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chapter one

The Euler Spiral

Why This Curve?

It is a curve that attracts some particularly pleasing mathematics and
also one that enjoys varied and surprising application. More than this,
its shape is one of enduring elegance. And it is our favourite.

1.1 An Unusual Parametrization…

The standard practice of expressing a curve in parametric form x =
g(t), y = h(t) brings with it variants of formulae for its common char-
acteristics: its slope, the area under it, its arc length and its curvature.
In the usual notation:

• slope:
dy
dx

= y ′

x′
,

• area:
∫ t2
t1
yx′ dt,

• arc length s:
∫ t2
t1

√
x′2 +y ′2 dt,

• curvature κ:
x′y ′′ −y ′x′′
(x′2 +y ′2)3/2 ,

where the prime indicates the derivative with respect to the parameter
t. Given differentiable functions g(t) and h(t), the usual major concern
is whether the resulting integrals can be evaluated in closed form.
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2 CHAPTER 1

Our interest lies in what might at first appear to be a most exotic
example of a parametrization:

x = x(t) =
∫

cosf(t)dt =
∫ t

0
cosf(u)du,

y = y(t) =
∫

sinf(t)dt =
∫ t

0
sinf(u)du,

where we choose to start the parameter at 0 and f(u) is any differen-
tiable function ofu. The potentially daunting appearance of the integral
actually contributes to the simplification of all but the area under the
curve, with

x′ = x′(t) = cosf(t)

y ′ = y ′(t) = sinf(t)
and

x′′ = −f ′(t) sinf(t)

y ′′ = f ′(t) cosf(t)

which lead to

• dy
dx

= sinf(t)
cosf(t)

= tanf(t);

• s =
∫ t

0

√
cos2 f(u)+ sin2 f(u)du = t;

• κ(t) = f ′(t) cos2 f(t)+ f ′(t) sin2 f(t)
[cos2 f(t)+ sin2 f(t)]3/2

= f ′(t).

We see that the parameter value, t, is precisely the arc length, s, and the
curvature at the point given by parameter t is f ′(t); or, put conversely,

f(t) =
∫
κ(t)dt =

∫ t
κ(u)du.

We can, therefore, replace the abstract parameter t with the curve’s arc
length, s, and rewrite the parametrization as

x = x(s) =
∫ s

0
cos

(∫ u
κ(t)dt

)
du,

y = y(s) =
∫ s

0
sin

(∫ u
κ(t)dt

)
du.

The reader may be reassured by the equations generating a straight line
(the x-axis) when κ(t) = 0 and a circle (x2+(y−1)2 = 1) when κ(t) = 1.
The next natural step is to take κ(t) = t, or equivalently κ(s) = s, which
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Figure 1.1. The Euler spiral.

leads to a curve whose curvature increases linearly with arc length, a
curve whose simplest parametric equations are

x = x(s) =
∫ s

0
cos 1

2u
2 du,

y = y(s) =
∫ s

0
sin 1

2u
2 du.

Such a curve must spiral inwards since the curvature becomes greater
as the curve develops, and does so to form the Euler spiral, shown in
figure 1.1 and the curve that is the subject of this chapter.

0.6
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–1.0 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0

Figure 1.2. A chaise longue.

With a sympathetic curve plotter, considerable and enjoyable time
can be spent experimenting with other variants of κ(t); for example,
figure 1.2 is generated by κ(t) = t2 and figure 1.3 by κ(t) = cos t−t sin t
(and hence f(t) = t cos t).
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Figure 1.3. An elegant madness.

So, the curve of principal interest in this chapter appears as an exam-
ple of what might at first appear to be a rather exotic parametrization
involving arc length and curvature, but we will now see that such a
construction is not at all strange. Quite the reverse, in fact.

1.2 …Yet a Natural Parametrization

If a mathematical result is given a name, it is a clear indication of its per-
ceived importance; if that name begins with the adjective “fundamen-
tal”, that importance is magnified to the level where the result occupies
a central role in the theory at hand or perhaps in mathematics more
generally. Such is the case, then, for the fundamental theorem of plane
curves, formal statements of which attract the abstraction necessary for
mathematical precision, but its essence is that “curvature determines
the curve”. That is, if we are given a starting point in the plane and a
curvature function, the curve is determined.

So, suppose that we are given a curvature function, κ(s), parame-
trized in terms of arc length, s. With this, we have two quantities that
are primitive, that is, ones that are not affected by external influences
such as coordinate systems or frames of reference; they are termed
intrinsic variables, and there is another too: the tangential angle, ψ.
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This is the angle that each of the tangents to the curve makes with
a fixed direction, and it is reasonable and common to normalize mat-
ters so that s = 0 when ψ = 0 and take the direction as the positive
x-axis. It is clear from figure 1.4 that dy/dx = tanψ. What is more –
and it is a standard result easily gained – we have dψ(s)/ds = κ(s);
indeed, this need not be thought of as a result but as a definition of
curvature as the (normalized) rate at which the tangent to the curve
turns.

Moreover, by definition,

ds
dx

=
√

1+
(

dy
dx

)2
=
√

1+ tan2ψ = secψ,

and so dx/ds = cosψ, and since

dy
dx

= dy
ds

× ds
dx

= tanψ,

it must be that dy/ds = sinψ.
We now have the necessary apparatus in place to achieve our goal of

deriving the equation of a curve from a knowledge of its curvature.
Let the curve have a parametrization in terms of arc length as

x = g(s)
y = h(s)

and write

dx
ds

= g′(s) and
dy
ds

= h′(s).
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We have, then, the following set of differential equations defining the
curve in terms of intrinsic coordinates:

κ(s) = dψ(s)
ds

,

g′(s) = cosψ(s),
h′(s) = sinψ(s).

So, given κ(s)we first findψ(s) and from this the parametric equations
of the curve.

We have already danced between definite and indefinite integrals and
we will continue to do so here, again using the variable as a limit and
remembering any arbitrary constant. In these terms, the first equation
has general solution

ψ(s) =
∫
κ(s)ds =

∫ s
0
κ(t)dt +ψ0.

This means that

g′(s) = cos
(∫ s

0
κ(t)dt +ψ0

)
and h′(s) = sin

(∫ s
0
κ(t)dt +ψ0

)
,

and these have the general solution

g(s) =
∫

cos
(∫ s

0
κ(t)dt +ψ0

)
ds =

∫ s
0

cos
(∫ u

0
κ(t)dt +ψ0

)
du+ x0,

h(s) =
∫

sin
(∫ s

0
κ(t)dt +ψ0

)
ds =

∫ s
0

sin
(∫ u

0
κ(t)dt +ψ0

)
du+y0.

We now make explicit the influence of those arbitrary constants of
integration, using the standard, elementary trigonometric identities

cos(θ +ϕ) = cosθ cosϕ − sinθ sinϕ,
sin(θ +ϕ) = sinθ cosϕ + cosθ sinϕ,

to obtain

g(s) =
∫ s

0
cos

(∫ u
0
κ(t)dt +ψ0

)
du+ x0

=
∫ s

0
cos

(∫ u
0
κ(t)dt

)
cosψ0 − sin

(∫ u
0
κ(t)dt

)
sinψ0 du+ x0

= cosψ0

∫ s
0

cos
(∫ u

0
κ(t)dt

)
du

− sinψ0

∫ s
0

sin
(∫ u

0
κ(t)dt

)
du+ x0,



THE EULER SPIRAL 7

h(s) =
∫ s

0
sin

(∫ u
0
κ(t)dt +ψ0

)
du+y0

=
∫ s

0
sin

(∫ u
0
κ(t)dt

)
cosψ0 + cos

(∫ u
0
κ(t)dt

)
sinψ0 du+y0

= cosψ0

∫ s
0

sin
(∫ u

0
κ(t)dt

)
du

+ sinψ0

∫ s
0

cos
(∫ u

0
κ(t)dt

)
du+y0,

which we can conveniently rewrite in matrix form as

(
g(s)
h(s)

)
=
(

cosψ0 − sinψ0

sinψ0 cosψ0

)



∫ s
0

cos
(∫ u

0
κ(t)dt

)
du

∫ s
0

sin
(∫ u

0
κ(t)dt

)
du


+

(
x0

y0

)
.

The pre-multiplying matrix represents an anticlockwise rotation about
the origin by angleψ0 and the final vector a translation. We have shown
that, up to these two isometries, our curve is uniquely determined by
the parametric equations

x = g(s) =
∫ s

0
cos

(∫ u
0
κ(t)dt

)
du,

y = h(s) =
∫ s

0
sin

(∫ u
0
κ(t)dt

)
du,

with arc length as parameter. These equations are the embodiment of
the fundamental theorem of plane curves and confirm that curvature
does indeed determine the curve. With these thoughts, we have the
Euler spiral as the curve naturally defined by the simplest non-trivial
relationship possible between its curvature and arc length: κ = s. Yet,
this is not the manner in which the curve came into existence – and
Euler was not the first to consider it.

1.3 A Challenge

With two Jakobs, three Johanns, two Daniels and five Nikolauses, along
with linguistic variants of their names, it is extremely easy to confuse
one Bernoulli family member with another. The mathematical dynasty
that spread over a century and comprised nine sons and sons-of-sons
was singularly remarkable for the contribution it made to the vari-
ous areas of mathematics and associated studies, but it is to James I
(or Jakob I or Jacques I), by age the dynasty’s mathematical patriarch,
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Figure 1.5. Bernoulli’s curve.

whom we must look for the first appearance of our curve – although
not the first real appreciation of it.

A seminal 1694 publication (Bernoulli 1694) formed the culmination
of James Bernoulli’s study of what we would now term the cantilever
problem: a thin horizontal beam of negligible mass, fixed at one end
and loaded at the other assumes a curved shape – but what shape?
The answer he gave is what we now call the elastica: a curve that has
its own considerable importance in various areas and that is closely
related to our spiral. At the end of his work he had, characteristically,
posed a number of challenges for the readers’ consideration, one of
which could be thought of as the converse to the one he had already
answered:

To find the curvature a lamina must have in order to be straightened
out horizontally by a weight at one end.

The beam remains fixed at one end but now assumes a curved,
upward shape that transforms to a horizontal line by the action of a
weight placed at its other extremity. In a note dated that same year,
Bernoulli showed that he had solved his own problem and gave the
intrinsic equation of such a curve as a2 = sR, where a is constant and
R is the curve’s radius of curvature, defined as the reciprocal of its
curvature, κ; its nature is, then, that its curvature is proportional to
its arc length. His argument is terse and more of a statement than a
proof, and in consequence it is obscure – a view echoed in 1744 by his
nephew, Nicholas I, when, in editing his uncle’s work for publication,
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he commented “I have not found this identity established”. Referring
to figure 1.5, Bernoulli’s curve is the solid line, drawn until it becomes
vertical. Beyond this, he would have had no interest, and it would be left
to the inimitable Leonhard Euler to provide the convincing arguments
which extended it to the dotted spiral.

It was in that same year of 1744 that Euler published a work (see
Euler 1744, (E65)) that, even by his lofty standards, is extraordinary in
its compass. There are two appendices, the first of which, Additamen-
tum 1, deals with elastic curves, and in sections 51 and 52 he considers
this problem. The mixture of pure mathematics and physics that Euler
uses is a clearer version of what was, apparently, Bernoulli’s argument.

Referring to figure 1.6, suppose that the curvature of the beam at a
point S on it before and after the application of a bending force is κ1(s)
and κ2(s) respectively. Also suppose that S is distant s along the beam
from the point of application of the force. In modern terms, the force’s
influence is measured by the equation M = κEI, where M , E and I are
the moment of the force, Young’s modulus and the second moment of
area of the beam (about its neutral axis), respectively. With M = Ps we
measure the contribution to the curvature of the beam as

κ = Ps
EI

= s
a2
,

as Euler did. This means that κ2(s) = κ1(s) − κ, and, since the final
shape of the beam is required to be a straight line, κ2(s) = 0, and so

0 = κ1(s)−
s
a2

and κ1(s) =
1
r
= s
a2
.

From this intrinsic equation Euler somewhat rapidly extracted the
curve’s parametric equations1

x =
∫

cos
s2

2a2
ds =

∫ s
0

cos
u2

2a2
du

y =
∫

sin
s2

2a2
ds =

∫ s
0

sin
u2

2a2
du

1 Actually, we have interchanged sin and cos to be consistent with modern usage.
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with his largely implied argument being

∫
1
r

ds =
∫
s
a2

ds ⇒
∫

dψ
ds

ds = s2

2a2
⇒ ψ = s2

2a2
.

With

dx
ds

= cosψ and
dy
ds

= sinψ,

the solution follows.
The parametric equations allow for the extension of the curve beyond

our assumed bound: to the vertical and, beyond that, to the infinite
spiral.

Euler acknowledged that neither integral can be evaluated in closed
terms and he used series expansions and term-by-term integration to
yield the still-useful infinite series forms:

x = s − s5

2!× 5
+ s9

4!× 9
− s13

6!× 13
+ · · · ,

y = s3

1!× 3
− s7

3!× 7
+ s11

5!× 11
− s15

7!× 15
+ · · · .

He also made the following observation.

Now, from the fact that the radius of curvature continually decreases
the greater the arc taken, it is manifest that the curve cannot become
infinite, even if the arc is taken infinite. Therefore the curve will belong
to the class of spirals, in such a way that after an infinite number
of windings it will roll up a definite point as a centre, which point
seems very difficult to find from this construction. Analysis therefore
must be considered to gain no slight advantage if anyone should dis-
cover a method by the aid of which at least an approximate value can
be assigned to the integrals in the case where s is taken as infinite.
This seems not an unworthy problem upon which mathematicians
may exercise their powers.

That is, the curve spirals towards its two limit points

x = ±
∫∞

0
sin

u2

2a2
du,

y = ±
∫∞

0
cos

u2

2a2
du.
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Figure 1.7. The limit point.

Figure 1.7 is the plot (for an arbitrary value of a = 0.7)

x(t) =
∫ t

0
sin

u2

2a2
du (dotted),

y(t) =
∫ t

0
cos

u2

2a2
du (full),

for t � 0, and it leads the eye to a limit, the exact value of which would
be very nice to know.

There appears to be no record of any contribution from other math-
ematicians, but 38 years later, in 1781, Euler published his own answer
to his own question:2

x = ± a√
2

√
π
2
,

y = ± a√
2

√
π
2
.

His approach exhibits typical Eulerian masterful symbolic manipula-
tion, with a mixture of integrals, complex exponentials and the Gamma
function (which he had already brought into existence in 1729): a
method that he described as singular. This singular method yielded
various other results and, most particularly,

∫∞
0

sinx
x

dx = π
2
.

Bernoulli’s original question had been answered and the solution curve
extensively investigated, with Euler’s contribution comprising a tiny
part of his vast output and seemingly lost within it.

1.4 One Curve, Many Names

And so the curve slumbered. That is, until 1814, when the French physi-
cist Augustin Fresnel deduced an expression for the intensity of the

2 On the values of integrals extended from the variable term x = 0 to x = ∞ (E675).
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illumination at any point of a diffraction pattern, which has the form
(under certain simplifying assumptions)

Iv =
[∫ v

0
cos 1

2πt
2 dt

]2

+
[∫ v

0
sin 1

2πt
2 dt

]2

.

So, if not the spiral itself, its components resurfaced, and in a note
to the French Academy of Science in 1818 Fresnel produced a table
of values of the two integrals for values of v , differing by 0.1, from
v = 0.1 to v = 5.1, later extended to v = 5.5, all to four decimal places.
More tables followed, of course, but these two defining components
of the Euler spiral are nearly universally known as Fresnel integrals.
The spiral itself reemerged in 1874, when the French scientist (Marie)
Alfred Cornu,3 following Fresnel, plotted the curve and identified its
use as a computational device for problems involving diffraction. The
influence of this most eminent scientist’s involvement caused his name
to be attached to the curve – the following comes from his 1902 funeral
oration by his former student, Henri Poincaré:

Today, to predict the effect of an arbitrary screen on a beam of light,
everyone makes use of the spiral of Cornu.

And from one of his obituaries (Ames 1902):

and the method of studying problems of diffraction by the use of
Cornu Spirals is familiar to everyone.

The Cornu spiral is a term still in common use. From the late nine-
teenth through to the twentieth century, the curve’s further mathemat-
ical properties were investigated by the Italian mathematician Ernesto
Cesàro, to whom the curve resembled the shape that a length of thread
assumes as it is wrapped around a spindle. In 1886 and from this image,
Cesàro coined clothoid(e) for the spiral’s name, after Clotho, the spinner
among the Three Fates, who spins the thread of human life by winding it
around a spindle. This Italian romance is balanced by Cesàro’s geomet-
ric findings regarding the curve, which were many but whose nature is
somewhat remote from modern mathematics. As an indication, we pro-
vide the statements of two of them below, leaving the reader to make
use of the internet to identify such terms as are necessary:

3 It is a nice coincidence that the French word cornu translates to horned, as with an
ibex, etc.
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When a clothoide rolls on a straight line, the locus of the centre
of curvature corresponding to the point of contact is an equilateral
hyperbola asymptotic to the line considered.

The clothoide is the only curve enjoying the property that the centre
of gravity of any arc is a centre of similitude of the circles osculating
the extremities of the arc.

Again, the name clothoid remains in common use.
Meanwhile, trains moved faster. Modern model train sets can be

equipped with a plethora of differently designed track pieces, but those
that offer a change in direction are shaped as arcs of circles of various
lengths and with various radii. These do not, as any serious model rail-
way enthusiast will know, reflect the real world. A train travelling at a
constant speed v along a straight section of track would encounter an
instant change in its acceleration, from 0 to the centripetal acceleration
of v2/r = κv2, as it began to negotiate the change of direction afforded
by a circular arc of radius r and, therefore, of curvature κ = 1/r . The
resulting unpleasant experience, for the train and its passengers, is
technically known as a jerk and is to be avoided. From the early days of
the railway, this avoidance took the form of various transition curves
of several types replacing the circular arc, yet best of all is one where
the curvature, and so acceleration, increases linearly from 0 along the
track – which is precisely the nature of the Euler spiral. It would appear
to be in 1881 that the spiral was put to such use (Talbot 1890–91):

The transition spiral was probably first used on the Pan Handle Rail-
road in 1881, by Mr. Elliot Holbrook. The principal part of the treat-
ment here given was made before the writer’s attention was called to
Mr. Holbrook’s use of the curve, and it is believed that most of the
formulas and methods appear here for the first time.

A visualization of things is provided by figure 1.8. Part (a) is the plan
view of a track initially formed as two straights joined by two semicir-
cular arcs, which has been amended at the right end with the replace-
ment of the semicircular arc with two parts of an Euler spiral (shown
dotted). Part (b) shows the train’s acceleration as it first moves with
constant speed along the top straight, then negotiates the Euler spi-
rals, then returns along the bottom straight and finally completes the
circuit along the semicircular arc: the jerk has been replaced by a lin-
early increasing acceleration, which will be slightly greater, but much
preferable.
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(a)

(b)

Figure 1.8. A transition curve in action.

Surprisingly, there appears to be no Holbrook spiral, although there
is a Glover spiral, after one James Glover who trumpeted the curve’s
usefulness as a railway transition curve in 1900. In this usage, Amer-
icans may well know it as the AREMA spiral, and it remains in use to
this day in any situation in which straight lines and curves need smooth
joining – including road transitions and the vertiginous curves on roller
coasters.

Whatever the context, whatever the theory or practice associated with
it, and whatever name it is known by, the curve came into existence
as a well-defined, well-understood entity through the omnipresent
involvement of Leonhard Euler: it is surely the Euler spiral.
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Crelle’s Journal, 19
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