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11CHAPTER ELEVEN

Elastostatics
Ut tensio, sic vis

ROBERT HOOKE (1678)

11.111.1 Overview

From the viewpoint of continuum mechanics, a solid is a substance that recovers
its original shape after the application and removal of any small stress. Note the
requirement that this be true for any small stress. Many fluids (e.g., water) satisfy our
definition as long as the applied stress is isotropic, but they will deform permanently
under a shear stress. Other materials (e.g., Earth’s crust) are only solid for limited
times but undergo plastic flow when a small stress is applied for a long time.

Hooke’s law

We focus our attention in this chapter on solids whose deformation (quantified by
a tensorial strain) is linearly proportional to the applied, small, tensorial stress. This
linear, 3-dimensional stress-strain relationship, which we develop and explore in this
chapter, generalizes Hooke’s famous 1-dimensional law, which states that if an elastic
wire or rod is stretched by an applied force F (Fig. 11.1a), its fractional change of
length (its strain) is proportional to the force,��/�∝ F .

Hooke’s law turns out to be one component of a 3-dimensional stress-strain rela-
tion, but to understand it deeply in that language, we must first define and understand
the strain tensor and the stress tensor. Our approach to these tensors follows the ge-
ometric, frame-independent philosophy introduced in Chap. 1. Some readers may
wish to review that philosophy and mathematics by rereading or browsing Chap. 1.

We begin our development of elasticity theory in Sec. 11.2 by introducing, in a
frame-independent way, the vectorial displacement field ξ(x) inside a stressed body
(Fig. 11.1b), and its gradient ∇ξ, whose symmetric part is the strain tensor S. We then
express the strain tensor as the sum of an expansion% that represents volume changes
and a shear � that represents shape changes.

In Sec. 11.3.1, we introduce the stress tensor, and in Sec. 11.3.2, we discuss the
realms in which there is a linear relationship between stress and strain, and ways
in which linearity can fail. In Sec. 11.3.3, assuming linearity, we discuss how the
material resists volume change by developing an opposing isotropic stress, with a
stress/strain ratio that is equal to the bulk modulusK . We discuss how the material also
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BOX 11.1. READERS’ GUIDE

. This chapter relies heavily on the geometric view of Newtonian
physics (including vector and tensor analysis) laid out in Chap. 1.

. Chapter 12 (Elastodynamics) is an extension of this chapter; to
understand it, this chapter must be mastered.

. The idea of the irreducible tensorial parts of a tensor, and its most
important example, decomposition of the gradient of a displacement
vector into expansion, rotation, and shear (Sec. 11.2.2 and Box
11.2) will be encountered again in Part V (Fluid Dynamics), Part VI
(Plasma Physics), and Part VII (General Relativity).

. Differentiation of vectors and tensors with the help of connection
coefficients (Sec. 11.8; Track Two) will be used occasionally in
Part V (Fluid Dynamics) and Part VI (Plasma Physics), and will be
generalized to nonorthonormal bases in Part VII (General Relativity),
where it will become Track One and will be used extensively.

. No other portions of this chapter are important for subsequent parts
of this book.

(b)(a)

z

F

ξξ

� + ��

FIGURE 11.1 (a) Hooke’s 1-dimensional law for a rod
stretched by a force F :��/�∝ F . (b) The 3-dimensional
displacement vector ξ(x) inside the stretched rod.

resists a shear-type strain by developing an opposing shear stress with a stress/strain
ratio equal to twice the shear modulus 2μ. In Sec. 11.3.4, we evaluate the energy
density stored in elastostatic strains; in Sec. 11.3.5, we explore the influence of thermal
expansion on the stress-strain relationship; and in Sec. 11.3.6, we discuss the atomic-
force origin of the elastostatic stresses and use atomic considerations to estimate
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the magnitudes of the bulk and shear moduli. Then in Sec. 11.3.7, we compute the
elastic force density inside a linear material as the divergence of the sum of its elastic
stresses, and we formulate the law of elastostatic stress balance (the Navier-Cauchy
equation) as the vanishing sum of the material’s internal elastic force density and
any other force densities that may act (usually a gravitational force density due to
the weight of the elastic material). We discuss the analogy between this elastostatic
stress-balance equation and Maxwell’s electrostatic and magnetostatic equations. We
describe how mathematical techniques common in electrostatics can also be applied
to solve the Navier-Cauchy equation, subject to boundary conditions that describe
external forces.

In Sec. 11.4, as a simple example, we use our 3-dimensional formulas to deduce
Hooke’s law for the 1-dimensional longitudinal stress and strain in a stretched wire.

When the elastic body that one studies is very thin in two dimensions compared to
the third (e.g., a wire or rod), we can reduce the 3-dimensional elastostatic equations
to a set of coupled 1-dimensional equations by taking moments of the elastostatic
equations. We illustrate this technique in Sec. 11.5, where we treat the bending of
beams and other examples.

Elasticity theory, as developed in this chapter, is an example of a common (some
would complain far too common) approach to physics problems, namely, to linearize
them. Linearization may be acceptable when the distortions are small. However, when
deformed by sufficiently strong forces, elastic media may become unstable to small
displacements, which can then grow to large amplitude, causing rupture. We study an
example of this in Sec. 11.6: the buckling of a beam when subjected to a sufficiently
large longitudinal stress. Buckling is associated with bifurcation of equilibria, a phe-
nomenon that is common to many physical systems, not just elastostatic ones. We
illustrate bifurcation in Sec. 11.6 using our beam under a compressive load, and we
explore its connection to catastrophe theory.

In Sec. 11.7, we discuss dimensional reduction by the method of moments for
bodies that are thin in only 1 dimension, not two, such as plates and thin mirrors. In
such bodies, the 3-dimensional elastostatic equations are reduced to 2 dimensions. We
illustrate our 2-dimensional formalism by the stress polishing of telescope mirrors.

Because elasticity theory entails computing gradients of vectors and tensors, and
practical calculations are often best performed in cylindrical or spherical coordinate
systems, we present a mathematical digression in Track-Two Sec. 11.8—an introduc-
tion to how one can perform practical calculations of gradients of vectors and tensors
in the orthonormal bases associated with curvilinear coordinate systems, using the
concept of a connection coefficient.

As illustrative examples of both connection coefficients and elastostatic force
balance, in Track-Two Sec. 11.9 and various exercises, we give practical examples of
solutions of the elastostatic force-balance equation in cylindrical coordinates using
two common techniques of elastostatics and electrostatics: separation of variables
(text of Sec. 11.9.2) and Green’s functions (Ex. 11.27).
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11.2 11.2 Displacement and Strain

We begin our study of elastostatics by introducing the elastic displacement vector, its
gradient, and the irreducible tensorial parts of its gradient. We then identify the strain
as the symmetric part of the displacement’s gradient.

11.2.1 11.2.1 Displacement Vector and Its Gradient

displacement vector

Elasticity provides a major application of the tensorial techniques we developed in
Chap. 1. Label the position of a point (a tiny bit of solid) in an unstressed body,
relative to some convenient origin in the body, by its position vector x. Let a force
be applied, so the body deforms and the point moves from x to x + ξ(x); we call ξ

the point’s displacement vector (Fig. 11.1b). If ξ were constant (i.e., if its components
in a Cartesian coordinate system were independent of location in the body), then the
body would simply be translated and would undergo no deformation. To produce a
deformation, we must make the displacement ξ change from one location to another.
The most simple, coordinate-independent way to quantify those changes is by the
gradient of ξ, ∇ξ. This gradient is a second-rank tensor field, which we denote by W:

W ≡∇ξ. (11.1a)

This tensor is a geometric object, defined independently of any coordinate system
in the manner described in Sec. 1.7. In slot-naming index notation (Sec. 1.5), it is
denoted

Wij = ξi;j , (11.1b)

where the index j after the semicolon is the name of the gradient slot.
In a Cartesian coordinate system the components of the gradient are always just

partial derivatives [Eq. (1.15c)], and therefore the Cartesian components of W are

Wij = ∂ξi

∂xj
= ξi ,j . (11.1c)

(Recall that indices following a comma represent partial derivatives.) In Sec. 11.8, we
learn how to compute the components of the gradient in cylindrical and spherical
coordinates.

In any small neighborhood of any point xo in a deformed body, we can reconstruct
the displacement vector ξ from its gradient W up to an additive constant. Specifically,
in Cartesian coordinates, by virtue of a Taylor-series expansion, ξ is given by

ξi(x)= ξi(xo)+ (xj − xoj)(∂ξi/∂xj)+ . . .

= ξi(xo)+ (xj − xoj)Wij + . . . . (11.2)

If we place the origin of Cartesian coordinates at xo and let the origin move with the
point there as the body deforms [so ξ(xo)= 0], then Eq. (11.2) becomes

ξi =Wijxj when |x| is sufficiently small. (11.3)
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We have derived this as a relationship between components of ξ, x, and W in a
Cartesian coordinate system. However, the indices can also be thought of as the names
of slots (Sec. 1.5) and correspondingly, Eq. (11.3) can be regarded as a geometric,
coordinate-independent relationship among the vectors and tensor ξ, x, and W.

In Ex. 11.2, we use Eq. (11.3) to gain insight into the displacements associated with
various parts of the gradient W.

11.2.211.2.2 Expansion, Rotation, Shear, and Strain

irreducible tensorial parts
of a tensor

In Box 11.2, we introduce the concept of the irreducible tensorial parts of a tensor, and
we state that in physics, when one encounters an unfamiliar tensor, it is often useful
to identify the tensor’s irreducible parts. The gradient of the displacement vector,
W=∇ξ, is an important example. It is a second-rank tensor. Therefore, as discussed

expansion, shear, and
rotation

in Box 11.2, its irreducible tensorial parts are its trace % ≡ Tr(W) =Wii = ∇ . ξ,
which is called the deformed body’s expansion (for reasons we shall explore below); its
symmetric, trace-free part Σ, which is called the body’s shear; and its antisymmetric
part R, which is called the body’s rotation:

%=Wii =∇ . ξ , (11.4a)

Σij = 1
2
(Wij +Wji)− 1

3
%gij = 1

2
(ξi;j + ξj ;i)− 1

3
ξk;k gij , (11.4b)

Rij = 1
2
(Wij −Wji)= 1

2
(ξi;j − ξj ;i). (11.4c)

Here gij is the metric, which has components gij = δij (Kronecker delta) in Cartesian
coordinates, and repeated indices [the ii in Eq. (11.4a)] are to be summed [Eq. (1.9b)
and subsequent discussion].

We can reconstruct W=∇ξ from these irreducible tensorial parts in the following
manner [Eq. (4) of Box 11.2, rewritten in abstract notation]:

∇ξ =W = 1
3
%g+Σ+ R. (11.5)

Let us explore the physical effects of the three separate parts of W in turn. To
understand expansion, consider a small 3-dimensional piece V of a deformed body (a
volume element). When the deformation x → x + ξ occurs, a much smaller element
of area1 d� on the surface ∂V of V gets displaced through the vectorial distance ξ

and in the process sweeps out a volume ξ . d�. Therefore, the change in the volume
element’s volume, produced by ξ, is

δV =
∫
∂V
d� . ξ =

∫
V
dV∇ . ξ =∇ . ξ

∫
V
dV = (∇ . ξ) V . (11.6)

1. Note that we use � for a vectorial area and Σ for the shear tensor. There should be no confusion.
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BOX 11.2. IRREDUCIBLE TENSORIAL PARTS OF A SECOND-
RANK TENSOR IN 3-DIMENSIONAL EUCLIDEAN SPACE

In quantum mechanics, an important role is played by the rotation group: the
set of all rotation matrices, viewed as a mathematical entity called a group
(e.g., Mathews and Walker, 1970, Chap. 16). Each tensor in 3-dimensional
Euclidean space, when rotated, is said to generate a specific representation
of the rotation group. Tensors that are “big” (in a sense to be discussed later
in this box) can be broken down into a sum of several tensors that are “as
small as possible.” These smallest tensors are said to generate irreducible
representations of the rotation group. All this mumbo-jumbo is really simple,
when one thinks about tensors as geometric, frame-independent objects.

As an example, consider an arbitrary second-rank tensor Wij in 3-
dimensional, Euclidean space. In the text Wij is the gradient of the
displacement vector. From this tensor we can construct the following “smaller”
tensors by linear operations that involve only Wij and the metric gij . (As these
smaller tensors are enumerated, the reader should think of the notation used
as the basis-independent, frame-independent, slot-naming index notation of
Sec. 1.5.1.) The smaller tensors are the contraction (i.e., trace) of Wij ,

%≡Wijgij =Wii; (1)

the antisymmetric part of Wij ,

Rij ≡ 1
2
(Wij −Wji); (2)

and the symmetric, trace-free part of Wij ,

Σij ≡ 1
2
(Wij +Wji)− 1

3
gijWkk . (3)

It is straightforward to verify that the original tensor Wij can be reconstructed
from these three smaller tensors plus the metric gij as follows:

Wij = 1
3
%gij + Rij + Σij . (4)

One way to see the sense in which %, Rij , and Σij are smaller than
Wij is by counting the number of independent real numbers required
to specify their components in an arbitrary basis. (Think of the index
notation as components on a chosen basis.) The original tensor Wij has
three× three= nine components (W11, W12, W13, W21, . . . W33), all of which
are independent. By contrast, the scalar % has just one. The antisymmetric

(continued)
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BOX 11.2. (continued)

tensor Rij has just three independent components, R12, R23, and R31. Finally,
the nine components of Σij are not independent; symmetry requires that
Σij ≡ Σji, which reduces the number of independent components from nine
to six; being trace-free, Σii = 0, reduces it further from six to five. Therefore,
(five independent components in Σij ) + (three independent components in
Rij ) + (one independent component in %)= 9= (number of independent
components in Wij ).

The number of independent components (one for%, three for Rij , and five
for Σij ) is a geometric, basis-independent concept: It is the same, regardless
of the basis used to count the components; and for each of the smaller tensors
that make up Wij , it is easily deduced without introducing a basis at all (think
here in slot-naming index notation): The scalar % is clearly specified by just
one real number. The antisymmetric tensor Rij contains precisely the same
amount of information as the vector

φi ≡−1
2
εijkRjk , (5)

as can be seen from the fact that Eq. (5) can be inverted to give

Rij =−εijkφk; (6)

and the vector φi can be characterized by its direction in space (two numbers)
plus its length (a third). The symmetric, trace-free tensor Σij can be
characterized geometrically by the ellipsoid (gij + εΣij )ζiζj = 1, where
ε is an arbitrary number� 1, and ζi is a vector whose tail sits at the center of
the ellipsoid and whose head moves around on the ellipsoid’s surface. Because
Σij is trace-free, this ellipsoid has unit volume. Therefore, it is specified fully
by the direction of its longest principal axis (two numbers) plus the direction
of a second principal axis (a third number) plus the ratio of the length of the
second axis to the first (a fourth number) plus the ratio of the length of the
third axis to the first (a fifth number).

Each of the tensors %, Rij (or equivalently, φi), and Σij is irreducible
in the sense that one cannot construct any smaller tensors from it, by any
linear operation that involves only it, the metric, and the Levi-Civita tensor.
Irreducible tensors in 3-dimensional Euclidean space always have an odd
number of components. It is conventional to denote this number by 2l + 1,
where the integer l is called the “order of the irreducible representation of the

(continued)
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BOX 11.2. (continued)

rotation group” that the tensor generates. For %, Rij (or equivalently,
φi), and Σjk, l is 0, 1, and 2, respectively. These three tensors can be
mapped into the spherical harmonics of order l = 0, 1, 2; and their
2l + 1 components correspond to the 2l + 1 values of the quantum number
m=−l , −l + 1 . . . , l − 1, l. (For details see, e.g., Thorne, 1980, Sec. II.C.)

In physics, when one encounters a new tensor, it is often useful to identify
the tensor’s irreducible parts. They almost always play important, independent
roles in the physical situation one is studying. We meet one example in this
chapter, another when we study fluid dynamics (Chap. 13), and a third in
general relativity (Box 25.2).

Here we have invoked Gauss’s theorem in the second equality, and in the third we
have used the smallness of V to infer that ∇ . ξ is essentially constant throughout V
and so can be pulled out of the integral. Therefore, the fractional change in volume is
equal to the trace of the stress tensor (i.e., the expansion):

expansion as fractional
volume change

δV

V
=∇ . ξ =%. (11.7)

See Fig. 11.2 for a simple example.
shearing displacements The shear tensor Σ produces the shearing displacements illustrated in Figs. 11.2

and 11.3. As the tensor has zero trace, there is no volume change when a body under-
goes a pure shear deformation. The shear tensor has five independent components
(Box 11.2). However, by rotating our Cartesian coordinates appropriately, we can
transform away all the off-diagonal elements, leaving only the three diagonal elementsshear’s stretch and

squeeze along principal
axes

Σxx, Σyy, and Σzz, which must sum to zero. This is known as a principal-axis trans-
formation. Each element produces a stretch (Σ . . > 0) or squeeze (Σ . . < 0) along its

S �g Σ R

++=

FIGURE 11.2 A simple example of the decomposition of a 2-dimensional distortion
S of a square body into an expansion%, a shear Σ, and a rotation R.
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x2

x1

FIGURE 11.3 Shear in 2 dimensions. The displacement of points in a solid
undergoing pure shear is the vector field ξ(x) given by Eq. (11.3) with Wji

replaced by Σji : ξj = Σjixi = Σj1x1+ Σj2x2. The integral curves of this vector
field are plotted in this figure. The figure is drawn using principal axes, which are
Cartesian, so Σ12 = Σ21= 0 and Σ11=−Σ22, which means that ξ1= Σ11x1 and
ξ2 =−Σ11x2; or, equivalently, ξx = Σxxx and ξy =−Σxxy. The integral curves
of this simple vector field are the hyperbolas shown. Note that the displacement
increases linearly with distance from the origin. The shear shown in Fig. 11.2 is
the same as this, but with the axes rotated counterclockwise by 45°.

axis,2 and their vanishing sum (the vanishing trace of Σ) means that there is no net
volume change. The components of the shear tensor in any Cartesian coordinate sys-
tem can be written down immediately from Eq. (11.4b) by substituting the Kronecker
delta δij for the components of the metric tensor gij and treating all derivatives as
partial derivatives:

Σxx = 2
3
∂ξx

∂x
− 1

3

(
∂ξy

∂y
+ ∂ξz
∂z

)
, Σxy = 1

2

(
∂ξx

∂y
+ ∂ξy
∂x

)
, (11.8)

and similarly for the other components. The analogous equations in spherical and
cylindrical coordinates are given in Sec. 11.8.

rotation vector
The third term R in Eq. (11.5) describes a pure rotation, which does not deform the

solid. To verify this, write ξ = φ× x, where φ is a small rotation of magnitudeφ about
an axis parallel to the direction of φ. Using Cartesian coordinates in 3-dimensional
Euclidean space, we can demonstrate by direct calculation that the symmetric part of
W =∇ξ vanishes (i.e.,%=Σ= 0) and that

Rij =−εijkφk , φi =−1
2
εijkRjk . (11.9a)

2. More explicitly, Σxx > 0 produces a stretch along the x-axis, Σyy < 0 produces a squeeze along the y-axis,
etc.
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Therefore, the elements of the tensor R in a Cartesian coordinate system just involve
the vectorial rotation angle φ. Note that expression (11.9a) for φ and expression
(11.4c) for Rij imply that φ is half the curl of the displacement vector:

φ = 1
2
∇× ξ. (11.9b)

A simple example of rotation is shown in the last picture in Fig. 11.2.
Elastic materials resist expansion% and shear Σ, but they don’t mind at all having

their orientation in space changed (i.e., they do not resist rotations R). Correspond-
ingly, in elasticity theory a central focus is on expansion and shear. For this reason the
symmetric part of the gradient of ξ,

strain tensor Sij ≡ 1
2
(ξi;j + ξj ;i)= Σij + 1

3
%gij , (11.10)

which includes the expansion and shear but omits the rotation, is given a special
name—the strain—and is paid great attention.

Let us consider some examples of strains that arise in physical systems.

1. Understanding how materials deform under various loads (externally ap-
plied forces) is central to mechanical, civil, and structural engineering. As
we learn in Sec. 11.3.2, all Hookean materials (materials with strain propor-
tional to stress when the stress is small) crack or break when the load is so
great that any component of their strain exceeds ∼0.1, and almost all crack
or break at strains∼0.001. For this reason, in our treatment of elasticity the-
ory (this chapter and the next), we focus on strains that are small compared
to unity.

2. Continental drift can be measured on the surface of Earth using very long
baseline interferometry, a technique in which two or more radio telescopes
are used to detect interferometric fringes using radio waves from an astro-
nomical point source. (A similar technique uses the Global Positioning Sys-
tem to achieve comparable accuracy.) By observing the fringes, it is possible
to detect changes in the spacing between the telescopes as small as a fraction
of a wavelength (∼1 cm). As the telescopes are typically 1,000 km apart, this
means that dimensionless strains ∼10−8 can be measured. The continents
drift apart on a timescale<∼108 yr, so it takes roughly a year for these changes
to grow large enough to be measured. Such techniques are also useful for
monitoring earthquake faults.

3. The smallest time-varying strains that have been measured so far involve
laser interferometer gravitational-wave detectors, such as LIGO. In each
arm of a LIGO interferometer, two mirrors hang freely, separated by 4 km.
In 2015 their separations were monitored (at frequencies of ∼100 Hz) to
∼4× 10−19 m, four ten-thousandths the radius of a nucleon. The associated
strain is 1× 10−22. Although this strain is not associated with an elastic solid,
it does indicate the high accuracy of optical measurement techniques.
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EXERCISESExercise 11.1 Derivation and Practice: Reconstruction of a Tensor from Its Irreducible
Tensorial Parts
Using Eqs. (1), (2), and (3) of Box 11.2, show that 1

3%gij + Σij + Rij is equal to Wij .

Exercise 11.2 Example: Displacement Vectors Associated with Expansion, Rotation,
and Shear
(a) Consider a W =∇ξ that is pure expansion: Wij = 1

3%gij . Using Eq. (11.3) show
that, in the vicinity of a chosen point, the displacement vector is ξi = 1

3%xi. Draw
this displacement vector field.

(b) Similarly, draw ξ(x) for a W that is pure rotation. [Hint: Express ξ in terms of the
vectorial angle φ with the aid of Eq. (11.9b).]

(c) Draw ξ(x) for a W that is pure shear. To simplify the drawing, assume that the
shear is confined to the x-y plane, and make your drawing for a shear whose only
nonzero components are Σxx =−Σyy. Compare your drawing with Fig. 11.3.

11.311.3 Stress, Elastic Moduli, and Elastostatic Equilibrium

11.3.111.3.1 Stress Tensor

The forces acting in an elastic solid are measured by a second-rank tensor, the stress
tensor introduced in Sec. 1.9. Let us recall the definition of this stress tensor.

Consider two small, contiguous regions in a solid. If we take a small element of
area d� in the contact surface with its positive sense3 (same as the direction of d�
viewed as a vector) pointing from the first region toward the second, then the first
region exerts a force dF (not necessarily normal to the surface) on the second through
this area. The force the second region exerts on the first (through the area−d�) will,
by Newton’s third law, be equal and opposite to that force. The force and the area
of contact are both vectors, and there is a linear relationship between them. (If we
double the area, we double the force.) The two vectors therefore will be related by a
second-rank tensor, the stress tensor T:

stress tensordF= T . d�= T(. . . , d�); dFi = Tijd�j . (11.11)

Thus the tensor T is the net (vectorial) force per unit (vectorial) area that a body
exerts on its surroundings. Be aware that many books on elasticity (e.g., Landau and
Lifshitz, 1986) define the stress tensor with the opposite sign to that in Eq. (11.11).
Also be careful not to confuse the shear tensor Σjk with the vectorial infinitesimal
surface area d�j .

3. For a discussion of area elements including their positive sense, see Sec. 1.8.
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We often need to compute the total elastic force acting on some finite volume V .
To aid in this, we make an important assumption, discussed in Sec. 11.3.6: the stress
is determined by local conditions and can be computed from the local arrangement
of atoms. If this assumption is valid, then (as we shall see in Sec. 11.3.6), we can
compute the total force acting on the volume element by integrating the stress over
its surface ∂V :

F=−
∫
∂V

T . d�=−
∫

V
∇ . TdV, (11.12)

where we have invoked Gauss’s theorem, and the minus sign is included because by
convention, for a closed surface ∂V , d� points out of V instead of into it.

Equation (11.12) must be true for arbitrary volumes, so we can identify the elastic
force density f acting on an elastic solid as

elastic force density f =−∇ . T. (11.13)

In elastostatic equilibrium, this force density must balance all other volume forces
acting on the material, most commonly the gravitational force density, so

force balance equation f + ρg = 0, (11.14)

where g is the gravitational acceleration. (Again, there should be no confusion be-
tween the vector g and the metric tensor g.) There are other possible external forces,
some of which we shall encounter later in the context of fluids (e.g., an electromagnetic
force density). These can be added to Eq. (11.14).

Just as for the strain, the stress tensor T can be decomposed into its irreducible
tensorial parts, a pure trace (the pressure P ) plus a symmetric trace-free part (the
shear stress):

pressure and shear stress T = Pg+ Tshear; P = 1
3

Tr(T)= 1
3
Tii . (11.15)

There is no antisymmetric part, because the stress tensor is symmetric, as we saw in
Sec. 1.9. Fluids at rest exert isotropic stresses: T= Pg. They cannot exert shear stress
when at rest, though when moving and shearing, they can exert a viscous shear stress,
as we discuss extensively in Part V (initially in Sec. 13.7.2).

Pascal

In SI units, stress is measured in units of Pascals, denoted Pa:

1 Pa= 1 N m−2 = 1
kg m s−2

m2 , (11.16)

or sometimes in GPa = 109 Pa. In cgs units, stress is measured in dyne cm−2. Note
that 1 Pa= 10 dyne cm−2.

Now let us consider some examples of stresses.

1. Atmospheric pressure is equal to the weight of the air in a column of unit
area extending above the surface of Earth, and thus is roughly P ∼ ρgH ∼
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105 Pa, where ρ � 1 kg m−3 is the density of air, g � 10 m s−2 is the ac-
celeration of gravity at Earth’s surface, and H � 10 km is the atmospheric
scale height [H ≡ (d ln P/dz)−1, with z the vertical distance]. Thus 1 atmo-
sphere is∼105 Pa (or, more precisely, 1.01325× 105 Pa). The stress tensor is
isotropic.

2. Suppose we hammer a nail into a block of wood. The hammer might weigh
m∼ 0.3 kg and be brought to rest from a speed of v ∼ 10 m s−1 in a distance
of, say, d ∼ 3 mm. Then the average force exerted on the wood by the nail,
as it is driven, is F ∼ mv2/d ∼ 104 N. If this is applied over an effective
area A ∼ 1 mm2, then the magnitude of the typical stress in the wood is
∼F/A∼ 1010 Pa∼ 105 atmosphere. There is a large shear component to the
stress tensor, which is responsible for separating the fibers in the wood as the
nail is hammered.

3. Neutron stars are as massive as the Sun, M ∼ 2× 1030 kg, but have far
smaller radii, R ∼ 10 km. Their surface gravities are therefore g ∼GM/
R2 ∼ 1012 m s−2, 10 billion times that encountered on Earth. They have
solid crusts of density ρ ∼ 1016 kg m−3 that are about 1 km thick. In the
crusts, the main contribution to the pressure is from the degeneracy of
relativistic electrons (see Sec. 3.5.3). The magnitude of the stress at the base
of a neutron-star crust is P ∼ ρgH ∼ 1031 Pa! The crusts are solid, because
the free electrons are neutralized by a lattice of ions. However, a crust’s shear
modulus is only a few percent of its bulk modulus.

4. As we discuss in Sec. 28.7.1, a popular cosmological theory called infla-
tion postulates that the universe underwent a period of rapid, exponen-
tial expansion during its earliest epochs. This expansion was driven by
the stress associated with a false vacuum. The action of this stress on the
universe can be described quite adequately using a classical stress tensor.
If the interaction energy is E ∼ 1015 GeV, the supposed scale of grand
unification, and the associated lengthscale is the Compton wavelength as-
sociated with that energy, l ∼ �c/E, then the magnitude of the stress is
∼E/l3∼ 1097(E/1015 GeV)4 Pa.

5. Elementary particles interact through forces. Although it makes no
sense to describe this interaction using classical elasticity, it is reasonable
to make order-of-magnitude estimates of the associated stress. One promis-
ing model of these interactions involves strings with mass per unit length
μ= g2

s
c2/(8πG)∼ 1Megaton/fermi (where Megaton is not the TNT equiv-

alent!), and cross section of order the Planck length squared, LP 2 =
�G/c3 ∼ 10−70 m2, and tension (negative pressure) Tzz ∼ μc2/LP

2 ∼
10110 Pa. Here �, G, and c are Planck’s reduced constant, Newton’s gravi-
tation constant, and the speed of light, and g2

s
∼ 0.025 is the string coupling

constant.
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6. The highest possible stress is presumably associated with spacetime singu-
larities, for example at the birth of the universe or inside a black hole. Here
the characteristic energy is the Planck energyEP = (�c5/G)1/2∼ 1019 GeV,
the lengthscale is the Planck length LP = (�G/c3)1/2 ∼ 10−35 m, and the
associated ultimate stress is∼EP/L3

P
∼ 10114 Pa.

11.3.2 11.3.2 Realm of Validity for Hooke’s Law

In elasticity theory, motivated by Hooke’s Law (Fig. 11.1), we assume a linear rela-
tionship between a material’s stress and strain tensors. Before doing so, however, we
discuss the realm in which this linearity is true and some ways in which it can fail.

For this purpose, consider again the stretching of a rod by an applied force
(Fig. 11.1a, shown again in Fig. 11.4a). For a sufficiently small stress Tzz = F/A
(with A the cross sectional area of the rod), the strain Szz =��/� follows Hooke’s
law (straight red line in Fig. 11.4b). However, at some point, called the proportionalityproportionality limit

limit (first big dot in Fig. 11.4b), the strain begins to depart from Hooke’s law. De-
spite this deviation, if the stress is removed, the rod returns to its original length.
At a somewhat larger stress, called the elastic limit, that ceases to be true; the rod

elastic limit

is permanently stretched. At a still larger stress, called the yield limit or yield point,yield point

little or no increase in stress causes a large increase in strain, usually because the
material begins to flow plasticly. At an even larger stress, the rupture point, the rodrupture point

cracks or breaks. For a ductile substance like polycrystalline copper, the proportional-
ity limit and elastic limit both occur at about the same rather low strain��/�∼ 10−4,
but yield and rupture do not occur until ��/�∼ 10−3. For a more resilient mate-
rial like cemented tungsten carbide, strains can be proportional and elastic up to
∼3× 10−3. Rubber is non-Hookean (stress is not proportional to strain) at essen-
tially all strains; its proportionality limit is exceedingly small, but it returns to its
original shape from essentially all nonrupturing deformations, which can be as large
as��/�∼ 8 (the yield and rupture points).4 Especially significant is that in almost all
solids except rubber, the proportionality, elastic, and yield limits are all small com-
pared to unity.

11.3.3 11.3.3 Elastic Moduli and Elastostatic Stress Tensor

In realms where Hooke’s law is valid, there is a corresponding linear relationship
between the material’s stress tensor and its strain tensor. The most general linear
equation relating two second-rank tensors involves a fourth-rank tensor known as
the elastic modulus tensor Y. In slot-naming index notation,elastic modulus tensor

Tij =−YijklSkl . (11.17)

4. Rubber is made of long, polymeric molecules, and its elasticity arises from uncoiling of the molecules
when a force is applied, which is a different mechanism than is found in crystalline materials (Xing,
Goldbart, and Radzihovsky, 2007).
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FIGURE 11.4 The stress-strain relation for a rod, showing special points
at which the behavior of the rod’s material changes.

Now, a general fourth-rank tensor in 3 dimensions has 34 = 81 independent com-
ponents. Elasticity can get complicated! However, the situation need not be so dire.
There are several symmetries that we can exploit. Let us look first at the general case.
As the stress and strain tensors are both symmetric, Y is symmetric in its first pair of
slots, and we are free to choose it symmetric in its second pair: Yijkl = Yjikl = Yij lk.
There are therefore 6 independent components Yijkl for variable i , j and fixed k , l,
and vice versa. In addition, as we will show, Y is symmetric under an interchange of its
first and second pairs of slots: Yijkl = Yklij . There are therefore (6× 7)/2= 21 inde-
pendent components in Y. This is an improvement over 81. Many substances, notably
crystals, exhibit additional symmetries, which can reduce the number of independent
components considerably.

The simplest, and in fact most common, case arises when the medium is isotropic.
In other words, there are no preferred directions in the material. This occurs when
the solid is polycrystalline or amorphous and completely disordered on a scale large
compared with the atomic spacing, but small compared with the solid’s inhomo-
geneity scale.

If a medium is isotropic, then its elastic properties must be describable by scalars
that relate the irreducible partsP and Tshear of the stress tensor T to those,% and Σ, of
the strain tensor S. The only mathematically possible, linear, coordinate-independent
relationship between {P , Tshear} and {%, Σ} involving solely scalars is P =−K%,
Tshear =−2μΣ, corresponding to a total stress tensor

bulk modulus, shear
modulus, and stress
tensor for isotropic elastic
medium

T =−K%g− 2μΣ. (11.18)

Here K is called the bulk modulus and μ the shear modulus, and the factor 2 is
included for purely historical reasons. The first minus sign (withK > 0) ensures that
the isotropic part of the stress,−K%g, resists volume changes; the second minus sign
(withμ> 0) ensures that the symmetric, trace-free part,−2μΣ, resists shape changes
(resists shearing).
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Hooke’s law (Figs. 11.1 and 11.4) can be expressed in this same stress-proportional-
to-strain form. The stress, when the rod is stretched, is the force F that does the
stretching divided by the rod’s cross sectional areaA, the strain is the rod’s fractional
change of length��/�, and so Hooke’s law takes the form

F/A=−E��/�, (11.19)

with E an elastic coefficient called Young’s modulus. In Sec. 11.4, we show that E is a
combination of the bulk and shear moduli: E = 9μK/(3K + μ).

Lamé coefficients

In many treatments and applications of elasticity, the shear tensor Σ is paid little
attention. The focus instead is on the strain Sij and its trace Skk =%, and the elastic
stress tensor (11.18) is written as T = −λ%g− 2μS, where λ≡K − 2

3μ. In these
treatments μ and λ are called the first and second Lamé coefficients and are used in
place of μ andK . We shall not adopt this viewpoint.

11.3.4 11.3.4 Energy of Deformation

Take a wire of length � and cross sectional areaA, and stretch it (e.g., via the “Hooke’s-
law experiment” of Figs. 11.1 and 11.4) by an amount ζ ′ that grows gradually from
0 to ��. When the stretch is ζ ′, the force that does the stretching is [by Eq. (11.19)]
F ′ = EA(ζ ′/�)= (EV/�2)ζ ′; here V = A� is the wire’s volume, and E is its Young’s
modulus. As the wire is gradually lengthened, the stretching force F ′ does work

W =
∫ ��

0
F ′dζ ′ =

∫ ��
0
(EV/�2)ζ ′dζ ′

= 1
2
EV (��/�)2.

This tells us that the stored elastic energy per unit volume is

U = 1
2
E(��/�)2. (11.20)

To generalize this formula to a strained, isotropic, 3-dimensional medium, con-
sider an arbitrary but small region V inside a body that has already been strained
by a displacement vector field ξi and is thus already experiencing an elastic stress
Tij =−K%δij − 2μΣij [Eq. (11.18)]. Imagine building up this displacement grad-
ually from zero at the same rate everywhere in and around V , so at some moment
during the buildup the displacement field is ξ ′

i
= ξiε (with the parameter ε gradually

growing from 0 to 1). At that moment, the stress tensor (by virtue of the linearity of the
stress-strain relation) is T ′

ij
= Tijε. On the boundary ∂V of the region V , this stress

exerts a force �F ′
i
=−T ′

ij
��j across any surface element ��j , from the exterior

of ∂V to its interior. As the displacement grows, this surface force does the following
amount of work on V :

�Wsurf =
∫
�F ′

i
dξ ′
i
=
∫
(−T ′

ij
��j)dξ

′
i
=−
∫ 1

0
Tijε��jξ

′
i
dε =−1

2
Tij��jξi .

(11.21)
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The total amount of work done can be computed by adding up the contributions from
all the surface elements of ∂V :

Wsurf =−1
2

∫
∂V
Tijξid�j =−1

2

∫
V
(Tijξi);jdV =−1

2
(Tijξi);j V . (11.22)

In the second step we have used Gauss’s theorem, and in the third step we have used
the smallness of the region V to infer that the integrand is very nearly constant and
the integral is the integrand times the total volume V of V .

Does Wsurf equal the elastic energy stored in V? The answer is “no,” because
we must also take account of the work done in the interior of V by gravity or any
other nonelastic force that may be acting. Although it is not easy in practice to turn
gravity off and then on, we must do so in the following thought experiment. In the
volume’s final deformed state, the divergence of its elastic stress tensor is equal to the
gravitational force density, ∇ . T = ρg [Eqs. (11.13) and (11.14)]; and in the initial,
undeformed and unstressed state, ∇ . T must be zero, whence so must g. Therefore, we
must imagine growing the gravitational force proportional to ε just like we grow the
displacement, strain, and stress. During this growth, with g′ = εg, the gravitational
force ρg′V does the following amount of work on our tiny region V :

Wgrav =
∫
ρV g′ . dξ′ =

∫ 1

0
ρV gε . ξdε = 1

2
ρV g . ξ = 1

2
(∇ . T) . ξV = 1

2
Tij ;jξi V .

(11.23)

The total work done to deform V is the sum of the work done by the elastic
force (11.22) on its surface and the gravitational force (11.23) in its interior,Wsurf +
Wgrav = − 1

2(ξiTij );jV + 1
2Tij ;jξiV = − 1

2Tijξi;jV . This work gets stored in V as
elastic energy, so the energy density is U = − 1

2Tijξi;j . Inserting (for an isotropic
material) Tij =−K%gij − 2μΣij and ξi;j = 1

3%gij + Σij + Rij in this equation for
U and performing some simple algebra that relies on the symmetry properties of the
expansion, shear, and rotation (Ex. 11.3), we obtain

elastic energy density at
fixed temperatureU = 1

2
K%2 + μΣijΣij . (11.24)

Note that this elastic energy density is always positive if the elastic moduli are positive,
as they must be for matter to be stable against small perturbations, and note that it is
independent of the rotation Rij , as it should be on physical grounds.

For the more general, anisotropic case, expression (11.24) becomes [by virtue of
the stress-strain relation Tij =−Yijklξk;l, Eq. (11.17)]

U = 1
2
ξi;jYijklξk;l . (11.25)

The volume integral of the elastic energy density given by Eq. (11.24) or (11.25) can
be used as an action from which to compute the stress, by varying the displacement
(Ex. 11.4). Since only the part of Y that is symmetric under interchange of the first
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and second pairs of slots contributes to U , only that part can affect the action-
principle-derived stress. Therefore, it must be that Yijkl = Yklij . This is the symmetry
we asserted earlier.

EXERCISES Exercise 11.3 Derivation and Practice: Elastic Energy
Beginning with U =− 1

2Tijξi;j [text following Eq. (11.23)], derive Eq. (11.24) for the
elastic energy density inside a body.

Exercise 11.4 Derivation and Practice: Action Principle for Elastic Stress
For an anisotropic, elastic medium with elastic energy density U = 1

2ξi;jYijklξk;l,
integrate this energy density over a 3-dimensional region V (not necessarily small) to
get the total elastic energy E. Now consider a small variation δξi in the displacement
field. Evaluate the resulting change δE in the elastic energy without using the relation
Tij =−Yijklξk;l. Convert to a surface integral over ∂V , and thence infer the stress-
strain relation Tij =−Yijklξk;l.

11.3.5 11.3.5 Thermoelasticity

coefficient of linear
thermal expansion

In our discussion of deformation energy, we tacitly assumed that the temperature
of the elastic medium was held fixed during the deformation (i.e., we ignored the
possibility of any thermal expansion). Correspondingly, the energy density U that
we computed is actually the physical free energy per unit volume F , at some chosen
temperature T0 of a heat bath. If we increase the bath’s and material’s temperature
from T0 to T = T0 + δT , then the material wants to expand by %= δV/V = 3αδT
(i.e., it will have vanishing expansional elastic energy if % has this value). Here α is
its coefficient of linear thermal expansion. (The factor 3 is because there are three
directions into which it can expand: x, y, and z.) Correspondingly, the physical-free-
energy density at temperature T = T0 + δT is

elastic physical free energy F = F0(T )+ 1
2
K(%− 3αδT )2 + μΣijΣij . (11.26)

The stress tensor in this heated and strained state can be computed from Tij =
−∂F/∂Sij [a formula most easily inferred from Eq. (11.25) with U reinterpreted as
F and ξi;j replaced by its symmetrization, Sij ]. Reexpressing Eq. (11.26) in terms of
Sij and computing the derivative, we obtain (not surprisingly!)

Tij =− ∂F
∂Sij

=−K(%− 3αδT )δij − 2μΣij . (11.27)

What happens if we allow our material to expand adiabatically rather than at fixed
temperature? Adiabatic expansion means expansion at fixed entropy S. Consider a
small sample of material that contains massM and has volume V =M/ρ. Its entropy
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is S =−[∂(FV )/∂T ]V [cf. Eq. (5.33)], which, using Eq. (11.26), becomes

S = S0(T )+ 3αK% V . (11.28)

Here we have neglected the term −9α2KδT , which can be shown to be negligible
compared to the temperature dependence of the elasticity-independent term S0(T ).
If our sample expands adiabatically by an amount�V = V�%, then its temperature
must go down by the amount �T < 0 that keeps S fixed (i.e., that makes �S0 =
−3αKV�%). Noting that T�S0 is the change of the sample’s thermal energy, which
is ρcV�T (cV is the specific heat per unit mass), we see that the temperature change is

temperature change in
adiabatic expansion

�T

T
= −3αK�%

ρcV
for adiabatic expansion. (11.29)

This temperature change, accompanying an adiabatic expansion, alters slightly the
elastic stress [Eq. (11.27)] and thence the bulk modulus K (i.e., it gives rise to an
adiabatic bulk modulus that differs slightly from the isothermal bulk modulus K
introduced in previous sections). However, the differences are so small that they are
generally ignored. For further details, see Landau and Lifshitz (1986, Sec. 6).

11.3.611.3.6 Molecular Origin of Elastic Stress; Estimate of Moduli

It is important to understand the microscopic origin of the elastic stress. Consider an
ionic solid in which singly ionized ions (e.g., positively charged sodium and negatively
charged chlorine) attract their nearest (opposite-species) neighbors through their
mutual Coulomb attraction and repel their next nearest (same-species) neighbors,
and so on. Overall, there is a net electrostatic attraction on each ion, which is balanced
by the short-range repulsion of its bound electrons against its neighbors’ bound
electrons. Now consider a thin slice of material of thickness intermediate between
the inter-atomic spacing and the solid’s inhomogeneity scale (Fig. 11.5).

Although the electrostatic force between individual pairs of ions is long range, the
material is electrically neutral on the scale of several ions; as a result, when averaged

FIGURE 11.5 A thin slice of an ionic solid (between the dark lines) that
interacts electromagnetically with ions outside it. The electrostatic
force on the slice is dominated by interactions between ions lying
in the two thin shaded areas, a few atomic layers thick, one on each
side of the slice. The force is effectively a surface force rather than a
volume force. In elastostatic equilibrium, the forces on the two sides
are equal and opposite, if the slice is sufficiently thin.
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TABLE 11.1: Density ρ; bulk, shear, and Young’s moduli K , μ, and E, respectively; Poisson’s
ratio ν; and yield strain SY under tension, for various materials

ρ K μ E cL cT

Substance (kg m−3) (GPa) (GPa) (GPa) ν SY (km s−1) (km s−1)

Carbon nanotube 1,300 ∼1,000 0.05

Steel 7,800 170 81 210 0.29 0.003 5.9 3.2

Copper 8,960 130 45 120 0.34 0.0006 4.6 2.2

Rock 3,000 70 40 100 0.25 0.001 6.0 3.5

Glass 2,500 47 28 70 0.25 0.0005 5.8 3.3

Rubber 1,200 10 0.0007 0.002 0.50 ∼8 1.0 0.03

DNA molecule 0.3 ∼0.1

Notes: The final two columns are the longitudinal and transverse sound speeds cL, cT , defined in Chap. 12.
The DNA molecule is discussed in Ex. 11.12.

over many ions, the net electric force is short range (Fig. 11.5). We can therefore treat
the net force acting on the thin slice as a surface force, governed by local conditions
in the material. This is essential if we are to be able to write down a localized linear
stress-strain relation Tij =−YijklSkl or Tij =−K%δij − 2μΣij . This need not have
been the case; there are other circumstances where the net electrostatic force is long
range, not short. One example occurs in certain types of crystal (e.g., tourmaline),
which develop internal, long-range piezoelectric fields when strained.

Our treatment so far has implicitly assumed that matter is continuous on all scales
and that derivatives are mathematically well defined. Of course, this is not the case. In
fact, we not only need to acknowledge the existence of atoms, we must also use them
to compute the elastic moduli.

magnitudes of elastic
moduli

We can estimate the elastic moduli in ionic or metallic materials by observing
that, if a crystal lattice were to be given a dimensionless strain of order unity, then the
elastic stress would be of order the electrostatic force between adjacent ions divided
by the area associated with each ion. If the lattice spacing is a ∼ 2 Å= 0.2 nm and
the ions are singly charged, then K and μ∼ e2/4πε0a

4 ∼ 100 GPa. This is about a
million atmospheres. Covalently bonded compounds are less tightly bound and have
somewhat smaller elastic moduli; exotic carbon nanotubes have larger moduli. See
Table 11.1.

On the basis of this argument, it might be thought that crystals can be subjected
to strains of order unity before they attain their elastic limits. However, as discussed
in Sec. 11.3.2, most materials are only elastic for strains <∼10−3. The reason for this
difference is that crystals are generally imperfect and are laced with dislocations.
Relatively small stresses suffice for the dislocations to move through the solid and
for the crystal thereby to undergo permanent deformation (Fig. 11.6).
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(a) (b)

FIGURE 11.6 The ions in one layer of a crystal. In subsequent layers, going into
each picture, the ion distribution is the same. (a) This perfect crystal, in which
the atoms are organized in a perfectly repeating lattice, can develop very large
shear strains without yielding. (b) Real materials contain dislocations that greatly
reduce their rigidity. The simplest type of dislocation, shown here, is the edge
dislocation (with the central vertical atomic layer having a terminating edge that
extends into the picture). The dislocation will move transversely, and the crystal
thereby will undergo inelastic deformation when the strain is typically greater
than∼10−3, which is∼1% of the yield shear strain for a perfect crystal.

EXERCISESExercise 11.5 Problem: Order-of-Magnitude Estimates
(a) What is the maximum size of a nonspherical asteroid? [Hint: If the asteroid is too

large, its gravity will deform it into a spherical shape.]
(b) What length of steel wire can hang vertically without breaking? What length of

carbon nanotube? What are the prospects for creating a tether that hangs to Earth’s
surface from a geostationary satellite?

(c) Can a helium balloon lift the tank used to transport its helium gas? (Purcell, 1983).

Exercise 11.6 Problem: Jumping Heights
Explain why all animals, from fleas to humans to elephants, can jump to roughly the
same height. The field of science that deals with topics like this is called allometry
(Ex. 11.18).

11.3.711.3.7 Elastostatic Equilibrium: Navier-Cauchy Equation

elastic force density

It is commonly the case that the elastic moduliK andμ are constant (i.e., independent
of location in the medium), even though the medium is stressed in an inhomogeneous
way. (This is because the strains are small and thus perturb the material properties
by only small amounts.) If so, then from the elastic stress tensor T =−K%g− 2μ�

and expressions (11.4a) and (11.4b) for the expansion and shear in terms of the
displacement vector, we can deduce the following expression for the elastic force
density f [Eq. (11.13)] inside the body:

f =−∇ . T =K∇%+ 2μ∇ . Σ=
(
K + 1

3
μ

)
∇(∇ . ξ) + μ∇2ξ; (11.30)
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boundary pill box

n

FIGURE 11.7 Pill box used to derive boundary conditions in electrostatics and elastostatics.

see Ex. 11.7. Here ∇ . Σ in index notation is Σij ;j = Σji;j . Extra terms must be added
if we are dealing with anisotropic materials. However, in this book Eq. (11.30) will be
sufficient for our needs.

If no other countervailing forces act in the interior of the material (e.g., if there is
no gravitational force), and if, as in this chapter, the material is in a static, equilibrium
state rather than vibrating dynamically, then this force density will have to vanish
throughout the material’s interior. This vanishing of f ≡−∇ . T is just a fancy version
of Newton’s law for static situations, F=ma = 0. If the material has density ρ and is
pulled on by a gravitational acceleration g, then the sum of the elastostatic force per
unit volume and gravitational force per unit volume must vanish, f + ρg = 0:

Navier-Cauchy equation
for elastostatic equilibrium

f + ρg =
(
K + 1

3
μ

)
∇(∇ . ξ)+ μ∇2ξ + ρg = 0. (11.31)

This is often called the Navier-Cauchy equation.5

When external forces are applied to the surface of an elastic body (e.g., when one
pushes on the face of a cylinder) and gravity acts on the interior, the distribution of the
strain ξ(x) inside the body can be computed by solving the Navier-Cauchy equation
(11.31) subject to boundary conditions provided by the applied forces.

In electrostatics, one can derive boundary conditions by integrating Maxwell’s
equations over the interior of a thin box (a “pill box”) with parallel faces that snuggle
up to the boundary (Fig. 11.7). For example, by integrating ∇ . E = ρe/εo over the
interior of the pill box and then applying Gauss’s law to convert the left-hand side to a
surface integral, we obtain the junction condition that the discontinuity in the normal
component of the electric field is equal 1/εo times the surface charge density. Similarly,
in elastostatics one can derive boundary conditions by integrating the elastostatic
equation ∇ . T = 0 over the pill box of Fig. 11.7 and then applying Gauss’s law:

0=
∫

V
∇ . T dV =

∫
∂V

T . d�=
∫
∂V

T . n dA= [(T . n)upper face − (T . n)lower face]A.

(11.32)

Here in the next-to-last expression we have used d�= n dA, where dA is the scalar
area element, and n is the unit normal to the pill-box face. In the last term we have

5. It was first written down by Claude-Louis Navier (in 1821) and in a more general form by Augustin-Louis
Cauchy (in 1822).
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assumed the pill box has a small face, so T . n can be treated as constant and be pulled
outside the integral. The result is the boundary condition that

boundary conditions for
Navier-Cauchy equationT . n must be continuous across any boundary; (11.33)

in index notation, Tijnj is continuous.
Physically, this is nothing but the law of force balance across the boundary: the

force per unit area acting from the lower side to the upper side must be equal and
opposite to that acting from upper to lower. As an example, if the upper face is
bounded by vacuum, then the solid’s stress tensor must satisfyTijnj = 0 at the surface.
If a normal pressure P is applied by some external agent at the upper face, then the
solid must respond with a normal force equal to P : niTijnj = P . If a vectorial force
per unit area Fi is applied at the upper face by some external agent, then it must be
balanced: Tijnj =−Fi.

Solving the Navier-Cauchy equation (11.32) for the displacement field ξ(x), sub-
ject to specified boundary conditions, is a problem in elastostatics analogous to solving
Maxwell’s equations for an electric field subject to boundary conditions in electro-
statics, or for a magnetic field subject to boundary conditions in magnetostatics. The
types of solution techniques used in electrostatics and magnetostatics can also be used
here. See Box 11.3.

EXERCISESExercise 11.7 Derivation and Practice: Elastic Force Density
From Eq. (11.18) derive expression (11.30) for the elastostatic force density inside an
elastic body.

Exercise 11.8 **Practice: Biharmonic Equation
A homogeneous, isotropic, elastic solid is in equilibrium under (uniform) gravity and
applied surface stresses. Use Eq. (11.30) to show that the displacement inside it, ξ(x),
is biharmonic, i.e., it satisfies the differential equation

∇2∇2ξ = 0. (11.34a)

Show also that the expansion% satisfies the Laplace equation

∇2%= 0. (11.34b)

11.411.4 Young’s Modulus and Poisson’s Ratio for an Isotropic Material:
A Simple Elastostatics Problem

As a simple example of an elastostatics problem, we explore the connection between
our 3-dimensional theory of stress and strain and the 1-dimensional Hooke’s law
(Fig. 11.1).
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BOX 11.3. METHODS OF SOLVING THE NAVIER-CAUCHY EQUATION

Many techniques have been devised to solve the Navier-Cauchy equation
(11.31), or other equations equivalent to it, subject to appropriate boundary
conditions. Among them are:

. Separation of variables. See Sec. 11.9.2.

. Green’s functions. See Ex. 11.27 and Johnson (1985).

. Variational principles. See Marsden and Hughes (1986, Chap. 5) and
Slaughter (2002, Chap. 10).

. Saint-Venant’s principle. One changes the boundary conditions
to something simpler, for which the Navier-Cauchy equation can
be solved analytically, and then one uses linearity of the Navier-
Cauchy equation to compute an approximate, additive correction
that accounts for the difference in boundary conditions.1

. Dimensional reduction. This method reduces the theory to
2 dimensions in the case of thin plates (Sec. 11.7), and to 1 dimension
for rods and for translation-invariant plates (Sec. 11.5).

. Complex variable methods. These are particularly useful in
solving the 2-dimensional equations (Boresi and Chong, 1999,
Appendix 5B).

. Numerical simulations on computers. These are usually carried
out by the method of finite elements, in which one approximates
stressed objects by a finite set of elementary, interconnected physical
elements, such as rods; thin, triangular plates; and tetrahedra (Ugural
and Fenster, 2012, Chap. 7).

. Replace Navier-Cauchy by equivalent equations. For example, and
widely used in the engineering literature, write force balance Tij ;j = 0
in terms of the strain tensor Sij , supplement this with an equation
that guarantees Sij can be written as the symmetrized gradient of
a vector field (the displacement vector), and develop techniques
to solve these coupled equations plus boundary conditions for Sij
[Ugural and Fenster (2012, Sec. 2.4); also large parts of Boresi and
Chong (1999) and Slaughter (2002)].

. Mathematica or other computer software. These software packages
can be used to perform complicated analytical analyses. One can
then explore their predictions numerically (Constantinescu and
Korsunsky, 2007).
1. In 1855 Barré de Saint-Venant had the insight to realize that, under suitable
conditions, the correction will be significant only locally (near the altered boundary)
and not globally. (See Boresi and Chong, 1999, pp. 288ff; Ugural and Fenster, 2012,
Sec. 2.16, and references therein.)
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Consider a thin rod of square cross section hanging along the ez direction of a
Cartesian coordinate system (Fig. 11.1). Subject the rod to a stretching force applied
normally and uniformly at its ends. (It could just as easily be a rod under compression.)
Its sides are free to expand or contract transversely, since no force acts on them:
dFi = Tijd�j = 0. As the rod is slender, vanishing of dFi at its x and y sides implies
to high accuracy that the stress components Tix and Tiy will vanish throughout the
interior; otherwise there would be a very large force density Tij ;j inside the rod. Using
Tij =−K%gij − 2μΣij , we then obtain

Txx =−K%− 2μΣxx = 0, (11.35a)

Tyy =−K%− 2μΣyy = 0, (11.35b)

Tyz =−2μΣyz = 0, (11.35c)

Txz =−2μΣxz = 0, (11.35d)

Txy =−2μΣxy = 0, (11.35e)

Tzz =−K%− 2μΣzz. (11.35f)

From the first two of these equations and Σxx + Σyy + Σzz = 0, we obtain a relation-
ship between the expansion and the nonzero components of the shear,

K%= μΣzz =−2μΣxx =−2μΣyy; (11.36)

and from this and Eq. (11.35f), we obtain Tzz =−3K%. The decomposition of Sij
into its irreducible tensorial parts tells us that Szz = ξz;z = Σzz + 1

3%, which becomes,
on using Eq. (11.36), ξz;z = [(3K + μ)/(3μ)]%. Combining with Tzz =−3K%, we
obtain Hooke’s law and an expression for Young’s modulusE in terms of the bulk and
shear moduli:

Hooke’s law and Young’s
modulus

−Tzz
ξz;z

= 9μK
3K + μ = E . (11.37)

It is conventional to introduce Poisson’s ratio ν, which is minus the ratio of the
lateral strain to the longitudinal strain during a deformation of this type, where the
transverse motion is unconstrained. It can be expressed as a ratio of elastic moduli as
follows:

Poisson’s ratioν ≡−ξx;x

ξz;z
=−ξy;y

ξz;z
=−Σxx + 1

3%

Σzz + 1
3%

= 3K − 2μ
2(3K + μ) , (11.38)

where we have used Eq. (11.36). We tabulate these relations and their inverses for
future use:

E = 9μK
3K + μ , ν = 3K − 2μ

2(3K + μ) ; K = E

3(1− 2ν)
, μ= E

2(1+ ν) .

(11.39)
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We have already remarked that mechanical stability of a solid requires thatK , μ>
0. Using Eq. (11.39), we observe that this imposes a restriction on Poisson’s ratio,
namely that −1< ν < 1/2. For metals, Poisson’s ratio is typically about 1/3, and the
shear modulus is roughly half the bulk modulus. For a substance that is easily sheared
but not easily compressed, like rubber (or neutron star crusts; Sec. 11.3.6), the bulk
modulus is relatively high and ν � 1/2 (cf. Table 11.1). For some exotic materials,
Poisson’s ratio can be negative (cf. Yeganeh-Haeri, Weidner, and Parise, 1992).

Although we derived them for a square strut under extension, our expressions for
Young’s modulus and Poisson’s ratio are quite general. To see this, observe that the
derivation would be unaffected if we combined many parallel, square fibers together.
All that is necessary is that the transverse motion be free, so that the only applied force
is uniform and normal to a pair of parallel faces.

11.5 11.5 Reducing the Elastostatic Equations to 1 Dimension for a Bent Beam:
Cantilever Bridge, Foucault Pendulum, DNA Molecule, Elastica

When dealing with bodies that are much thinner in 2 dimensions than the third
(e.g., rods, wires, and beams), one can use the method of moments to reduce the 3-
dimensional elastostatic equations to ordinary differential equations in 1 dimension (a
process called dimensional reduction). We have already met an almost trivial exampledimensional reduction
of this in our discussion of Hooke’s law and Young’s modulus (Sec. 11.4 and Fig.
11.1). In this section, we discuss a more complicated example, the bending of a beam
through a small displacement angle. In Ex. 11.13, we shall analyze a more complicated
example: the bending of a long, elastic wire into a complicated shape called an elastica.

Our beam-bending example is motivated by a common method of bridge con-
struction, which uses cantilevers. (A famous historical example is the old bridge over
the Firth of Forth in Scotland that was completed in 1890 with a main span of half a
kilometer.)

The principle is to attach two independent beams to the two shores as cantilevers,
and allow them to meet in the middle. (In practice the beams are usually supported
at the shores on piers and strengthened along their lengths with trusses.) Similar
cantilevers, with lengths of order a micron or less, are used in atomic force micro-
scopes and other nanotechnology applications, including quantum-information ex-
periments.

Let us make a simple model of a cantilever (Fig. 11.8). Consider a beam clamped
rigidly at one end, with length �, horizontal width w, and vertical thickness h. In-
troduce local Cartesian coordinates with ex pointing along the beam and ez pointing
vertically upward. Imagine the beam extending horizontally in the absence of gravity.
Now let it sag under its own weight, so that each element is displaced through a small
distance ξ(x). The upper part of the beam is stretched, while the lower part is com-
pressed, so there must be a neutral surface where the horizontal strain ξx ,x vanishes.neutral surface

592 Chapter 11. Elastostatics

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



neutral surface

dx
S S

hx

(a) (b)

(c) (d)

h

z

w
y

z

S
S + dS

Wdx–M M + dM

dx

θ
η

�

FIGURE 11.8 Bending of a cantilever. (a) A beam is held rigidly at one end and extends horizontally
with the other end free. We introduce an orthonormal coordinate system (x , y , z)with ex extending
along the beam. We only consider small departures from equilibrium. The bottom of the beam will
be compressed, the upper portion extended. There is therefore a neutral surface z= 0 on which
the strain ξx ,x vanishes. (b) The beam has a rectangular cross section with horizontal width w
and vertical thickness h; its length is �. (c) The bending torqueM must be balanced by the torque
exerted by the vertical shear force S. (d) The shear force S must vary along the beam so as to
support the beam’s weight per unit length,W .

This neutral surface must itself be curved downward. Let its downward displacement
from the horizontal plane that it occupied before sagging be η(x) (> 0), let a plane
tangent to the neutral surface make an angle θ(x) (also> 0) with the horizontal, and
adjust the x and z coordinates so x runs along the slightly curved neutral plane and
z is orthogonal to it (Fig. 11.8). The longitudinal strain is then given to first order in
small quantities by

longitudinal strainξx ,x = z

R
= zdθ

dx
� zd

2η

dx2 , (11.40a)

where R = dx/dθ > 0 is the radius of curvature of the beam’s bend, and we have
chosen z= 0 at the neutral surface. The 1-dimensional displacement η(x)will be the
focus for dimensional reduction of the elastostatic equations.

As in our discussion of Hooke’s law for a stretched rod (Sec. 11.4), we can regard
the beam as composed of a bundle of long, parallel fibers, stretched or squeezed along
their length and free to contract transversely. The longitudinal stress is therefore

Txx =−Eξx ,x =−Ezd
2η

dx2 . (11.40b)
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We can now compute the horizontal force density, which must vanish in elasto-
static equilibrium:6

fx =−Txx ,x − Txz,z = Ezd
3η

dx3 − Txz,z = 0. (11.40c)

This is a partial differential equation. We convert it into a 1-dimensional ordinary
differential equation by the method of moments: We multiply it by z and integratemethod of moments
over z (i.e., we compute its “first moment”). Integrating the second term,

∫
zTxz,zdz,

by parts and using the boundary condition Txz = 0 on the upper and lower surfaces
of the beam, we obtain

Eh3

12
d3η

dx3 =−
∫ h/2
−h/2

Txz dz. (11.40d)

Using Txz = Tzx, notice that the integral, when multiplied by the beam’s width w in
the y direction, is the vertical shear force S(x) in the beam:

shear force, SSS S =
∫
Tzxdydz= w

∫ h/2
−h/2

Tzxdz=−Dd
3η

dx3 . (11.41a)

Here

flexural rigidity or bending
modulus of an elastic
beam,DDD

D ≡ E
∫
z2dydz≡ EA r2

g
= Ewh3/12 (11.41b)

is called the beam’s flexural rigidity,or its bending modulus.Notice that, quite generally,
D is the beam’s Young’s modulus E times the second moment of the beam’s cross
sectional areaA along the direction of bend. Engineers call that second momentA r2

g

and call rg the radius of gyration. For our rectangular beam, thisD is Ewh3/12.
As an aside, we can gain some insight into Eq. (11.41a) by examining the torques

that act on a segment of the beam with length dx. As shown in Fig. 11.8c, the shear
forces on the two ends of the segment exert a clockwise torque 2S(dx/2)= Sdx. This
is balanced by a counterclockwise torque due to the stretching of the upper half of the
segment and compression of the lower half (i.e., due to the bending of the beam). This
bending torque is

bending torque,MMM M ≡
∫
Txxzdydz=−Dd

2η

dx2 (11.41c)

6. Because the coordinates are slightly curvilinear rather than precisely Cartesian, our Cartesian-based
analysis makes small errors. Track-Two readers who have studied Sec. 11.8 can evaluate those errors
using connection-coefficient terms that were omitted from this equation:−�xjkTjk − �jkjTxk. Each �
has magnitude 1/R, so these terms are of order Tjk/R, whereas the terms kept in Eq. (11.40c) are of
order Txx/� and Txz/h. Since the thickness h and length � of the beam are small compared to the beam’s
radius of curvature R, the connection-coefficient terms are negligible.
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on the right end of the segment and minus this on the left, so torque balance says
(dM/dx)dx = Sdx:

S = dM/dx; (11.42)

see Fig. 11.8c. This is precisely Eq. (11.41a).
Equation (11.41a) [or equivalently, Eq. (11.42)] embodies half of the elastostatic

equations. It is the x component of force balance fx = 0, converted to an ordinary
differential equation by evaluating its lowest nonvanishing moment: its first moment,∫
zfxdydz = 0 [Eq. (11.40d)]. The other half is the z component of stress balance,

which we can write as

Tzx ,x + Tzz,z + ρg = 0 (11.43)

(vertical elastic force balanced by gravitational pull on the beam). We can convert this
to a 1-dimensional ordinary differential equation by taking its lowest nonvanishing
moment, its zeroth moment (i.e., by integrating over y and z). The result is

dS

dx
=−W , (11.44)

whereW = gρwh is the beam’s weight per unit length (Fig. 11.8d). weight per unit length,WWW
Combining our two dimensionally reduced components of force balance,

Eqs. (11.41a) and (11.44), we obtain a fourth-order differential equation for our
1-dimensional displacement η(x):

elastostatic force balance
equation for bent beam

d4η

dx4 =
W

D
. (11.45)

(Fourth-order differential equations are characteristic of elasticity.)
Equation (11.45) can be solved subject to four appropriate boundary conditions.

However, before we solve it, notice that for a beam of a fixed length �, the deflection
η is inversely proportional to the flexural rigidity. Let us give a simple example of this
scaling. Floors in U.S. homes are conventionally supported by wooden joists of 2" by
6" lumber with the 6" side vertical. Suppose an inept carpenter installed the joists with
the 6" side horizontal. The flexural rigidity of the joist would be reduced by a factor
9, and the center of the floor would be expected to sag 9 times as much as if the joists
had been properly installed—a potentially catastrophic error.

Also, before solving Eq. (11.45), let us examine the approximations that we have
made. First, we have assumed that the sag is small compared with the length of the
beam, when making the small-angle approximation in Eq. (11.40a); we have also
assumed the beam’s radius of curvature is large compared to its length, when treating
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our slightly curved coordinates as Cartesian.7 These assumptions will usually be valid,
but are not so for the elastica studied in Ex. 11.13. Second, by using the method of
moments rather than solving for the complete local stress tensor field, we have ignored
the effects of some components of the stress tensor. In particular, when evaluating the
bending torque [Eq. (11.41c)] we have ignored the effect of the Tzx component of the
stress tensor. This is O(h/�)Txx, and so our equations can only be accurate for fairly
slender beams. Third, the extension above the neutral surface and the compression
below the neutral surface lead to changes in the cross sectional shape of the beam.
The fractional error here is of order the longitudinal shear, which is small for real
materials.

The solution to Eq. (11.45) is a fourth-order polynomial with four unknown
constants, to be set by boundary conditions. In this problem, the beam is held hor-
izontal at the fixed end, so that η(0) = η′(0) = 0, where the prime denotes d/dx.
At the free end, Tzx and Txx must vanish, so the shear force S must vanish, whence
η′′′(�) = 0 [Eq. (11.41a)]; the bending torque M [Eq. (11.41c)] must also vanish,
whence [by Eq. (11.42)]

∫
Sdx ∝ η′′(�)= 0. By imposing these four boundary con-

ditions η(0)= η′(0)= η′′(�)= η′′′(�)= 0 on the solution of Eq. (11.45), we obtain
for the beam shape

displacement of a clamped
cantilever η(x)= W

D

(
1
4
�2x2 − 1

6
�x3+ 1

24
x4
)

. (11.46a)

Therefore, the end of the beam sags by

η(�)= W�
4

8D
. (11.46b)

Problems in which the beam rests on supports rather than being clamped can be solved
in a similar manner. The boundary conditions will be altered, but the differential
equation (11.45) will be unchanged.

Now suppose that we have a cantilever bridge of constant vertical thickness h and
total span 2�∼ 100 m made of material with density ρ ∼ 8× 103 kg m−3 (e.g., steel)
and Young’s modulus E ∼ 100 GPa. Suppose further that we want the center of the
bridge to sag by no more than η ∼ 1 m. According to Eq. (11.46b), the thickness of
the beam must satisfy

h >∼
(

3ρg�4

2Eη

)1/2
∼ 2.8 m. (11.47)

This estimate makes no allowance for all the extra strengthening and support present
in real structures (e.g., via trusses and cables), and so it is an overestimate.

7. In more technical language, when neglecting the connection-coefficient terms discussed in the previous
footnote.
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EXERCISESExercise 11.9 Derivation: Sag in a Cantilever
(a) Verify Eqs. (11.46) for the sag in a horizontal beam clamped at one end and

allowed to hang freely at the other end.
(b) Now consider a similar beam with constant cross section and loaded with weights,

so that the total weight per unit length is W(x). What is the sag of the free end,
expressed as an integral overW(x), weighted by an appropriate Green’s function?

Exercise 11.10 Example: Microcantilever
A microcantilever, fabricated from a single crystal of silicon, is being used to test
the inverse square law of gravity on micron scales (Weld et al., 2008). It is clamped
horizontally at one end, and its horizontal length is �= 300 μm, its horizontal width
isw = 12 μm, and its vertical height is h= 1μm. (The density and Young’s modulus
for silicon are ρ = 2,000 kg m−3 and E = 100 GPa, respectively.) The cantilever is
loaded at its free end with am= 10 μg gold mass.
(a) Show that the static deflection of the end of the cantilever is η(�)=mg�3/(3D)=

9 μm, where g = 10 m s−2 is the acceleration due to gravity. Explain why it is
permissible to ignore the weight of the cantilever.

(b) Next suppose the mass is displaced slightly vertically and then re-
leased. Show that the natural frequency of oscillation of the cantilever is
f = 1/(2π)

√
g/η(�)� 170 Hz.

(c) A second, similar gold mass is placed 100μm away from the first. Estimate
roughly the Newtonian gravitational attraction between these two masses, and
compare with the attraction of Earth. Suggest a method that exploits the natural
oscillation of the cantilever to measure the tiny gravitational attraction between
the two gold masses.

The motivation for developing this technique was to seek departures from Newton’s
inverse-square law of gravitation on∼micron scales, which had been predicted if our
universe is a membrane (“brane”) in a higher-dimensional space (“bulk”) with at least
one macroscopic extra dimension. No such departures have been found as of 2016.

Exercise 11.11 Example: Foucault Pendulum
In any high-precision Foucault pendulum, it is important that the pendular restoring
force be isotropic, since anisotropy will make the swinging period different in different
planes and thereby cause precession of the plane of swing.
(a) Consider a pendulum of massm and length � suspended (as shown in Fig. 11.9)

by a rectangular wire with thickness h in the plane of the bend (X-Z plane)
and thickness w orthogonal to that plane (Y direction). Explain why the force
that the wire exerts on the mass is approximately−F=−(mg cos θo +m�θ̇2

o
)ex ,

where g is the acceleration of gravity, θo is defined in the figure, and θ̇o is the time
derivative of θo due to the swinging of the pendulum. In the second term we have

11.5 Cantilever Bridge, Foucault Pendulum, DNA Molecule, Elastica 597

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



F

Z

X

x

θo

�

FIGURE 11.9 Foucault pendulum.

assumed that the wire is long compared to its region of bend. Express the second
term in terms of the amplitude of swing θmax

o
, and show that for small amplitudes

θmax
o

� 1, F�−mgex. Use this approximation in the subsequent parts.
(b) Assuming that all along the wire, its angle θ(x) to the vertical is small, θ � 1,

show that
θ(x)= θo

(
1− e−x/λ), (11.48a)

where λ (not to be confused with the second Lamé coefficient) is

λ= h

(12ε)1/2
, (11.48b)

ε = ξx ,x is the longitudinal strain in the wire, and h is the wire’s thickness in the
plane of its bend. [Hint: The solution to Ex. 11.9 might be helpful.] Note that the
bending of the wire is concentrated near the support, so this is where dissipation
will be most important and where most of the suspension’s thermal noise will
arise (cf. Sec. 6.8 for discussion of thermal noise).

(c) Hence show that the shape of the wire is given in terms of Cartesian coordinates by
Z = [X − λ(1− e−X/λ)]θo (11.48c)

to leading order in λ, and that the pendulum period is

P = 2π
(
�− λ
g

)1/2
. (11.48d)

(d) Finally, show that the pendulum periods when swinging along ex and ey differ by

δP

P
=
(
h− w
�

) (
1

48ε

)1/2
. (11.48e)

From Eq. (11.48e) one can determine how accurately the two thicknesses h
and w must be equal to achieve a desired degree of isotropy in the period. A
similar analysis can be carried out for the more realistic case of a slightly elliptical
wire.
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Exercise 11.12 Example: DNA Molecule—Bending, Stretching,
Young’s Modulus, and Yield Point
A DNA molecule consists of two long strands wound around each other as a helix,
forming a cylinder with radius a � 1 nm. In this exercise, we explore three ways of
measuring the molecule’s Young’s modulus E. For background and further details,
see Marko and Cocco (2003) and Nelson (2008, Chap. 9).
(a) Show that if a segment of DNA with length � is bent into a segment of a circle

with radius R, its elastic energy is Eel =D�/(2R2), whereD = (π/4)a4E is the
molecule’s flexural rigidity.

(b) Biophysicists define the DNA’s persistence length �p as that length which, when
bent through an angle of 90◦, has elastic energy Eel = kBT , where kB is Boltz-
mann’s constant and T is the temperature of the molecule’s environment. Show
that �p �D/(kBT ). Explain why, in a thermalized environment, segments much
shorter than �p will be more or less straight, and segments with length ∼�p will
be randomly bent through angles of order 90◦.

(c) Explain why a DNA molecule with total length L will usually be found in a
random coil with diameter d � �p

√
L/�p =

√
L�p. Observations at room tem-

perature with L� 17 μm reveal that d � 1μm. From this show that the persis-
tence length is �p � 50 nm at room temperature, and thence evaluate the mol-
ecule’s flexural rigidity and from it, show that the molecule’s Young’s modulus is
E � 0.3 GPa; cf. Table 11.1.

(d) When the ends of a DNA molecule are attached to glass beads and the beads are
pulled apart with a gradually increasing force F , the molecule begins to uncoil,
just like rubber. To understand this semiquantitatively, think of the molecule as
like a chain made ofN links, each with length �p, whose interfaces can bend freely.
If the force acts along the z direction, explain why the probability that any chosen
link will make an angle θ to the z axis is dP/d cos θ ∝ exp[+F�p cos θ/(kBT )].
[Hint: This is analogous to the probability dP/dV ∝ exp[−PV/(kBT )] for the
volume V of a system in contact with a bath that has pressure P and temperature
T [Eq. (5.49)]; see also the discussion preceding Eq. (11.56).] Infer that when
the force is F , the molecule’s length along the force’s direction is L̄� L(coth α −
1/α), whereα = F�p/(kBT ) andL=N�p is the length of the uncoiled molecule.
Infer, further, that for α� 1 (i.e., F � kBT /�p ∼ 0.1 pN), our model predicts
L̄� αL/3, i.e. a linear force-length relation F = (3kBT /�p)L̄/L, with a strongly
temperature dependent spring constant, 3kBT /�p ∝ T 2. The measured value of
this spring constant, at room temperature, is about 0.13 pN (Fig. 9.5 of Nelson,
2008). From this infer a value 0.5 GPa for the molecule’s Young’s modulus. This
agrees surprisingly well with the 0.3 GPa deduced in part (c), given the crudeness
of the jointed chain model.

(e) Show that when F � kBT /�p ∼ 0.1 pN, our crude model predicts (correctly)
that the molecule is stretched to its full length L= N�p. At this point, its true
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elasticity should take over and allow genuine stretching. That true elasticity turns
out to dominate only for forces>∼ 10 pN. [For details of what happens between 0.1
and 10 pN, see, e.g., Nelson (2008), Secs. 9.1–9.4.] For a force between ∼10 and
∼80 pN, the molecule is measured to obey Hooke’s law, with a Young’s modulus
E � 0.3 GPa that agrees with the value inferred in part (c) from its random-coil
diameter. When the applied force reaches �65 pN, the molecule’s double helix
suddenly stretches greatly with small increases of force, changing its structure,
so this is the molecule’s yield point. Show that the strain at this yield point is
��/�∼ 0.1; cf. Table 11.1.

Exercise 11.13 **Example: Elastica
Consider a slender wire of rectangular cross section with horizontal thickness h and
vertical thicknessw that is resting on a horizontal surface, so gravity is unimportant.
Let the wire be bent in the horizontal plane as a result of equal and opposite forces
F that act at its ends; Fig. 11.10. The various shapes the wire can assume are called
elastica; they were first computed by Euler in 1744 and are discussed in Love (1927,elastica
pp. 401–404). The differential equation that governs the wire’s shape is similar to that
for the cantilever [Eq. (11.45)], with the simplification that the wire’s weight does
not enter the problem and the complication that the wire is long enough to deform
through large angles.

It is convenient (as in the cantilever problem, Fig. 11.8) to introduce curvi-
linear coordinates with coordinate x measuring distance along the neutral surface,
z measuring distance orthogonal to x in the plane of the bend (horizontal plane),
and y measured perpendicular to the bending plane (vertically). The unit vectors
along the x, y, and z directions are ex, ey, ez (Fig. 11.10). Let θ(x) be the angle be-
tween ex and the applied force F; θ(x) is determined, of course, by force and torque
balance.

(a) Show that force balance along the x and z directions implies

F cos θ =
∫
Txxdydz, F sin θ =

∫
Tzxdydz≡ S . (11.49a)

(b) Show that torque balance for a short segment of wire implies

S = dM
dx

, (11.49b)

whereM(x)≡ ∫ zTxxdydz is the bending torque.
(c) Show that the stress-strain relation in the wire implies

M =−Ddθ
dx

, (11.49c)

whereD = Ewh3/12 is the flexural rigidity [Eq. (11.41b)].
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(a) (b)

(c) (d)

h

w
z

x
ez

ex

F F

θ

FIGURE 11.10 Elastica. (a) A bent wire is in elastostatic equilibrium under
the action of equal and opposite forces applied at its two ends. x measures
distance along the neutral surface; z measures distance orthogonal to the
wire in the plane of the bend. (b)–(d) Examples of the resulting shapes.

(d) From the relations in parts (a)–(c), derive the following differential equation for
the shape of the wire:

d2θ

dx2 =−
F sin θ
D

. (11.49d)

This is the same equation as describes the motion of a simple pendulum!
(e) For Track-Two readers who have studied Sec. 11.8: Go back through your analysis

and identify any place that connection coefficients would enter into a more careful
computation, and explain why the connection-coefficient terms are negligible.

(f) Find one nontrivial solution of the elastica equation (11.49d) either analytically
using elliptic integrals or numerically. (The general solution can be expressed in
terms of elliptic integrals.)

(g) Solve analytically or numerically for the shape adopted by the wire corresponding
to your solution in part (f), in terms of precisely Cartesian coordinates (X , Z) in
the bending (horizontal) plane. Hint: Express the curvature of the wire, 1/R =
dθ/dx, as

dθ

dx
=−d

2X

dZ2

[
1+
(
dX

dZ

)2
]−3/2

. (11.49e)

(h) Obtain a uniform piece of wire and adjust the force F to compare your answer
with experiment.
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11.6 11.6 Buckling and Bifurcation of Equilibria

So far, we have considered stable elastostatic equilibria and have implicitly assumed
that the only reason for failure of a material is exceeding the yield limit. However,
anyone who has built a house of cards knows that mechanical equilibria can be
unstable, with startling consequences. In this section, we explore a specific, important
example of a mechanical instability: buckling—the theory of which was developed
long ago, in 1744 by Leonard Euler.

A tragic example of buckling was the collapse of the World Trade Center’s Twin
Towers on September 11, 2001. We discuss it near the end of this section, after first
developing the theory in the context of a much simpler and cleaner example.

11.6.1 11.6.1 Elementary Theory of Buckling and Bifurcation

buckling

Take a new playing card and squeeze it between your finger and thumb (Fig. 11.11).
When you squeeze gently, the card remains flat. But when you gradually increase the
compressive force F past a critical value Fcrit, the card suddenly buckles (i.e., bends),
and the curvature of the bend then increases rather rapidly with increasing applied
force.

To understand quantitatively the sudden onset of buckling, we derive an eigen-
equation for the transverse displacement η as a function of distance x from one end of
the card. (Although the card is effectively 2-dimensional, it has translation symmetry
along its transverse dimension, so we can use the 1-dimensional equations of Sec.
11.5.) We suppose that the ends are free to pivot but not move transversely, so

η(0)= η(�)= 0. (11.50)

For small displacements, the bending torque of our dimensionally reduced
1-dimensional theory is [Eq. (11.41c)]

x

η(x)

η0

F

F

w

�

FIGURE 11.11 A playing card of length �,
width w, and thickness h is subjected to
a compressive force F applied at both ends.
The ends of the card are free to pivot.
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M(x)=−Dd
2η

dx2 , (11.51)

where D = wh3E/12 is the flexural rigidity [Eq. (11.41b)]. As the card is very light
(negligible gravity), the total torque around location x, acting on a section of the card
from x to one end, is the bending torque M(x) acting at x plus the torque −Fη(x)
associated with the applied force. This sum must vanish:

D
d2η

dx2 + Fη = 0. (11.52)

The eigensolutions of Eq. (11.52) satisfying boundary conditions (11.50) are

η = η0 sin kx , (11.53a)

with eigenvalues

k =
(
F

D

)1/2
= nπ
�

for nonnegative integers n. (11.53b)

Therefore, there is a critical force (first derived by Leonhard Euler in 1744), given by

critical force for bucklingFcrit = π
2D

�2 = π
2wh3E

12�2 . (11.54)

When F < Fcrit, there is no solution except η = 0 (an unbent card). When F = Fcrit,
the unbent card is still a solution, and there suddenly is the additional, arched solution
(11.53) with n= 1, depicted in Fig. 11.11.

The linear approximation we have used cannot tell us the height η0 of the arch as
a function of F for F ≥ Fcrit; it reports, incorrectly, that for F = Fcrit all arch heights
are allowed, and that for F > Fcrit there is no solution with n= 1. However, when
nonlinearities are taken into account (Ex. 11.14), the n= 1 solution continues to exist
for F > Fcrit, and the arch height η0 is related to F by

F = Fcrit

{
1+ 1

2

(
πη0
2�

)2
+O
[(
πη0
2�

)4
]}

. (11.55)

The sudden appearance of the arched equilibrium state as F is increased through
Fcrit is called a bifurcation of equilibria. This bifurcation also shows up in the elasto-
dynamics of the playing card, as we deduce in Sec. 12.3.5. When F < Fcrit, small
perturbations of the card’s unbent shape oscillate stably. When F = Fcrit, the unbent
card is neutrally stable, and its zero-frequency motion leads the card from its unbent
equilibrium state to its n= 1, arched equilibrium. WhenF > Fcrit, the straight card is
an unstable equilibrium: its n= 1perturbations grow in time, driving the card toward
the n= 1 arched equilibrium state.

A nice way of looking at this bifurcation is in terms of free energy. Consider
candidate equilibrium states labeled by the height η0 of their arch. For each value of η0,
give the card (for concreteness) then= 1sine-wave shapeη= η0 sin(πx/�). Compute
the total elastic energy E(η0) associated with the card’s bending, and subtract off the
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η0

F = 0 F = Fcrit

F = 1.1Fcrit

F = 1.2Fcrit

V

FIGURE 11.12 Representation of bifurcation by a potential energy function
V(η0). When the applied force is small (F ≤ Fcrit), there is only one
stable equilibrium. As the applied force F is increased, the bottom of
the potential well flattens, and eventually (for F > Fcrit) the number of
equilibria increases from one to three, of which only two are stable.

work FδX done on the card by the applied force F when the card arches from η0= 0
to height η0. [Here δX(η0) is the arch-induced decrease in straight-line separation
between the card’s ends.] The resulting quantity, V(η0)=E − FδX, is the card’s free
energy—analogous to the physical free energy F = E − T S for a system in contact
with a heat bath (Secs. 5.4.1 and 11.3.5), the enthalpic free energy when in contact with
a pressure bath (Ex. 5.5h), and the Gibbs (chemical) free energyG= E − T S + PV
when in contact with a heat and pressure bath (Sec. 5.5). It is the relevant energy for
analyzing the card’s equilibrium and dynamics when the force F is continually being
applied at the two ends. In Ex. 11.15 we deduce that this free energy is

free energy of a bent card
or beam

V=
(
πη0
2�

)2
�

[
(Fcrit − F)+ 1

4
Fcrit

(
πη0
2�

)2
]
+O
[
Fcrit�

(
πη0
2�

)6
]

, (11.56)

which we depict in Fig. 11.12.
At small values of the compressive force F < Fcrit, the free energy has only one

minimum η0 = 0 corresponding to a single stable equilibrium, the straight card.
However, as the force is increased through Fcrit, the potential minimum flattens out
and then becomes a maximum flanked by two new minima (e.g., the curve F =
1.2Fcrit). The maximum for F > Fcrit is the unstable, zero-displacement (straight-
card) equilibrium, and the two minima are the stable, finite-amplitude equilibria with
positive and negative η0 given by Eq. (11.55).

This procedure of representing a continuous system with an infinite number of
degrees of freedom by just one or a few coordinates and finding the equilibrium by
minimizing a free energy is quite common and powerful.

Thus far, we have discussed only two of the card’s equilibrium shapes (11.53):
the straight shape n = 0 and the single-arch shape n = 1. If the card were con-
strained, by gentle, lateral stabilizing forces, to remain straight beyond F = Fcrit,higher order equilibria
then at F = n2Fcrit for each n= 2, 3, 4, . . . , the nth-order perturbative mode, with
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η = η0 sin(nπx/�), would become unstable, and a new, stable equilibrium with this
shape would bifurcate from the straight equilibrium. You can easily explore this for
n= 2 using a new playing card.

These higher-order modes are rarely of practical importance. In the case of a beam
with no lateral constraints, as F increases above Fcrit, it will buckle into its single-
arched shape. For beam dimensions commonly used in construction, a fairly modest
further increase of F will bend it enough that its yield point and then rupture point
are reached. To experience this yourself, take a thin meter stick, compress its ends
between your two hands, and see what happens.

11.6.211.6.2 Collapse of the World Trade Center Buildings

Now we return to the example with which we began this section. On September 11,
2001, al-Qaeda operatives hijacked two Boeing 767 passenger airplanes and crashed
them into the 110-story Twin Towers of the World Trade Center in New York City,
triggering the towers’ collapse a few hours later, with horrendous loss of life.

The weight of a tall building such as the towers is supported by vertical steel
beams, called “columns.” The longer the column is, the lower the weight it can support
without buckling, since Fcrit = π2D/�2 = π2EA(rg/�)

2, with A the beam’s cross
sectional area, rg its radius of gyration along its bending direction, and � its length
[Eqs. (11.54) and (11.41b)].8 The column lengths are typically chosen such that the
critical stress for buckling, Fcrit/A = E(πrg/�)2, is roughly the same as the yield
stress, Fyield � 0.003E (cf. Table 11.1), which means that the columns’ slenderness
ratio is �/rg ∼ 50. The columns are physically far longer than 50rg, but they are
anchored to each other laterally every ∼50rg by beams and girders in the floors,
so their effective length for buckling is � ∼ 50rg. The columns’ radii of gyration
rg are generally made large, without using more steel than needed to support the
overhead weight, by making the columns hollow, or giving them H-shaped cross
sections. In the Twin Towers, the thinnest beams had rg ∼ 13 cm, and they were
anchored in every floor, with floor separations �� 3.8 m, so their slenderness ratio
was actually �/rg � 30.

description of failure
modes

According to a detailed investigation (NIST, 2005, especially Secs. 6.14.2 and
6.14.3), the crashing airplanes ignited fires in and near floors 93–99 of the North
Tower and 78–83 of the South Tower, where the airplanes hit. The fires were most
intense in the floors and around uninsulated central steel columns. The heated cen-
tral columns lost their rigidity and began to sag, and trusses then transferred some of
the weight above to the outer columns. In parallel, the heated floor structures began

8. As noted in the discussion, after Eq. (11.41b), Ar2
g

is really the second moment of the column’s cross
sectional area, along its direction of bend. If the column is supported at its ends against movement in
both transverse directions, then the relevant second moment is the transverse tensor

∫
xixjdxdy, and

the direction of buckling (if it occurs) will be the eigendirection of this tensor that has the smallest
eigenvalue (the column’s narrowest direction).
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FIGURE 11.13 (a) The buckling of column 79 in building WTC7 at the World Trade Center, based on a
finite-element simulation informed by all available observational data. (b) The subsequent buckling
of the building’s core. From NIST (2008).

to sag, pulling inward on the buildings’ exterior steel columns, which bowed inward
and then buckled, initiating the buildings’ collapse. [This is a somewhat oversimpli-
fied description of a complex situation; for full complexities, see the report, NIST
(2005).]

This column buckling was somewhat different from the buckling of a playing card
because of the inward pull of the sagging floors. Much more like our playing-card
buckle was the fate of an adjacent, 47-story building called WTC7. When the towers
collapsed, they injected burning debris onto and into WTC7. About 7 hours later, fire-
induced thermal expansion triggered a cascade of failures in floors 13–16, which left
column 79 with little stabilizing lateral support, so its effective length �was increased
far beyond 50rg. It then quickly buckled (Fig. 11.13a) in much the same manner as
our playing card, followed by column 80, then 81, and subsequently columns 77, 78,
and 76 (NIST, 2008, especially Sec. 2.4). Within seconds, the building’s entire core
was buckling (Fig. 11.13b).

11.6.3 11.6.3 Buckling with Lateral Force; Connection to Catastrophe Theory

Returning to the taller Twin Towers, we can crudely augment the inward pull of the
sagging floors into our free-energy description of buckling, by adding a term−Flatη0,
which represents the energy inserted into a bent column by a lateral force Flat when
its center has been displaced laterally through the distance η0. Then the free energy
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(11.56), made dimensionless and with its terms rearranged, takes the form

ϕ ≡ V

Fcrit�
= 1

4

(
πη0
2�

)4
− 1

2

(
2(F − Fcrit)

Fcrit

) (
πη0
2�

)2
−
(

2Flat
πFcrit

) (
πη0
2�

)
.

(11.57)

Notice that this equation has the canonical form ϕ = 1
4a

4 − 1
2za

2− xa for the poten-
tial that governs a cusp catastrophe, whose state variable is a = πη0/(2�) and control
variables are z= 2(F − Fcrit)/Fcrit and x = (2/π)Flat/Fcrit; see Eq. (7.72).9 From the interpretation in terms of

catastrophe theoryelementary mathematics of this catastrophe, as worked out in Sec. 7.5.1, we learn
that although the lateral force Flat will make the column bend, it will not induce a
bifurcation of equilibria until the control-space cusp x =±2(z/3)3/2 is reached:

Flat
Fcrit

=±π
(

2(F − Fcrit)

3Fcrit

)3/2
. (11.58)

Notice that the lateral force Flat actually delays the bifurcation to a higher vertical
force, F > Fcrit. However, this is not significant for the physical buckling, since the
column in this case is bent from the outset, and as Flat increases, it stops carrying its
share of the building’s weight and moves smoothly toward its yield point and rupture;
Ex. 11.16.

11.6.411.6.4 Other Bifurcations: Venus Fly Trap, Whirling Shaft,
Triaxial Stars, and Onset of Turbulence

This bifurcation of equilibria, associated with the buckling of a column, is just one
of many bifurcations that occur in physical systems. Another is a buckling type bi-
furcation that occurs in the 2-dimensional leaves of the Venus fly trap plant; the plant
uses the associated instability to snap together a pair of leaves in a small fraction of
a second, thereby capturing insects for it to devour; see Fortere et al. (2005). Yet an-
other is the onset of a lateral bend in a shaft (rod) that spins around its longitudinal
axis (see Love, 1927, Sec. 286). This is called whirling; it is an issue in drive shafts for whirling shaft
automobiles and propellers, and a variant of it occurs in spinning DNA molecules
during replication—see Wolgemuth, Powers, and Goldstein (2000). One more exam-
ple is the development of triaxiality in self-gravitating fluid masses (i.e., stars) when
their rotational kinetic energy reaches a critical value, about 1/4 of their gravitational
energy; see Chandrasekhar (1962). Bifurcations also play a major role in the onset of
turbulence in fluids and in the route to chaos in other dynamical systems; we study
turbulence and chaos in Sec. 15.6.

9. The lateral force Flat makes the bifurcation structurally stable, in the language of catastrophe theory
(discussed near the end of Sec. 7.5) and thereby makes it describable by one of the generic catastrophes.
Without Flat, the bifurcation is not structurally stable.
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For further details on the mathematics of bifurcations with emphasis on elasto-
statics and elastodynamics, see, for example, Marsden and Hughes (1986, Chap. 7).
For details on buckling from an engineering viewpoint, see Ugural and Fenster (2012,
Chap. 11).

EXERCISES Exercise 11.14 Derivation and Example: Bend as a Function of Applied Force
Derive Eq. (11.55) relating the angle θo = (dη/dx)x=0 = kηo = πηo/� to the applied
force F when the card has an n= 1, arched shape. [Hint: Consider the card as com-
prising many thin parallel wires and use the elastica differential equation d2θ/dx2=
−(F/D) sin θ [Eq. (11.49d)] for the angle between the card and the applied force at
distance x from the card’s end. The sin θ becomes θ in the linear approximation used
in the text; the nonlinearities embodied in the sine give rise to the desired relation. The
following steps along the way toward a solution are mathematically the same as used
when computing the period of a pendulum as a function of its amplitude of swing.]
(a) Derive the first integral of the elastica equation

(dθ/dx)2 = 2(F/D)(cos θ − cos θo), (11.59)

where θo is an integration constant. Show that the boundary condition of no
bending torque (no inflection of the card’s shape) at the card ends implies θ = θo
at x = 0 and x = �; whence θ = 0 at the card’s center, x = �/2.

(b) Integrate the differential equation (11.59) to obtain

�

2
=
√
D

2F

∫ θo
0

dθ√
cos θ − cos θo

. (11.60)

(c) Perform the change of variable sin(θ/2)= sin(θo/2) sin φ and thereby bring Eq.
(11.60) into the form

�= 2
√
D

F

∫ π/2
0

dφ√
1− sin2(θo/2) sin2 φ

= 2
√
D

F
K[sin2(θo/2)]. (11.61)

HereK(y) is the complete elliptic integral of the first type, with the parameteri-
zation used by Mathematica (which differs from that of many books).

(d) Expand Eq. (11.61) in powers of θo/2 to obtain

F = Fcrit
4
π2K

2[sin2(θo/2)]= Fcrit

[
1+ 1

2

(
θo/2

2

)2
+ . . .

]
, (11.62)

from which deduce our desired result, Eq. (11.55).

Exercise 11.15 Problem: Free Energy of a Bent, Compressed Beam
Derive Eq. (11.56) for the free energy V of a beam that is compressed with a force F
and has a critical compressionFcrit = π2D/�2, whereD is its flexural rigidity. [Hint: It
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must be that ∂V/∂η0= 0 gives Eq. (11.55) for the beam’s equilibrium bend amplitude
η0 as a function of F − Fcrit. Use this to reduce the number of terms in V(η0) in Eq.
(11.56) that you need to derive.]

Exercise 11.16 Problem: Bent Beam with Lateral Force
Explore numerically the free energy (11.57) of a bent beam with a compressive force
F and lateral force Flat. Examine how the extrema (equilibrium states) evolve as F
and Flat change, and deduce the physical consequences.

Exercise 11.17 **Problem: Applications of Buckling—Mountains and Pipes
Buckling plays a role in many natural and human-caused phenomena. Explore the
following examples.

(a) Mountain building. When two continental plates are in (very slow) collision,
the compressional force near their interface drives their crustal rock to buckle
upward, producing mountains. Estimate how high such mountains can be on
Earth and on Mars, and compare your estimates with their actual heights. Read
about such mountain building in books or on the web.

(b) Thermal expansion of pipes. When a segment of pipe is heated (e.g., by the rising
sun in the morning), it will expand. If its ends are held fixed, this can easily
produce a longitudinal stress large enough to buckle the pipe. How would you deal
with this in an oil pipeline on Earth’s surface? In a long vacuum tube? Compare
your answers with standard engineering solutions, which you can find in books
or on the web.

Exercise 11.18 Example: Allometry
Allometry is the study of biological scaling laws that relate various features of an
animal to its size or mass. One example concerns the ratio of the width to the length
of leg bones. Explain why the width to the length of a thigh bone in a quadruped
might scale as the square root of the stress that it has to support. Compare elephants
with cats in this regard. (The density of bone is roughly 1.5 times that of water, and
its Young’s modulus is∼20 GPa.)

11.711.7 Reducing the Elastostatic Equations to 2 Dimensions
for a Deformed Thin Plate: Stress Polishing a Telescope Mirror

The world’s largest optical telescopes (as of 2016) are the Gran Telescopio Canarias in
the Canary Islands and the two Keck telescopes on Mauna Kea in Hawaii, which are all
about 10 m in diameter. It is very difficult to support traditional, monolithic mirrors
so that the mirror surfaces maintain their shape (their “figure”) as the telescope slews,
because they are so heavy, so for Keck a new method of fabrication was sought. The
solution devised by Jerry Nelson and his colleagues was to construct the telescope out
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of 36 separate hexagons, each 0.9 m on a side. However, this posed a second problem:
how to grind each hexagon’s reflecting surface to the required hyperboloidal shape. For
this, a novel technique called stressed mirror polishing was developed. This techniquestressed mirror polishing
relies on the fact that it is relatively easy to grind a surface to a spherical shape,
but technically highly challenging to create a nonaxisymmetric shape. So during the
grinding, stresses are applied around the boundary of the mirror to deform it, and a
spherical surface is produced. The stresses are then removed, and the mirror springs
into the desired nonspherical shape. Computing the necessary stresses is a problem
in classical elasticity theory and, in fact, is a good example of a large number of
applications where the elastic body can be approximated as a thin plate and its shape
analyzed using elasticity equations that are reduced from 3 dimensions to 2 by the
method of moments.

For stress polishing of mirrors, the applied stresses are so large that we can ig-
nore gravitational forces (at least in our simplified treatment). We suppose that the
hexagonal mirror has a uniform thickness h and idealize it as a circle of radiusR, and
we introduce Cartesian coordinates with (x , y) in the horizontal plane (the plane of
the mirror before deformation and polishing begin), and z vertical. The mirror is de-
formed as a result of a net vertical force per unit area (pressure)P(x , y). This pressure
is applied at the lower surface when upward (positive) and the upper surface when
downward (negative). In addition, there are shear forces and bending torques applied
around the rim of the mirror.

As in our analysis of a cantilever in Sec. 11.5, we assume the existence of a neutral
surface in the deformed mirror, where the horizontal strain vanishes, Tab = 0. (Here
and below we use letters from the early part of the Latin alphabet for horizontal
components x = x1 and y = x2.) We denote the vertical displacement of the neutral
surface by η(x , y). By applying the method of moments to the 3-dimensional stress-
balance equation Tjk ,k = 0 in a manner similar to our cantilever analysis, we obtain
the following 2-dimensional equation for the mirror’s shape (Ex. 11.19):

elastostatic force balance
for a bent plate on which
a pressure PPP acts: shape
equation

∇2(∇2η)= P(x , y)/D. (11.63a)

Here ∇2 is the horizontal Laplacian: ∇2η ≡ η,aa = η,xx + η,yy. Equation (11.63a)
is the 2-dimensional analog of the equation d4η/dx4 =W(x)/D for the shape of a
cantilever on which a downward force per unit length W(x) acts [Eq. (11.45)]. The
2-dimensional flexural rigidity that appears in Eq. (11.63a) is

2-dimensional flexural
rigidity D = Eh3

12(1− ν2)
, (11.63b)

whereE is the mirror’s Young’s modulus, h is its thickness, and ν is its Poisson’s ratio.
The operator∇2∇2 acting on η in the shape equation (11.63a) is called the biharmonicbiharmonic operator

operator; it also appears in 3-dimensional form in the biharmonic equation (11.34a)
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FIGURE 11.14 Schematic showing the mirror rim, a radial arm attached to it via a block,
and a lever assembly used to apply shear forces and bending torques to the rim during
stress polishing. (F1 need not equal F2, as there is a pressure P applied to the back
surface of the mirror and forces applied at 23 other points around its rim.) The shear
force on the mirror rim is S = F2 − F1, and the bending torque isM = r2F2 − r1F1.

for the displacement inside a homogeneous, isotropic body to which surface stresses
are applied.

The shape equation (11.63a) must be solved subject to boundary conditions
around the mirror’s rim: the applied shear forces and bending torques.

The individual Keck mirror segments were constructed out of a ceramic material
with Young’s modulus E = 89 GPa and Poisson’s ratio ν = 0.24 (similar to glass; cf.
Table 11.1). A mechanical jig was constructed to apply the shear forces and bending
torques at 24 uniformly spaced points around the rim of the mirror (Fig. 11.14). The
maximum stress was applied for the six outermost mirrors and was 2.4× 106 N m−2,
12% of the material’s breaking tensile strength (2× 107 N m−2).

This stress polishing worked beautifully, and the Keck telescopes have become
highly successful tools for astronomical research.

EXERCISESExercise 11.19 **Derivation and Example: Dimensionally Reduced Shape Equation
for a Stressed Plate
Use the method of moments (Sec. 11.5) to derive the 2-dimensional shape equation
(11.63a) for the stress-induced deformation of a thin plate, and expression (11.63b)
for the 2-dimensional flexural rigidity. Here is a step-by-step guide, in case you want
or need it.

(a) Show on geometrical grounds that the in-plane strain is related to the vertical
displacement by [cf. Eq. (11.40a)]

ξa ,b =−zη,ab. (11.64a)

(b) Derive an expression for the horizontal components of the stress, Tab, in terms
of double derivatives of the displacement function η(x , y) [analog of Txx =
−Ezd2η/dx2, Eq. (11.40b), for a stressed rod]. This can be done (i) by arguing
on physical grounds that the vertical component of stress, Tzz, is much smaller
than the horizontal components and therefore can be approximated as zero [an
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approximation to be checked in part (f)]; (ii) by expressing Tzz = 0 in terms of
the strain and thence displacement and using Eqs. (11.39) to obtain

%=−
(

1− 2ν
1− ν
)
z∇2η, (11.64b)

where ∇2 is the horizontal Laplacian; and (iii) by then writing Tab in terms of
% and ξa ,b and combining with Eqs. (11.64a) and (11.64b) to get the desired
equation:

Tab = Ez
[

ν

(1− ν2)
∇2η δab +

η,ab

(1+ ν)
]

. (11.64c)

(c) With the aid of Eq. (11.64c), write the horizontal force density in the form

fa =−Tab ,b − Taz,z =− Ez

1− ν2∇2η,a − Taz,z = 0. (11.64d)

Then, as in the cantilever analysis [Eq. (11.40d)], reduce the dimensionality of this
force equation by the method of moments. The zeroth moment (integral over z)
vanishes. Why? Therefore, the lowest nonvanishing moment is the first (multiply
fa by z and integrate). Show that this gives

Sa ≡
∫
Tzadz=D∇2η,a , (11.64e)

where D is the 2-dimensional flexural rigidity (11.63b). The quantity Sa is the
vertical shear force per unit length acting perpendicular to a line in the mirror
whose normal is in the direction a; it is the 2-dimensional analog of a stressed
rod’s shear force S [Eq. (11.41a)].

(d) For physical insight into Eq. (11.64e), define the bending torque per unit length
(bending torque density) as

Mab ≡
∫
zTabdz, (11.64f)

and show with the aid of Eq. (11.64c) that (11.64e) is the law of torque balance Sa =
Mab ,b—the 2-dimensional analog of a stressed rod’s S = dM/dx [Eq. (11.42)].

(e) Compute the total vertical shear force acting on a small area of the plate as the
line integral of Sa around its boundary, and by applying Gauss’s theorem, deduce
that the vertical shear force per unit area is Sa ,a. Argue that this must be balanced
by the net pressure P applied to the face of the plate, and thereby deduce the law
of vertical force balance:

Sa ,a = P . (11.64g)

By combining this equation with the law of torque balance (11.64e), obtain the
plate’s bending equation∇2(∇2η)= P/D [Eq. (11.63a)—the final result we were
seeking].
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(f) Use this bending equation to verify the approximation made in part (b) that Tzz
is small compared to the horizontal stresses. Specifically, show that Tzz � P is
O(h/R)2Tab, where h is the plate thickness, and R is the plate radius.

Exercise 11.20 Example: Paraboloidal Mirror
Show how to construct a paraboloidal mirror of radiusR and focal length f by stress
polishing.

(a) Adopt a strategy of polishing the stressed mirror into a segment of a sphere with
radius of curvature equal to that of the desired paraboloid at its center, r = 0. By
comparing the shape of the desired paraboloid to that of the sphere, show that
the required vertical displacement of the stressed mirror during polishing is

η(r)= r4

64f 3 , (11.64h)

where r is the radial coordinate, and we only retain terms of leading order.
(b) Hence use Eq. (11.63a) to show that a uniform force per unit area

P = D

f 3 , (11.64i)

where D is the flexural rigidity, must be applied to the bottom of the mirror.
(Ignore the weight of the mirror.)

(c) Based on the results of part (b), show that if there are N equally spaced levers
attached at the rim, the vertical force applied at each of them must be

Fz = πDR
2

Nf 3 . (11.64j)

(d) Show that the radial displacement inside the mirror is

ξr =− r3z

16f 3 , (11.64k)

where z is the vertical distance from the neutral surface, halfway through the
mirror.

(e) Hence show that the maximum stress in the mirror is

Tmax = (3+ ν)R
2hE

32(1− ν2)f 3 , (11.64l)

where h is the mirror thickness.
(f) Calculate the bending torque M that must be applied at each lever (Fig. 11.14).

Comment on the limitations of this technique for making a thick, “fast” (i.e., 2R/f
large) mirror.
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11.8 11.8 Cylindrical and Spherical Coordinates: Connection Coefficients
and Components of the Gradient of the Displacement Vector

Thus far in our discussion of elasticity, we have restricted ourselves to Cartesian
coordinates. However, many problems in elasticity are most efficiently solved using
cylindrical or spherical coordinates, so in this section, we develop some mathematical
tools for those coordinate systems. In doing so, we follow the vectorial conventions
of standard texts on electrodynamics and quantum mechanics (e.g., Jackson, 1999;
Cohen-Tannoudji, Diu, and Laloë, 1977). We introduce an orthonormal set of basisorthonormal basis vectors

of cylindrical or spherical
coordinates

vectors associated with each of our curvilinear coordinate systems; the coordinate
lines are orthogonal to one another, and the basis vectors have unit lengths and point
along the coordinate lines. In our study of continuum mechanics (Part IV, Elasticity;
Part V, Fluid Dynamics; and Part VI, Plasma Physics), we follow this practice. When
studying General Relativity (Part VII), we introduce and use basis vectors that are not
orthonormal.

cylindrical coordinates Our notation for cylindrical coordinates is (! , φ , z);! (pronounced “pomega”)
is distance from the z-axis, and φ is the angle around the z-axis:

! =
√
x2 + y2, φ = arctan(y/x). (11.65a)

The unit basis vectors that point along the coordinate axes are denoted e! , eφ, and
ez, and are related to the Cartesian basis vectors by

e! = (x/!)ex + (y/!)ey , eφ =−(y/!)ex + (x/!)ey ,

ez = Cartesian ez. (11.65b)

Our notation for spherical coordinates is (r , θ , φ), with (as should be veryspherical coordinates
familiar)

r =
√
x2 + y2 + z2, θ = arccos(z/r), φ = arctan(y/x). (11.66a)

The unit basis vectors associated with these coordinates are

er = x
r

ex + y
r

ey + z
r

ez , eθ = z
r

e! − !
r

ez , eφ =− y
!

ex + x

!
ey . (11.66b)

Because our bases are orthonormal, the components of the metric of
3-dimensional space retain the Kronecker-delta values

gjk ≡ ej . ek = δjk , (11.67)

which permits us to keep all vector and tensor indices down, by contrast with space-
time, where we must distinguish between up and down; cf. Sec. 2.5.10

10. Occasionally—e.g., in the useful equation εijmεklm = δijkl ≡ δikδjl − δil δjk [Eq. (1.23)]—it is convenient to
put some indices up. In our orthonormal basis, any component with an index up is equal to that same
component with an index down: e.g., δi

k
≡ δik.
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In Jackson (1999), Cohen-Tannoudji, Diu, and Laloë (1977), and other standard
texts, formulas are written down for the gradient and Laplacian of a scalar field, and
the divergence and curl of a vector field, in cylindrical and spherical coordinates;
one uses these formulas over and over again. In elasticity theory, we deal largely with
second-rank tensors and will need formulas for their various derivatives in cylindrical
and spherical coordinates. In this book we introduce a mathematical tool, connection connection coefficients

coefficients �ijk, by which those formulas can be derived when needed.
The connection coefficients quantify the turning of the orthonormal basis vectors

as one moves from point to point in Euclidean 3-space: they tell us how the basis
vectors at one point in space are connected to (related to) those at another point. More
specifically, we define �ijk by the two equivalent relations

∇kej = �ijkei; �ijk = ei . (∇kej ). (11.68)

Here ∇k ≡∇ek is the directional derivative along the orthonormal basis vector ek; cf.
Eq. (1.15a). Notice that (as is true quite generally; cf. Sec. 1.7) the differentiation index
comes last on �; and notice that the middle index of � names the basis vector that
is differentiated. Because our basis is orthonormal, it must be that ∇k(ei . ej )= 0.
Expanding this expression out using the standard rule for differentiating products,
we obtain ej . (∇kei)+ ei . (∇kej )= 0. Then invoking the definition (11.68) of the
connection coefficients, we see that �ijk is antisymmetric on its first two indices:

�ijk =−�jik . (11.69)

In Part VII, when we use nonorthonormal bases, this antisymmetry will break
down.

It is straightforward to compute the connection coefficients for cylindrical and
spherical coordinates from (i) the definition (11.68); (ii) expressions (11.65b) and
(11.66b) for the cylindrical and spherical basis vectors in terms of the Cartesian basis
vectors; and (iii) the fact that in Cartesian coordinates the connection coefficients vanish
(ex, ey, and ez do not rotate as one moves through Euclidean 3-space). One can also
deduce the cylindrical and spherical connection coefficients by drawing pictures of the
basis vectors and observing how they change from point to point. As an example, for
cylindrical coordinates we see from Fig. 11.15 that∇φe! = eφ/! . A similar pictorial
calculation (which the reader is encouraged to do) reveals that ∇φeφ =−e!/! . All
other derivatives vanish. By comparing with Eq. (11.68), we see that the only nonzero connection coefficients

for orthonormal bases of
cylindrical and spherical
coordinates

connection coefficients in cylindrical coordinates are

�!φφ =− 1
!

, �φ!φ = 1
!

, (11.70)

11.8 Cylindrical and Spherical Coordinates 615

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



e�

e�

rφe�

eφ

FIGURE 11.15 Pictorial evaluation of �φ!φ. In the rightmost assemblage of
vectors we compute ∇φe! as follows. We draw the vector to be differentiated,
e! , at the tail of eφ (the vector along which we differentiate) and also at its
head. We then subtract e! at the head from that at the tail; this difference
is ∇φe! . It obviously points in the eφ direction. When we perform the same
calculation at a radius ! that is smaller by a factor 2 (left assemblage of
vectors), we obtain a result, ∇φe! , that is twice as large. Therefore, the length
of this vector must scale as 1/! . By looking quantitatively at the length at
some chosen radius! , one can see that the multiplicative coefficient is unity:
∇φe! = eφ/! . Comparing with Eq. (11.68), we deduce that �φ!φ = 1/! .

which have the required antisymmetry [Eq. (11.69)]. Likewise, for spherical coordi-
nates (Ex. 11.22), we have

�θrθ = �φrφ =−�rθθ =−�rφφ = 1
r

, �φθφ =−�θφφ = cot θ
r

. (11.71)

These connection coefficients are the keys to differentiating vectors and tensors.
Consider the gradient of the displacement, W =∇ξ. Applying the product rule for
differentiation, we obtain

∇k(ξjej )= (∇kξj)ej + ξj(∇kej )= ξj ,kej + ξj�ljkel . (11.72)

Here the comma denotes the directional derivative, along a basis vector, of the com-directional derivative
along basis vector ponents treated as scalar fields. For example, in cylindrical coordinates we have

ξi ,! = ∂ξi

∂!
, ξi ,φ = 1

!

∂ξi

∂φ
, ξi ,z = ∂ξi

∂z
; (11.73)

and in spherical coordinates we have

ξi , r = ∂ξi
∂r

, ξi ,θ = 1
r

∂ξi

∂θ
, ξi ,φ = 1

r sin θ
∂ξi

∂φ
. (11.74)
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Taking the ith component of Eq. (11.72) we obtain

Wik = ξi;k = ξi ,k + �ijkξj . (11.75)

Here ξi;k are the nine components of the gradient of the vector field ξ(x).
We can use Eq. (11.75) to evaluate the expansion %= Tr W =∇ . ξ. Using Eqs.

(11.70) and (11.71), we obtain

%=∇ . ξ = ∂ξ!
∂!

+ 1
!

∂ξφ

∂φ
+ ∂ξz
∂z
+ ξ!
!

= 1
!

∂

∂!

(
!ξ!
)+ 1

!

∂ξφ

∂φ
+ ∂ξz
∂z

(11.76)

in cylindrical coordinates and

%=∇ . ξ = ∂ξr
∂r
+ 1
r

∂ξθ

∂θ
+ 1
r sin θ

∂ξφ

∂φ
+ 2ξr
r
+ cot θξθ

r

= 1
r2
∂

∂r
(r2ξr)+ 1

r sin θ
∂

∂θ
(sin θξθ)+ 1

r sin θ
∂ξφ

∂φ
(11.77)

in spherical coordinates, in agreement with formulas in standard textbooks, such as
the flyleaf of Jackson (1999).

The components of the rotation are most easily deduced using Rij =−εijkφk with
φ = 1

2∇× ξ, and the standard expressions for the curl in cylindrical and spherical
coordinates (Jackson, 1999). Since the rotation does not enter into elasticity theory in
a significant way, we refrain from writing down the results. The components of the
shear are computed in Box 11.4.

By a computation analogous to Eq. (11.72), we can construct an expression for the
gradient of a tensor of any rank. For a second-rank tensor T = Tijei ⊗ ej we obtain
(Ex. 11.21)

components of gradient of
a tensor

Tij ;k = Tij ,k + �ilkTlj + �jlkTil . (11.78)

Equation (11.78) for the components of the gradient can be understood as follows.
In cylindrical or spherical coordinates, the components Tij can change from point to
point as a result of two things: a change of the tensor T or the turning of the basis
vectors. The two connection coefficient terms in Eq. (11.78) remove the effects of the
basis turning, leaving in Tij ;k only the influence of the change of T itself. There are
two correction terms corresponding to the two slots (indices) of T; the effects of basis
turning on each slot get corrected one after another. If T had had n slots, then there
would have been n correction terms, each with the form of the two in Eq. (11.78).

These expressions for derivatives of tensors are not required for dealing with the
vector fields of introductory electromagnetic theory or quantum theory, but they are
essential for manipulating the tensor fields encountered in elasticity. As we shall see
in Sec. 24.3, with one further generalization, we can go on to differentiate tensors in
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BOX 11.4. SHEAR TENSOR IN SPHERICAL AND CYLINDRICAL
COORDINATES

Using our rules (11.75) for forming the gradient of a vector, we can derive a
general expression for the shear tensor:

Σij = 1
2
(ξi;j + ξj ;i)− 1

3
δijξk;k

= 1
2
(ξi ,j + ξj , i + �iljξl + �jliξl)− 1

3
δij (ξk ,k + �klkξl). (1)

Evaluating this in cylindrical coordinates using the connection coefficients
(11.70), we obtain

Σ!! = 2
3
∂ξ!

∂!
− 1

3
ξ!

!
− 1

3!
∂ξφ

∂φ
− 1

3
∂ξz

∂z
,

Σφφ = 2
3!

∂ξφ

∂φ
+ 2

3
ξ!

!
− 1

3
∂ξ!

∂!
− 1

3
∂ξz

∂z
,

Σzz = 2
3
∂ξz

∂z
− 1

3
∂ξ!

∂!
− 1

3
ξ!

!
− 1

3!
∂ξφ

∂φ
,

Σφz = Σzφ = 1
2!

∂ξz

∂φ
+ 1

2
∂ξφ

∂z
,

Σz! = Σ!z = 1
2
∂ξ!

∂z
+ 1

2
∂ξz

∂!
,

Σ!φ = Σφ! = 1
2
∂ξφ

∂!
− ξφ

2!
+ 1

2!
∂ξ!

∂φ
. (2)

Likewise, in spherical coordinates using the connection coefficients (11.71),
we obtain

Σrr = 2
3
∂ξr

∂r
− 2

3r
ξr − cot θ

3r
ξθ − 1

3r
∂ξθ

∂θ
− 1

3r sin θ
∂ξφ

∂φ
,

Σθθ = 2
3r
∂ξθ

∂θ
+ ξr

3r
− 1

3
∂ξr

∂r
− cot θξθ

3r
− 1

3r sin θ
∂ξφ

∂φ
,

Σφφ = 2
3r sin θ

∂ξφ

∂φ
+ 2 cot θξθ

3r
+ ξr

3r
− 1

3
∂ξr

∂r
− 1

3r
∂ξθ

∂θ
,

Σθφ = Σφθ = 1
2r
∂ξφ

∂θ
− cot θξφ

2r
+ 1

2r sin θ
∂ξθ

∂φ
,

Σφr = Σrφ = 1
2r sin θ

∂ξr

∂φ
+ 1

2
∂ξφ

∂r
− ξφ

2r
,

Σrθ = Σθr = 1
2
∂ξθ

∂r
− ξθ

2r
+ 1

2r
∂ξr

∂θ
. (3)
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any basis (orthonormal or nonorthonormal) in a curved spacetime, as is needed to
perform calculations in general relativity.

Although the algebra of evaluating the components of derivatives such as in
Eq. (11.78) in explicit form (e.g., in terms of {r , θ , φ}) can be long and tedious when
done by hand, in the modern era of symbolic manipulation using computers (e.g.,
Mathematica, Matlab, or Maple), the algebra can be done quickly and accurately to
obtain expressions such as Eqs. (3) of Box 11.4.

EXERCISESExercise 11.21 Derivation and Practice: Gradient of a Second-Rank Tensor
By a computation analogous to Eq. (11.72), derive Eq. (11.78) for the components of
the gradient of a second-rank tensor in any orthonormal basis.

Exercise 11.22 Derivation and Practice: Connection in Spherical Coordinates
(a) By drawing pictures analogous to Fig. 11.15, show that

∇φer = 1
r

eφ , ∇θer = 1
r

eθ , ∇φeθ = cot θ
r

eφ . (11.79)

(b) From these relations and antisymmetry on the first two indices [Eq. (11.69)],
deduce the connection coefficients (11.71).

Exercise 11.23 Derivation and Practice: Expansion in Cylindrical
and Spherical Coordinates
Derive Eqs. (11.76) and (11.77) for the divergence of the vector field ξ in cylindrical
and spherical coordinates using the connection coefficients (11.70) and (11.71).

11.911.9 Solving the 3-Dimensional Navier-Cauchy Equation
in Cylindrical Coordinates

11.9.111.9.1 Simple Methods: Pipe Fracture and Torsion Pendulum

As an example of an elastostatic problem with cylindrical symmetry, consider a cylin-
drical pipe that carries a high-pressure fluid (e.g., water, oil, natural gas); Fig. 11.16.
How thick must the pipe’s wall be to ensure that it will not burst due to the fluid’s
pressure? We sketch the solution, leaving the details to Ex. 11.24.

We suppose, for simplicity, that the pipe’s length is held fixed by its support system:
it does not lengthen or shorten when the fluid pressure is changed. Then by symmetry,
the displacement field in the pipe wall is purely radial and depends only on radius:
its only nonzero component is ξ!(!). The radial dependence is governed by radial
force balance,

f! =K%;! + 2μΣ!j ;j = 0 (11.80)

[Eq. (11.30)].
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�2

�1

FIGURE 11.16 A pipe whose wall has inner
and outer radii!1 and!2.

Because ξ! is independent of φ and z, the expansion [Eq. (11.76)] is given by

%= dξ!
d!

+ ξ!
!

. (11.81)

The second term in the radial force balance equation (11.80) is proportional to�!j ;j
which—using Eq. (11.78) and noting that the only nonzero connection coefficients are
�!φφ =−�φ!φ =−1/! [Eq. (11.70)] and that symmetry requires the shear tensor
to be diagonal—becomes

Σ!j ;j = Σ!! ,! + �!φφΣφφ + �φ!φΣ!! . (11.82)

Inserting the components of the shear tensor from Eqs. (2) of Box 11.4 and the values
of the connection coefficients and comparing the result with expression (11.81) for
the expansion, we obtain the remarkable result that Σ!j ;j = 2

3∂%/∂! . Inserting this
into the radial force balance equation (11.80), we obtain

f! =
(
K + 4μ

3

)
d%

d!
= 0. (11.83)

Thus, inside the pipe wall, the expansion is independent of radius! , and correspond-
ingly, the radial displacement must have the form [cf. Eq. (11.81)]

ξ! = A! + B

!
(11.84)

for some constantsA andB , whence%= 2A and Σ!! = 1
3A− B/! 2. The values of

A and B are fixed by the boundary conditions at the inner and outer faces of the pipe
wall: T!! = P at! =!1 (inner wall) and T!! = 0 at! =!2 (outer wall). Here P
is the pressure of the fluid that the pipe carries, and we have neglected the atmosphere’s
pressure on the outer face by comparison. Evaluating T!! =−K%− 2μΣ!! and
then imposing these boundary conditions, we obtain

A= P

2(K + μ/3)
! 2

1
(! 2

2 −! 2
1 )

, B = P

2μ
! 2

1!
2
2

(! 2
2 −! 2

1 )
. (11.85)
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The only nonvanishing components of the strain then work out to be

S!! = ∂ξ!
∂!

= A− B

! 2 , Sφφ = ξ!
!
= A+ B

! 2 . (11.86)

This strain is maximal at the inner wall of the pipe; expressing it in terms of the ratio
ζ ≡!2/!1 of the outer to the inner pipe radius and using the values ofK = 180 GPa
and μ= 81 GPa for steel, we bring this maximum strain into the form

S!! �−P
μ

5ζ 2 − 2
10(ζ 2 − 1)

, Sφφ � P
μ

5ζ 2 + 2
10(ζ 2 − 1)

. (11.87)

Note that |Sφφ|> |S!! |.
criterion for safety against
fracture

The pipe will fracture at a strain ∼10−3; for safety it is best to keep the actual
strain smaller than this by an order of magnitude, |Sij |<∼ 10−4. A typical pressure for
an oil pipeline is P � 10 atmospheres (�106 Pa), compared to the shear modulus of
steel μ= 81 GPa, so P/μ� 1.2× 10−5. Inserting this number into Eq. (11.87) with
|Sφφ|<∼ 10−4, we deduce that the ratio of the pipe’s outer radius to its inner radius
must be ζ =!2/!1>∼ 1.04. If the pipe has a diameter of a half meter, then its wall
thickness should be about 1 cm or more. This is typical of oil pipelines.

Exercise 11.25 presents a second fairly simple example of elastostatics in cylindri-
cal coordinates: a computation of the period of a torsion pendulum.

EXERCISESExercise 11.24 Derivation and Practice: Fracture of a Pipe
Fill in the details of the text’s analysis of the deformation of a pipe carrying a high-
pressure fluid, and the wall thickness required to protect the pipe against fracture.
(See Fig. 11.16.)

Exercise 11.25 Practice: Torsion Pendulum
A torsion pendulum is a very useful tool for testing the equivalence principle
(Sec. 25.2), for seeking evidence for hypothetical fifth (not to mention sixth!) forces,
and for searching for deviations from gravity’s inverse-square law on submillimeter
scales, which could arise from gravity being influenced by macroscopic higher spatial
dimensions. (See, e.g., Kapner et al., 2008; Wagner et al., 2012.) It would be advanta-
geous to design a torsion pendulum with a 1-day period (Fig. 11.17). Here we estimate
whether this is possible. The pendulum consists of a thin cylindrical wire of length �
and radius a. At the bottom of the wire are suspended three masses at the corners of
an equilateral triangle at a distance b from the wire.

(a) Show that the longitudinal strain is

ξz;z = 3mg
πa2E

. (11.88a)
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FIGURE 11.17 Torsion pendulum.

(b) What component of shear is responsible for the restoring force in the wire, which
causes the torsion pendulum to oscillate?

(c) Show that the pendulum undergoes torsional oscillations with period

P = 2π
(
�

g

)1/2
(

2b2Eξz;z

a2μ

)1/2

. (11.88b)

(d) Do you think you could design a pendulum that attains the goal of a 1-day period?

11.9.2 11.9.2 Separation of Variables and Green’s Functions: Thermoelastic Noise
in Mirrors

In complicated situations that have moderate amounts of symmetry, the elastostatic
equations can be solved by the same kinds of sophisticated mathematical techniques
as one uses in electrostatics: separation of variables, Green’s functions, complex poten-
tials, or integral transform methods (see, e.g., Gladwell, 1980). We provide an example
in this section, focusing on separation of variables and Green’s functions.

MOTIVATION

Our example is motivated by an important issue in high-precision measurements
with light, including, among others, gravitational-wave detectors and quantum-optics
experiments in which photons and atoms are put into entangled nonclassical states
by coupling them to one another inside Fabry-Perot cavities.

In these situations, noise due to thermal motions of the mirror is a serious issue.
It can hide a gravitational wave, and it can cause decoherence of the atom/photon
quantum states. In Sec. 6.8.2, we formulated a generalized fluctuation-dissipation
theorem by which this mirror thermal noise can be computed (Levin, 1998).
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Specifically, in a thought experiment one applies to the mirror face a force Fo
that oscillates at some frequency f at which one wants to evaluate the thermal noise.
This force has the same transverse pressure distribution as the light beam—say, for
concreteness, a Gaussian distribution:

T applied
zz

= e
−! 2/! 2

o

π! 2
o

Fo cos(2πf t). (11.89)

This applied pressure induces a strain distribution S inside the mirror, and that oscil-
lating strain interacts with imperfections to dissipate energy at some rate Wdiss(f ).
The fluctuation-dissipation theorem states that in the real experiment, where the
light beam bounces off the mirror, the reflected light will encode a noisy transverse-
averaged position q for the mirror face, and the noise spectral density for q will be

Sq(f )= 8Wdiss(f )kBT

(2πf )2F 2
o

(11.90)

[Eq. (6.88b)].
Even if one could make the mirror perfect (no dislocations or impurities), so

there is no dissipation due to imperfections, there will remain one other source of
dissipation in this thought experiment: the applied pressure (11.89) will produce a
spatially inhomogeneous expansion%(x , t) inside the mirror, which in turn will pro-
duce the thermoelastic temperature change�T/T =−[3αK/(ρcV )]% [Eq. (11.29)].
The gradient of this temperature will induce heat flow, with a thermal energy flux
Fth =−κ∇�T , where κ is the thermal conductivity. When an amountQ of this ther-
mal energy flows from a region with temperature T to a region of lower temperature
T − dT , it produces an entropy increase dS =Q/(T − dT ) −Q/T =QdT/T 2;
and correspondingly, there is a rate of entropy increase per unit volume given by
d2S/dV dt =−Fth . ∇�T/T 2= κ(∇�T )2/T 2. This entropy increase has an accom-
panying energy dissipation rateWdiss =

∫
T (d2S/dtdV )dV = ∫ (κ/T )(∇�T )2dV .

Expressing�T in terms of the expansion that drives it via�T/T =−[3αK/(ρcV )]%
and inserting that into Eq. (11.90) and using the third of Eqs. (11.39), we obtain the
thermal noise spectral density that the experimenters must contend with:

Sq(f )= 8κE2α2kBT
2

(1− 2ν)2c2
V ρ

2F 2
o
(2πf )2

〈∫
(∇%)2!dφd!dz

〉
. (11.91)

Here 〈.〉means average over time as % oscillates due to the oscillation of the driving
forceFo cos(2πf t). Because the dissipation producing this noise is due to heat flowing
down a thermoelastic temperature gradient, it is called thermoelastic noise.

This is the motivation for an elasticity problem that we shall solve to illustrate
separation of variables: to evaluate this thermoelastic noise, we must compute the
expansion %(x , t) inside a mirror, produced by the oscillating pressure (11.89) on
the mirror face; and we must then perform the integral (11.91).
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SOLUTION FOR% VIA SEPARATION OF VARIABLES

The frequencies f at which we wish to evaluate the thermal noise are low compared to
the inverse sound travel time across the mirror, so when computing% we can regard
the force as oscillating very slowly (i.e., we can use our elastostatic equations rather
than dynamical equations of the next chapter). Also, the size of the light spot on the
mirror is usually small compared to the mirror’s transverse size and thickness, so we
can idealize the mirror as being infinitely large and thick—a homogeneous half-space
of isotropic, elastic material.

Because the applied stress is axially symmetric, the induced strain and expansion
will also be axially symmetric and are thus computed most easily using cylindrical
coordinates. Our challenge, then, is to solve the Navier-Cauchy equation f = (K +
1
3μ)∇(∇ . ξ)+ μ∇2ξ = 0 for the cylindrical components ξ!(z, !) and ξz(z, !) of
the displacement, and then evaluate the expansion %= ∇ . ξ. (The component ξφ
vanishes by symmetry.)

Equations of elasticity in cylindrical coordinates, and their homogeneous solution
It is straightforward, using the techniques of Sec. 11.8, to compute the cylindrical
components of f . Reexpressing the bulk K and shear μ moduli in terms of Young’s
modulusE and Poisson’s ratio ν [Eqs. (11.39)] and setting the internal forces to zero,
we obtain

elastostatic force balance
in cylindrical coordinates

f! = E

2(1+ ν)(1− 2ν)

[
2(1− ν)

(
∂2ξ!
∂! 2 +

1
!

∂ξ!

∂!
− ξ!

! 2

)
+ (1− 2ν)∂

2ξ!
∂z2 + ∂2ξz

∂z∂!

]
= 0, (11.92a)

fz = E

2(1+ ν)(1− 2ν)

[
(1− 2ν)

(
∂2ξz
∂! 2 +

1
!

∂ξz

∂!

)
+ 2(1− ν)∂

2ξz
∂z2 +

∂2ξ!
∂z∂!

+ 1
!

∂ξ!

∂z

]
= 0. (11.92b)

These are two coupled, linear, second-order differential equations for the two
unknown components of the displacement vector. As with the analogous equations
of electrostatics and magnetostatics, these can be solved by separation of variables,
that is, by setting ξ! = R!(!)Z!(z) and ξz = Rz(!)Zz(z), and inserting into
Eq. (11.92a). We seek the general solution that dies out at large! and z. The general
solution of this sort, to the complicated-looking Eqs. (11.92), turns out to be (really!!)

separation-of-variables
solution of force-balance
equation fj = 0fj = 0fj = 0

ξ! =
∫ ∞

0
[α(k)− (2− 2ν − kz)β(k)]e−kzJ1(k!) dk ,

ξz =
∫ ∞

0
[α(k)+ (1− 2ν + kz)β(k)]e−kzJ0(k!) dk. (11.93)
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Here J0 and J1 are Bessel functions of order 0 and 1, and α(k) and β(k) are arbitrary
functions.

Boundary conditions
The functions α(k) and β(k) are determined by boundary conditions on the face of
the test mass. The force per unit area exerted across the face by the strained test-
mass material, Tzj at z= 0 with j = {! , φ , z}, must be balanced by the applied force
per unit area, T applied

zj [Eq. (11.89)]. The (shear) forces in the φ direction, Tzφ and
T

applied
zφ , vanish because of cylindrical symmetry and thus provide no useful boundary

condition. The (shear) force in the ! direction, which must vanish at z = 0 since
T

applied
z! = 0, is given by [cf. Eq. (2) in Box 11.4]

shear-force boundary
condition at z= 0z= 0z= 0

Tz!(z= 0)=−2μΣz! =−μ
(
∂ξz

∂!
+ ∂ξ!
∂z

)
=−μ
∫ ∞

0
[β(k)− α(k)]J1(kz)kdk = 0, (11.94)

which implies that β(k)= α(k). The (normal) force in the z direction, which must
balance the applied pressure (11.89), is Tzz =−K%− 2μΣzz; using Eq. (2) in Box
11.4 and Eqs. (11.39), (11.76), (11.93) and (11.89), this reduces to

longitudinal-force
boundary condition at
z= 0z= 0z= 0

Tzz(z= 0)= 2μ
∫ ∞

0
α(k)J0(k!)kdk = T applied

zz
= e

−! 2/! 2
o

π! 2
o

Fo cos(2πf t),

(11.95)

which can be inverted11 to give

α(k)= β(k)= 1
4πμ

e−k2! 2
o /4Fo cos(2πf t). (11.96)

Inserting this equation into the Eqs. (11.93) for the displacement and then evaluating

solution for expansion
coefficients

the expansion%=∇ . ξ = ξz,z +!−1(!ξ!),! , we obtain

%= 2(1− 2ν)
∫ ∞

0
α(k)e−kzJ0(k!)k dk. (11.97)

As in electrostatics and magnetostatics, so also in elasticity theory, one can solve
an elastostatics problem using Green’s functions instead of separation of variables. We
explore this option for our applied Gaussian force in Ex. 11.27. For greater detail on

11. The inversion and the subsequent evaluation of the integral of (∇%)2 are aided by the following
expressions for the Dirac delta function:

δ(k − k′)= k
∫ ∞

0
J0(k!)J0(k

′!)!d! = k
∫ ∞

0
J1(k!)J1(k

′!)!d! .
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Green’s functions in elastostatics and their applications from an engineer’s viewpoint,
see Johnson (1985). For other commonly used solution techniques, see Box 11.3.

THERMOELASTIC NOISE SPECTRAL DENSITY

Let us return to the mirror-noise problem that motivated our calculation. It is straight-
forward to compute the gradient of the expansion (11.97), and square and integrate it
to get the spectral density Sq(f ) [Eq. (11.91)]. The result is (Braginsky, Gorodetsky,
and Vyatchanin, 1999; Liu and Thorne, 2000)

Sq(f )= 8(1+ ν)2κα2kBT
2

√
2πc2

V ρ
2! 3

o
(2πf )2

. (11.98)

Early plans for advanced LIGO gravitational wave detectors (Sec. 9.5; LIGO Sci-
entific Collaboration, 2015) called for mirrors made of high-reflectivity dielectric
coatings on sapphire crystal substrates. Sapphire was chosen because it can be grown
in giant crystals with very low impurities and dislocations, resulting in low ther-
mal noise. However, the thermoelastic noise (11.98) in sapphire turns out to be un-
comfortably high. Using sapphire’s ν = 0.29, κ = 40 W m−1 K−1,α = 5.0× 10−6 K−1,
cV = 790 J kg−1 K−1, ρ = 4,000 kg m−3, and a light-beam radius !o = 4 cm and
room temperature T = 300 K, Eq. (11.98) gives the following for the noise in a band-
width equal to frequency:√

f Sq(f )= 5× 10−20 m

√
100 Hz
f

. (11.99)

Because this was uncomfortably high at low frequencies, f ∼ 10 Hz, and because of
the birefringence of sapphire, which could cause technical problems, a decision was
made to switch to fused silica for the advanced LIGO mirrors.

EXERCISES Exercise 11.26 Derivation and Practice: Evaluation of Elastostatic Force
in Cylindrical Coordinates
Derive Eqs. (11.92) for the cylindrical components of the internal elastostatic force per
unit volume f = (K + 1

3μ)∇(∇ . ξ)+ μ∇2ξ in a cylindrically symmetric situation.

Exercise 11.27 **Example: Green’s Function for Normal Force on a Half-Infinite
Body
Suppose that a stress T applied

zj (xo) is applied on the face z= 0 of a half-infinite elastic
body (one that fills the region z > 0). Then by virtue of the linearity of the elastostatics
equation f = (K + 1

3μ)∇(∇ . ξ)+ μ∇2ξ = 0 and the linearity of its boundary con-
ditions, T internal

zj
= T applied

zj , there must be a Green’s function Gjk(x − xo) such that
the body’s internal displacement ξ(x) is given by

ξj(x)=
∫
Gjk(x − x0)T

applied
kz (xo)d2xo. (11.100)
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Here the integral is over all points xo on the face of the body (z = 0), and x can be
anywhere inside the body, z ≥ 0.
(a) Show that if a forceFj is applied on the body’s surface at a single point (the origin

of coordinates), then the displacement inside the body is

ξj(x)=Gjk(x)Fk . (11.101)

Thus, the Green’s function can be thought of as the body’s response to a point
force on its surface.

(b) As a special case, consider a point forceFz directed perpendicularly into the body.
The resulting displacement turns out to have cylindrical components12

ξz =Gzz(! , z)Fz = (1+ ν)2πE

[
2(1− ν)
r

+ z
2

r3

]
Fz ,

ξ! =G!z(! , z)Fz =−(1+ ν)2πE

[
(1− 2ν)!
r(r + z) − !z

r3

]
Fz , (11.102)

where r =√! 2 + z2. It is straightforward to show that this displacement does
satisfy the elastostatics equations (11.92). Show that it also satisfies the required
boundary condition Tz!(z= 0)=−2μΣz! = 0.

(c) Show that for this displacement [Eq. (11.102)], Tzz =−K%− 2μΣzz vanishes
everywhere on the body’s surface z= 0 except at the origin! = 0 and is infinite
there. Show that the integral of this normal stress over the surface isFz, and there-
fore, Tzz(z= 0)= Fzδ2(x), where δ2 is the 2-dimensional Dirac delta function on
the surface. This is the second required boundary condition.

(d) Plot the integral curves of the displacement vector ξ (i.e., the curves to which ξ

is parallel) for a reasonable choice of Poisson’s ratio ν. Explain physically why the
curves have the form you find.

(e) One can use the Green’s function (11.102) to compute the displacement ξ induced
by the Gaussian-shaped pressure (11.89) applied to the body’s face, and to then
evaluate the induced expansion and thence the thermoelastic noise; see Bragin-
sky, Gorodetsky, and Vyatchanin (1999) and Liu and Thorne (2000). The results
agree with Eqs. (11.97) and (11.98) deduced using separation of variables.

Bibliographic Note

Elasticity theory was developed in the eighteenth, nineteenth, and early twentieth
centuries. The classic advanced textbook from that era is Love (1927). An outstanding,
somewhat more modern advanced text is Landau and Lifshitz (1986)—originally

12. For the other components of the Green’s function, written in Cartesian coordinates (since a non-normal
applied force breaks the cylindrical symmetry), see Landau and Lifshitz [1986, Eqs. (8.18)].
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written in the 1950s and revised in a third edition shortly before Lifshitz’s death. This
is among the most readable textbooks that Landau and Lifshitz wrote and is still widely
used by physicists in the early twenty-first century.

Some significant new insights, both mathematical and physical, have been de-
veloped in recent decades, for example, catastrophe theory and its applications to
bifurcations and stability, practical insights from numerical simulations, and practical
applications based on new materials (e.g., carbon nanotubes). For a modern treat-
ment that deals with these and much else from an engineering viewpoint, we strongly
recommend Ugural and Fenster (2012). For a fairly brief and elementary modern
treatment, we recommend Lautrup (2005, Part III). Other good texts that focus partic-
ularly on solving the equations for elastostatic equilibrium include Southwell (1941),
Timoshenko and Goodier (1970), Gladwell (1980), Johnson (1985), Boresi and Chong
(1999), and Slaughter (2002); see also the discussion and references in Box 11.3.
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cross product, 963–964
curl, 963–964
curve, 947
cylindrical coordinates

related to Cartesian coordinates, 614
orthonormal basis and connection coefficients for,

614–615
expansion and shear tensor in, 617, 618
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diffusion equation
for temperature in homogenous medium, 920
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directional derivative, 960–961
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Einstein summation convention, 954
Ekman boundary layer, 772–777
Ekman number, 768
Ekman pumping, 773
elastic energy density, 583–584

elastic physical free energy density, 584
elastic limit, 580, 581f
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physical origin of, and magnitudes, 585–586, 586t
for anisotropic solid, 580
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shear and bulk, 581–582
Young’s, 591
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630–642
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wave equation, 635–636
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640
Heaviside Green’s functions for, 658–660
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velocities, 637–638
transverse waves, 638–639
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sound speed, dispersion relation, group and phase

velocities, 638–639
Rayleigh waves at surface, 654–657
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body waves, 650–654

P-modes and S-modes, 650
wave speeds at different depths, 651t
geometric optics ray equation, 652
junction conditions and mixing of, at discontinuities,

651–654, 651f, 653f
rays inside Earth, 653f
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Rayleigh wave at Earth’s surface, 654–657
Love waves at Earth’s surface, 658
internal waves, 941

elastodynamic waves in rods, strings and beams, 642–648
waves on a string under tension, 644–645
flexural waves in a stretched or compressed beam, 645–

646
torsion waves in a circular rod, 643–644

elastodynamics. See also elastodynamic waves in Earth;
elastodynamic waves in a homogeneous, isotropic

medium; elastodynamic waves in rods, strings and
beams

force density, 587
in cylindrical coordinates, 624

when gravity can be ignored, 631
momentum conservation, 631
wave equation for displacement vector, 635–636
quantization of, 667–670

elastostatic force balance. See Navier-Cauchy equation for
elastostatic equilibrium

electromagnetic field
stress tensor, 971

energy conservation, Newtonian, 695
energy, relativistic, 972

kinetic, 972
Newtonian limit, 972

entrainment of one fluid by another
laminar, 796–797
turbulent, 806, 809–810

equations of state
polytropic, 681b, 687, 726b, 878

thermodynamic quantities in terms of sound speed,
878–879

for ideal or perfect gas, 675n
for fluids, 680b–681b, 725b

Euler equation of fluid dynamics, 697, 725b
Eulerian changes, 725b
evanescent wave, 654
expansion, in elasticity theory,%, 571, 572b, 574, 577

temperature change during, 585
expansion rate of fluid, θ , 693, 725b
explosions and blast waves

in atmosphere or interstellar space, 908–914
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underwater, 914–915

Feigenbaum sequence and number, 828–831
finite-element methods, 565, 590b, 606f
fish

streamlining and drag coefficients, 797–798
swimming, 744, 747b–748b

flexural rigidity (bending modulus), 594
flexural waves on a beam or rod, 645–646
flows, fluid. See fluid flows
fluid, 677. See also fluid dynamics, fundamental equations;

fluid dynamics, relativistic; fluid flows; fluid-flow
instabilities

thermodynamics for, 679b–681b
perfect (ideal), 675, 675n
Newtonian, 712, 726b
non-Newtonian, 712f
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fluid dynamics, fundamental equations. See also fluid
dynamics, relativistic

terminology, 724b–726b
mass density and flux, 708t
mass conservation, 692–693, 970–971
for ideal fluid in external gravitational field

momentum density and flux, 708t
Euler equation (momentum conservation), 696–697
energy density and flux, 704, 708t
energy conservation, 707
entropy conservation, 697, 707

for self-gravitating ideal fluid, 705b–707b, 709
for viscous, heat-conducting fluid in external gravitational

field, 710–719, 919–920
momentum and energy densities and stress tensor, 715t
viscous stress tensor, 712
Navier-Stokes equation (momentum conservation),

712–713. See also Navier-Stokes equation
total energy flux, 715t
viscous and thermal-conductive energy flux, 714
entropy evolution (dissipative heating), 715–716

for viscous, heat-conducting, incompressible flow with
negligible dissipation, 919–920

Boussinesq approximation, 924–925. See also
convection

in rotating reference frame, 767–768, 770
fluid dynamics, relativistic, 719–724

fundamental equations, 719–720
nonrelativistic limit, 723–724
relativistic Bernoulli equation and theorem, 721–722
application to steady, relativistic jet, 721–722
application to relativistic shock wave, 902–903

fluid flows. See also fluid-flow instabilities; fluid dynamics,
fundamental equations; fluid dynamics, relativistic

between two plates, steady, 718
through a pipe

laminar, 716–717, 766
onset of turbulence, 787

around a body at low Reynolds number: Stokes flow,
749–754, 749f

around a cylinder: high-Reynolds-number, potential flow,
765, 789–794

types of
barotropic, inviscid, 736–738, 740
viscous, 710–716
high-Reynolds-number, 757–766
low-Reynolds-number, 746–757. See also low-

Reynolds-number flow
irrotational (potential), 701
irrotational, incompressible, 837
incompressible, 709–710

compressible, 875–916. See also compressible fluid flow
laminar, 716–717. See also under boundary layers; jets;

wakes
turbulent, 787–834. See also under boundary layers;

jets; wakes
nearly rigidly rotating, 766–768
geostrophic, 770–777
self-similar, 759. See self-similar flows

fluid-flow instabilities. See also fluid flows
convective. See convection
density inversion: Rayleigh-Taylor instability, 783–784
shear flows

Kelvin-Helmholtz instability, 778–782
influence of gravity and density stratification, 782–783,

784–786
laminar boundary layer, 822–823

rotating Couette flow, 784, 785f, 825–828
force density, as divergence of stress tensor, 578
Foucault pendulum, 597–598
fracture, criterion for safety against, 621
free energy

physical (Helmholtz) free energy
for elastic medium, 584, 603–604

fundamental thermodynamic potentials. See also under
thermodynamics

physical-free-energy potential
for elastic medium, 584, 603–604

g modes of sun, 837, 849–850
gas, 678, 725b

perfect gas, nonrelativistic, 726b
ideal, 725b

Gauss’s theorem, 965
geometric object, 943
geometric principle, 944–945, 948

examples, 966, 967
geometrized units, 971–972, 973
geostrophic flow, 770–777
global warming, 748–749, 755
gradient operator, 617, 961
Gran Telescopio Canarias, 609
gravity, Newtonian

gravitational potential,�, 682
field equation for�, 682
gravitational acceleration g, 682
gravitational stress tensor, 705b
gravitational energy density, 706b
gravitational energy flux, 706b
total gravitational energy, 709

gravity waves on water, 837–843
arbitrary depth, 837–840
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gravity waves on water (continued)
shallow water, 840–843

dam breaking: water flow after, 857
nonlinear, 840–841, 843, 850–858, 897
solitary waves (solitons) and KdV equation, 850–858

deep water, 840
viscous damping of, 842

capillary (with surface tension), 844–848
Green’s functions

for elasticity theory, 590b
for elastostatic displacement, 626–627
for elastodynamic waves, 658–661, 660f

greenhouse effect, 748. See also climate change
gyre, 773, 775–776, 805

heat conduction, diffusive. See also diffusion equation
in the sun, 937
in a flowing fluid, 920

Heaviside Green’s functions, 658–660, 660f
helioseismology, 848–850
high-Reynolds-number flow, 757–766

boundary layers in. See boundary layers
Hilbert space, 956b
Hooke’s law, 568f, 591

realm of validity and breakdown of, 580, 581f
hydraulic jump, 903–904, 904f
hydrostatic equilibrium

in uniform gravitational field
equation of, 681
theorems about, 682–683

of nonrotating stars and planets, 686–689
of rotating stars and planets, 689–691

barotropic: von Zeipel’s theorem, 702
centrifugal flattening, 690, 691

hydrostatics, 681–691

ideal gas. See gas, ideal
impedance

acoustic, 654
incompressible approximation for fluid dynamics, 709–710,

725b
index gymnastics. See component manipulation rules
index of refraction

for Earth’s atmosphere, 814–815
for seismic waves in Earth, 652

inner product
in Euclidean space, 948–950, 955
in quantum theory, 956b

instabilities in fluid flows. See fluid-flow instabilities
integrals in Euclidean space

over 2-surface, 965

over 3–volume, 965
Gauss’s theorem, 965

intermittency in turbulence, 798–799, 807
internal waves in a stratified fluid, 941
interstellar medium, 891, 914–916
inviscid, 725b
irreducible tensorial parts of second-rank tensor, 572b–574b,

577, 711
irrotational flow (vorticity-free), 701, 725b, 837
isentropic, 725b
isobar, 725b

jets
laminar, 796–797
turbulent, 809f, 810

Joukowski’s (Kutta-Joukowski’s) theorem, 743
Joule-Kelvin cooling, 708, 708f
junction conditions

elastodynamic, 588–589, 651, 654
hydraulic jump, 903–904
shock front. See Rankine-Hugoniot relations for a shock

wave
Jupiter, 687, 689, 702, 801b

Kármán vortex street, 791f, 794
Keck telescopes, 609–611
Kelvin-Helmholtz instability in shear flow, 778–782

influence of gravity on, 782–783
onset of turbulence in, 801b

Kelvin’s theorem for circulation, 740, 746, 824
Kepler’s laws, 691, 784, 952
Knudsen number, 755n
Kolmogorov spectrum for turbulence, 810–815

phenomena missed by, 814
derivation of, 810–812
for transported quantities, 814–816

Korteweg–de Vries equation and soliton solutions, 850–856,
858

Kutta-Joukowski’s theorem, 743

Lagrangian changes, 725b
lagrangian methods for dynamics

lagrangian density
energy density and flux in terms of, 642
for elastodynamic waves, 642

Lamé coefficients, 582
laminar flow, 716–717. See also under boundary layers; jets;

wakes
laplacian, 665, 962
Levi-Civita tensor in Euclidean space, 962–964

product of two, 963

990 Subject Index

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



Lie derivative, 735n
LIGO (Laser Interferometer Gravitational-Wave

Observatory), noise in, 626
liquid, 678, 726b

bulk modulus for, 678
liquid crystals and LCDs, 712
logistic equation, 828–831
Lorentz contraction

of rest-mass density, 723
Lorentz force

in terms of electric and magnetic fields, 944, 952
Lorenz equations for chaotic dynamics, 834
Lorenz gauge, 760
low-Reynolds-number flow, 746–757

nearly reversible, 746
pressure gradient balances viscous stress, 746
regimes of: small-scale flow, or very viscous large-scale

flow, 746
Lyapunov time and exponent, 832–833

Mach number, 882
Maple, 619, 647, 691, 858
mass conservation, 692–693, 970–971
matched asymptotic expansions, 874

in Stokes flow, 753–754
in theory of radiation reaction, 869–871, 872f

Mathematica, 619, 647, 691, 858
Matlab, 619, 647, 691, 858
mean molecular weight, 680b, 726b
method of moments. See moments, method of
metric tensor

geometric definition, 949–950
components in orthonormal basis, 955

microcantilever, 597
mixing length for convection in a star, 935–936
Moho discontinuity, 648, 650
moments, method of: applications

dimensional reduction in elasticity theory, 594–595,
612–613

momentum, relativistic, 972
Newtonian limit, 972

momentum conservation, Newtonian
differential, 694–695, 970
integral, 970

multipole moments
in sound generation, 865–867

National Ignition Facility, 664
Navier-Cauchy equation for elastostatic equilibrium, 588

in cylindrical coordinates, 624
displacement is biharmonic, 589

boundary conditions for, 588–589
methods for solving, 590b

simple methods, 619–622
separation of variables, 624–626
Green’s function, 626–627

Navier-Stokes equation
general form, 712
for incompressible flow, 713, 726b
in rotating reference frame, 767

neutral surface, in elasticity theory, 592–593
neutrinos

from supernovae, 914
neutron stars

birth in supernovae, 914
structures of, 579, 734
r-modes of oscillation, 860
accretion of gas onto, 784, 890–891

noise
thermal noise, 598, 622–623, 626

normal modes
of elastic bodies, 661–662, 664–668

quantization of, 668–669
of elastic, homogeneous sphere, 661–662, 664–

667
radial, 661, 664–665
ellipsoidal, 662, 666–667
torsional, 661–662, 665–666

of sun, 848–850
nuclear reactor

cooling of, 922–923

ocean currents
surface currents driven by winds, 775–776
deep currents driven by gyre pressure, 768, 775–776

ocean waves
generation by atmospheric pressure fluctuations in storms,

783
damping by turbulent viscosity, 842
breaking near shore, 903–904

orthogonal transformation, 958–959

p modes of sun, 849–850
Parseval’s theorem, 811
particle conservation law, 966
particle kinetics

geometric form, 951–953
in index notation, 957–958

Pascal, unit of stress, 578
path of particle (Newtonian analog of world line), 947–948
paths, for visualizing fluid flows, 699b
Péclet number, 921
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perfect fluid (ideal fluid), 675, 675n, 968
Euler equation for, 697, 971
stress tensor for, 968–969, 970

phonons for modes of an elastic solid, 667–670
physical laws, geometric formulation of. See geometric

principle
piezoelectric fields, 586
pipe

stressed, elastostatics of, 619–621
fluid flow in, 716–717, 766, 787

Pitot tube, 700, 701f
Planck energy, 580
Planck length, 579, 580
Poiseuille flow (confined laminar, viscous flow)

between two plates, 718–719
down a pipe, 717, 922

Poiseuille’s law, for laminar fluid flow in a pipe, 717
Poisson’s equation, 686, 705
Poisson’s ratio, 591–592, 586t
polytrope, 687–689
potential flow (irrotational flow), 701
Prandtl number, 920, 921t
pressure, 968

as component of stress tensor, 968–969
pressure self-adjustment in fluid dynamics, 742
proportionality limit, in elasticity, 580, 581f

radiation reaction, theory of
slow-motion approximation, 871
matched asymptotic expansion, 871
radiation-reaction potential, 871
damping and energy conservation, 872, 873
runaway solutions, their origin and invalidity, 872–873
examples

electromagnetic waves from accelerated, charged
particle, 873

sound waves from oscillating ball, 869–874
radiative processes

Thomson scattering, 937
rank of tensor, 949
Rankine-Hugoniot relations for a shock wave, 900

derivation from conservation laws, 898–900
physical implications of, 900–902
for polytropic equation of state, 905
for strong polytropic shock, 905
relativistic, 902–903

rarefaction wave, 895f, 896
Rayleigh criterion for instability of rotating flows, 784
Rayleigh number, 928
Rayleigh waves at surface of a homogeneous solid, 654–657,

659, 661, 839–840, 941

Rayleigh-Taylor instability, 783–784
renormalization group

applied to the onset of chaos in the logistic equation, 831
resistance in Stokes fluid flow, 753
rest frame, local, 677, 719–720
rest mass, 972
Reynolds number, 716, 726b

as ratio of inertial to viscous acceleration, 746
Reynolds stress for turbulence, 802

and turbulent viscosity, 804
Richardson criterion for instability of shear flows, 785–786
Richardson number, 785–786
Riemann invariants, 852, 891–897, 901–902
rocket engines, fluid flow through, 887–890
rod. See bent beam, elastostatics of
Rossby number, 768
Rossby waves in rotating fluid, 858–861
rotating reference frame, fluid dynamics in, 766–777
rotation, rate of, in fluid mechanics, 711, 726b

as vorticity in disguise, 711
rotation group, 572b–574b, 959
rotation matrix, 959
rotation tensor and vector, in elasticity theory, 571,

573b–574b, 575–576, 577
rupture point, in elasticity, 580, 581f

Saint-Venant’s principle, for elastostatic equilibrium, 590b
salt fingers due to double diffusion of salt and heat, 937–940
scaling relations in fluid flows

between similar flows, 791–792
for drag force on an object, 765
for Kolmogorov turbulence spectrum, 789, 810–814

Schrödinger equation
energy eigenstates (modes) of, 848–849
nonlinear variant of, and solitons, 856–857

Schwarzschild criterion for onset of convection in a star, 935,
935f

secondary fluid flows, 775–776
sedimentation, 749, 754–755
Sedov-Taylor blast wave, 909–912
seismic waves. See elastodynamic waves in Earth
self-gravity, in fluid dynamics, 705b–706b, 709
self-similar flows

boundary layer near flat plate: Blasius profile, 758–763
Sedov-Taylor blast wave, 909–912
underwater blast wave, 914–915
flow in shock tube, 916
stellar wind, 915–916
water flow when dam breaks, 857–858

separation of variables for Navier-Cauchy equation, 590b,
624–625
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shear, rate of, 711, 726b
shear modulus, for elasticity, 581, 586t, 651t
shear tensor, in elasticity theory, 571, 572b–574b, 574–577

stretch and squeeze along principal axes, 574–575, 575f
shock tube, fluid flow in

analyzed using similarity methods, 916
analyzed using Riemann invariants, 895–896
shock front in, 906

shock waves (shock fronts) in a fluid, adiabatic
terminology for, 898, 900f
inevitability of, 897
Rankine-Hugoniot relations for, 900. See also Rankine-

Hugoniot relations for a shock wave
shock adiabat, 900–901, 901f
properties of, 900–901
internal structure of, 898, 906–907

role of viscosity in, 898
patterns of

around a supersonic aircraft, 876f
bow shock in solar wind around Earth, 876f
Mach cone, 907–908, 907f
Sedov-Taylor blast wave, 909–912

sonic boom, 908, 908f
shock waves in an elastic medium, 663–664
shock waves in a plasma, collisionless, 907
similarity methods in fluid mechanics. See self-similar flows
slot-naming index notation, 957–958, 961, 963
smoke rings, 744f
soap film, shapes of, 846
solar wind, 875, 876f

collisionless shocks in, 907
bow shock at interface with Earth, 876f

solid-body normal modes. See normal modes, of elastic
bodies

solitons
balance of nonlinearity against dispersion in, 853–854
equations exhibiting, 856–857
Korteweg–de Vries equation and solutions, 852–856, 858
venues for, 856–857

in nonlinear gravity waves on water, 852–856, 858
sonic boom, 889b, 907–908
sound speed in elastic solid, CL, 586t, 638
sound waves in a fluid

wave equation, 862
sound speed, 862
analysis of, 862–865
energy density, 864
energy flux, 865
in inhomogeneous fluid: example of prototypical wave

equation, 863
generation of, 865–869

radiation reaction on source, 869–874
attenuation of, 868
nonlinearity of, and shock formation, 894

space shuttle, 889b–890b
sonic boom from, 889b, 907–908

specific heats, Cp, cp, CV , and cV , 678. See also adiabatic
index

for ideal gas with internal degrees of freedom, 879–880
speed of light

constancy of, 972
in geometrized units, 972

spherical coordinates
related to Cartesian coordinates, 614
orthonormal bases and connection coefficients, 614, 616

expansion and shear tensor in, 617, 618b
sports, physics of, 823–825
stagnation pressure, 700, 792
steady fluid flow, 726b
Stokes flow, 749–754, 749f, 766

drag force in: Stokes’ law, 753
Stokes’ paradox for fluid flow past a cylinder, 754
Stokes’ theorem for integrals, 965
storms, fluid dynamics of, 768, 769b, 842
strain tensor, in elasticity theory, 576
strange attractors, 833–834
stratosphere, 683, 684f, 731, 748, 755, 784–786
streaks, for visualizing fluid flows, 699b
stream function for 2-dimensional incompressible flow

in Cartesian coordinates, 759
in any orthogonal coordinate system, 760b–761b, 766

stream tube, in fluid dynamics, 699–700, 700f, 721–722, 721f
streamlines, for visualizing fluid flows, 698, 699f
stress polishing mirrors, 609–611, 611f, 613
stress tensor

geometric definition of, 577, 967
components, meaning of, 968
symmetry of, 968
for specific entities

electromagnetic field, 971
perfect fluid, 696, 968–969, 970
strained elastic solid, 581, 584
strained and heated elastic solid, 584

magnitudes of, 578–580
stress-energy tensor

for perfect fluid, 720
nonrelativistic limit, 723–724

structure function, for fluctuations, 815
sun. See also solar wind

core of, 933f, 937
convection zone, 933f, 936
normal modes of, 848–850. See also normal modes
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superfluid, rotating, 733–734
supernovae

neutron stars produced in, 914
Sedov-Taylor blast wave from, 914–915

surface tension, 844b–845b
force balance at interface between two fluids, 846

swimming mechanisms, 744, 747b–748b, 756–757

tangent space, 947
tangent vector, 947
Taylor rolls, in rotating Couette flow, 826, 826f
Taylor-Proudman theorem for geostrophic flow, 771
tea cup: circulating flow and Ekman boundary layer, 776–777
temperature diffusion equation, 920
tensor in Euclidean space

definition and rank, 949
algebra of without coordinates or bases, 949–951
expanded in basis, 954
component representation, 955–957

tensor in quantum theory, 956b
tensor product, 950
thermal diffusivity, 920, 921t
thermal plume, 933
thermodynamics. See also equations of state; fundamental

thermodynamic potentials
first law of for fluid, 679b–680b

thermoelastic noise in mirrors, 623, 626
thermoelasticity, 584–585
Thomson scattering of photons by electrons, 937
time derivative

advective (convective), 692, 724b, 892, 970
fluid, 736

Tollmien-Schlichting waves, 823
tomography, seismic, 663
tornado, 738, 739f

pressure differential in, 702, 738
torsion pendulum, elastostatics of, 621–622
transformation matrices between orthogonal bases, 958–959
trumpet, sound generation by, 868
tsunamis, 841b, 843, 922
turbulence, 787–834

weak and strong, 800
characteristics of

3-dimensional, 794
disorder, 798
irregularly distributed vorticity, 799
wide range of interacting scales, 798–799
eddies, 798–800, 802, 804–807, 811–814
efficient mixing and transport, 799
large dissipation, 799
intermittency, 798–799, 807, 814, 831

onset of. See turbulence, onset of
vorticity in, 799–800

drives energy from large scales to small, 799f
semiquantitative analysis of, 800–817

Kolmogorov spectrum, 810–813, 813f, 815. See also
Kolmogorov spectrum for turbulence

weak turbulence formalism, 800–810. See also weak
turbulence formalism

generation of sound by, 869
turbulence, 2-dimensional analog of, 801b

inverse cascade of energy, 799n
transition to (3-dimensional) turbulence, 800

turbulence, onset of. See also chaos, onset of in dynamical
systems

critical Reynolds number for, 787, 794, 822, 826
in convection, 830, 831
in flow past a cylinder, 789–794, 800
in rotating Couette flow, 825–828
routes to turbulence

one frequency, two frequencies, turbulence, 825–828
one frequency, two frequencies, phase locking,

turbulence, 831
one frequency, two frequencies, three frequencies,

turbulence, 831
period doubling sequence, 830–831
intermittency, 831

ultrasound, 663–664

vector
as arrow, 946
as derivative of a point, 947

vector components, 954
vector in quantum theory, 956b
velocity, 947
velocity potential for irrotational flow, 701
violin string, sound generation by, 868
viscosity, bulk, coefficient of, 712, 724b
viscosity, molecular origin of, 713–714
viscosity, shear, coefficient of, 712, 726b

dynamic, η, 713, 724b
kinematic, ν, 713, 725b
values of, for various fluids, 713t, 921t
for monatomic gas, 714

volcanic explosions, 748, 755
volume in Euclidean space

2–volume (area), 964
vectorial surface area in 3-space, 965
3–volume, 965
n-volume, 962
differential volume elements, 966
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von Zeipel’s theorem, 702
vortex. See also vortex lines; vorticity

diffusive expansion of, 742
above a water drain, 729, 732, 777
vortex sheet, 782, 801b
vortex ring, 744
starting vortex, 824, 825f
vortex street, Kármán, 791f, 794
wingtip vortex, 734f, 739, 744, 744f
tornado, 702, 732, 738, 739f
vortex generated by spatula, 745–746
vortex generators, on airplane wing, 821–822, 821f

vortex cores, in superfluid, 733–734
vortex generator on airplane wing, 821–822, 821f
vortex lines, 734, 734f

diffuse due to viscosity, 741–742
frozen into fluid, for barotropic, inviscid flows, 736–738,

737f
vortex rings, 744, 744f
vorticity, 697, 731–732, 732f

relation to angular velocity of a fluid element, 697–698
measured by a vane with orthogonal fins, 732
sources of, 744–746
evolution equations for, 735–738, 741

diffusion of vorticity, 741
frozen into an inviscid, barotropic flow, 736–737

delta-function: constant-angular-momentum flow,
732–733

wakes
2-dimensional, behind cylinder

laminar, 794–795
turbulent, 805–810

3-dimensional, behind sphere
laminar, 796
turbulent, 810

water waves. See gravity waves on water; sound waves in a
fluid

wave equations
for elastodynamic waves, 635
for sound waves, 862, 863

weak turbulence formalism, 800–810
Reynolds stress and turbulent viscosity, 802, 803–804
turbulent diffusion coefficient, 805
turbulent thermal conductivity, 805
correlation functions in, 802–803
spatial evolution of turbulent energy, 804, 808f, 808–809

winds
around low-pressure region, 770
drive ocean’s surface currents, 772–776, 805
in stratosphere, 784–785
lee waves in, 821n

wingtip vortices, 734f, 739, 744, 744f
Womersley number, 719
World Trade Center buildings, collapse of, 605–607

yield point, in elasticity, 580, 581f
origin of yield: dislocations, 586, 587f
yield strains for various materials, 586t

Young’s modulus, 582, 589–592
values of, for specific materials, 586t

zero point energy, 669
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