Contents

Preface xi
1 The two-body problem 1
1.1 Introduction 1
1.2 The shape of the Kepler orbit 5
1.3 Motion in the Kepler orbit 12
1.3.1 Orbit averages 16
1.3.2 Motion in three dimensions 17
1.3.3 Gauss's f and g functions 20
1.4 Canonical orbital elements 23
1.5 Units and reference frames 28
1.5.1 Time 28
1.5.2 Units for the solar system 30
1.5.3 The solar system reference frame 32
1.6 Orbital elements for exoplanets 32
1.6.1 Radial-velocity planets 33
1.6.2 Transiting planets 35
1.6.3 Astrometric planets 40
1.6.4 Imaged planets 43
1.7 Multipole expansion of a potential 44
1.7.1 The gravitational potential of rotating fluid bodies 46
1.8 Nearly circular orbits 50
1.8.1 Expansions for small eccentricity 50
1.8.2 The epicycle approximation 53
1.8.3 Orbits and the multipole expansion 58
1.9 Response of an orbit to an external force 60
1.9.1 Lagrange's equations 61
1.9.2 Gauss's equations 65
2 Numerical orbit integration 71
2.1 Introduction 71
2.1.1 Order of an integrator 75
2.1.2 The Euler method 76
2.1.3 The modified Euler method 81
2.1.4 Leapfrog 83
2.2 Geometric integration methods 84
2.2.1 Reversible integrators 86
2.2.2 Symplectic integrators 90
2.2.3 Variable timestep 93
2.3 Runge-Kutta and collocation integrators 96
2.3.1 Runge-Kutta methods 96
2.3.2 Collocation methods 101
2.4 Multistep integrators 104
2.4.1 Multistep methods for first-order differential equations 104
2.4.2 Multistep methods for Newtonian differential equations 109
2.4.3 Geometric multistep methods 113
2.5 Operator splitting 115
2.5.1 Operator splitting for Hamiltonian systems 116
2.5.2 Composition methods 119
2.5.3 Wisdom-Holman integrators 120
2.6 Regularization 121
2.6.1 Time regularization 122
2.6.2 Kustaanheimo-Stiefel regularization 125
2.7 Roundoff error 127
2.7.1 Floating-point numbers 129
2.7.2 Floating-point arithmetic 129
2.7.3 Good and bad roundoff behavior 132
3 The three-body problem 137
3.1 The circular restricted three-body problem 138
3.1.1 The Lagrange points 141
3.1.2 Stability of the Lagrange points 147
3.1.3 Surface of section 151
3.2 Co-orbital dynamics 155
3.2.1 Quasi-satellites 164
3.3 The hierarchical three-body problem 168
3.3.1 Lunar theory 171
3.4 Hill's problem 180
3.4.1 Periodic orbits in Hill's problem 185
3.4.2 Unbound orbits in Hill's problem 194
3.5 Stability of two-planet systems 197
3.6 Disk-driven migration 204
4 The N-body problem 209
4.1 Reference frames and coordinate systems 209
4.1.1 Barycentric coordinates 210
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
4.1.2 Astrocentric coordinates 211
4.1.3 Jacobi coordinates 217
4.2 Hamiltonian perturbation theory 221
4.2.1 First-order perturbation theory 223
4.2.2 The Poincaré-von Zeipel method 226
4.2.3 Lie operator perturbation theory 228
4.3 The disturbing function 234
4.4 Laplace coefficients 241
4.4.1 Recursion relations 243
4.4.2 Limiting cases 245
4.4.3 Derivatives 246
4.5 The stability of the solar system 247
4.5.1 Analytic results 248
4.5.2 Numerical results 252
4.6 The stability of planetary systems 256
5 Secular dynamics 261
5.1 Introduction 261
5.2 Lagrange-Laplace theory 267
5.3 The Milankovich equations 276
5.3.1 The Laplace surface 281
5.3.2 Stellar flybys 287
5.4 ZLK oscillations 292
5.4.1 Beyond the quadrupole approximation 297
5.4.2 High-eccentricity migration 301
6 Resonances 303
6.1 The pendulum 307
6.1.1 The torqued pendulum 311
6.1.2 Resonances in Hamiltonian systems 312
6.2 Resonance for circular orbits 316
6.2.1 The resonance-overlap criterion for nearly circular orbits 323
6.3 Resonance capture 325
6.3.1 Resonance capture in the pendulum Hamiltonian 331
6.3.2 Resonance capture for nearly circular orbits 332
6.4 The Neptune-Pluto resonance 335
6.5 Transit timing variations 342
6.6 Secular resonance 348
6.6.1 Resonance sweeping 349
7 Planetary spins 355
7.1 Precession of planetary spins 355
7.1.1 Precession and satellites 360
7.1.2 The chaotic obliquity of Mars 365
7.2 Spin-orbit resonance 368
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
7.2.1 The chaotic rotation of Hyperion 372
7.3 Andoyer variables 374
7.4 Colombo's top and Cassini states 379
7.5 Radiative forces on small bodies 388
7.5.1 Yarkovsky effect 388
7.5.2 YORP effect 391
8 Tides 397
8.1 The minimum-energy state 398
8.2 The equilibrium tide 402
8.2.1 Love numbers 404
8.3 Tidal friction 406
8.4 Spin and orbit evolution 411
8.4.1 Semimajor axis migration 412
8.4.2 Spinup and spindown 416
8.4.3 Eccentricity damping 418
8.5 Non-equilibrium tides 422
8.5.1 Planets on high-eccentricity orbits 423
8.5.2 Resonance locking 425
8.6 Tidal disruption 425
8.6.1 The Roche limit 426
8.6.2 Tidal disruption of regolith 428
8.6.3 Tidal disruption of rigid bodies 429
9 Planet-crossing orbits 433
9.1 Local structure of a planetesimal disk 434
9.2 Disk-planet interactions 440
9.2.1 Collisions 441
9.2.2 Gravitational stirring 444
9.3 Evolution of high-eccentricity orbits 451
9.4 The Galactic tidal field 460
9.5 The Oort cloud 467
9.6 The trans-Neptunian belt 475
9.7 Earth-crossing asteroids 480
A Physical, astronomical and solar-system constants 483
B Mathematical background 491
B. 1 Vectors 491
B. 2 Coordinate systems 493
B. 3 Vector calculus 495
B. 4 Fourier series 499
B. 5 Spherical trigonometry 499
B. 6 Euler angles 501
B. 7 Calculus of variations 504
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
C Special functions 505
C. 1 Kronecker delta and permutation symbol 505
C. 2 Delta function 506
C. 3 Gamma function 507
C. 4 Elliptic integrals 508
C. 5 Bessel functions 509
C. 6 Legendre functions 511
C. 7 Spherical harmonics 512
C. 8 Vector spherical harmonics 514
D Lagrangian and Hamiltonian dynamics 517
D. 1 Hamilton's equations 519
D. 2 Rotating reference frame 520
D. 3 Poisson brackets 522
D. 4 The propagator 523
D. 5 Symplectic maps 525
D. 6 Canonical transformations and coordinates 526
D. 7 Angle-action variables 530
D. 8 Integrable and non-integrable systems 531
D. 9 The averaging principle 535
D. 10 Adiabatic invariants 536
D. 11 Rigid bodies 537
E Hill and Delaunay variables 541
E. 1 Hill variables 541
E. 2 Delaunay variables 542
F The standard map 545
F. 1 Resonance overlap 546
G Hill stability 549
H The Yarkovsky effect 555
I Tidal response of rigid bodies 561
I. 1 Tidal disruption of a rigid body 566
J Relativistic effects 569
J. 1 The Einstein-Infeld-Hoffmann equations 573
Problems 575
References 599
Index 613

Chapter 1

The two-body problem

1.1 Introduction

The roots of celestial mechanics are two fundamental discoveries by Isaac Newton. First, in any inertial frame the acceleration of a body of mass m subjected to a force \mathbf{F} is

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathbf{r}}{\mathrm{~d} t^{2}}=\frac{\mathbf{F}}{m} \tag{1.1}
\end{equation*}
$$

Second, the gravitational force exerted by a point mass m_{1} at position \mathbf{r}_{1} on a point mass m_{0} at \mathbf{r}_{0} is

$$
\begin{equation*}
\mathbf{F}=\frac{\mathbb{G} m_{0} m_{1}\left(\mathbf{r}_{1}-\mathbf{r}_{0}\right)}{\left|\mathbf{r}_{1}-\mathbf{r}_{0}\right|^{3}} \tag{1.2}
\end{equation*}
$$

with \mathbb{G} the gravitational constant. ${ }^{1}$ Newton's laws have now been superseded by the equations of general relativity but remain accurate enough to describe all observable phenomena in planetary systems when they are supplemented by small relativistic corrections. A summary of the relevant effects of general relativity is given in Appendix J.

The simplest problem in celestial mechanics, solved by Newton but known as the two-body problem or the Kepler problem, is to determine

[^0]the orbits of two point masses ("particles") under the influence of their mutual gravitational attraction. This is the subject of the current chapter. ${ }^{2}$

The equations of motion for the particles labeled 0 and 1 are found by combining (1.1) and (1.2),

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathbf{r}_{0}}{\mathrm{~d} t^{2}}=\frac{\mathbb{G} m_{1}\left(\mathbf{r}_{1}-\mathbf{r}_{0}\right)}{\left|\mathbf{r}_{1}-\mathbf{r}_{0}\right|^{3}}, \quad \frac{\mathrm{~d}^{2} \mathbf{r}_{1}}{\mathrm{~d} t^{2}}=\frac{\mathbb{G} m_{0}\left(\mathbf{r}_{0}-\mathbf{r}_{1}\right)}{\left|\mathbf{r}_{0}-\mathbf{r}_{1}\right|^{3}} \tag{1.3}
\end{equation*}
$$

The total energy and angular momentum of the particles are

$$
\begin{align*}
& E_{\mathrm{tot}}=\frac{1}{2} m_{0}\left|\dot{\mathbf{r}}_{0}\right|^{2}+\frac{1}{2} m_{1}\left|\dot{\mathbf{r}}_{1}\right|^{2}-\frac{\mathbb{G} m_{0} m_{1}}{\left|\mathbf{r}_{1}-\mathbf{r}_{0}\right|} \\
& \mathbf{L}_{\mathrm{tot}}=m_{0} \mathbf{r}_{0} \times \dot{\mathbf{r}}_{0}+m_{1} \mathbf{r}_{1} \times \dot{\mathbf{r}}_{1} \tag{1.4}
\end{align*}
$$

in which we have introduced the notation $\dot{\mathbf{r}}=\mathrm{d} \mathbf{r} / \mathrm{d} t$. Using equations (1.3) it is straightforward to show that the total energy and angular momentum are conserved, that is, $\mathrm{d} E_{\text {tot }} / \mathrm{d} t=0$ and $\mathrm{d} \mathbf{L}_{\text {tot }} / \mathrm{d} t=0$.

We now change variables from \mathbf{r}_{0} and \mathbf{r}_{1} to

$$
\begin{equation*}
\mathbf{r}_{\mathrm{cm}} \equiv \frac{m_{0} \mathbf{r}_{0}+m_{1} \mathbf{r}_{1}}{m_{0}+m_{1}}, \quad \mathbf{r} \equiv \mathbf{r}_{1}-\mathbf{r}_{0} \tag{1.5}
\end{equation*}
$$

here \mathbf{r}_{cm} is the center of mass or barycenter of the two particles and \mathbf{r} is the relative position. These equations can be solved for \mathbf{r}_{0} and \mathbf{r}_{1} to yield

$$
\begin{equation*}
\mathbf{r}_{0}=\mathbf{r}_{\mathrm{cm}}-\frac{m_{1}}{m_{0}+m_{1}} \mathbf{r}, \quad \mathbf{r}_{1}=\mathbf{r}_{\mathrm{cm}}+\frac{m_{0}}{m_{0}+m_{1}} \mathbf{r} . \tag{1.6}
\end{equation*}
$$

Taking two time derivatives of the first of equations (1.5) and using equations (1.3), we obtain

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathbf{r}_{\mathrm{cm}}}{\mathrm{~d} t^{2}}=\mathbf{0} \tag{1.7}
\end{equation*}
$$

[^1]thus the center of mass travels at uniform velocity, a consequence of the absence of any external forces.

In these variables the total energy and angular momentum can be written

$$
\begin{equation*}
E_{\mathrm{tot}}=E_{\mathrm{cm}}+E_{\mathrm{rel}}, \quad \mathbf{L}_{\mathrm{tot}}=\mathbf{L}_{\mathrm{cm}}+\mathbf{L}_{\mathrm{rel}}, \tag{1.8}
\end{equation*}
$$

where

$$
\begin{array}{ll}
E_{\mathrm{cm}}=\frac{1}{2} M\left|\dot{\mathbf{r}}_{\mathrm{cm}}\right|^{2}, & \mathbf{L}_{\mathrm{cm}}=M \mathbf{r}_{\mathrm{cm}} \times \dot{\mathbf{r}}_{\mathrm{cm}}, \\
E_{\mathrm{rel}}=\frac{1}{2} \mu|\dot{\mathbf{r}}|^{2}-\frac{\mathbb{G} \mu M}{|\mathbf{r}|}, & \mathbf{L}_{\mathrm{rel}}=\mu \mathbf{r} \times \dot{\mathbf{r}} \tag{1.9}
\end{array}
$$

here we have introduced the reduced mass and total mass

$$
\begin{equation*}
\mu \equiv \frac{m_{0} m_{1}}{m_{0}+m_{1}}, \quad M \equiv m_{0}+m_{1} . \tag{1.10}
\end{equation*}
$$

The terms E_{cm} and \mathbf{L}_{cm} are the kinetic energy and angular momentum associated with the motion of the center of mass. These are zero if we choose a reference frame in which the velocity of the center of mass $\dot{\mathbf{r}}_{\mathrm{cm}}=\mathbf{0}$. The terms $E_{\text {rel }}$ and $\mathbf{L}_{\text {rel }}$ are the energy and angular momentum associated with the relative motion of the two particles around the center of mass. These are the same as the energy and angular momentum of a particle of mass μ orbiting around a mass M (the "central body") that is fixed at the origin of the vector \mathbf{r}.

Taking two time derivatives of the second of equations (1.5) yields

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathbf{r}}{\mathrm{~d} t^{2}}=-\frac{\mathbb{G} M}{r^{3}} \mathbf{r}=-\frac{\mathbb{G} M}{r^{2}} \hat{\mathbf{r}}, \tag{1.11}
\end{equation*}
$$

where $r=|\mathbf{r}|$ and the unit vector $\hat{\mathbf{r}}=\mathbf{r} / r$. Equation (1.11) describes any one of the following:
(i) the motion of a particle of arbitrary mass subject to the gravitational attraction of a central body of mass M that is fixed at the origin;
(ii) the motion of a particle of negligible mass (a test particle) under the influence of a freely moving central body of mass M;
(iii) the motion of a particle with mass equal to the reduced mass μ around a fixed central body that attracts it with the force \mathbf{F} of equation (1.2).

Whatever the interpretation, the two-body problem has been reduced to a one-body problem.

Equation (1.11) can be derived from a Hamiltonian, as described in §1.4. It can also be written

$$
\begin{equation*}
\ddot{\mathbf{r}}=-\nabla \Phi_{\mathrm{K}}, \tag{1.12}
\end{equation*}
$$

where we have introduced the notation $\nabla f(\mathbf{r})$ for the gradient of the scalar function $f(\mathbf{r})$ (see \S B. 3 for a review of vector calculus). The function $\Phi_{\mathrm{K}}(r)=-\mathbb{G} M / r$ is the Kepler potential. The solution of equations (1.11) or (1.12) is known as the Kepler orbit.

We begin the solution of equation (1.11) by evaluating the rate of change of the relative angular momentum $\mathbf{L}_{\text {rel }}$ from equation (1.9):

$$
\begin{equation*}
\frac{1}{\mu} \frac{\mathrm{~d} \mathbf{L}_{\mathrm{rel}}}{\mathrm{~d} t}=\frac{\mathrm{d} \mathbf{r}}{\mathrm{~d} t} \times \frac{\mathrm{d} \mathbf{r}}{\mathrm{~d} t}+\mathbf{r} \times \frac{\mathrm{d}^{2} \mathbf{r}}{\mathrm{~d} t^{2}}=-\frac{\mathbb{G} M}{r^{2}} \mathbf{r} \times \hat{\mathbf{r}}=\mathbf{0} \tag{1.13}
\end{equation*}
$$

Thus the relative angular momentum is conserved. Moreover, since $\mathbf{L}_{\text {rel }}$ is normal to the plane containing the test particle's position and velocity vectors, the position vector must remain in a fixed plane, the orbital plane. The plane of the Earth's orbit around the Sun is called the ecliptic, and the directions perpendicular to this plane are called the north and south ecliptic poles.

We now simplify our notation. Since we can always choose an inertial reference frame in which the center-of-mass angular momentum $\mathbf{L}_{\mathrm{cm}}=\mathbf{0}$ for all time, we usually shorten "relative angular momentum" to "angular momentum." Similarly the "relative energy" $E_{\text {rel }}$ is shortened to "energy." We usually work with the angular momentum per unit mass $\mathbf{L}_{\mathrm{rel}} / \mu=\mathbf{r} \times \dot{\mathbf{r}}$ and the energy per unit mass $\frac{1}{2}|\dot{\mathbf{r}}|^{2}-\mathbb{G} M /|\mathbf{r}|$. These may be called "specific angular momentum" and "specific energy," but we shall just write "angular momentum" or "energy" when the intended meaning is clear. Moreover we typically use the same symbol- \mathbf{L} for angular momentum and E for energy-whether we are referring to the total quantity or the quantity per unit mass. This casual use of the same notation for two different physical
quantities is less dangerous than it may seem, because the intended meaning can always be deduced from the units of the equations.

1.2 The shape of the Kepler orbit

We let (r, ψ) denote polar coordinates in the orbital plane, with ψ increasing in the direction of motion of the orbit. If \mathbf{r} is a vector in the orbital plane, then $\mathbf{r}=r \hat{\mathbf{r}}$ where $(\hat{\mathbf{r}}, \hat{\boldsymbol{\psi}})$ are unit vectors in the radial and azimuthal directions. The acceleration vector lies in the orbital plane and is given by equation (B.18),

$$
\begin{equation*}
\ddot{\mathbf{r}}=\left(\ddot{r}-r \dot{\psi}^{2}\right) \hat{\mathbf{r}}+(2 \dot{r} \dot{\psi}+r \ddot{\psi}) \hat{\boldsymbol{\psi}} \tag{1.14}
\end{equation*}
$$

so the equations of motion (1.12) become

$$
\begin{equation*}
\ddot{r}-r \dot{\psi}^{2}=-\frac{\mathrm{d} \Phi_{\mathrm{K}}(r)}{\mathrm{d} r}, \quad 2 \dot{r} \dot{\psi}+r \ddot{\psi}=0 . \tag{1.15}
\end{equation*}
$$

The second equation may be multiplied by r and integrated to yield

$$
\begin{equation*}
r^{2} \dot{\psi}=\text { constant }=L \tag{1.16}
\end{equation*}
$$

where $L=|\mathbf{L}|$. This is just a restatement of the conservation of angular momentum, equation (1.13).

We may use equation (1.16) to eliminate $\dot{\psi}$ from the first of equations (1.15),

$$
\begin{equation*}
\ddot{r}-\frac{L^{2}}{r^{3}}=-\frac{\mathrm{d} \Phi_{\mathrm{K}}}{\mathrm{~d} r} . \tag{1.17}
\end{equation*}
$$

Multiplying by \dot{r} and integrating yields

$$
\begin{equation*}
\frac{1}{2} \dot{r}^{2}+\frac{L^{2}}{2 r^{2}}+\Phi_{\mathrm{K}}(r)=E \tag{1.18}
\end{equation*}
$$

where E is a constant that is equal to the energy per unit mass of the test particle. Equation (1.18) can be rewritten as

$$
\begin{equation*}
\frac{1}{2} v^{2}-\frac{\mathbb{G} M}{r}=E \tag{1.19}
\end{equation*}
$$

where $v=\left(\dot{r}^{2}+r^{2} \dot{\psi}^{2}\right)^{1 / 2}$ is the speed of the test particle.
Equation (1.18) implies that

$$
\begin{equation*}
\dot{r}^{2}=2 E+\frac{2 \mathbb{G} M}{r}-\frac{L^{2}}{r^{2}} . \tag{1.20}
\end{equation*}
$$

As $r \rightarrow 0$, the right side approaches $-L^{2} / r^{2}$, which is negative, while the left side is positive. Thus there must be a point of closest approach of the test particle to the central body, known as the periapsis or pericenter. ${ }^{3}$ In the opposite limit, $r \rightarrow \infty$, the right side of equation (1.20) approaches $2 E$. Since the left side is positive, when $E<0$ there is a maximum distance that the particle can achieve, known as the apoapsis or apocenter. Orbits with $E<0$ are referred to as bound orbits since there is an upper limit to their distance from the central body. Orbits with $E>0$ are unbound or escape orbits; they have no apoapsis, and particles on such orbits eventually travel arbitrarily far from the central body, never to return. ${ }^{4}$

The periapsis distance q and apoapsis distance Q of an orbit are determined by setting $\dot{r}=0$ in equation (1.20), which yields the quadratic equation

$$
\begin{equation*}
2 E r^{2}+2 \mathbb{G} M r-L^{2}=0 . \tag{1.22}
\end{equation*}
$$

For bound orbits, $E<0$, there are two roots on the positive real axis,

$$
\begin{equation*}
q=\frac{\mathbb{G} M-\left[(\mathbb{G} M)^{2}+2 E L^{2}\right]^{1 / 2}}{2|E|}, \quad Q=\frac{\mathbb{G} M+\left[(\mathbb{G} M)^{2}+2 E L^{2}\right]^{1 / 2}}{2|E|} . \tag{1.23}
\end{equation*}
$$

For unbound orbits, $E>0$, there is only one root on the positive real axis,

$$
\begin{equation*}
q=\frac{\left[(\mathbb{G} M)^{2}+2 E L^{2}\right]^{1 / 2}-\mathbb{G} M}{2 E} \tag{1.24}
\end{equation*}
$$

3 For specific central bodies other names are used, such as perihelion (Sun), perigee (Earth), periastron (a star), and so forth. "Periapse" is incorrect-an apse is not an apsis.
4 The escape speed $v_{\text {esc }}$ from an object is the minimum speed needed for a test particle to escape from its surface; if the object is spherical, with mass M and radius R, equation (1.19) implies that

$$
\begin{equation*}
v_{\mathrm{esc}}=\left(\frac{2 \mathbb{G} M}{R}\right)^{1 / 2} \tag{1.21}
\end{equation*}
$$

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

To solve the differential equation (1.17) we introduce the variable $u \equiv$ $1 / r$, and change the independent variable from t to ψ using the relation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}=\dot{\psi} \frac{\mathrm{d}}{\mathrm{~d} \psi}=L u^{2} \frac{\mathrm{~d}}{\mathrm{~d} \psi} . \tag{1.25}
\end{equation*}
$$

With these substitutions, $\dot{r}=-L \mathrm{~d} u / \mathrm{d} \psi$ and $\ddot{r}=-L^{2} u^{2} \mathrm{~d}^{2} u / \mathrm{d} \psi^{2}$, so equation (1.17) becomes

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \psi^{2}}+u=-\frac{1}{L^{2}} \frac{\mathrm{~d} \Phi_{\mathrm{K}}}{\mathrm{~d} u} . \tag{1.26}
\end{equation*}
$$

Since $\Phi_{\mathrm{K}}(r)=-\mathbb{G} M / r=-\mathbb{G} M u$ the right side is equal to a constant, $\mathbb{G} M / L^{2}$, and the equation is easily solved to yield

$$
\begin{equation*}
u=\frac{1}{r}=\frac{\mathbb{G} M}{L^{2}}[1+e \cos (\psi-\varpi)], \tag{1.27}
\end{equation*}
$$

where $e \geq 0$ and ϖ are constants of integration. ${ }^{5}$ We replace the angular momentum L by another constant of integration, a, defined by the relation

$$
\begin{equation*}
L^{2}=\mathbb{G} M a\left(1-e^{2}\right), \tag{1.28}
\end{equation*}
$$

so the shape of the orbit is given by

$$
\begin{equation*}
r=\frac{a\left(1-e^{2}\right)}{1+e \cos f} \tag{1.29}
\end{equation*}
$$

where $f=\psi-\varpi$ is known as the true anomaly. ${ }^{6}$
The closest approach of the two bodies occurs at $f=0$ or azimuth $\psi=\varpi$ and hence ϖ is known as the longitude of periapsis. The periapsis distance is $r(f=0)$ or

$$
\begin{equation*}
q=a(1-e) . \tag{1.30}
\end{equation*}
$$

[^2]When the eccentricity is zero, the longitude of periapsis ϖ is undefined. This indeterminacy can drastically slow or halt numerical calculations that follow the evolution of the orbital elements, and can be avoided by replacing e and ϖ by two new elements, the eccentricity components or h and k variables

$$
\begin{equation*}
k \equiv e \cos \varpi, \quad h \equiv e \sin \varpi \tag{1.31}
\end{equation*}
$$

which are well defined even for $e=0$. The generalization to nonzero inclination is given in equations (1.71).

Substituting q for r in equation (1.22) and replacing L^{2} using equation (1.28) reveals that the energy per unit mass is simply related to the constant a :

$$
\begin{equation*}
E=-\frac{\mathbb{G} M}{2 a} \tag{1.32}
\end{equation*}
$$

First consider bound orbits, which have $E<0$. Then $a>0$ by equation (1.32) and hence $e<1$ by equation (1.28). A circular orbit has $e=0$ and angular momentum per unit mass $L=(\mathbb{G} M a)^{1 / 2}$. The circular orbit has the largest possible angular momentum for a given semimajor axis or energy, so we sometimes write

$$
\begin{equation*}
\mathbf{j} \equiv \frac{\mathbf{L}}{(\mathbb{G} M a)^{1 / 2}}, \quad \text { where } \quad j=|\mathbf{j}|=\left(1-e^{2}\right)^{1 / 2} \tag{1.33}
\end{equation*}
$$

ranges from 0 to 1 and represents a dimensionless angular momentum at a given semimajor axis.

The apoapsis distance, obtained from equation (1.29) with $f=\pi$, is

$$
\begin{equation*}
Q=a(1+e) \tag{1.34}
\end{equation*}
$$

The periapsis and the apoapsis are joined by a straight line known as the line of apsides. Equation (1.29) describes an ellipse with one focus at the origin (Kepler's first law). Its major axis is the line of apsides and has length $q+Q=2 a$; thus the constant a is known as the semimajor axis. The semiminor axis of the ellipse is the maximum perpendicular distance of the orbit from the line of apsides, $b=\max _{f}\left[a\left(1-e^{2}\right) \sin f /(1+e \cos f)\right]=$ $a\left(1-e^{2}\right)^{1 / 2}$. The eccentricity of the ellipse, $\left(1-b^{2} / a^{2}\right)^{1 / 2}$, is therefore equal to the constant e.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Box 1.1: The eccentricity vector

The eccentricity vector offers a more elegant but less transparent derivation of the equation for the shape of a Kepler orbit. Take the cross product of \mathbf{L} with equation (1.11),

$$
\begin{equation*}
\mathbf{L} \times \ddot{\mathbf{r}}=-\frac{\mathbb{G} M}{r^{3}} \mathbf{L} \times \mathbf{r} . \tag{a}
\end{equation*}
$$

Using the vector identity (B.9b), $\mathbf{L} \times \mathbf{r}=-\mathbf{r} \times \mathbf{L}=-\mathbf{r} \times(\mathbf{r} \times \dot{\mathbf{r}})=r^{2} \dot{\mathbf{r}}-(\mathbf{r} \cdot \dot{\mathbf{r}}) \mathbf{r}$, which is equal to $r^{3} \mathrm{~d} \hat{\mathbf{r}} / \mathrm{d} t$. Thus

$$
\begin{equation*}
\mathbf{L} \times \ddot{\mathbf{r}}=-\mathbb{G} M \frac{\mathrm{~d} \hat{\mathbf{r}}}{\mathrm{~d} t} . \tag{b}
\end{equation*}
$$

Since \mathbf{L} is constant, we may integrate to obtain

$$
\begin{equation*}
\mathbf{L} \times \dot{\mathbf{r}}=-\mathbb{G} M(\hat{\mathbf{r}}+\mathbf{e}), \tag{c}
\end{equation*}
$$

where \mathbf{e} is a vector constant of motion, the eccentricity vector. Rearranging equation (c), we have

$$
\begin{equation*}
\mathbf{e}=\frac{\dot{\mathbf{r}} \times(\mathbf{r} \times \dot{\mathbf{r}})}{\mathbb{G} M}-\frac{\mathbf{r}}{r} . \tag{d}
\end{equation*}
$$

To derive the shape of the orbit, we take the dot product of (c) with $\hat{\mathbf{r}}$ and use the vector identity (B.9a) to show that $\hat{\mathbf{r}} \cdot(\mathbf{L} \times \dot{\mathbf{r}})=-L^{2} / r$. The resulting formula is

$$
r=\frac{L^{2}}{\mathbb{G} M} \frac{1}{1+\mathbf{e} \cdot \hat{\mathbf{r}}}=\frac{a\left(1-e^{2}\right)}{1+\mathbf{e} \cdot \hat{\mathbf{r}}} ;
$$

in the last equation we have eliminated L^{2} using equation (1.28). This result is the same as equation (1.29) if the magnitude of the eccentricity vector equals the eccentricity, $|\mathbf{e}|=e$, and the eccentricity vector points toward periapsis.

The eccentricity vector is often called the Runge-Lenz vector, although its history can be traced back at least to Laplace (Goldstein 1975-1976). Runge and Lenz appear to have taken their derivation from Gibbs \& Wilson (1901), the classic text that introduced modern vector notation.

Unbound orbits have $E>0, a<0$ and $e>1$. In this case equation (1.29) describes a hyperbola with focus at the origin and asymptotes at azimuth

$$
\begin{equation*}
\psi=\varpi \pm f_{\infty}, \quad \text { where } \quad f_{\infty} \equiv \cos ^{-1}(-1 / e) \tag{1.35}
\end{equation*}
$$

is the asymptotic true anomaly, which varies between π (for $e=1$) and $\frac{1}{2} \pi$ (for $e \rightarrow \infty$). The constants a and e are still commonly referred to as semimajor axis and eccentricity even though these terms have no direct geometric interpretation.

Figure 1.1: The geometry of an unbound or hyperbolic orbit around mass M. The impact parameter is b, the deflection angle is θ, the asymptotic true anomaly is f_{∞}, and the periapsis is located at the tip of the vector \mathbf{q}.

Suppose that a particle is on an unbound orbit around a mass M. Long before the particle approaches M, it travels at a constant velocity which we denote by \mathbf{v} (Figure 1.1). If there were no gravitational forces, the particle would continue to travel in a straight line that makes its closest approach to M at a point \mathbf{b} called the impact parameter vector. Long after the particle passes M, it again travels at a constant velocity \mathbf{v}^{\prime}, where $v \equiv|\mathbf{v}|=\left|\mathbf{v}^{\prime}\right|$ because of energy conservation. The deflection angle θ is the angle between \mathbf{v} and \mathbf{v}^{\prime}, given by $\cos \theta=\mathbf{v} \cdot \mathbf{v}^{\prime} / v^{2}$. The deflection angle is related to the asymptotic true anomaly f_{∞} by $\theta=2 f_{\infty}-\pi$; then

$$
\begin{equation*}
\tan \frac{1}{2} \theta=-\frac{\cos f_{\infty}}{\sin f_{\infty}}=\frac{1}{\left(e^{2}-1\right)^{1 / 2}} \tag{1.36}
\end{equation*}
$$

The relation between the pre- and post-encounter velocities can be written

$$
\begin{equation*}
\mathbf{v}^{\prime}=\mathbf{v} \cos \theta-\hat{\mathbf{b}} v \sin \theta \tag{1.37}
\end{equation*}
$$

In many cases the properties of unbound orbits are best described by the asymptotic speed v and the impact parameter $b=|\mathbf{b}|$, rather than by orbital elements such as a and e. It is straightforward to show that the angular momentum and energy of the orbit per unit mass are $L=b v$ and $E=\frac{1}{2} v^{2}$. From equations (1.28) and (1.32) it follows that

$$
\begin{equation*}
a=-\frac{\mathbb{G} M}{v^{2}}, \quad e^{2}=1+\frac{b^{2} v^{4}}{(\mathbb{G} M)^{2}} . \tag{1.38}
\end{equation*}
$$

Then from equation (1.36),

$$
\begin{equation*}
\tan \frac{1}{2} \theta=\frac{\mathbb{G} M}{b v^{2}} \tag{1.39}
\end{equation*}
$$

The periapsis distance $q=a(1-e)$ is related to the impact parameter b by

$$
\begin{equation*}
q=\frac{\mathbb{G} M}{v^{2}}\left[\left(1+\frac{b^{2} v^{4}}{\mathbb{G}^{2} M^{2}}\right)^{1 / 2}-1\right] \quad \text { or } \quad b^{2}=q^{2}+\frac{2 \mathbb{G} M q}{v^{2}} . \tag{1.40}
\end{equation*}
$$

Thus, for example, if the central body has radius R, the particle will collide with it if

$$
\begin{equation*}
b^{2} \leq b_{\mathrm{coll}}^{2} \equiv R^{2}+\frac{2 \mathbb{G} M R}{v^{2}} \tag{1.41}
\end{equation*}
$$

The corresponding cross section is $\pi b_{\text {coll }}^{2}$. If the central body has zero mass the cross section is just πR^{2}; the enhancement arising from the second term in equation (1.41) is said to be due to gravitational focusing.

In the special case $E=0, a$ is infinite and $e=1$, so equation (1.29) is undefined; however, in this case equation (1.22) implies that the periapsis distance $q=L^{2} /(2 \mathbb{G} M)$, so equation (1.27) implies

$$
\begin{equation*}
r=\frac{2 q}{1+\cos f}, \tag{1.42}
\end{equation*}
$$

which describes a parabola. This result can also be derived from equation (1.29) by replacing $a\left(1-e^{2}\right)$ by $q(1+e)$ and letting $e \rightarrow 1$.

1.3 Motion in the Kepler orbit

The period P of a bound orbit is the time taken to travel from periapsis to apoapsis and back. Since $\mathrm{d} \psi / \mathrm{d} t=L / r^{2}$, we have $\int_{t_{1}}^{t_{2}} \mathrm{~d} t=L^{-1} \int_{\psi_{1}}^{\psi_{2}} r^{2} \mathrm{~d} \psi$; the integral on the right side is twice the area contained in the ellipse between azimuths ψ_{1} and ψ_{2}, so the radius vector to the particle sweeps out equal areas in equal times (Kepler's second law). Thus $P=2 A / L$, where the area of the ellipse is $A=\pi a b$ with a and $b=a\left(1-e^{2}\right)^{1 / 2}$ the semimajor and semiminor axes of the ellipse. Combining these results with equation (1.28), we find

$$
\begin{equation*}
P=2 \pi\left(\frac{a^{3}}{\mathbb{G} M}\right)^{1 / 2} \tag{1.43}
\end{equation*}
$$

The period, like the energy, depends only on the semimajor axis. The mean motion or mean rate of change of azimuth, usually written n and equal to $2 \pi / P$, thus satisfies ${ }^{7}$

$$
\begin{equation*}
n^{2} a^{3}=\mathbb{G} M \tag{1.44}
\end{equation*}
$$

which is Kepler's third law or simply Kepler's law. If the particle passes through periapsis at $t=t_{0}$, the dimensionless variable

$$
\begin{equation*}
\ell=2 \pi \frac{t-t_{0}}{P}=n\left(t-t_{0}\right) \tag{1.45}
\end{equation*}
$$

is called the mean anomaly. Notice that the mean anomaly equals the true anomaly f when $f=0, \pi, 2 \pi, \ldots$ but not at other phases unless the orbit is circular; similarly, ℓ and f always lie in the same semicircle (0 to π, π to 2π, and so on).

[^3]The position and velocity of a particle in the orbital plane at a given time are determined by four orbital elements: two specify the size and shape of the orbit, which we can take to be e and a (or e and n, q and Q, L and E, and so forth); one specifies the orientation of the line of apsides (ϖ); and one specifies the location or phase of the particle in its orbit $\left(f, \ell\right.$, or $\left.t_{0}\right)$.

The trajectory $[r(t), \psi(t)]$ can be derived by solving the differential equation (1.20) for $r(t)$, then (1.16) for $\psi(t)$. However, there is a simpler method.

First consider bound orbits. Since the radius of a bound orbit oscillates between $a(1-e)$ and $a(1+e)$, it is natural to define a variable $u(t)$, the eccentric anomaly, by

$$
\begin{equation*}
r=a(1-e \cos u) \tag{1.46}
\end{equation*}
$$

since the cosine is multivalued, we must add the supplemental condition that u and f always lie in the same semicircle (0 to π, π to 2π, and so on). Thus u increases from 0 to 2π as the particle travels from periapsis to apoapsis and back. The true, eccentric and mean anomalies f, u and ℓ are all equal for circular orbits, and for any bound orbit $f=u=\ell=0$ at periapsis and π at apoapsis.

Substituting equation (1.46) into the energy equation (1.20) and using equations (1.28) and (1.32) for L^{2} and E, we obtain

$$
\begin{equation*}
\dot{r}^{2}=a^{2} e^{2} \sin ^{2} u \dot{u}^{2}=-\frac{\mathbb{G} M}{a}+\frac{2 \mathbb{G} M}{a(1-e \cos u)}-\frac{\mathbb{G} M\left(1-e^{2}\right)}{a(1-e \cos u)^{2}}, \tag{1.47}
\end{equation*}
$$

which simplifies to

$$
\begin{equation*}
(1-e \cos u)^{2} \dot{u}^{2}=\frac{\mathbb{G} M}{a^{3}}=n^{2}=\dot{\ell}^{2} . \tag{1.48}
\end{equation*}
$$

Since $\dot{u}, \dot{\ell}>0$ and $u=\ell=0$ at periapsis, we may take the square root of this equation and then integrate to obtain Kepler's equation

$$
\begin{equation*}
\ell=u-e \sin u . \tag{1.49}
\end{equation*}
$$

Kepler's equation cannot be solved analytically for u, but many efficient numerical methods of solution are available.

The relation between the true and eccentric anomalies is found by eliminating r from equations (1.29) and (1.46):

$$
\begin{equation*}
\cos f=\frac{\cos u-e}{1-e \cos u}, \quad \cos u=\frac{\cos f+e}{1+e \cos f} \tag{1.50}
\end{equation*}
$$

with the understanding that f and u always lie in the same semicircle. Similarly,

$$
\begin{align*}
& \sin f=\frac{\left(1-e^{2}\right)^{1 / 2} \sin u}{1-e \cos u}, \quad \sin u=\frac{\left(1-e^{2}\right)^{1 / 2} \sin f}{1+e \cos f} \tag{1.51a}\\
& \tan \frac{1}{2} f=\left(\frac{1+e}{1-e}\right)^{1 / 2} \tan \frac{1}{2} u \tag{1.51b}\\
& \exp (\mathrm{i} f)=\frac{\exp (\mathrm{i} u)-\beta}{1-\beta \exp (\mathrm{i} u)}, \quad \exp (\mathrm{i} u)=\frac{\exp (\mathrm{i} f)+\beta}{1+\beta \exp (\mathrm{i} f)}, \tag{1.51c}
\end{align*}
$$

where

$$
\begin{equation*}
\beta \equiv \frac{1-\left(1-e^{2}\right)^{1 / 2}}{e} . \tag{1.52}
\end{equation*}
$$

If we assume that the periapsis lies on the x-axis of a rectangular coordinate system in the orbital plane, the coordinates of the particle are

$$
\begin{equation*}
x=r \cos f=a(\cos u-e), \quad y=r \sin f=a\left(1-e^{2}\right)^{1 / 2} \sin u . \tag{1.53}
\end{equation*}
$$

The position and velocity of a bound particle at a given time t can be determined from the orbital elements a, e, ϖ and t_{0} by the following steps. First compute the mean motion n from Kepler's third law (1.44), then find the mean anomaly ℓ from (1.45). Solve Kepler's equation for the eccentric anomaly u. The radius r is then given by equation (1.46); the true anomaly f is given by equation (1.50); and the azimuth $\psi=f+\varpi$. The radial velocity is

$$
\begin{equation*}
v_{r}=\dot{r}=n \frac{\mathrm{~d} r}{\mathrm{~d} \ell}=n \frac{\mathrm{~d} r / \mathrm{d} u}{\mathrm{~d} \ell / \mathrm{d} u}=\frac{n a e \sin u}{1-e \cos u}=\frac{n a e \sin f}{\left(1-e^{2}\right)^{1 / 2}}, \tag{1.54}
\end{equation*}
$$

and the azimuthal velocity is

$$
\begin{equation*}
v_{\psi}=r \dot{\psi}=\frac{L}{r}=n a \frac{\left(1-e^{2}\right)^{1 / 2}}{1-e \cos u}=n a \frac{1+e \cos f}{\left(1-e^{2}\right)^{1 / 2}} \tag{1.55}
\end{equation*}
$$

in which we have used equation (1.28).
For unbound particles, recall that $a<0, e>1$, and the period is undefined since the particle escapes to infinity. The physical interpretations of the mean anomaly ℓ and mean motion n that led to equations (1.44) and (1.45) no longer apply, but we may define these quantities by the relations

$$
\begin{equation*}
\ell=n\left(t-t_{0}\right), \quad n^{2}|a|^{3}=\mathbb{G} M . \tag{1.56}
\end{equation*}
$$

Similarly, we define the eccentric anomaly u by

$$
\begin{equation*}
r=|a|(e \cosh u-1) \tag{1.57}
\end{equation*}
$$

The eccentric and mean anomalies increase from 0 to ∞ as the true anomaly increases from 0 to $\cos ^{-1}(-1 / e)$ (eq. 1.35).

By following the chain of argument in equations (1.47)-(1.49), we may derive the analog of Kepler's equation for unbound orbits,

$$
\begin{equation*}
\ell=e \sinh u-u . \tag{1.58}
\end{equation*}
$$

The relation between the true and eccentric anomalies is

$$
\begin{gather*}
\cos f=\frac{e-\cosh u}{e \cosh u-1}, \quad \cosh u=\frac{e+\cos f}{1+e \cos f}, \tag{1.59a}\\
\sin f=\frac{\left(e^{2}-1\right)^{1 / 2} \sinh u}{e \cosh u-1}, \quad \sinh u=\frac{\left(e^{2}-1\right)^{1 / 2} \sin f}{1+e \cos f}, \tag{1.59b}\\
\tan \frac{1}{2} f=\left(\frac{e+1}{e-1}\right)^{1 / 2} \tanh \frac{1}{2} u . \tag{1.59c}
\end{gather*}
$$

A more direct but less physical approach to deriving these results is to substitute $u \rightarrow \mathrm{i} u, \ell \rightarrow-\mathrm{i} \ell$ in the analogous expressions for bound orbits.

For parabolic orbits we do not need the eccentric anomaly since the relation between time from periapsis and true anomaly can be determined analytically. Since $\dot{f}=L / r^{2}$, we can use equation (1.42) to write

$$
\begin{equation*}
t-t_{0}=\int_{0}^{f} \frac{\mathrm{~d} f r^{2}}{L}=\left(\frac{8 q^{3}}{\mathbb{G} M}\right)^{1 / 2} \int_{0}^{f} \frac{\mathrm{~d} f}{(1+\cos f)^{2}} . \tag{1.60}
\end{equation*}
$$

In the last equation we have used the relation $L^{2}=2 \mathbb{G} M q$ for parabolic orbits. Evaluating the integral, we obtain

$$
\begin{equation*}
\left(\frac{\mathbb{G} M}{2 q^{3}}\right)^{1 / 2}\left(t-t_{0}\right)=\tan \frac{1}{2} f+\frac{1}{3} \tan ^{3} \frac{1}{2} f . \tag{1.61}
\end{equation*}
$$

This is a cubic equation for $\tan \frac{1}{2} f$ that can be solved analytically.

1.3.1 Orbit averages

Many applications require the time average of some quantity $X(\mathbf{r}, \mathbf{v})$ over one period of a bound Kepler orbit of semimajor axis a and eccentricity e. We call this the orbit average of X and use the notation

$$
\begin{equation*}
\langle X\rangle=\int_{0}^{2 \pi} \frac{\mathrm{~d} \ell}{2 \pi} X=\int_{0}^{2 \pi} \frac{\mathrm{~d} u}{2 \pi}(1-e \cos u) X \tag{1.62}
\end{equation*}
$$

in which we have used Kepler's equation (1.49) to derive the second integral. An alternative is to write

$$
\begin{equation*}
\langle X\rangle=\int_{0}^{P} \frac{\mathrm{~d} t}{P} X=\int_{0}^{2 \pi} \frac{\mathrm{~d} f}{P \dot{f}} X=\frac{1}{P L} \int_{0}^{2 \pi} \mathrm{~d} f r^{2} X \tag{1.63}
\end{equation*}
$$

here P and $L=r^{2} \dot{f}$ are the orbital period and angular momentum. Substituting equations (1.28), (1.29) and (1.43) for the angular momentum, orbit shape and period, the last equation can be rewritten as

$$
\begin{equation*}
\langle X\rangle=\left(1-e^{2}\right)^{3 / 2} \int_{0}^{2 \pi} \frac{\mathrm{~d} f}{2 \pi} \frac{X}{(1+e \cos f)^{2}} \tag{1.64}
\end{equation*}
$$

Equation (1.62) provides the simplest route to derive such results as

$$
\begin{align*}
\langle a / r\rangle & =1, \tag{1.65a}\\
\langle r / a\rangle & =1+\frac{1}{2} e^{2}, \tag{1.65b}\\
\left\langle(r / a)^{2}\right\rangle & =1+\frac{3}{2} e^{2}, \tag{1.65c}\\
\left\langle(r / a)^{2} \cos ^{2} f\right\rangle & =\frac{1}{2}+2 e^{2}, \tag{1.65d}
\end{align*}
$$

$$
\begin{align*}
\left\langle(r / a)^{2} \sin ^{2} f\right\rangle & =\frac{1}{2}-\frac{1}{2} e^{2}, \tag{1.65e}\\
\left\langle(r / a)^{2} \cos f \sin f\right\rangle & =0 \tag{1.65f}
\end{align*}
$$

Equation (1.64) gives

$$
\begin{align*}
\left\langle(a / r)^{2}\right\rangle & =\left(1-e^{2}\right)^{-1 / 2}, \tag{1.66a}\\
\left\langle(a / r)^{3}\right\rangle & =\left(1-e^{2}\right)^{-3 / 2}, \tag{1.66b}\\
\left\langle(a / r)^{3} \cos ^{2} f\right\rangle & =\frac{1}{2}\left(1-e^{2}\right)^{-3 / 2}, \tag{1.66c}\\
\left\langle(a / r)^{3} \sin ^{2} f\right\rangle & =\frac{1}{2}\left(1-e^{2}\right)^{-3 / 2}, \tag{1.66d}\\
\left\langle(a / r)^{3} \sin f \cos f\right\rangle & =0 \tag{1.66e}
\end{align*}
$$

Additional orbit averages are given in Problems 1.2 and 1.3.

1.3.2 Motion in three dimensions

So far we have described the motion of a particle in its orbital plane. To characterize the orbit fully we must also specify the spatial orientation of the orbital plane, as shown in Figure 1.2.

We work with the usual Cartesian coordinates (x, y, z) and spherical coordinates (r, θ, ϕ) (see Appendix B.2). We call the plane $z=0$, corresponding to $\theta=\frac{1}{2} \pi$, the reference plane. The inclination of the orbital plane to the reference plane is denoted I, with $0 \leq I \leq \pi$; thus $\cos I=\hat{\mathbf{z}} \cdot \hat{\mathbf{L}}$, where $\hat{\mathbf{z}}$ and $\hat{\mathbf{L}}$ are unit vectors in the direction of the z-axis and the angularmomentum vector. Orbits with $0 \leq I \leq \frac{1}{2} \pi$ are direct or prograde; orbits with $\frac{1}{2} \pi<I<\pi$ are retrograde.

Any bound Kepler orbit pierces the reference plane at two points known as the nodes of the orbit. The particle travels upward $(\dot{z}>0)$ at the ascending node and downward at the descending node. The azimuthal angle ϕ of the ascending node is denoted Ω and is called the longitude of the ascending node. The angle from ascending node to periapsis, measured in the direction of motion of the particle in the orbital plane, is denoted ω and is called the argument of periapsis.

An unfortunate feature of these elements is that neither ω nor Ω is defined for orbits in the reference plane $(I=0)$. Partly for this reason, the

Figure 1.2: The angular elements of a Kepler orbit. The usual Cartesian coordinate axes are denoted by (x, y, z), the reference plane is $z=0$, and the orbital plane is denoted by a solid curve above the equatorial plane $(z>0)$ and a dashed curve below. The plot shows the inclination I, the longitude of the ascending node Ω, the argument of periapsis ω and the true anomaly f.
argument of periapsis is often replaced by a variable called the longitude of periapsis which is defined as

$$
\begin{equation*}
\varpi \equiv \Omega+\omega . \tag{1.67}
\end{equation*}
$$

For orbits with zero inclination, the longitude of periapsis has a simple interpretation-it is the azimuthal angle between the x-axis and the periapsis, consistent with our earlier definition of the same symbol following equation (1.29)—but if the inclination is nonzero, it is the sum of two angles
measured in different planes (the reference plane and the orbital plane). ${ }^{8}$ Despite this awkwardness, for most purposes the three elements (Ω, ϖ, I) provide the most convenient way to specify the orientation of a Kepler orbit.

The mean longitude is

$$
\begin{equation*}
\lambda \equiv \varpi+\ell=\Omega+\omega+\ell \tag{1.68}
\end{equation*}
$$

where ℓ is the mean anomaly; like the longitude of perihelion, the mean longitude is the sum of angles measured in the reference plane (Ω) and the orbital plane $(\omega+\ell)$.

Some of these elements are closely related to the Euler angles that describe the rotation of one coordinate frame into another (Appendix B.6). Let ($x^{\prime}, y^{\prime}, z^{\prime}$) be Cartesian coordinates in the orbital reference frame, defined such that the z^{\prime}-axis points along the angular-momentum vector \mathbf{L} and the x^{\prime}-axis points toward periapsis, along the eccentricity vector e. Then the rotation from the (x, y, z) reference frame to the orbital reference frame is described by the Euler angles

$$
\begin{equation*}
(\alpha, \beta, \gamma)=(\Omega, I, \omega) \tag{1.69}
\end{equation*}
$$

The position and velocity of a particle in space at a given time t are specified by six orbital elements: two specify the size and shape of the orbit (e and a); three specify the orientation of the orbit (I, Ω and ω), and one specifies the location of the particle in the orbit (f, u, ℓ, λ, or t_{0}). Thus, for example, to find the Cartesian coordinates (x, y, z) in terms of the orbital elements, we write the position in the orbital reference frame as $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=r(\cos f, \sin f, 0)$ and use equation (1.69) and the rotation matrix for the transformation from primed to unprimed coordinates (eq. B.61):

$$
\begin{align*}
& \frac{x}{r}=\cos \Omega \cos (f+\omega)-\cos I \sin \Omega \sin (f+\omega), \\
& \frac{y}{r}=\sin \Omega \cos (f+\omega)+\cos I \cos \Omega \sin (f+\omega), \\
& \frac{z}{r}=\sin I \sin (f+\omega) \tag{1.70}
\end{align*}
$$

[^4]here r is given in terms of the orbital elements by equation (1.29).
When the eccentricity or inclination is small, the polar coordinate pairs $e-\varpi$ and $I-\Omega$ are sometimes replaced by the eccentricity and inclination components ${ }^{9}$
\[

$$
\begin{equation*}
k \equiv e \cos \varpi, \quad h \equiv e \sin \varpi, \quad q \equiv \tan I \cos \Omega, \quad p \equiv \tan I \sin \Omega . \tag{1.71}
\end{equation*}
$$

\]

The first two equations are the same as equations (1.31).
For some purposes the shape, size and orientation of an orbit can be described most efficiently using the angular-momentum and eccentricity vectors, \mathbf{L} and \mathbf{e}. The two vectors describe five of the six orbital elements: the missing element is the one specifying the location of the particle in its orbit, f, u, ℓ, λ or t_{0} (the six components of the two vectors determine only five elements, because \mathbf{e} is restricted to the plane normal to \mathbf{L}).

Note that ω and Ω are undefined for orbits with zero inclination; ω and ϖ are undefined for circular orbits; and ϖ, Ω and I are undefined for radial orbits ($e \rightarrow 1$). In contrast the angular-momentum and eccentricity vectors are well defined for all orbits. The cost of avoiding indeterminacy is redundancy: instead of five orbital elements we need six vector components.

1.3.3 Gauss's \boldsymbol{f} and \boldsymbol{g} functions

A common task is to determine the position and velocity, $\mathbf{r}(t)$ and $\mathbf{v}(t)$, of a particle in a Kepler orbit given its position and velocity \mathbf{r}_{0} and \mathbf{v}_{0} at some initial time t_{0}. This can be done by converting \mathbf{r}_{0} and \mathbf{v}_{0} into the orbital elements $a, e, I, \omega, \Omega, \ell_{0}$, replacing ℓ_{0} by $\ell=\ell_{0}+n\left(t-t_{0}\right)$ and then reversing the conversion to determine the position and velocity from the new orbital elements. But there is a simpler method, due to Gauss.

Since the particle is confined to the orbital plane, and $\mathbf{r}_{0}, \mathbf{v}_{0}$ are vectors lying in this plane, we can write

$$
\begin{equation*}
\mathbf{r}(t)=f\left(t, t_{0}\right) \mathbf{r}_{0}+g\left(t, t_{0}\right) \mathbf{v}_{0} \tag{1.72}
\end{equation*}
$$

[^5]which defines Gauss's f and g functions. This expression also gives the velocity of the particle,
\[

$$
\begin{equation*}
\mathbf{v}(t)=\frac{\partial f\left(t, t_{0}\right)}{\partial t} \mathbf{r}_{0}+\frac{\partial g\left(t, t_{0}\right)}{\partial t} \mathbf{v}_{0} \tag{1.73}
\end{equation*}
$$

\]

To evaluate f and g for bound orbits we use polar coordinates (r, ψ) and Cartesian coordinates (x, y) in the orbital plane, and assume that \mathbf{r}_{0} lies along the positive x-axis $\left(\psi_{0}=0\right)$. Then the components of equation (1.72) along the x - and y-axes are:

$$
\begin{align*}
r(t) \cos \psi(t) & =f\left(t, t_{0}\right) r_{0}+g\left(t, t_{0}\right) v_{r}\left(t_{0}\right), \\
r(t) \sin \psi(t) & =g\left(t, t_{0}\right) v_{\psi}\left(t_{0}\right), \tag{1.74}
\end{align*}
$$

where v_{r} and v_{ψ} are the radial and azimuthal velocities. These equations can be solved for f and g :

$$
\begin{align*}
& f\left(t, t_{0}\right)=\frac{r(t)}{r_{0}}\left[\cos \psi(t)-\frac{v_{r}\left(t_{0}\right)}{v_{\psi}\left(t_{0}\right)} \sin \psi(t)\right], \\
& g\left(t, t_{0}\right)=\frac{r(t)}{v_{\psi}\left(t_{0}\right)} \sin \psi(t) \tag{1.75}
\end{align*}
$$

We use equations (1.16), (1.28), (1.29), (1.54) and the relation $\psi=f-f_{0}$ to replace the quantities on the right sides by orbital elements (unfortunately f is used to denote both true anomaly and one of Gauss's functions). The result is

$$
\begin{align*}
& f\left(t, t_{0}\right)=\frac{\cos \left(f-f_{0}\right)+e \cos f}{1+e \cos f} \\
& g\left(t, t_{0}\right)=\frac{\left(1-e^{2}\right)^{3 / 2} \sin \left(f-f_{0}\right)}{n(1+e \cos f)\left(1+e \cos f_{0}\right)} \tag{1.76}
\end{align*}
$$

Since these expressions contain only the orbital elements n, e and f, they are valid in any coordinate system, not just the one we used for the derivation. For deriving velocities from equation (1.73), we need

$$
\frac{\partial f\left(t, t_{0}\right)}{\partial t}=n \frac{e \sin f_{0}-e \sin f-\sin \left(f-f_{0}\right)}{\left(1-e^{2}\right)^{3 / 2}},
$$

$$
\begin{equation*}
\frac{\partial g\left(t, t_{0}\right)}{\partial t}=\frac{e \cos f_{0}+\cos \left(f-f_{0}\right)}{1+e \cos f_{0}} \tag{1.77}
\end{equation*}
$$

The f and g functions can also be expressed in terms of the eccentric anomaly, using equations (1.50) and (1.51a):

$$
\begin{align*}
f\left(t, t_{0}\right) & =\frac{\cos \left(u-u_{0}\right)-e \cos u_{0}}{1-e \cos u_{0}}, \\
g\left(t, t_{0}\right) & =\frac{1}{n}\left[\sin \left(u-u_{0}\right)-e \sin u+e \sin u_{0}\right], \\
\frac{\partial f\left(t, t_{0}\right)}{\partial t} & =-\frac{n \sin \left(u-u_{0}\right)}{(1-e \cos u)\left(1-e \cos u_{0}\right)}, \\
\frac{\partial g\left(t, t_{0}\right)}{\partial t} & =\frac{\cos \left(u-u_{0}\right)-e \cos u}{1-e \cos u} . \tag{1.78}
\end{align*}
$$

To compute $\mathbf{r}(t), \mathbf{v}(t)$ from $\mathbf{r}_{0} \equiv \mathbf{r}\left(t_{0}\right), \mathbf{v}_{0}=\mathbf{v}\left(t_{0}\right)$ we use the following procedure. From equations (1.19) and (1.32) we have

$$
\begin{equation*}
\frac{1}{a}=\frac{2}{r}-\frac{v^{2}}{\mathbb{G} M} \tag{1.79}
\end{equation*}
$$

so we can compute the semimajor axis a from $r_{0}=\left|\mathbf{r}_{0}\right|$ and $v_{0}=\left|\mathbf{v}_{0}\right|$. Then Kepler's law (1.44) yields the mean motion n. The total angular momentum is $L=\left|\mathbf{r}_{0} \times \mathbf{v}_{0}\right|$ and this yields the eccentricity e through equation (1.28). To determine the eccentric anomaly at t_{0}, we use equation (1.46) which determines $\cos u_{0}$, and then determine the quadrant of u_{0} by observing that the radial velocity \dot{r} is positive when $0<u_{0}<\pi$ and negative when $\pi<$ $u_{0}<2 \pi$. From Kepler's equation (1.49) we then find the mean anomaly ℓ_{0} at $t=t_{0}$.

The mean anomaly at t is then $\ell=\ell_{0}+n\left(t-t_{0}\right)$. By solving Kepler's equation numerically we can find the eccentric anomaly u. We may then evaluate the f and g functions using equations (1.78) and the position and velocity at t from equations (1.72) and (1.73).

1.4 Canonical orbital elements

The powerful tools of Lagrangian and Hamiltonian dynamics are essential for solving many of the problems addressed later in this book. A summary of the relevant aspects of this subject is given in Appendix D. In this section we show how Hamiltonian methods are applied to the two-body problem.

The Hamiltonian that describes the trajectory of a test particle around a point mass M at the origin is

$$
\begin{equation*}
H_{\mathrm{K}}(\mathbf{r}, \mathbf{v})=\frac{1}{2} \mathbf{v}^{2}-\frac{\mathbb{G} M}{|\mathbf{r}|} \tag{1.80}
\end{equation*}
$$

Here \mathbf{r} and \mathbf{v} are the position and velocity, which together determine the position of the test particle in 6-dimensional phase space. The vectors \mathbf{r} and \mathbf{v} are a canonical coordinate-momentum pair. ${ }^{10}$ Hamilton's equations read

$$
\begin{equation*}
\frac{\mathrm{d} \mathbf{r}}{\mathrm{~d} t}=\frac{\partial H_{\mathrm{K}}}{\partial \mathbf{v}}=\mathbf{v}, \quad \frac{\mathrm{d} \mathbf{v}}{\mathrm{~d} t}=-\frac{\partial H_{\mathrm{K}}}{\partial \mathbf{r}}=-\frac{\mathbb{G} M}{|\mathbf{r}|^{3}} \mathbf{r} . \tag{1.81}
\end{equation*}
$$

These are equivalent to the usual equations of motion (1.11).
The advantage of Hamiltonian methods is that the equations of motion are the same in any set of phase-space coordinates $\mathbf{z}=(\mathbf{q}, \mathbf{p})$ that are obtained from (\mathbf{r}, \mathbf{v}) by a canonical transformation (Appendix D.6). For example, suppose that the test particle is also subject to an additional potential $\Phi(\mathbf{r}, t)$ arising from some external mass distribution, such as another planet. Then the Hamiltonian and the equations of motion in the original variables are

$$
\begin{equation*}
H(\mathbf{r}, \mathbf{v}, t)=H_{\mathrm{K}}(\mathbf{r}, \mathbf{v})+\Phi(\mathbf{r}, t), \quad \frac{\mathrm{d} \mathbf{r}}{\mathrm{~d} t}=\frac{\partial H}{\partial \mathbf{v}}, \quad \frac{\mathrm{~d} \mathbf{v}}{\mathrm{~d} t}=-\frac{\partial H}{\partial \mathbf{r}} \tag{1.82}
\end{equation*}
$$

[^6]In the new canonical variables, ${ }^{11}$

$$
\begin{equation*}
H(\mathbf{z}, t)=H_{\mathrm{K}}(\mathbf{z})+\Phi(\mathbf{z}, t), \quad \frac{\mathrm{d} \mathbf{q}}{\mathrm{~d} t}=\frac{\partial H}{\partial \mathbf{p}}, \quad \frac{\mathrm{~d} \mathbf{p}}{\mathrm{~d} t}=-\frac{\partial H}{\partial \mathbf{q}} \tag{1.83}
\end{equation*}
$$

If the additional potential is small compared to the Kepler potential, $|\phi(\mathbf{r}, t)| \ll \mathbb{G} M / r$, then the trajectory will be close to a Kepler ellipse. Therefore the analysis can be much easier if we use new coordinates and momenta \mathbf{z} in which Kepler motion is simple. ${ }^{12}$ The six orbital elementssemimajor axis a, eccentricity e, inclination I, longitude of the ascending node Ω, argument of periapsis ω and mean anomaly ℓ-satisfy this requirement as all of the elements are constant except for ℓ, which increases linearly with time. This set of orbital elements is not canonical, but they can be rearranged to form a canonical set called the Delaunay variables, in which the coordinate-momentum pairs are:

$$
\begin{array}{ll}
\ell, & \Lambda \equiv(\mathbb{G} M a)^{1 / 2}, \\
\omega, & L=\left[\mathbb{G} M a\left(1-e^{2}\right)\right]^{1 / 2}, \\
\Omega, & L_{z}=L \cos I . \tag{1.84}
\end{array}
$$

Here L_{z} is the z-component of the angular-momentum vector \mathbf{L} (see Figure 1.2); $L=|\mathbf{L}|$ (eq. 1.28); and Λ is sometimes called the circular angular momentum since it equals the angular momentum for a circular orbit. The proof that the Delaunay variables are canonical is given in Appendix E.

The Kepler Hamiltonian (1.80) is equal to the energy per unit mass, which is related to the semimajor axis by equation (1.32); thus

$$
\begin{equation*}
H_{\mathrm{K}}=-\frac{\mathbb{G} M}{2 a}=-\frac{(\mathbb{G} M)^{2}}{2 \Lambda^{2}} . \tag{1.85}
\end{equation*}
$$

[^7]Since the Kepler Hamiltonian is independent of the coordinates, the momenta Λ, L and L_{z} are all constants along a trajectory in the absence of additional forces; such variables are called integrals of motion. Because the Hamiltonian is independent of the momenta L and L_{z} their conjugate coordinates ω and Ω are also constant, and $\mathrm{d} \ell / \mathrm{d} t=\partial H_{\mathrm{K}} / \partial \Lambda=(\mathbb{G} M)^{2} \Lambda^{-3}=$ $\left(\mathbb{G} M / a^{3}\right)^{1 / 2}=n$, where n is the mean motion defined by Kepler's law (1.44). Of course, all of these conclusions are consistent with what we already know about Kepler orbits.

Because the momenta are integrals of motion in the Kepler Hamiltonian and the coordinates are angular variables that range from 0 to 2π, the Delaunay variables are also angle-action variables for the Kepler Hamiltonian (Appendix D.7). For an application of this property, see Box 1.2.

One shortcoming of the Delaunay variables is that they have coordinate singularities at zero eccentricity, where ω is ill-defined, and zero inclination, where Ω and ω are ill-defined. Even if the eccentricity or inclination of an orbit is small but nonzero, these elements can vary rapidly in the presence of small perturbing forces, so numerical integrations that follow the evolution of the Delaunay variables can grind to a near-halt.

To address this problem we introduce other sets of canonical variables derived from the Delaunay variables. We write $\mathbf{q}=(\ell, \omega, \Omega), \mathbf{p}=\left(\Lambda, L, L_{z}\right)$ and introduce a generating function $S_{2}(\mathbf{q}, \mathbf{P})$ as described in Appendix D.6.1. From equations (D.63)

$$
\begin{equation*}
\mathbf{p}=\frac{\partial S_{2}}{\partial \mathbf{q}}, \quad \mathbf{Q}=\frac{\partial S_{2}}{\partial \mathbf{P}} \tag{1.86}
\end{equation*}
$$

and these equations can be solved for the new variables \mathbf{Q} and \mathbf{P}. For example, if $S_{2}(\mathbf{q}, \mathbf{P})=(\ell+\omega+\Omega) P_{1}+(\omega+\Omega) P_{2}+\Omega P_{3}$ then the new coordinate-momentum pairs are

$$
\begin{align*}
\lambda=\ell+\omega+\Omega, & \Lambda, \\
\varpi=\omega+\Omega, & L-\Lambda=(\mathbb{G} M a)^{1 / 2}\left[\left(1-e^{2}\right)^{1 / 2}-1\right], \\
\Omega, & L_{z}-L=(\mathbb{G} M a)^{1 / 2}\left(1-e^{2}\right)^{1 / 2}(\cos I-1) . \tag{1.87}
\end{align*}
$$

Here we have reintroduced the mean longitude λ (eq. 1.68) and the longitude of periapsis ϖ (eq. 1.67). Since λ and ϖ are well defined for orbits of
zero inclination, these variables are better suited for describing nearly equatorial prograde orbits. The longitude of the node Ω is still ill-defined when the inclination is zero, although if the motion is known or assumed to be restricted to the equatorial plane the first two coordinate-momentum pairs are sufficient to describe the motion completely.

With the variables (1.87) two of the momenta $L-\Lambda$ and $L_{z}-L$ are always negative. For this reason some authors prefer to use the generating function $S_{2}(\mathbf{q}, \mathbf{P})=(\ell+\omega+\Omega) P_{1}-(\omega+\Omega) P_{2}-\Omega P_{3}$, which yields new coordinates and momenta

$$
\begin{align*}
\lambda=\ell+\omega+\Omega, & \Lambda, \\
-\varpi=-\omega-\Omega, & \Lambda-L=(\mathbb{G} M a)^{1 / 2}\left[1-\left(1-e^{2}\right)^{1 / 2}\right], \\
-\Omega, & L-L_{z}=(\mathbb{G} M a)^{1 / 2}\left(1-e^{2}\right)^{1 / 2}(1-\cos I) . \tag{1.88}
\end{align*}
$$

Another set is given by the generating function $S_{2}(\mathbf{q}, \mathbf{P})=\ell P_{1}+(\ell+$ $\omega) P_{2}+\Omega P_{3}$, which yields coordinates and momenta

$$
\begin{align*}
\ell, & \Lambda-L=(\mathbb{G} M a)^{1 / 2}\left[1-\left(1-e^{2}\right)^{1 / 2}\right], \\
\ell+\omega, & L=(\mathbb{G} M a)^{1 / 2}\left(1-e^{2}\right)^{1 / 2}, \\
\Omega, & L_{z}=(\mathbb{G} M a)^{1 / 2}\left(1-e^{2}\right)^{1 / 2} \cos I . \tag{1.89}
\end{align*}
$$

The action $\Lambda-L$ that appears in (1.88) and (1.89) has a simple physical interpretation. At a given angular momentum L, the radial motion in the Kepler orbit is governed by the Hamiltonian $H\left(r, p_{r}\right)=\frac{1}{2} p_{r}^{2}+\frac{1}{2} L^{2} / r^{2}-$ $\mathbb{G} M / r$ (cf. eq. 1.18). The corresponding action is $J_{r}=\oint \mathrm{d} r p_{r} /(2 \pi)$ (eq. D.72). The radial momentum $p_{r}=\dot{r}$ by Hamilton's equations; writing r and \dot{r} in terms of the eccentric anomaly u using equations (1.46) and (1.54) gives

$$
\begin{equation*}
J_{r}=\frac{n a^{2} e^{2}}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} u \frac{\sin ^{2} u}{1-e \cos u}=n a^{2}\left[1-\left(1-e^{2}\right)^{1 / 2}\right]=\Lambda-L . \tag{1.90}
\end{equation*}
$$

Thus $\Lambda-L$ is the action associated with the radial coordinate, sometimes called the radial action. The radial action is zero for circular orbits and equal to $\frac{1}{2}(\mathbb{G} M a)^{1 / 2} e^{2}$ when $e \ll 1$.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Box 1.2: The effect of slow mass loss on a Kepler orbit

If the mass of the central object is changing, the constant M in equations like (1.11) must be replaced by a variable $M(t)$. We assume that the evolution of the mass is (i) due to some spherically symmetric process (e.g., a spherical wind from the surface of a star), so there is no recoil force on the central object; (ii) slow, in the sense that $|\mathrm{d} M / \mathrm{d} t| \ll M / P$, where P is the orbital period of a planet.

Since the gravitational potential remains spherically symmetric, the angular momentum $L=(\mathbb{G} M a)^{1 / 2}\left(1-e^{2}\right)^{1 / 2}$ (eq. 1.28) is conserved.

Moreover, actions are adiabatic invariants (Appendix D.10), so during slow mass loss the actions remain almost constant. The Delaunay variable $\Lambda=$ $(\mathbb{G} M a)^{1 / 2}$ (eq. 1.84) is an action. Since Λ and L are distinct functions of $M a$ and e, and both are conserved-one adiabatically and one exactly -then both $M a$ and e are also conserved. In words, during slow mass loss the orbit expands, with $a(t) \propto 1 / M(t)$, but its eccentricity remains constant. The accuracy of this approximate conservation law is explored in Problem 2.8.

At present the Sun is losing mass at a rate $\dot{M} / M=-(1.1 \pm 0.3) \times 10^{-13} \mathrm{yr}^{-1}$ (Pitjeva et al. 2021). Near the end of its life, the Sun will become a red-giant star and expand dramatically in radius and luminosity. At the tip of the redgiant branch, about 7.6 Gyr from now, the solar radius will be about 250 times its present value or 1.2 au and its luminosity will be 2700 times its current value (Schröder \& Connon Smith 2008). During its evolution up the red-giant branch the Sun will lose about 30% of its mass, and according to the arguments above the Earth's orbit will expand by the same fraction. Whether or not the Earth escapes being engulfed by the Sun depends on the uncertain relative rates of the Sun's future expansion and its mass loss.

Finally, consider the generating function $S_{2}(\mathbf{q}, \mathbf{P})=P_{1}(\ell+\omega+\Omega)+$ $\frac{1}{2} P_{2}{ }^{2} \cot (\omega+\Omega)+\frac{1}{2} P_{3}{ }^{2} \cot \Omega$, which yields the Poincaré variables

$$
\begin{align*}
\lambda=\ell+\omega+\Omega, & \Lambda, \\
{[2(\Lambda-L)]^{1 / 2} \cos \varpi, } & {[2(\Lambda-L)]^{1 / 2} \sin \varpi, } \\
{\left[2\left(L-L_{z}\right)\right]^{1 / 2} \cos \Omega, } & {\left[2\left(L-L_{z}\right)\right]^{1 / 2} \sin \Omega . } \tag{1.91}
\end{align*}
$$

These are well defined even when $e=0$ or $I=0$. In particular, in the limit
of small eccentricity and inclination the Poincaré variables simplify to

$$
\begin{align*}
\lambda, & \Lambda, \\
(\mathbb{G} M a)^{1 / 4} e \cos \varpi, & (\mathbb{G} M a)^{1 / 4} e \sin \varpi, \\
(\mathbb{G} M a)^{1 / 4} I \cos \Omega, & (\mathbb{G} M a)^{1 / 4} I \sin \Omega . \tag{1.92}
\end{align*}
$$

Apart from the constant of proportionality $(\mathbb{G} M a)^{1 / 4}$ these are just the Cartesian elements defined in equations (1.71).

All of these sets of orbital elements remain ill-defined when the inclination $I=\pi$ (retrograde orbits in the reference plane) or $e=1$ (orbits with zero angular momentum); however, such orbits are relatively rare in planetary systems. ${ }^{13}$

1.5 Units and reference frames

Measurements of the trajectories of solar-system bodies are some of the most accurate in any science, and provide exquisitely precise tests of physical theories such as general relativity. Precision of this kind demands careful definitions of units and reference frames. These will only be treated briefly in this book, since our focus is on understanding rather than measuring the behavior of celestial bodies.

Tables of physical, astronomical and solar-system constants are given in Appendix A.

1.5.1 Time

The unit of time is the Système Internationale or SI second (s), which is defined by a fixed value for the frequency of a particular transition of cesium atoms. Measurements from several cesium frequency standards are combined to form a timescale known as International Atomic Time (TAI).

[^8]In contrast, Universal Time (UT) employs the Earth's rotation on its axis as a clock. UT is not tied precisely to this clock because the Earth's angular speed is not constant. The most important nonuniformity is that the length of the day increases by about 2 milliseconds per century because of the combined effects of tidal friction and post-glacial rebound. There are also annual and semiannual variations of a few tenths of a millisecond. Despite these irregularities, a timescale based approximately on the Earth's rotation is essential for everyday life: for example, we would like noon to occur close to the middle of the day. Therefore all civil timekeeping is based on Coordinated Universal Time (UTC), which is an atomic timescale that is kept in close agreement with UT by adding extra seconds ("leap seconds") at regular intervals. ${ }^{14}$ Thus UTC is a discontinuous timescale composed of segments that follow TAI apart from a constant offset.

An inconvenient feature of TAI for high-precision work is that it measures the rate of clocks at sea level on the Earth; general relativity implies that the clock rate depends on the gravitational potential and hence the rate of TAI is different from the rate measured by the same clock outside the solar system. For example, the rate of TAI varies with a period of one year and an amplitude of 1.7 milliseconds because of the eccentricity of the Earth's orbit. Barycentric Coordinate Time (TCB) measures the proper time experienced by a clock that co-moves with the center of mass of the solar system but is far outside it. TCB ticks faster than TAI by 0.49 seconds per year, corresponding to a fractional speedup of 1.55×10^{-8}.

The times of astronomical events are usually measured by the Julian date, denoted by the prefix JD. The Julian date is expressed in days and decimals of a day. Each day has 86400 seconds. The Julian year consists of exactly 365.25 days and is denoted by the prefix J. For example, the initial conditions of orbits are often specified at a standard epoch, such as

$$
\begin{equation*}
\mathrm{J} 2000.0=\mathrm{JD} 2451545.0, \tag{1.93}
\end{equation*}
$$

which corresponds roughly to noon in England on January 1, 2000. The modified Julian day is defined as

$$
\begin{equation*}
\text { MJD = JD - } 2400 \text { 000.5; } \tag{1.94}
\end{equation*}
$$

[^9]the integer offset reduces the length of the number specifying relatively recent dates, and the half-integer offset ensures that the MJD begins at midnight rather than noon.

In contrast to SI seconds (s) and days ($1 \mathrm{~d}=86400 \mathrm{~s}$) there is no unique definition of "year": most astronomers use the Julian year but there is also the anomalistic year, sidereal year, and the like (see footnote 7). For this reason the use of "year" as a precise unit of time is deprecated. However, we shall occasionally use years, megayears and gigayears (abbreviated yr, Myr, Gyr) to denote $1,10^{6}$ and 10^{9} Julian years. The age of the solar system is 4.567 Gyr and the age of the Universe is 13.79 Gyr . The future lifetime of the solar system as we know it is about 7.6 Gyr (see Box 1.2).

The SI unit of length is defined in terms of the second, such that the speed of light is exactly

$$
\begin{equation*}
c \equiv 299792458 \mathrm{~m} \mathrm{~s}^{-1} \tag{1.95}
\end{equation*}
$$

1.5.2 Units for the solar system

The history of the determination of the scale of the solar system and the mass of the Sun is worth a brief description. Until the mid-twentieth century virtually all of our data on the orbits of the Sun and planets came from tracking their positions on the sky as functions of time. This information could be combined with the theory of Kepler orbits developed earlier in this chapter (plus small corrections arising from mutual interactions between the planets, which are handled by the methods of Chapter 4) to determine all of the orbital elements of the planets including the Earth, except for the overall scale of the system. Thus, for example, the ratio of semimajor axes of any two planets was known to high accuracy, but the values of the semimajor axes in meters were not. ${ }^{15}$ To reflect this uncertainty, astronomers introduced the concept of the astronomical unit (abbreviated au), which was originally defined to be the semimajor axis of the Earth's orbit. Thus the semimajor axes of the planets were known in astronomical units long before the value of the astronomical unit was known to comparable accuracy.

[^10]© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Index

Page numbers ending in " p " refer to problems.
action, 517
angle-action variables, 530-531
as adiabatic invariant, 27,536
as area in phase space, 537
dimensions, 215
fast and slow, 313, 535
for co-orbital satellites, 163
for Kepler Hamiltonian, 24-26
in general relativity, 570
in Hamiltonian perturbation theory, 221
of pendulum Hamiltonian, 309
of separatrix, 310
principle of least, 518
radial, 26
action-angle variables, see angle-action variables
Adams-Bashforth integrator, 107
Adams-Moulton integrator, 107
adiabatic invariant, 536-537
and mass loss, 27
and resonance crossing, 327, 332
in Henrard-Lemaitre
Hamiltonian, 320
age of the solar system, 484
age of the Universe, 484
Andoyer variables, 374-379, 593p
angle-action variables, 530-531
and integrable Hamiltonians, 533
Delaunay variables, $25,541-544$
for Kepler Hamiltonian, 24-26
in Hamiltonian perturbation theory, 221
angular momentum
center of mass, 3
circular, 24
deficit, 586p
in two-body problem, 2
relative, 3
annual equation, 583 p
anomalistic year, 12
anomaly, 7
eccentric, 13
for unbound orbits, 15
mean, 12
true, 7
apoapsis, 6
Apollo asteroids, 481
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
apsidal precession
in near-Kepler potential, 577p
in quadrupole potential, 59
apsidal-motion constant, 404
apsides, line of, 8
argument of periapsis, 17
Arnold diffusion, 251, 534
ascending node, 17
asteroids
Apollo, 481
Aten, 481
Earth-crossing, 481-482
families, 276
near-Earth, 480
potentially hazardous, 481
shapes of, 430
spin periods, 432
astrocentric frame, 211
astrometric planets, 40-43
astronomical unit (au), 30, 484
Aten asteroids, 481
autonomous differential equation, 73
averaging principle, 264, 535-536
azimuthal period, 12,54
bad roundoff, 134
Baker-Campbell-Hausdorff
formula, 117
barycenter, 2
barycentric coordinates, 210
Barycentric Celestial Reference System, 32
Barycentric Coordinate Time, 29
Bessel functions, 509-510
binary stars
minimum-energy state, 398-402
stability of orbits in, 199
tidal friction in, 411
binary64 floating-point format, 129
Bond albedo, 555
bound orbit, 6
Brouwer's law for roundoff error, 134
canonical transformations, 526-529
conservation of volume in, 527
canonical variables, 527
Cassini states, 383, 593p
Cassini's laws, 380
Centaurs, 476
center of mass, see barycenter
centrifugal force and potential, 521
Chandler wobble, 592p
chaos, 534
global, 535, 546
in Hyperion's spin, 372-373
in Mars's obliquity, 365-367
in Mercury's orbit, 253
in solar system orbits, 252
Liapunov time, 534
Chirikov criterion, see resonance overlap
Chirikov-Taylor map, 545-548
and modified Euler method, 94
circular angular momentum, 24
circulation, 309
colatitude, 494
collision orbit, 121, 577p
collisions, in planetesimal disk, 441-444
collocation integrators, 101-104
Gauss-Legendre, 102
Gauss-Radau, 102
Colombo's top, 383-388
comets
Halley-type, 468
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

INDEX

Jupiter-family, 468, 479
long-period, 468
Oort cloud, 467-475, 597p
trans-Neptunian belt, 475-480
compensated summation, 131
conjunction, 187
constant time offset, 409
convergent migration, 335
co-orbital satellites, 155-168
Janus and Epimetheus, 155
coordinate systems
astrocentric, 211-217
barycentric, 210
cylindrical and polar, 493
democratic, 214
Jacobi, 217-221
Poincaré, 214
rotating, 520-522
spherical, 494
Coordinated Universal Time, 29
Coriolis force, 521
corotation constant, 159
Coulomb logarithm, 447
Cowell integrator, 111
critical inclination, 587p
cross product, 492
curl, 497
cylindrical coordinates, 493
Dahlquist barrier, 106
d'Alembert property, 53, 236
damped harmonic oscillator, 406
Darwin instability, 401
debris disks, 476
degrees of freedom, 520,531
and invariant tori, 534
and surface of section, 151
Delaunay variables, 24, 541-544
in astrocentric coordinates, 215
in Jacobi coordinates, 215
delta function, 506-507
periodic, 506
democratic coordinates, 214
detached disk, 452
dipole potential, 46, 170
Dirac delta function, see delta function
direct orbits, 17
disk-driven migration, 204-208
dispersion-dominated disk, 440
displacement Love number, 405
distribution function, 435
Schwarzschild, 439
disturbing function, 222, 234-241
divergence, 496
divergence theorem, 497
divergent migration, 335
donkey principle, 158
Dormand-Prince integrator, 98
dot product, 491
double-averaging approximation, 300
drift operator, 82
dynamical ellipticity, 48, 359
dynamical tides, 423
Earth-crossing asteroids, 481-482
Earth-Moon system
properties of, 486
spin precession in, 359
tidal evolution in, 401, 415
eccentric anomaly, 13
for unbound orbits, 15
in terms of mean anomaly, 51
in terms of true anomaly, 14
regularization, 123
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
eccentric ZLK effect, 299
eccentricity, 8
components, 8
evolution due to tidal friction, 418
forced, 276, 345
free or proper, 276, 344
vector, 9
eccentricity resonances, 321
ecliptic, 4
effective potential, 49, 140, 185
effective timestep, 76
Einstein-Infeld-Hoffmann equations of motion, 573
elliptic integrals, 508-509
energy
center-of-mass, 3
in two-body problem, 2
minimum in a binary system, 398-402
minimum of spinning body, 369
of spinning body, 538
relative, 3, 328
energy balance, 329
ephemerides, solar-system, 74
epicycle approximation, 53-57
epicycle frequency, 55
Epimetheus, see Janus and Epimetheus
equatorial bulge, 36
gravitational potential of, 48
secular Hamiltonian of, 282
equilibrium tide, 402-404
equinox, precession of, 355
error Hamiltonian, 118
escape speed, 6
escape surface, 146
Euler angles, 502-503
Euler force, 521

Euler method, 76-82
backward, 80
implicit, 80
modified, 81
Euler's equations, 539
Euler-Lagrange equation, 504
evection, 175
resonance, 176
exact rounding, 130
exchange operator, 239
exoplanets
distribution of separations, 260
HD 80606, 302
Kepler-18, 347
Kepler-223, 305
Kepler-36, 257
orbital periods of, 207
period ratios of, 305
TRAPPIST-1, 305
expansions in powers of eccentricity, 50-53, 234-241
explicit midpoint integrator, 97
extended phase space, 73
exterior resonance, 322
external zone of Henrard-Lemaitre Hamiltonian, 320
extrasolar planets, see exoplanets
f and g functions, 21
fast variables, 262, 313
fictitious forces, 521
centrifugal, 521
Coriolis, 521
Euler, 521
fictitious time, 73
Fisher distribution, 595p
floating-point arithmetic, 129
floating-point numbers, 129
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

INDEX

forced eccentricity and inclination, 276, 345
Forest-Ruth integrator, 120
Fourier series, 499
free eccentricity and inclination, 276, 344
g modes, 423
Galactic midplane, 460
Galactic tide, 460-467, 596p
gamma function, 507
Gauss's f and g functions, 21
Gauss's equations, 65-69, 579p
Gauss's method, 266
Gauss-Legendre integrator, 102
Gauss-Radau integrator, 102
Gaussian quadrature, 102
general relativity, 569-573
and ZLK oscillations, 297
generalized coordinates and momenta, 518
generating function, 528-529
local, 229
geometric integrators, 84-96
geosynchronous orbit, 575p
global chaos, 546
global error, 75
good roundoff, 134
gradient, 495
gravitational N-body problem, 209
gravitational constant (\mathbb{G}), 484
gravitational focusing, 11
and Safronov number, 442
gravitational Love number, 404
gravitational stirring, 444-450
Great Inequality, 248
guiding center, 56
h and k variables, 8
Halley-type comets, 468
halo orbit, 582p
Hamilton's equations, 519
Hamilton's principle, 517
Hamilton-Jacobi equation, 532
Hamiltonian, 518
Colombo's top, 383
error, 118
Henrard-Lemaitre, 319
integrable, 533
near-integrable, 533
numerical, 92,118
pendulum, 307
resonant, 313
separable, 533
Hamiltonian mechanics, 518-520
Hamiltonian perturbation theory, 221
Poincaré-von Zeipel method, 227-228
with Lie operators, 228-234
harmonic oscillator, damped, 406
harmonic potential, 12
HD 80606, 302
heliocentric frame, 211
Henrard-Lemaitre Hamiltonian, 319, 590p
external zone, 320
internal zone, 320
resonance zone, 320
high-eccentricity migration, 301
tidal friction in, 423
Hill radius, 147, 184
Hill stability, 198, 549-554
Hill variables, 541
Hill's equations, 182
Hamiltonian form, 585p
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Hill's problem, 180-197
periodic orbits in, 185
unbound orbits in, 194
Hohmann transfer orbit, 576p
Horner's rule, 132
horseshoe orbits, 161
hot Jupiter, 207
Hyperion, spin of, 373
IEEE 754 standard, 128
imaged planets, 43-44
impact parameter, 10
for transits, 37
in Hill's problem, 194
implicit midpoint integrator, 100, 580p
inclination, 17
forced, 276
free or proper, 276
inclination resonances, 321
indirect potential, 212
inertia tensor, 537
and MacCullagh's formula, 46
inertia, moments of, see moments of inertia
inertial modes, 423
inertial reference frame, 209
inner satellites, 287
integrable system, 530-533
integrals of motion, 25, 153, 530
integrator, 75
Adams-Bashforth, 107
Adams-Moulton, 107
backward Euler, 80
collocation, 101-104
Cowell, 111
Dormand-Prince, 98
Euler, 76-82
explicit, 76
explicit midpoint, 97
Forest-Ruth, 120
Gauss-Legendre, 102
Gauss-Radau, 102
geometric, 84-96
global error of, 75
implicit, 76
implicit Euler, 80
implicit midpoint, 100, 580p
leapfrog, 83
local error of, 75
modified Euler, 81
multistep, 104-114
normal, 89
order of, 75
predictor-corrector, 107
reversible, 86-90
Runge-Kutta, 96-101
Störmer, 110
symmetric, 89-90
symplectic, 90-96
Taylor series, 85
trapezoidal, 90, 100, 580p
truncation error, 75
variable-timestep, 93
Wisdom-Holman, 120
interior resonance, 322
internal zone of Henrard-Lemaitre Hamiltonian, 320
International Atomic Time, 28
interplanetary transport network, 151
interval of periodicity, 114
Jacobi constant, 140
Jacobi coordinates, 217-221
Jacobi identity, 523
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

INDEX

Jacobi-Hill constant, 184
Jacobian matrix and determinant, 525
Janus and Epimetheus
as co-orbital satellites, 156
properties, 156
Julian date, 29
Julian year, 12
Jupiter-family comets, 468
Kepler orbit, 4
Kepler potential, 4
Kepler problem, 1
Kepler's equation, 13
for unbound orbits, 15
Kepler's first law, 8
Kepler's second law, 12
Kepler's third law, 12
Kepler-18, 347
Kepler-223, 305
Kepler-36, 257
kick operator, 82
kicked rotor, 546
kiloton of TNT, energy equivalent, 481
Kolmogorov-Arnold-Moser (KAM) theorems, 251, 533
Kozai oscillations, see ZLK oscillations
Kronecker delta, 505
Kuiper belt, see trans-Neptunian belt
Kustaanheimo-Stiefel
regularization, 125-127
Kuzmin's disk, 351
Lagrange interpolating polynomial, 103
Lagrange points, 141-151
collinear, 144
halo orbit, 582p
Hill radius, 147
stability of, 147-150
triangular, 144
Trojan asteroids, 150
Lagrange stability, 198
Lagrange's equations, 61-65, 518
Lagrange-Laplace theory, 267-276
and secular resonance, 348
disturbing function, 268
secular frequencies, 272
Lagrangian, 517
Lagrangian mechanics, 517-519
Lambert's law, 559
Laplace coefficients, 237, 241-247
derivatives, 246
limiting cases, 245
recursion relations, 243
Laplace radius, 285
Laplace resonance, 304
Laplace surface, 281-287
and inner and outer satellites, 287
Laplace's equation, 499
Laplacian, 498
leapfrog integrator, 83
drift-kick-drift, 83
kick-drift-kick, 83
Legendre functions, 511-512
Legendre polynomials, 511
Liapunov time, 534
of Hyperion's spin, 373
of Kepler-36, 257
of Mars's obliquity, 366
of solar system orbits, 252
libration
and ZLK oscillations, 297, 588p
around Lagrange points, 150
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
of Janus and Epimetheus, 156
of pendulum, 308
of Pluto, 338
of Trojan asteroids, 581p
Lichtenstein's theorem, 48
Lidov-Kozai oscillations, see ZLK oscillations
Lie operator, 523
perturbation theory with, 228-234
Lie-Trotter splitting, 116
limaçon of Pascal, 590p
limb darkening, 39
line of apsides, 8
line-of-sight velocity, see radial velocity
line-of-sight velocity curve, 34
Liouville's theorem, 526
local error, 75
local generating function, 229
long-period comets, 468
longitude of ascending node, 17
longitude of periapsis, 7,18
Love numbers, 404-406, 595p
of rigid body, 561-566
of solar-system bodies, 484-490
lunar theory, 171-180
annual equation, 583 p
evection, 175
secular terms, 173
variation, 178,582 p

MacCullagh's formula, 46, 368
Mach's principle, 32
mass function
astrometric, 43
from radial velocities, 35
matrix, symplectic, 520, 525
mean anomaly, 12
for unbound orbits, 15
relation to eccentric and true anomaly, 51-52
mean longitude, 19
mean motion, 12
mean-motion resonances, 303, 322
Enceladus-Dione, 590p
Mimas-Tethys, 589p
Neptune-Pluto, 335-341, 590p
of two massive bodies, 591p
migration
and Neptune-Pluto resonance, 339
convergent and divergent, 335
disk-driven, 204-208
high-eccentricity, 301
planetesimal-driven, 460
Type I and Type II, 206
Milankovich cycles, 280
Milankovich equations, 276-281
minimum orbit intersection distance, 481
minimum-energy state of binary system, 398-402, 594p
minimum-mass solar nebula, 352 , 479
modified Euler method, 81
and standard map, 94
moment of inertia factor, 358
moments of inertia, 537
dynamical ellipticity, 48, 359
of axisymmetric body, 47
of solar-system bodies, 484-490
monopole potential, 46, 170
multipole moments, 47
multipole potential, 44-50
multistep integrators, 104-114
Adams-Bashforth, 107
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

INDEX

Adams-Moulton, 107
Cowell, 111
Dahlquist barrier, 106
interval of periodicity, 114
reversible, 113
Störmer, 110
symmetric, 113
zero-stability, 109
mutual Hill radius, 185
near-Earth asteroids, 480
Nekhoroshev estimates, 251
Neptune-Pluto resonance, 335-341
new comets, 471
Newtonian form of equation of motion, 72
nodal precession
in near-Kepler potential, 577 p
in quadrupole potential, 59
nodes, 17
normal integrators, 89
numerical Hamiltonian, 92, 118
nutation, 378, 592p
obliquity, 285, 357
chaotic, of Mars, 365-367
of solar-system bodies, 484-490
octopole potential, 170
Oort cloud, 467-475, 597p
operator splitting, 115-121
Lie-Trotter splitting, 116
Strang splitting, 116
orbit averaging, $16,264,575$ p
orbital elements, 13
apoapsis distance, 6
argument of periapsis, 17
eccentric anomaly, 13
eccentricity, 8
inclination, 17
longitude of ascending node, 17
longitude of periapsis, 7, 18
mean anomaly, 12
mean longitude, 19
mean motion, 12
non-osculating, 363
non-singular, 8, 25-28
of solar-system bodies, 484-490
parabolic orbits, 11,15
periapsis distance, 6
period, 12
semimajor axis, 8
true anomaly, 7
unbound orbits, 10-11, 15
orbital plane, 4
orbital torus, 533
and degrees of freedom, 534
orbits
bound, 6
chaotic, 202, 252, 534
escape, 6
horseshoe, 161
P-type, 199
parabolic, 15
prograde, 17
regular, 533
retrograde, 17
S-type, 199
tadpole, 161
unbound, 6
original semimajor axis, 471
osculating elements, 58, 363
'Oumuamua, 475
outer satellites, 287

P-type orbits, 199
parabolic orbits, 15
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
parsec (pc), 31, 484
pendulum, 307-310
action, 309, 310
circulation, 309
Hamiltonian, 307
libration, 308
resonance width, 310
torqued, 311
periapsis, longitude of, 7, 18
periapsis, periastron, perigee,
perihelion, 6
period, 12
circulation, 309
libration, 308
periodic orbits in Hill's problem, 185
permutation symbol, 505
perturbation theory, see Hamiltonian perturbation theory
phase space, 520
extended, 73
momentum vs. velocity, 23
planet detection
astrometry, 40-43
imaging, 43-44
radial velocity, 33-35
transits, 35-40
planetesimal disk
collisions in, 441-444
dispersion-dominated, 440
distribution function of, 435-440
gravitational stirring in, 444-450
shear-dominated, 440
temperature of, 434
planetesimal-driven migration, 460
Plutinos, 341, 478
Poincaré coordinates, 214
Poincaré map, 151-155

Poincaré variables, 27, 578p
Poincaré-von Zeipel method, 227-228
Poisson bracket, 522
and Lie operator, 229, 523
of eccentricity and angular-momentum vectors, 278
Poisson's equation, 499
polar coordinates, 493
pomega, 7
potential
dipole, 46
indirect, 212
Kepler, 4
MacCullagh's formula, 46
monopole, 46, 170
multipole expansion, 44
octopole, 170
quadrupole, 46, 170
potentially hazardous asteroids, 481
Poynting-Robertson drag, 66, 69
precession
and satellites, 360-364
Earth's spin (equinoxes), 355, 360
of planetary spin, 355-360
predictor-corrector integrator, 107
principal-axis frame, 538
principal-axis rotation, 369
principle of least action, 518
prograde orbits, 17
propagator, 87,524
proper eccentricity, 276, 345
proper time, 569
pseudo-synchronous rotation, 417
quadrature, 101
quadrupole moment, 47
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

INDEX

effect of satellites, 364
of solar-system bodies, 484-490
relation to flattening, 49
relation to moments of inertia, 48
quadrupole potential, 46, 170
apsidal and nodal precession in, 59, 587p
quality factor, 407
relation to time and phase lag, 409
quasi-satellites, 164
radial period, 12, 55
radial velocity, 33
disambiguation, 33
mass function, 35
semi-amplitude, 34
radial-velocity curve, 34
radial-velocity planets, 33-35
radiation pressure, 66, 69
Rayleigh distribution, 437
reduced mass, 3
reference frames, see coordinate systems
regolith, 428
regular orbits, 533
regularization, 121-127
eccentric-anomaly, 123
Kustaanheimo-Stiefel, 125-127
relative energy, 328
representable numbers, 129
resonance
capture and crossing, 328
capture, in Henrard-Lemaitre
Hamiltonian, 332
capture, in pendulum
Hamiltonian, 331
exterior, 322
interior, 322
mean-motion, 303, 322
Neptune-Pluto, 335-341
spin-orbit, 303, 368-372
trapping vs. capture, 312
width, 310,315
resonance locking, and tides, 425
resonance overlap, 546-548
and chaotic spin, 373
and obliquity of Mars, 366
in three-body problem, 202, 323-325
resonance sweeping, 351
resonance zone of Henrard-Lemaitre
Hamiltonian, 320
resonant chains, 303
retrograde orbits, 17
reversible dynamical system, 88
reversible integrator, 86-90
rigid body
Andoyer variables, 374-379
Euler's equations, 539
Hamilton's equations, 539
Love numbers, 561-566
rotation of, 538-540
tidal disruption of, 429-430, 566-568
Roche ellipsoid, 427
Roche limit, 426
Roche lobe, 146, 584p
Rossiter-McLaughlin effect, 302
roundoff error, 127-135
bad roundoff, 134
Brouwer's law, 134
compensated summation, 131
exact rounding, 130
floating-point arithmetic, 129
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
floating-point numbers, 129
good roundoff, 134
Horner's rule, 132
IEEE 754 standard, 128
sum-conserving transformation, 131
rubble piles, 431
Runge-Kutta integrator, 96-101
classical, 97
Dormand-Prince, 98
embedded, 98
Runge-Lenz vector, see eccentricity, vector

S-type orbits, 199
Safronov number, 442
for parabolic orbits, 454
scalar product, 491
scattered disk, 475
Schwarzschild coordinates, 570
Schwarzschild distribution, 439, 595p
second fundamental model for resonance, 319
second, SI, 28
secular
definition, 173
example system, 262-265
frequency, 271
Lagrange-Laplace theory, 267-276
orbit-averaging, 264-266
resonance, 276, 322, 348-353
resonance sweeping, 351
terms in lunar theory, 173
terms in perturbation theory, 225, 262
semi-amplitude, 34
semilatus rectum, 7
semimajor axis, 8
evolution due to tidal friction, 412
separatrix, 296, 310, 589p
crossing, 325-335
$\operatorname{sgn}(x), 146$
shear-dominated disk, 440
short-period term, 225, 262
sidereal period, 187
sidereal year, 12
significand, 129
Simpson's quadrature rule, 101
single-averaging approximation, 300
skin depth, 390
slow variables, 262, 313
solar mass parameter, 31,485
speed of light, 30, 484
sphere of influence, 147
spherical coordinates, 494
spherical cosine law, 499
spherical harmonics, 512-513
vector, 514-515
spherical sine law, 501
spherical trigonometry, 499-501
spin
evolution due to tidal friction, 416
precession of, 355-364
precession periods of
solar-system planets, 364
spin-orbit resonance, 303, 368-372
stability of planetary orbits
chaos, 202
Hill stability, 198
in binary stars, 199
in multi-planet systems, 256-260
in the solar system, 247-255
Lagrange stability, 198
ZLK oscillations, 293
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

INDEX

standard map, 545-548
and modified Euler method, 94
Stefan-Boltzmann constant, 484
stellar flybys, 287-291
Stirling's approximation, 507
Störmer integrator, 110
Strang splitting, 116
sum-conserving transformation, 131
summation convention, 491
Sun
death of, 27
mass parameter, 31
properties of, 485
Sundman inequality, 550
superperiod, 347
surface of section, 151-155
symmetric integrator, 89-90
symplectic
correction, 84
integrator, 90-96
map, 525-526
matrix, 520, 525
operator, 525
synchronous orbit, 575p
synchronous rotation, 368, 399
pseudo-synchronous, 417
synodic period, 187
tadpole orbits, 161
tensile strength of typical materials, 430
test particle, 3
thermal inertia, 389, 557
Thiele-Innes elements, 41, 44
three-body problem, 137
circular restricted, 138-155
hierarchical, 168-180
Hill's problem, 180-197
tidal disruption, 425-431
of regolith, 428
of rigid body, 429-430, 566-568
Roche limit, 426
tidal friction, 397, 406-411, 594p
and eccentricity evolution, 418
and semimajor axis evolution, 412
and spin evolution, 416
constant angle lag, 409
constant phase lag, 409
constant time lag, 409, 413
heating, 595p
non-equilibrium, 422-425
tidally locked, 417
time
Barycentric Coordinate, 29
Coordinated Universal, 29
fictitious, 73
International Atomic, 28
Julian date, 29
time-reversible dynamical system, 88
time-reversible integrator, 86-90
timestep, 75
effective, 76
variable, in geometric integrators, 93
Tisserand parameter, 143, 203, 452, 596p
trans-Neptunian belt, 475-480
binaries in, 479, 597p
classical belt, 478
cold classical belt, 478
detached disk, 452
resonant population, 478
scattered disk, 475, 478
transit timing variations, 342-348
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
transiting planets, 35-40
trapezoidal integrator, 90, 100, 580p TRAPPIST-1, 305
Trojan asteroids, 150
true anomaly, 7
asymptotic, 10
in terms of eccentric anomaly, 14
in terms of mean anomaly, 52
truncation error, 75, 127
two-body problem, 1
Type I and Type II migration, 206
unbound orbit, 6, 10-11, 15
Universal Time, 29
variables
Delaunay, 24, 542-544
fast and slow, 262, 313
Hill, 541-542
Poincaré, 27
variational ellipse, 180, 582p
vector product, 492
vector spherical harmonics, 514-515
vectors, 491-498
identities, 492, 497
in cylindrical coordinates, 493
in spherical coordinates, 494
summation convention, 491
vector calculus, 495-498
vertical frequency, 55
vis viva, 7
von Zeipel-Lidov-Kozai
oscillations, see ZLK
oscillations
warm Jupiter, 207
Wisdom-Holman integrator, 120
Yarkovsky effect, 388-391, 555-560
year, 30
anomalistic, 12
Julian, 12, 484
sidereal, 12
YORP effect, 391-395, 593p
zero-stability, 109
zero-velocity surface, 141, 186
ZLK oscillations, 292-301
and octopole potential, 299
and relativistic precession, 297
and single-averaging
approximation, 300
critical angle, 294
in Galactic tidal field, 462
libration period, 588p
ZLK function, 295

[^0]: 1 For values of this and other constants, see Appendix A.

[^1]: 2 Most of the basic material in the first part of this chapter can be found in textbooks on classical mechanics. The more advanced material in later sections and chapters has been treated in many books over more than two centuries. The most influential of these include Laplace (1799-1825), Tisserand (1889-1896), Poincaré (1892-1897), Plummer (1918), Brouwer \& Clemence (1961) and Murray \& Dermott (1999).

[^2]: 5 The symbol ϖ is a variant of the symbol for the Greek letter π, even though it looks more like the symbol for the letter ω; hence it is sometimes informally called "pomega."
 6 In a subject as old as this, there is a rich specialized vocabulary. The term "anomaly" refers to any angular variable that is zero at periapsis and increases by 2π as the particle travels from periapsis to apoapsis and back. There are also several old terms we shall not use: "semilatus rectum" for the combination $a\left(1-e^{2}\right)$, "vis viva" for kinetic energy, and so on.

[^3]: 7 The relation $n=2 \pi / P$ holds because Kepler orbits are closed-that is, they return to the same point once per orbit. In more general spherical potentials we must distinguish the radial period, the time between successive periapsis passages, from the azimuthal period $2 \pi / n$. For example, in a harmonic potential $\Phi(r)=\frac{1}{2} \omega^{2} r^{2}$ the radial period is π / ω but the azimuthal period is $2 \pi / \omega$. Smaller differences between the radial and azimuthal period arise in perturbed Kepler systems such as multi-planet systems or satellites orbiting a flattened planet (§1.8.3). For the Earth the radial period is called the anomalistic year, while the azimuthal period of 365.256363 d is the sidereal year. The anomalistic year is longer than the sidereal year by 0.00327 d . When we use the term "year" in this book, we refer to the Julian year of exactly 365.25 d (§1.5).

[^4]: 8 Thus "longitude of periapsis" is a misnomer, since ϖ is not equal to the azimuthal angle of the eccentricity vector, except for orbits of zero inclination.

[^5]: 9 The function $\tan I$ in the elements q and p can be replaced by any function that is proportional to I as $I \rightarrow 0$. Various authors use I, $\sin \frac{1}{2} I$, and so forth. The function $\sin I$ is not used because it has the same value for I and $\pi-I$.

[^6]: ${ }^{10}$ We usually—but not always-adopt the convention that the canonical momentum \mathbf{p} that is conjugate to the position \mathbf{r} is velocity \mathbf{v} rather than Newtonian momentum $m \mathbf{v}$. Velocity is often more convenient than Newtonian momentum in gravitational dynamics since the acceleration of a body in a gravitational potential is independent of mass. If necessary, the convention used in a particular set of equations can be verified by dimensional analysis.

[^7]: ${ }^{11}$ For notational simplicity, we usually adopt the convention that the Hamiltonian and the potential are functions of position, velocity, or position in phase space rather than functions of the coordinates. Thus $H(\mathbf{r}, \mathbf{v}, t)$ and $H(\mathbf{z}, t)$ have the same value if (\mathbf{r}, \mathbf{v}) and \mathbf{z} are coordinates of the same phase-space point in different coordinate systems.
 12 However, the additional potential $\Phi(\mathbf{z}, t)$ is often much more complicated in the new variables; for a start, it generally depends on all six phase-space coordinates rather than just the three components of \mathbf{r}. Since dynamics is more difficult than potential theory, the tradeoff-simpler dynamics at the cost of more complicated potential theory-is generally worthwhile.

[^8]: 13 A set of canonical coordinates and momenta that is well defined for orbits with zero angular momentum is described by Tremaine (2001). Alternatively, the orbit can be described using the angular-momentum and eccentricity vectors, which are well defined for any Kepler orbit; see $\S 5.3$ or Allan \& Ward (1963).

[^9]: ${ }^{14}$ The utility of leap seconds is controversial, and their future is uncertain.

[^10]: 15 This indeterminacy follows from dimensional analysis: measurements of angles and times cannot be combined to find a quantity with dimensions of length.

