time x 0̂. The spatial coordinates in this flat 3-plane
are ordinary, Cartesian coordinates xĵ with �e

ĵ
= ∂/∂xĵ .
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24.5.124.5.1 Relation to Inertial Coordinates; Metric in Proper Reference Frame;
Transport Law for Rotating Vectors

It is instructive to examine the coordinate transformation between these proper-
reference-frame coordinates xα̂ and the coordinates xμ of an inertial reference frame.
We pick a very special inertial frame for this purpose. Choose an event on the ob-
server’s world line, near which the coordinate transformation is to be constructed;
adjust the origin of the observer’s proper time, so this event is x 0̂ = 0 (and of course
xĵ = 0); and choose the inertial frame to be one that, arbitrarily near this event,
coincides with the observer’s proper reference frame. If we were doing Newtonian
physics, then the coordinate transformation from the proper reference frame to the
inertial frame would have the form (accurate through terms quadratic in xα̂):

xi = xî + 1
2
aî(x 0̂)2 + εî

ĵ k̂
�ĵxk̂x 0̂, x0 = x 0̂. (24.59)

Here the term 1
2a
î(x 0̂)2 is the standard expression for the vectorial displacement pro-

duced after time x 0̂ by the acceleration aî; and the term εî
ĵ k̂
�ĵxk̂x 0̂ is the standard

expression for the displacement produced by the rotation rate (rotational angular ve-
locity)�ĵ during a short time x 0̂. In relativity theory there is only one departure from
these familiar expressions (up through quadratic order): after time x 0̂ the acceleration
has produced a velocity vĵ = aĵx 0̂ of the proper reference frame relative to the iner-
tial frame; correspondingly, there is a Lorentz-boost correction to the transformation
of time: x0 = x 0̂ + vĵxĵ = x 0̂(1+ a

ĵ
xĵ ) [cf. Eq. (2.37c)], accurate only to quadratic

order. Thus, the full transformation to quadratic order is

inertial coordinates
related to those of the
proper reference frame of
an accelerated, rotating
observer

xi = xî + 1
2
aî(x 0̂)2 + εî

ĵ k̂
�ĵxk̂x 0̂,

x0 = x 0̂(1+ a
ĵ
xĵ ). (24.60a)

From this transformation and the form of the metric, ds2=−(dx0)2+ δijdxidxj
in the inertial frame, we easily can evaluate the form of the metric, accurate to linear
order in x, in the proper reference frame:

metric in proper reference
frame of an accelerated,
rotating observer

ds2 =−(1+ 2a . x)(dx 0̂)2 + 2(�× x) . dx dx 0̂ + δjkdxĵdxk̂ (24.60b)

(Ex. 24.14a). Here the notation is that of 3-dimensional vector analysis, with x the
3-vector whose components are xĵ , dx that with components dxĵ , a that with com-
ponents aĵ , and � that with components�ĵ .

Because the transformation (24.60a) was constructed near an arbitrary event on
the observer’s world line, the metric (24.60b) is valid near any and every event on the
world line (i.e., it is valid all along the world line). In fact, it is the leading order in an
expansion in powers of the spatial separation xĵ from the world line. For higher-order
terms in this expansion see, for example, Ni and Zimmermann (1978).
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Notice that precisely on the observer’s world line, the metric coefficients g
α̂β̂

[the
coefficients of dxα̂dxβ̂ in Eq. (24.60b)] are g

α̂β̂
= η

α̂β̂
, in accord with Eq. (24.56).

However, as one moves farther away from the observer’s world line, the effects of
the acceleration aĵ and rotation�ĵ cause the metric coefficients to deviate more and
more strongly from η

α̂β̂
.

From the metric coefficients of Eq. (24.60b), one can compute the connection
coefficients�α̂

β̂γ̂
on the observer’s world line, and from these connection coefficients,

one can infer the rates of change of the basis vectors along the world line: ∇ �U �eα̂ =
∇0̂�eα̂ = �μ̂α̂0̂�eμ̂. The result is (Ex. 24.14b):

equations for transport
of proper reference
frame’s basis vectors along
observer’s world line

∇ �U �e0̂ ≡ ∇ �U �U = �a , (24.61a)

∇ �U �eĵ = (�a . �e
ĵ
) �U + ε( �U , ��, �e

ĵ
, ). (24.61b)

Equation (24.61b) is the general “law of transport” for constant-length vectors
that are orthogonal to the observer’s world line and that the observer thus sees as
purely spatial. For the spin vector �S of an inertial-guidance gyroscope (Box 24.3), the
transport law is Eq. (24.61b) with �e

ĵ
replaced by �S and with ��= 0:

Fermi-Walker transport
for the spin of an inertial-
guidance gyroscope

∇ �U �S = �U(�a . �S). (24.62)

This is called Fermi-Walker transport.The term on the right-hand side of this transport
law is required to keep the spin vector always orthogonal to the observer’s 4-velocity:
∇ �U(�S . �U)= 0. For any other vector �A that rotates relative to inertial-guidance gyro-
scopes, the transport law has, in addition to this “keep-it-orthogonal-to �U” term, a
second term, which is the 4-vector form of dA/dt =�× A:transport law for a vector

that is orthogonal to
observer’s 4-velocity
and rotates relative to
gyroscopes

∇ �U �A= �U(�a . �A)+ ε( �U , ��, �A, ). (24.63)

Equation (24.61b) is this general transport law with �A replaced by �e
ĵ
.

24.5.2 24.5.2 Geodesic Equation for a Freely Falling Particle

Consider a particle with 4-velocity �u that moves freely through the neighborhood of
an accelerated observer. As seen in an inertial reference frame, the particle travels
through spacetime on a straight line, also called a geodesic of flat spacetime. Corre-
spondingly, a geometric, frame-independent version of its geodesic law of motion is

geodesic law of motion for
freely falling particle

∇�u�u= 0 (24.64)

(i.e., the particle parallel transports its 4-velocity �u along �u). It is instructive to examine
the component form of this geodesic equation in the proper reference frame of the
observer. Since the components of �u in this frame are uα = dxα/dτ , where τ is the
particle’s proper time (not the observer’s proper time), the components uα̂ ;μ̂u

μ̂= 0 of
the geodesic equation (24.64) are
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uα̂ , μ̂u
μ̂ + �α̂μ̂ν̂uμ̂uν̂ =

(
∂

∂xμ̂

dxα̂

dτ

)
dxμ̂

dτ
+ �α̂μ̂ν̂uμ̂uν̂ = 0; (24.65)

or equivalently,

d2xα̂

dτ 2 + �α̂μ̂ν̂
dxμ̂

dτ

dxν̂

dτ
= 0. (24.66)

Suppose, for simplicity, that the particle is moving slowly relative to the observer, so its
ordinary velocityvĵ = dxĵ/dx 0̂ is nearly equal touĵ = dxĵ/dτ and is small compared
to unity (the speed of light), and u0̂ = dx 0̂/dτ is nearly unity. Then to first order in
the ordinary velocity vĵ , the spatial part of the geodesic equation (24.66) becomes

d2xî

(dx 0̂)2
=−�î 0̂0̂ − (�îĵ 0̂ + �î 0̂ĵ )vĵ . (24.67)

By computing the connection coefficients from the metric coefficients of Eq. (24.60b)
(Ex. 24.14), we bring this low-velocity geodesic law of motion into the form

geodesic equation for
slowly moving particle in
proper reference frame
of accelerated, rotating
observer

d2xî

(dx 0̂)2
=−aî − 2εî

ĵ k̂
�ĵvk̂ , that is, d2x

(dx 0̂)2
=−a − 2�× v . (24.68)

This is the standard nonrelativistic form of the law of motion for a free particle as
seen in a rotating, accelerating reference frame. The first term on the right-hand side
is the inertial acceleration due to the failure of the frame to fall freely, and the second
term is the Coriolis acceleration due to the frame’s rotation. There would also be a
centrifugal acceleration if we had kept terms of higher order in distance away from
the observer’s world line, but this acceleration has been lost due to our linearizing the
metric (24.60b) in that distance.

This analysis shows how the elegant formalism of tensor analysis gives rise to
familiar physics. In the next few chapters we will see it give rise to less familiar, general
relativistic phenomena.

EXERCISESExercise 24.14 Derivation: Proper Reference Frame
(a) Show that the coordinate transformation (24.60a) brings the metric ds2 =

ηαβdx
αdxβ into the form of Eq. (24.60b), accurate to linear order in separation

xĵ from the origin of coordinates.
(b) Compute the connection coefficients for the coordinate basis of Eq.

(24.60b) at an arbitrary event on the observer’s world line. Do so first by hand
calculations, and then verify your results using symbolic-manipulation software
on a computer.

(c) Using the connection coefficients from part (b), show that the rate of change of
the basis vectors eα̂ along the observer’s world line is given by Eq. (24.61).
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(d) Using the connection coefficients from part (b), show that the low-velocity limit
of the geodesic equation [Eq. (24.67)] is given by Eq. (24.68).

24.5.3 24.5.3 Uniformly Accelerated Observer

As an important example (cf. Ex. 2.16), consider an observer whose accelerated world

transformation between
inertial coordinates and
uniformly accelerated
coordinates

line, written in some inertial (Lorentz) coordinate system {t , x , y , z}, is

t = (1/κ) sinh(κτ), x = (1/κ) cosh(κτ), y = z= 0. (24.69)

Here τ is proper time along the world line, and κ is the magnitude of the observer’s
4-acceleration: κ = |�a| (which is constant along the world line; see Ex. 24.15, where
the reader can derive the various claims made in this subsection and the next).

The world line (24.69) is depicted in Fig. 24.7 as a thick, solid hyperbola that
asymptotes to the past light cone at early times and to the future light cone at
late times. The dots along the world line mark events that have proper times τ =
−1.2, −0.9, −0.6, −0.3, 0.0, +0.3, +0.6, +0.9, +1.2 (in units of 1/κ). At each of
these dots, the 3-plane orthogonal to the world line is represented by a dashed line
(with the 2 dimensions out of the plane of the paper suppressed from the diagram).
This 3-plane is labeled by its coordinate time x 0̂, which is equal to the proper time
of the dot. The basis vector �e1̂ is chosen to point along the observer’s 4-acceleration,
so �a = κ�e1̂. The coordinate x 1̂ measures proper distance along the straight line that
starts out tangent to �e1̂. The other two basis vectors �e2̂ and �e3̂ point out of the plane
of the figure and are parallel transported along the world line: ∇ �U �e2̂ = ∇ �U �e3̂= 0. In
addition, x 2̂ and x 3̂ are measured along straight lines, in the orthogonal 3-plane, that
start out tangent to these vectors. This construction implies that the resulting proper
reference frame has vanishing rotation, ��= 0 (Ex. 24.15), and that x 2̂= y and x 3̂= z,
where y and z are coordinates in the {t , x , y , z} Lorentz frame that we used to define
the world line [Eqs. (24.69)].

Usually, when constructing an observer’s proper reference frame, one confines
attention to the immediate vicinity of her world line. However, in this special case it is
instructive to extend the construction (the orthogonal 3-planes and their resulting
spacetime coordinates) outward arbitrarily far. By doing so, we discover that the
3-planes all cross at location x 1̂=−1/κ , which means the coordinate system {xα̂}singularity of uniformly

accelerated coordinates becomes singular there. This singularity shows up in a vanishing g0̂0̂(x
1̂=−1/κ) for

the spacetime metric, written in that coordinate system:
spacetime metric in
uniformly accelerated
coordinates

ds2 =−(1+ κx 1̂)2(dx 0̂)2 + (dx 1̂)2 + (dx 2̂)2 + (dx 3̂)2. (24.70)

[Note that for |x 1̂| � 1/κ this metric agrees with the general proper-reference-frame
metric (24.60b).] From Fig. 24.7, it should be clear that this coordinate system can
only cover smoothly one quadrant of Minkowski spacetime: the quadrant x > |t |.
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FIGURE 24.7 The proper reference frame of a uniformly accelerated observer. All
lengths and times are measured in units of 1/κ . We show only 2 dimensions of
the reference frame—those in the 2-plane of the observer’s curved world line.

24.5.424.5.4 Rindler Coordinates for Minkowski Spacetime

The spacetime metric (24.70) in our observer’s proper reference frame resembles the
metric in the vicinity of a black hole, as expressed in coordinates of observers who
accelerate so as to avoid falling into the hole. In preparation for discussing this in
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Chap. 26, we shift the origin of our proper-reference-frame coordinates to the singular
point and rename them. Specifically, we introduce so-called Rindler coordinates:Rindler coordinates

t ′ = x 0̂, x′ = x 1̂+ 1/κ , y ′ = x 2̂, z′ = x 3̂. (24.71)

It turns out (Ex. 24.15) that these coordinates are related to the Lorentz coordinates
that we began with, in Eqs. (24.69), by

t = x ′ sinh(κt ′), x = x ′ cosh(κt ′), y = y ′, z= z′. (24.72)

The metric in this Rindler coordinate system, of course, is the same as (24.70) with
displacement of the origin:

spacetime metric in
Rindler coordinates

ds2 =−(κx′)2dt ′2 + dx′2 + dy′2 + dz′2. (24.73)

The world lines of constant {x′, y′, z′} have uniform acceleration: �a = (1/x ′)�ex′.
Thus we can think of these coordinates as the reference frame of a family of uniformly
accelerated observers, each of whom accelerates away from their horizon x′ = 0 withhorizon of Rindler

coordinates acceleration equal to 1/(her distance x′ above the horizon). (We use the name “hori-
zon” for x′ = 0, because it represents the edge of the region of spacetime that these
observers are able to observe.) The local 3-planes orthogonal to these observers’ world
lines all mesh to form global 3-planes of constant t ′. This is a major factor in making
the metric (24.73) so simple.

EXERCISES Exercise 24.15 Derivation: Uniformly Accelerated Observer and Rindler Coordinates
In this exercise you will derive the various claims made in Secs. 24.5.3 and 24.5.4.

(a) Show that the parameter τ along the world line (24.69) is proper time and that
the 4-acceleration has magnitude |�a]= 1/κ .

(b) Show that the unit vectors �e
ĵ

introduced in Sec. 24.5.3 all obey the Fermi-Walker
transport law (24.62) and therefore, by virtue of Eq. (24.61b), the proper reference
frame built from them has vanishing rotation rate: ��= 0.

(c) Show that the coordinates x 2̂ and x 3̂ introduced in Sec. 24.5.3 are equal to the y
and z coordinates of the inertial frame used to define the observer’s world line
[Eqs. (24.69)].

(d) Show that the proper-reference-frame coordinates constructed in Sec. 24.5.3 are
related to the original {t , x , y , z} coordinates by

t = (x 1̂+ 1/κ) sinh(κx 0̂), x = (x 1̂+ 1/κ) cosh(κx 0̂), y = x 2̂, z= x 3̂;
(24.74)

and from this, deduce the form (24.70) of the Minkowski spacetime metric in the
observer’s proper reference frame.

1188 Chapter 24. From Special to General Relativity

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



(e) Show that, when converted to Rindler coordinates by moving the spatial origin,
the coordinate transformation (24.74) becomes (24.72), and the metric (24.70)
becomes (24.73).

(f) Show that observers at rest in the Rindler coordinate system (i.e., who move along
world lines of constant {x ′, y′, z′}) have 4-acceleration �a = (1/x ′)�ex′.

Exercise 24.16 Example: Gravitational Redshift
Inside a laboratory on Earth’s surface the effects of spacetime curvature are so small
that current technology cannot measure them. Therefore, experiments performed
in the laboratory can be analyzed using special relativity. (This fact is embodied in
Einstein’s equivalence principle; end of Sec. 25.2.)

(a) Explain why the spacetime metric in the proper reference frame of the laboratory’s
floor has the form

ds2 = (1+ 2gz)(dx 0̂)2 + dx2 + dy2 + dz2, (24.75)

plus terms due to the slow rotation of the laboratory walls, which we neglect in
this exercise. Here g is the acceleration of gravity measured on the floor.

(b) An electromagnetic wave is emitted from the floor, where it is measured to have
wavelength λo, and is received at the ceiling. Using the metric (24.75), show that,
as measured in the proper reference frame of an observer on the ceiling, the
received wave has wavelengthλr = λo(1+ gh), whereh is the height of the ceiling
above the floor (i.e., the light is gravitationally redshifted by�λ/λo = gh). [Hint:
Show that all crests of the wave must travel along world lines that have the same
shape, z= F(x 0̂ − x 0̂

e
), where F is some function, and x 0̂

e
is the coordinate time

at which the crest is emitted from the floor. You can compute the shape function
F if you wish, but it is not needed to derive the gravitational redshift; only its
universality is needed.]

The first high-precision experiments to test this prediction were by Robert
Pound and his student Glen Rebka and postdoc Joseph Snider, in a tower at
Harvard University in the 1950s and 1960s. They achieved 1% accuracy. We
discuss this gravitational redshift in Sec. 27.2.1.

Exercise 24.17 Example: Rigidly Rotating Disk
Consider a thin disk with radius R at z = 0 in a Lorentz reference frame. The disk
rotates rigidly with angular velocity�. In the early years of special relativity there was
much confusion over the geometry of the disk: In the inertial frame it has physical
radius (proper distance from center to edge)R and physical circumference C = 2πR.
But Lorentz contraction dictates that, as measured on the disk, the circumference
should be

√
1− v2 C (withv =�R), and the physical radius,R, should be unchanged.

This seemed weird. How could an obviously flat disk in flat spacetime have a curved,
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non-Euclidean geometry, with physical circumference divided by physical radius
smaller than 2π? In this exercise you will explore this issue.
(a) Consider a family of observers who ride on the edge of the disk. Construct a

circular curve, orthogonal to their world lines, that travels around the disk (at√
x2 + y2 = R). This curve can be thought of as lying in a 3-surface of constant

time x 0̂ of the observers’ proper reference frames. Show that it spirals upward
in a Lorentz-frame spacetime diagram, so it cannot close on itself after traveling
around the disk. Thus the 3-planes, orthogonal to the observers’ world lines at the
edge of the disk, cannot mesh globally to form global 3-planes (by contrast with
the case of the uniformly accelerated observers in Sec. 24.5.4 and Ex. 24.15).

(b) Next, consider a 2-dimensional family of observers who ride on the surface of the
rotating disk. Show that at each radius

√
x2 + y2 = const, the constant-radius

curve that is orthogonal to their world lines spirals upward in spacetime with
a different slope. Show this means that even locally, the 3-planes orthogonal to
each of their world lines cannot mesh to form larger 3-planes—thus there does
not reside in spacetime any 3-surface orthogonal to these observers’ world lines.
There is no 3-surface that has the claimed non-Euclidean geometry.

Bibliographic Note

For a very readable presentation of most of this chapter’s material, from much the same
point of view, see Hartle (2003, Chap. 20). For an equally elementary introduction
from a somewhat different viewpoint, see Schutz (2009, Chaps. 1–4). A far more
detailed and somewhat more sophisticated introduction, largely but not entirely from
our viewpoint, will be found in Misner, Thorne, and Wheeler (1973, Chaps. 1–6).
More sophisticated treatments from rather different viewpoints than ours are given in
Wald (1984, Chaps. 1, 2, and Sec. 3.1), and Carroll (2004, Chaps. 1, 2). A treasure trove
of exercises on this material, with solutions, is in Lightman et al. (1975, Chaps. 6–8).
See also the bibliography for Chap. 2.

For a detailed and sophisticated discussion of accelerated observers and the mea-
surements they make, see Gourgoulhon (2013).
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1376–1377
fundamental observers (FOs), in cosmology, 1366–1367

galaxies
observed properties of, 1364, 1365f, 1412–1413
distortion of images by gravitational lensing, 1424–

1427
spatial distribution of, 1364

power spectrum for, 1412–1415, 1414f
formation of in early universe, 1401–1406
dark matter in, 1364, 1365f, 1381
mergers of, 1413

galaxy clusters
dark matter in, 1380–1381
hot gas in, and Sunyaev-Zel’dovich effect, 1428–1430
merging, image of, 1365f

gauge transformations and choices
in linearized theory of gravity, 1228–1229, 1312
in cosmological perturbations, 1401n

Gauss’s theorem in spacetime, 1490
general relativity, 1191–1224

some history of, 1191–1193
linearized approximation to, 1227–1231
Newtonian limit of, 1225–1227
experimental tests of, 1299–1311

geodesic deviation, equation of, 1210
for light rays, 1423
on surface of a sphere, 1217
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geodesic equation
geometric form, 1201–1202
in coordinate system, 1203
conserved rest mass, 1202
super-hamiltonian for, 1206, 1357
action principles for

stationary proper time, 1203, 1205–1206
super-Hamiltonian, 1357

conserved quantities associated with symmetries,
1203–1205

geodetic precession, 1290–1291, 1309–1310
geometric object, 1453
geometric optics, 1174. See also Fermat’s principle

for gravitational waves, 1320–1324, 1338–1341
geometrized units, 1157, 1224

numerical values of quantities in, 1225t
geometrodynamics, 1344b–1345b
global positioning system, 1301–1302
global warming, 1440n
gradient operator, 1170–1171, 1173, 1482–1483
gravitation theories

general relativity, 1191–1224
relativistic scalar theory, 1194–1195, 1465

gravitational fields of relativistic systems. See spacetime
metrics for specific systems

gravitational lensing, 1305–1307, 1422–1427. See also
deflection of starlight, gravitational

refractive index models for
derivation of, 1305–1307

Fermat’s principle for, 1306–1307
lensing of gravitational waves, 1323–1324
weak lensing, 1422–1427

gravitational waves, 1321f. See also gravitons
speed of, same as light, 1457b
stress-energy tensor of, 1324–1326
energy and momentum carried by, 1324–1326
generation of, 1327–1345

multipole-moment expansion, 1328–1329
quadrupole-moment formalism, 1330–1335
radiation reaction in source, 1333, 1338
numerical relativity simulations, 1341–1342
energy, momentum, and angular momentum emitted,

1332, 1334–1335
mean occupation number of modes, 1326–1327

propagation through flat spacetime, 1229, 1311–1320
h+ and h×, 1315–1316
behavior under rotations and boosts, 1317, 1319
TT gauge, 1312–1315
projecting out TT-gauge field, 1314b
Riemann tensor and tidal fields, 1312–1313
deformations, stretches and squeezes, 1315–1317

tidal tendex and frame-drag vortex lines for, 1318b
propagation through curved spacetime (geometric optics),

1320–1327, 1338–1341
same propagation phenomena as electromagnetic

waves, 1323
gravitational lensing of, 1323–1324

penetrating power, 1311
frequency bands for: ELF, VLF, LF, and HF, 1345–1347
sources of

human arm waving, 1333
linear oscillator, 1338
binary star systems, 1335–1342
binary pulsars in elliptical orbits, 1342–1345
binary black holes, 1341–1342, 1342f, 1343f, 1344b–

1345b
stochastic background from binary black holes,

1356–1358
cosmic strings, 1357

detection of, 1345–1357
gravitational wave interferometers, 1347–1355. See also

laser interferometer gravitational wave detector
pulsar timing arrays, 1355–1357

gravitons
speed of, same as light, 1319, 1457b
spin and rest mass, 1319–1320

gravity probe A, 1301
gravity probe B, 1309
gyroscope, propagation of spin

in absence of tidal gravity
parallel transport if freely falling, 1218–1219
Fermi-Walker transport if accelerated, 1184

precession due to tidal gravity (curvature coupling),
1219–1221

gyroscopes
inertial-guidance, 1182
used to construct reference frames, 1156, 1180–1182,

1195, 1451
precession of due to frame-dragging by spinning body,

1232–1236, 1279, 1296b, 1309, 1318

Hamilton’s equations
for particle motion in curved spacetime, 1206, 1275, 1291

hamiltonian, constructed from lagrangian, 1433
hamiltonian for particle motion in curved spacetime. See

also geodesic equation
super-hamiltonian, 1206, 1357

Hawking radiation
from black holes, 1286–1287
from cosmological horizon, 1437

helium formation in early universe, 1387–1392
homogeneity of the universe, 1364–1366
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homogeneous spaces
2-dimensional, 1367–1370
3-dimensional, 1370, 1372

horizon problem in cosmology, 1387, 1388f, 1431–1432
horizon radius of universe, χH , 1375
horizon, black-hole event

nonrotating (Schwarzschild), 1272
formation of, in imploding star, 1273, 1273f
surface gravity of, 1274

rotating (Kerr), 1279–1280
generators of, 1280, 1281f, 1282
angular velocity of, 1280
surface gravity of, 1286
surface area of, 1284, 1285

horizon, cosmological, 1375
horizon radius, χH , 1375
horizon problem, 1387, 1388f, 1431–1432
and theory of inflation, 1437–1438
acoustic horizon and radius, χA, 1375

Hubble constant,H0, 1374
measurements of, 1375

Hubble law for expansion of universe, 1374
Hubble Space Telescope

images from, 1365
hydrostatic equilibrium

of spherical, relativistic star, 1258

index gymnastics. See component manipulation
rules

index of refraction
for model of gravitational lensing, 1307

induction zone, 1327f
inertial (Lorentz) coordinates, 1157, 1453, 1466
inertial-guidance system, 1182b
inertial mass density (tensorial)

definition, 1499
for perfect fluid, 1499

inertial reference frame. See Lorentz reference frame
inflation, cosmological, 1431–1440

motivation for, 1431–1432
theory of, 1434–1438
particle production at end of, 1435, 1437
tests of, 1438–1439

inflaton field, 1433
potential for, 1435, 1436f
energy density and pressure of, 1435
evolution of, 1435, 1436f, 1437
dissipation of, produces particles, 1437

inner product
in spacetime, 1460, 1468

instabilities in fluid flows. See fluid-flow instabilities

integrals in Euclidean space
Gauss’s theorem, 1176

integrals in spacetime, 1174–1176, 1487–1490
over 3-surface, 1175, 1489, 1492–1493
over 4–volume, 1175, 1487
Gauss’s theorem, 1490
not well defined in curved spacetime unless infinitesimal

contributions are scalars, 1175
interferometer, gravitational wave. See laser interferometer

gravitational wave detector
interferometric gravitational wave detector. See laser

interferometer gravitational wave detector
international pulsar timing array (IPTA), 1356
interval

defined, 1159, 1457
invariance of, 1159–1160, 1457–1460
spacelike, timelike, and null (lightlike), 1457

irreducible mass of black hole, 1284–1287
isotropy of the universe, 1364–1366

Jeans’ theorem, 1407
jerk function j (t) for universe, 1374, 1378

value today, 1382

Kepler’s laws, 1232–1233, 1247, 1304, 1335, 1344
Kerr metric. See also black holes; horizon, black-hole event

in Boyer-Lindquist coordinates, 1277–1279
in (ingoing) Kerr coordinates, 1281–1282, 1281n
geodesic orbits in, 1291
dragging of inertial frames in, 1279, 1290–1291
precession of gyroscope in orbit around, 1290–1291
tidal tendex lines and frame-drag vortex lines in,

1295b–1296b
light-cone structure of, 1279–1282
event horizon of, 1280
Cauchy horizon of and its instability, 1282n

Killing vector field, 1203–1205
Kompaneets equation, 1429

lagrangian methods for dynamics, 1433
lagrangian density

energy density and flux in terms of, 1434
for scalar field, 1434
for electrodynamics, 1433–1434

laser interferometer gravitational wave detector
general relativistic analyses of

in proper reference frame of beam splitter, 1347–1349,
1352–1355

in TT gauge, 1347–1352
for more realistic interferometer, 1355

Lense-Thirring precession, 1233, 1290–1291, 1309–1310
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Levi-Civita tensor in spacetime, 1174–1175, 1483
light cones, 1155–1156, 1155f, 1159, 1186–1187, 1230, 1230f

near Schwarzschild black hole, 1264–1265, 1269, 1272
near Kerr black hole, 1279–1283

LIGO (Laser Interferometer Gravitational-Wave
Observatory). See also laser interferometer
gravitational wave detector

discovery of gravitational waves, 1326, 1346
advanced LIGO detectors (interferometers), 1346–1347
signal processing for, 1341

line element, 1163–1164, 1469
linearized theory (approximation to general relativity),

1227–1231
lithium formation in early universe, 1392
local Lorentz reference frame and coordinates, 1195–1196,

1195f
connection coefficients in, 1199–1200

influence of spacetime curvature on, 1213
metric components in, 1196–1200

influence of spacetime curvature on, 1213
Riemann tensor components in, 1214
nonmeshing of neighboring frames in curved spacetime,

1197–1199, 1197f
Lorentz contraction

of length, 1478–1479
of rest-mass density, 1493

Lorentz coordinates, 1157, 1453, 1466
Lorentz factor, 1470
Lorentz force

in terms of electromagnetic field tensor, 1156, 1465, 1483
in terms of electric and magnetic fields, 1484
geometric derivation of, 1464–1465

Lorentz group, 1476
Lorentz reference frame, 1156–1157, 1451, 1451f. See also

local Lorentz reference frame and coordinates
slice of simultaneity (3-space) in, 1470, 1471f

Lorentz transformation, 1158, 1475–1477
boost, 1476, 1477f
rotation, 1477

Lorenz gauge
electromagnetic, 1219–1220, 1487
gravitational, 1229–1230

luminosity distance, dL, 1375–1376
Lyman alpha spectral line, 1373, 1393–1396

magnetosphere
in binary pulsars, 1310

Maple, 1172
mass conservation, 1492
mass density

rest-mass density, 1493

mass moments, gravitational, 1328–1332
mass-energy density, relativistic

as component of stress-energy tensor, 1495, 1497
Mathematica, 1172
Matlab, 1172
Maxwell’s equations

in terms of electromagnetic field tensor, 1485–1486
in terms of electric and magnetic fields, 1486

Mercury, perihelion advance of, 1302–1304
metric perturbation and trace-reversed metric perturbation,

1227–1228, 1311
metric tensor in spacetime, 1155, 1460

geometric definition, 1155, 1460
components in orthonormal basis, 1157, 1467

metrics for specific systems. See spacetime metrics for
specific systems

momentum, relativistic, 1471
relation to 4-momentum and observer, 1471, 1473
of a zero-rest-mass particle, 1472

momentum conservation, relativistic
for particles, 1472
differential, 1176–1177, 1497
global, for asymptotically flat system, 1237–1238
global, fails in generic curved spacetime, 1177, 1218

momentum density as component of stress-energy tensor,
1495

monopoles, 1432n
Monte Carlo methods

for radiative transfer, 1415–1419, 1428
multipole moments

gravitational, 1232, 1328–1334
of CMB anisotropy, 1418, 1419f

near zone, 1327f
neutrinos

spin of, deduced from return angle, 1319–1320
in universe today, 1380t, 1382
in universe, evolution of, 1384, 1385f

temperature and number density compared to photons,
1385, 1385n

decoupling in early universe, 1384, 1385f, 1406n
thermodynamically isolated after decoupling,

1384
influence of rest mass, 1385n, 1410
free streaming through dark matter potentials,

1407–1409
neutron stars. See also binary pulsars

equation of state, 1257
structures of, 1258–1260
upper limit on mass of, 1260

neutrons in early universe, 1384, 1387–1392, 1390f
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nuclear reactions. See chemical reactions, including nuclear
and particle

nucleosynthesis, in nuclear age of early universe, 1387–1392
number density

as time component of number-flux 4–vector, 1491–1492
number flux

as spatial part of number-flux 4–vector, 1491–1492
number-flux 4–vector

geometric definition, 1491–1492
components: number density and flux, 1491–1492
conservation laws for, 1491–1492

observer in spacetime, 1453
occupation number, mean

for astrophysical gravitational waves, 1326–1327
ocean tides, 1212–1213
optical depth, 1395

pairs, electron-positron
annihilation of, in early universe, 1384, 1385f

parallel transport
for 4–vectors in curved or flat spacetime, 1169

particle conservation law
relativistic, 1492

particle density. See number density
particle kinetics

in flat spacetime
geometric form, 1154–1156, 1178b, 1461–1464
in index notation, 1469–1474

Penrose process for black holes, 1283–1285
perihelion and periastron advances due to general relativity,

1302–1304
perturbations in expanding universe

origin of, 1437
initial spectrum of, 1410–1412
evolution of, 1401–1422

photon, gravitational field of in linearized theory, 1231
physical laws

geometric formulation of. See principle of relativity
Planck energy, 1438
Planck length, 1287, 1438, 1439
Planck satellite, 1365f
Planck time, 1438, 1439
Planck units, 1438
plasma electromagnetic waves

validity of fluid approximation for, 1392
polarization of electromagnetic waves

for CMB radiation, 1415–1416, 1417, 1419f, 1420–1421,
1428, 1439

Stokes parameters for, 1420–1421
polarization of gravitational waves, 1312–1313, 1316–1317

post-Newtonian approximation to general relativity, 1303,
1310, 1341

pressure
as component of stress-energy tensor, 1497

primordial nucleosynthesis, 1387–1392
principle of relativity, 1154, 1158–1159, 1454

in presence of gravity, 1196
projection tensors

into Lorentz frame’s 3-space, 1473
for TT-gauge gravitational waves, 1314b

proper reference frame of accelerated, rotating observer,
1180–1186, 1181f

metric in, 1183
geodesic equation in, 1185
for observer at rest inside a spherical, relativistic star,

1253–1254
proper time, 1154, 1461
PSR B1913+16 binary pulsar, 1310. See also binary pulsars
pulsar. See also binary pulsars; neutron stars

timing arrays for gravitational wave detection, 1355–1357

quasars, 1233, 1288, 1305, 1379, 1380, 1397, 1430
quintessence, 1446

radiation reaction, gravitational: predictions and
observations

predictions of, 1333, 1335
measurements of, in binary pulsars, 1310
measurements of, in binary black holes, by LIGO, 1311

radiation reaction, theory of
radiation-reaction potential, 1333, 1335
damping and energy conservation, 1335

radiative processes
Thomson scattering, 1407–1408, 1415, 1416n, 1418, 1428
Compton scattering, 1388, 1392–1393, 1428–1430

radiative transfer, Boltzmann transport analysis of
by Monte Carlo methods, 1415–1418, 1428

radius of curvature of spacetime, 1213
Rayleigh-Jeans spectrum, 1430
recombination in early universe, 1392–1396
redshift, cosmological, 1373
redshift, gravitational

in proper reference frame of accelerated observer, 1189
from surface of spherical star, to infinity, 1251–1252
influence on GPS, 1301–1302
experimental tests of, 1301, 1482

reionizaton of universe, 1386f, 1395f, 1397, 1418, 1431
rest frame

momentary, 1461
local, 1497, 1498
asymptotic, 1237, 1246–1248
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local asymptotic, 1327f, 1328, 1331, 1332, 1339–1340
rest mass, 1470–1471

global and local conservation laws for, 1492, 1494
rest-mass density, relativistic, 1493
rest-mass-flux 4–vector

geometric definition of, 1492
components: rest-mass density and flux, 1493

Ricci (curvature) tensor, 1214–1215
Riemann curvature tensor

definition, 1209
symmetries of, 1214
components of

in an arbitrary basis, 1215–1216
in local Lorentz frame, 1214

Bianchi identity for, 1223
decomposition into tidal and frame-drag fields, in

vacuum, 1235b–1236b
components in specific spacetimes or spaces

surface of a sphere, 1216
general linearized metric, 1227
Schwarzschild metric, 1244b, 1267

Newtonian limit of, 1227
magnitude of, 1213
outside Newtonian, gravitating body, 1212–1213

rigidly rotating disk, relativistic, 1189–1190
Rindler approximation, 1273–1274
Rindler coordinates

in flat spacetime, 1187–1189
near black-hole horizon, 1273–1274

Robertson-Walker metric for a homogeneous, isotropic
universe, 1371

coordinates for, 1370
derivation of, 1366–1372
Einstein tensor for, 1371–1372
perturbations of, and their evolution, 1401–1422

rotating disk, relativistic, 1189–1190
rotation matrix, 1477

scale factor, in cosmology, 1370
as a function of time, 1387, 1388f, 1390f, 1399f, 1400f

Schrödinger equation
propagation speed of waves, 1456b

Schwarzschild metric, 1242. See also black holes; horizon,
black-hole event; stars; wormhole

uniqueness of: Birchoff ’s theorem, 1250
in Schwarzschild coordinates, 1242

bases, connection coefficients, and Riemann tensor,
1243b–1244b

Schwarzschild coordinate system and symmetries,
1244–1249

in isotropic coordinate system, 1251

in ingoing Eddington-Finkelstein coordinates, 1269
gravitational (horizon) radius of, 1250
Rindler approximation near horizon, 1273–1274
geodesic orbits in, 1247–1248, 1274–1276
Newtonian limit of, 1246
roles of

exterior metric of static star, 1250–1252
exterior metric of imploding star, 1264–1266, 1269
metric of nonspinning black hole, 1272–1276
metric of wormhole, 1276–1277

Shapiro time delay, 1308–1309
simultaneity in relativity

breakdown of, 1478
slices of, 1181f, 1293–1294, 1293f, 1297, 1470, 1485,

1485f
singularity, spacetime

at center of Schwarzschild black hole, 1271–1272, 1273f
generic, inside all black holes, 1273, 1282n
for Schwarzschild wormhole, 1277

slot-naming index notation, 1156, 1468–1469, 1482
space telescope. See Hubble Space Telescope
spacetime diagram, 1452–1453

for Lorentz boost, 1477–1479, 1477f
spacetime metrics for specific systems. See also stars,

spherical in general relativity
for a spherical star, 1250, 1253, 1258–1260
for a moving particle, linearized, 1230–1231
for a photon: Aichelberg-Sexl ultraboost metric, 1231
for exterior of any weak-gravity stationary system,

1231–1234, 1236
conservation of mass and angular momentum:

influence on, 1237–1238
reading off source’s mass and angular momentum from

exterior metric, 1232–1233
for exterior of any asymptotically flat, strong-gravity,

stationary system, 1238
for gravitational waves in flat spacetime, 1311–1314
Schwarzschild metric for a spherical star, black hole, or

wormhole, 1242. See also Schwarzschild metric
Robertson-Walker metric for a homogeneous, isotropic

universe, 1371n, 1366–1372. See also Robertson-
Walker metric for a homogeneous, isotropic
universe

Bertotti-Robinson metric, for a homogeneous magnetic
universe, 1249

speed of light
constancy of, 1159, 1454
measuring without light, 1455b
contrasted with speeds of other waves, 1456b

spherical triangle, 1372
standard cosmology, 1383
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stars. See also neutron stars
formation of first stars in early universe, 1397
observed properties of, 1379
spherical, in general relativity, 1250–1263

equations of stellar structure, 1258–1259
interior metric, 1253, 1258–1259
exterior spacetime metric: Schwarzschild, 1250
embedding diagram for, 1262–1263, 1263f
star with constant density, full structure, 1260

implosion to form black holes, 1264–1272
in Schwarzschild coordinates, 1264–1267, 1270–1271
in ingoing Eddington-Finkelstein coordinates,

1267–1271
Stokes parameters for polarization of radiation, 1420–1421
stress tensor

as spatial part of relativistic stress-energy tensor, 1495
stress-energy tensor

geometric definition of, 1176, 1494
constructed from Lagrangian, 1434
components of, 1176, 1494–1495
symmetry of, 1495–1496
and 4-momentum conservation, 1176–1177, 1496–1497
for electromagnetic field

in terms of electromagnetic field tensor, 1498
in terms of electric and magnetic fields, 1500
in terms of vector potential, 1434

for perfect fluid, 1177, 1497
for point particle, 1178b, 1179
for viscous, heat-conducting fluid, 1179–1180

Sunyaev-Zel’dovich effect, 1428–1430
supernovae

observations of reveal acceleration of the universe, 1398,
1400

supersymmetry, 1441
symmetries and conservation laws, 1203–1205

tangent space, 1160, 1165–1169, 1166f, 1175, 1218, 1253
tangent vector, 1155, 1155f, 1165–1166, 1461

as directional derivative, 1167
tensor in spacetime. See also component manipulation rules

definition and rank, 1460
bases for, 1467
components of, 1466–1469

contravariant, covariant, and mixed components,
1157–1158, 1161–1162, 1467

raising and lowering indices, 1165, 1467
algebra of

without coordinates or bases, 1460, 1473–1474
component representation in orthonormal basis,

1157–1158, 1466–1469

component representation in arbitrary basis, 1162–
1165

tensor product, 1460
thermodynamics of black holes, 1286–1287
Thomson scattering of photons by electrons, 1407–1408,

1415, 1416n, 1418, 1428
tidal gravitational field

Newtonian, 1207–1208
relativistic, 1211–1212, 1235b–1236b

tidal gravity
Newtonian description, 1207–1208
relativistic description, 1208–1210
comparison of Newtonian and relativistic descriptions,

1210–1212, 1227
tidal tendex lines, 1235b–1236b

around a linearized, spinning particle, 1236b
around Kerr black hole, 1295b–1296b
around colliding black holes, 1344b–1345b
in a gravitational wave, 1318b, 1345b

time. See also clocks, ideal; simultaneity in relativity, slices of
coordinate, of inertial frame, 1451–1452
proper, 1461
imaginary, 1466
in cosmology, 1370
in general relativity: many-fingered nature of, 1293–1294,

1297
time derivative

with respect to proper time, 1461, 1464
time dilation, 1478

observations of, 1482
time travel, 1479–1482
topological defects, 1432n
TOV equation of hydrostatic equilibrium, 1258, 1260
trace-reversed metric perturbation, 1228, 1311
transformation matrices, between bases, 1164

Lorentz, 1158, 1475–1477, 1477f
TT gauge, 1312–1315
twins paradox, 1479–1482
two-lengthscale expansion

for gravitational waves in curved spacetime, 1320–1321,
1321f

two-point correlation function, 1424–1426
for weak gravitational lensing, 1424–1426

universe, evolution of
expansion, kinematics of, 1373–1376

evolution of radiation and gas properties during,
1373–1375

expansion, dynamics of, 1376–1378
Friedman equations, 1376–1377
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graphical summaries of
entire life: distances as functions of scale factor, 1400f
entire life: energy densities of constituents, 1386f
particle age: temperatures and entropies of particle

constituents, 1385f
nuclear age: reaction rates; nuclear and particle

abundances, 1390f
plasma and atomic ages: ionization fraction and optical

depths, 1395f
gravitational and cosmological ages: scale factor and

deceleration function, 1399f
perturbations, evolution of, 1404f, 1405f, 1411f, 1414f

formation of structure
origin of primordial perturbations, 1437–1440
perturbations, initial spectrum, 1410–1412
evolution of perturbations, 1401–1422

seven ages
before the particle age, 1431–1440
particle age, before nucleosynthesis, 1384–1387
nuclear age, primordial nucleosynthesis, 1387–1392
plasma age, from matter dominance through

recombination, 1393–1396
photon age, from nucleosynthesis to matter dominance,

1392–1393
atomic age, from recombination through reionization,

1397
gravitational age, from reionization to dark-energy

influence, 1397–1400
cosmological age, the era of dark-energy influence,

1400–1401
galaxy formation, 1401–1415

universe, observed properties of
isotropy and homogeneity, 1364–1366
spatial flatness, 1378
parameter values today, 1380t
age of, 1387
volume of, 1398
constituents of

baryons, 1379. See also baryons in universe
neutrinos, 1382
photons: cosmic microwave background, 1381. See also

cosmic microwave background

dark matter, 1380–1381. See also dark matter
dark energy or cosmological constant, 1382–1383,

1444–1447
galaxies. See galaxies
black holes, 1379–1380, 1397

acceleration of, 1382, 1398, 1400, 1444
spectral line formation, 1396

vector
as arrow, 1166, 1452
as derivative of a point, 1165, 1461
as differential operator, 1167–1169

vector in spacetime (4–vector)
contravariant and covariant components of,

1467
raising and lowering indices of, 1467
timelike, null, and spacelike, 1155–1156, 1459

velocity
ordinary, in relativity, 1470, 1471f, 1473–1474. See also

4–velocity
velocity potential for irrotational flow

in cosmological perturbations, 1403
volume in spacetime, 1487–1489

4–volume, 1487
vectorial 3–volume, 1488–1489, 1489f

positive and negative sides and senses, 1488
differential volume elements, 1489

wave equations
for electromagnetic waves. See electromagnetic waves
for gravitational waves, 1312, 1322. See also gravitational

waves
wave zone, 1327f
Weyl (curvature) tensor, 1215, 1216
WIMPs, 1440–1441
world line, 1155f, 1461, 1471f
world tube, 1461n, 1480f, 1481
wormhole, 1480–1481, 1480f

as time machine, 1481
Schwarzschild, 1276–1277

zero point energy, 1437–1438, 1446
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