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1CHAPTER ONE

Newtonian Physics: Geometric Viewpoint
Geometry postulates the solution of these problems from mechanics and teaches the use of the

problems thus solved. And geometry can boast that with so few principles obtained from other fields,
it can do so much.

ISAAC NEWTON, 1687

1.11.1 Introduction

1.1.11.1.1 The Geometric Viewpoint on the Laws of Physics

In this book, we adopt a different viewpoint on the laws of physics than that in many
elementary and intermediate texts. In most textbooks, physical laws are expressed in
terms of quantities (locations in space, momenta of particles, etc.) that are measured in
some coordinate system. For example, Newtonian vectorial quantities are expressed as
triplets of numbers [e.g., p= (px , py , pz)= (1, 9,−4)], representing the components
of a particle’s momentum on the axes of a Cartesian coordinate system; and tensors
are expressed as arrays of numbers (e.g.,

I=
⎡⎢⎣ Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎤⎥⎦ (1.1)

for the moment of inertia tensor).
By contrast, in this book we express all physical quantities and laws in geometric

forms, i.e., in forms that are independent of any coordinate system or basis vectors.
For example, a particle’s velocity v and the electric and magnetic fields E and B that
it encounters will be vectors described as arrows that live in the 3-dimensional, flat
Euclidean space of everyday experience.1 They require no coordinate system or basis
vectors for their existence or description—though often coordinates will be useful. In
other words, v represents the vector itself and is not just shorthand for an ordered list
of numbers.

1. This interpretation of a vector is close to the ideas of Newton and Faraday. Lagrange, Hamilton, Maxwell,
and many others saw vectors in terms of Cartesian components. The vector notation was streamlined by
Gibbs, Heaviside, and others, but the underlying coordinate system was still implicit, and v was usually
regarded as shorthand for (vx , vy , vz).

5
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BOX 1.1. READERS’ GUIDE

. This chapter is a foundation for almost all of this book.

. Many readers already know the material in this chapter, but from
a viewpoint different from our geometric one. Such readers will be
able to understand almost all of Parts II–VI of this book without
learning our viewpoint. Nevertheless, that geometric viewpoint has
such power that we encourage them to learn it by browsing this
chapter and focusing especially on Secs. 1.1.1, 1.2, 1.3, 1.5, 1.7, and
1.8.

. The stress tensor, introduced and discussed in Sec. 1.9, plays an
important role in kinetic theory (Chap. 3) and a crucial role in
elasticity (Part IV), fluid dynamics (Part V), and plasma physics
(Part VI).

. The integral and differential conservation laws derived and discussed
in Secs. 1.8 and 1.9 play major roles throughout this book.

. The Box labeled is advanced material (Track Two) that can be
skipped in a time-limited course or on a first reading of this book.

We insist that the Newtonian laws of physics all obey a Geometric Principle: they are
all geometric relationships among geometric objects (primarily scalars, vectors, and
tensors), expressible without the aid of any coordinates or bases. An example is the
Lorentz force lawmdv/dt = q(E+ v × B)—a (coordinate-free) relationship between
the geometric (coordinate-independent) vectors v, E, and B and the particle’s scalar
mass m and charge q . As another example, a body’s moment of inertia tensor I can
be viewed as a vector-valued linear function of vectors (a coordinate-independent,
basis-independent geometric object). Insert into the tensor I the body’s angular ve-
locity vector �, and you get out the body’s angular momentum vector: J= I(�). No
coordinates or basis vectors are needed for this law of physics, nor is any description
of I as a matrix-like entity with components Iij required. Components are secondary;
they only exist after one has chosen a set of basis vectors. Components (we claim)
are an impediment to a clear and deep understanding of the laws of classical physics.
The coordinate-free, component-free description is deeper, and—once one becomes
accustomed to it—much more clear and understandable.2

2. This philosophy is also appropriate for quantum mechanics (see Box 1.2) and, especially, quantum field
theory, where it is the invariance of the description under gauge and other symmetry operations that
is the powerful principle. However, its implementation there is less direct, simply because the spaces in
which these symmetries lie are more abstract and harder to conceptualize.

6 Chapter 1. Newtonian Physics: Geometric Viewpoint

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



By adopting this geometric viewpoint, we gain great conceptual power and often
also computational power. For example, when we ignore experiment and simply ask
what forms the laws of physics can possibly take (what forms are allowed by the
requirement that the laws be geometric), we shall find that there is remarkably little
freedom. Coordinate independence and basis independence strongly constrain the
laws of physics.3

This power, together with the elegance of the geometric formulation, suggests that
in some deep sense, Nature’s physical laws are geometric and have nothing whatsoever
to do with coordinates or components or vector bases.

1.1.21.1.2 Purposes of This Chapter

The principal purpose of this foundational chapter is to teach the reader this geometric
viewpoint.

The mathematical foundation for our geometric viewpoint is differential geometry
(also called “tensor analysis” by physicists). Differential geometry can be thought of as
an extension of the vector analysis with which all readers should be familiar. A second
purpose of this chapter is to develop key parts of differential geometry in a simple form
well adapted to Newtonian physics.

1.1.31.1.3 Overview of This Chapter

In this chapter, we lay the geometric foundations for the Newtonian laws of physics in
flat Euclidean space. We begin in Sec. 1.2 by introducing some foundational geometric
concepts: points, scalars, vectors, inner products of vectors, and the distance between
points. Then in Sec. 1.3, we introduce the concept of a tensor as a linear function
of vectors, and we develop a number of geometric tools: the tools of coordinate-free
tensor algebra. In Sec. 1.4, we illustrate our tensor-algebra tools by using them to
describe—without any coordinate system—the kinematics of a charged point particle
that moves through Euclidean space, driven by electric and magnetic forces.

In Sec. 1.5, we introduce, for the first time, Cartesian coordinate systems and their
basis vectors, and also the components of vectors and tensors on those basis vectors;
and we explore how to express geometric relationships in the language of components.
In Sec. 1.6, we deduce how the components of vectors and tensors transform when
one rotates the chosen Cartesian coordinate axes. (These are the transformation laws
that most physics textbooks use to define vectors and tensors.)

In Sec. 1.7, we introduce directional derivatives and gradients of vectors and ten-
sors, thereby moving from tensor algebra to true differential geometry (in Euclidean
space). We also introduce the Levi-Civita tensor and use it to define curls and cross

3. Examples are the equation of elastodynamics (12.4b) and the Navier-Stokes equation of fluid mechanics
(13.69), which are both dictated by momentum conservation plus the form of the stress tensor [Eqs.
(11.18), (13.43), and (13.68)]—forms that are dictated by the irreducible tensorial parts (Box 11.2) of
the strain and rate of strain.

1.1 Introduction 7
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products, and we learn how to use index gymnastics to derive, quickly, formulas for
multiple cross products. In Sec. 1.8, we use the Levi-Civita tensor to define vectorial
areas, scalar volumes, and integration over surfaces. These concepts then enable us to
formulate, in geometric, coordinate-free ways, integral and differential conservation
laws. In Sec. 1.9, we discuss, in particular, the law of momentum conservation, formu-
lating it in a geometric way with the aid of a geometric object called the stress tensor.
As important examples, we use this geometric conservation law to derive and discuss
the equations of Newtonian fluid dynamics, and the interaction between a charged
medium and an electromagnetic field. We conclude in Sec. 1.10 with some concepts
from special relativity that we shall need in our discussions of Newtonian physics.

1.2 1.2 Foundational Concepts

In this section, we sketch the foundational concepts of Newtonian physics without
using any coordinate system or basis vectors. This is the geometric viewpoint that we
advocate.

space and time The arena for the Newtonian laws of physics is a spacetime composed of the
familiar 3-dimensional Euclidean space of everyday experience (which we call 3-
space) and a universal time t . We denote points (locations) in 3-space by capital script
letters, such as P and Q. These points and the 3-space in which they live require no
coordinates for their definition.

scalar A scalar is a single number. We are most interested in scalars that directly represent
physical quantities (e.g., temperature T ). As such, they are real numbers, and when
they are functions of location P in space [e.g., T (P)], we call them scalar fields.
However, sometimes we will work with complex numbers—most importantly in
quantum mechanics, but also in various Fourier representations of classical physics.

vector A vector in Euclidean 3-space can be thought of as a straight arrow (or more
formally a directed line segment) that reaches from one point, P, to another, Q (e.g.,
the arrow�x in Fig. 1.1a). Equivalently,�x can be thought of as a direction at P and
a number, the vector’s length. Sometimes we shall select one point O in 3-space as an
“origin” and identify all other points, say, Q and P, by their vectorial separations xQ
and xP from that origin.

The Euclidean distance�σ between two points P and Q in 3-space can be mea-distance and length
sured with a ruler and so, of course, requires no coordinate system for its definition.
(If one does have a Cartesian coordinate system, then�σ can be computed by the Py-
thagorean formula, a precursor to the invariant interval of flat spacetime; Sec. 2.2.3.)
This distance �σ is also the length |�x| of the vector �x that reaches from P to Q,
and the square of that length is denoted

|�x|2 ≡ (�x)2 ≡ (�σ)2. (1.2)

Of particular importance is the case when P and Q are neighboring points and
�x is a differential (infinitesimal) quantity dx. This infinitesimal displacement is a
more fundamental physical quantity than the finite �x. To create a finite vector out

8 Chapter 1. Newtonian Physics: Geometric Viewpoint

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



O
C

Q
xQ

�x

xP

P
(a) (b)

FIGURE 1.1 (a) A Euclidean 3-space diagram depicting two points P and Q,
their respective vectorial separations xP and xQ from the (arbitrarily chosen)
origin O, and the vector �x = xQ − xP connecting them. (b) A curve P(λ)
generated by laying out a sequence of infinitesimal vectors, tail-to-tip.

of infinitesimal vectors, one has to add several infinitesimal vectors head to tail, head
to tail, and so on, and then take a limit. This involves translating a vector from one
point to the next. There is no ambiguity about doing this in flat Euclidean space using
the geometric notion of parallelism.4 This simple property of Euclidean space enables
us to add (and subtract) vectors at a point. We attach the tail of a second vector to the
head of the first vector and then construct the sum as the vector from the tail of the
first to the head of the second, or vice versa, as should be quite familiar. The point is
that we do not need to add the Cartesian components to sum vectors.

We can also rotate vectors about their tails by pointing them along a different
direction in space. Such a rotation can be specified by two angles. The space that is
defined by all possible changes of length and direction at a point is called that point’s
tangent space. Again, we generally view the rotation as being that of a physical vector tangent space
in space, and not, as it is often useful to imagine, the rotation of some coordinate
system’s basis vectors, with the chosen vector itself kept fixed.

We can also construct a path through space by laying down a sequence of infinites-
curveimal dxs, tail to head, one after another. The resulting path is a curve to which these

dxs are tangent (Fig. 1.1b). The curve can be denoted P(λ), with λ a parameter along
the curve and P(λ) the point on the curve whose parameter value is λ, or x(λ)where
x is the vector separation of P from the arbitrary origin O. The infinitesimal vectors
that map the curve out are dx = (dP/dλ) dλ= (dx/dλ) dλ, and dP/dλ= dx/dλ
is the tangent vector to the curve. tangent vector

If the curve followed is that of a particle, and the parameter λ is time t , then we
have defined the velocity v ≡ dx/dt . In effect we are multiplying the vector dx by the
scalar 1/dt and taking the limit. Performing this operation at every point P in the
space occupied by a fluid defines the fluid’s velocity field v(x). Multiplying a particle’s
velocity v by its scalar mass gives its momentum p=mv. Similarly, the difference dv

4. The statement that there is just one choice of line parallel to a given line, through a point not lying on
the line, is the famous fifth axiom of Euclid.

1.2 Foundational Concepts 9
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of two velocity measurements during a time interval dt , multiplied by 1/dt , generates
the particle’s acceleration a = dv/dt . Multiplying by the particle’s mass gives the force
F=ma that produced the acceleration; dividing an electrically produced force by the
particle’s charge q gives the electric field E = F/q . And so on.

We can define inner products [see Eq. (1.4a) below] and cross products [Eq.
(1.22a)] of pairs of vectors at the same point geometrically; then using those vectors
we can define, for example, the rate that work is done by a force and a particle’s angular
momentum about a point.

These two products can be expressed geometrically as follows. If we allow the two
vectors to define a parallelogram, then their cross product is the vector orthogonal
to the parallelogram with length equal to the parallelogram’s area. If we first rotate
one vector through a right angle in a plane containing the other, and then define the
parallelogram, its area is the vectors’ inner product.

derivatives of scalars and
vectors

We can also define spatial derivatives. We associate the difference of a scalar
between two points separated by dx at the same time with a gradient and, likewise,
go on to define the scalar divergence and the vector curl. The freedom to translate
vectors from one point to the next also underlies the association of a single vector
(e.g., momentum) with a group of particles or an extended body. One simply adds all
the individual momenta, taking a limit when necessary.

In this fashion (which should be familiar to the reader and will be elucidated,
formalized, and generalized below), we can construct all the standard scalars and
vectors of Newtonian physics. What is important is that these physical quantities
require no coordinate system for their definition. They are geometric (coordinate-
independent) objects residing in Euclidean 3-space at a particular time.

Geometric Principle It is a fundamental (though often ignored) principle of physics that the Newtonian
physical laws are all expressible as geometric relationships among these types of geometric
objects, and these relationships do not depend on any coordinate system or orientation
of axes, nor on any reference frame (i.e., on any purported velocity of the Euclidean
space in which the measurements are made).5 We call this the Geometric Principle for
the laws of physics, and we use it throughout this book. It is the Newtonian analog of
Einstein’s Principle of Relativity (Sec. 2.2.2).

1.3 1.3 Tensor Algebra without a Coordinate System

In preparation for developing our geometric view of physical laws, we now intro-
duce, in a coordinate-free way, some fundamental concepts of differential geometry:
tensors, the inner product, the metric tensor, the tensor product, and contraction of
tensors.

We have already defined a vector A as a straight arrow from one point, say P, in our
space to another, say Q. Because our space is flat, there is a unique and obvious way to

5. By changing the velocity of Euclidean space, one adds a constant velocity to all particles, but this leaves
the laws (e.g., Newton’s F=ma) unchanged.

10 Chapter 1. Newtonian Physics: Geometric Viewpoint
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T 
7.95 

FIGURE 1.2 A rank-3 tensor T.

transport such an arrow from one location to another, keeping its length and direction
unchanged.6 Accordingly, we shall regard vectors as unchanged by such transport.
This enables us to ignore the issue of where in space a vector actually resides; it is
completely determined by its direction and its length.

tensorA rank-n tensor T is, by definition, a real-valued linear function of n vectors.7

Pictorially we regard T as a box (Fig. 1.2) with n slots in its top, into which are inserted
n vectors, and one slot in its end, which prints out a single real number: the value that
the tensor T has when evaluated as a function of the n inserted vectors. Notationally
we denote the tensor by a boldfaced sans-serif character T:

T( , , ,︸ ︷︷ ︸)
↖ n slots in which to put the vectors.

(1.3a)

This definition of a tensor is very different (and far simpler) than the one found in
most standard physics textbooks (e.g., Marion and Thornton, 1995; Jackson, 1999;
Griffiths, 1999). There, a tensor is an array of numbers that transform in a particular
way under rotations. We shall learn the connection between these definitions in
Sec. 1.6 below.

To illustrate this approach, if T is a rank-3 tensor (has 3 slots) as in Fig. 1.2, then
its value on the vectors A, B, C is denoted T(A, B, C). Linearity of this function can
be expressed as

T(eE + f F, B, C)= eT(E, B, C)+ f T(F, B, C), (1.3b)

where e and f are real numbers, and similarly for the second and third slots.
inner productWe have already defined the squared length (A)2≡A2 of a vector A as the squared

distance between the points at its tail and its tip. The inner product (also called the
dot product) A . B of two vectors is defined in terms of this squared length by

A . B≡ 1
4

[
(A+ B)2 − (A− B)2

]
. (1.4a)

In Euclidean space, this is the standard inner product, familiar from elementary
geometry and discussed above in terms of the area of a parallelogram.

6. This is not so in curved spaces, as we shall see in Sec. 24.3.4.
7. This is a different use of the word rank than for a matrix, whose rank is its number of linearly independent

rows or columns.
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One can show that the inner product (1.4a) is a real-valued linear function of each
of its vectors. Therefore, we can regard it as a tensor of rank 2. When so regarded, the
inner product is denoted g( , ) and is called the metric tensor. In other words, themetric tensor

metric tensor g is that linear function of two vectors whose value is given by

g(A, B)≡ A . B. (1.4b)

Notice that, because A . B= B . A, the metric tensor is symmetric in its two slots—
one gets the same real number independently of the order in which one inserts the
two vectors into the slots:

g(A, B)= g(B, A). (1.4c)

With the aid of the inner product, we can regard any vector A as a tensor of rank
one: the real number that is produced when an arbitrary vector C is inserted into A’s
single slot is

A(C)≡ A . C. (1.4d)

In Newtonian physics, we rarely meet tensors of rank higher than two. However,
second-rank tensors appear frequently—often in roles where one sticks a single vector
into the second slot and leaves the first slot empty, thereby producing a single-slotted
entity, a vector. An example that we met in Sec. 1.1.1 is a rigid body’s moment-of-
inertia tensor I( , ), which gives us the body’s angular momentum J( )= I( , �)
when its angular velocity � is inserted into its second slot.8 Another example is the
stress tensor of a solid, a fluid, a plasma, or a field (Sec. 1.9 below).

tensor product From three vectors A, B, C, we can construct a tensor, their tensor product (also
called outer product in contradistinction to the inner product A . B), defined as
follows:

A⊗ B⊗ C(E, F, G)≡ A(E)B(F)C(G)= (A . E)(B . F)(C . G). (1.5a)

Here the first expression is the notation for the value of the new tensor, A⊗ B⊗ C
evaluated on the three vectors E, F, G; the middle expression is the ordinary product
of three real numbers, the value of A on E, the value of B on F, and the value of C
on G; and the third expression is that same product with the three numbers rewritten
as scalar products. Similar definitions can be given (and should be obvious) for the
tensor product of any number of vectors, and of any two or more tensors of any rank;
for example, if T has rank 2 and S has rank 3, then

T⊗ S(E, F, G, H, J)≡ T(E, F)S(G, H, J). (1.5b)

One last geometric (i.e., frame-independent) concept we shall need is contraction.contraction

We illustrate this concept first by a simple example, then give the general definition.

8. Actually, it doesn’t matter which slot, since I is symmetric.
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From two vectors A and B we can construct the tensor product A ⊗ B (a second-
rank tensor), and we can also construct the scalar product A . B (a real number, i.e., a
scalar, also known as a rank-0 tensor). The process of contraction is the construction
of A . B from A⊗ B:

contraction(A⊗ B)≡ A . B. (1.6a)

One can show fairly easily using component techniques (Sec. 1.5 below) that any
second-rank tensor T can be expressed as a sum of tensor products of vectors, T =
A⊗ B+ C⊗D+ . . . . Correspondingly, it is natural to define the contraction of T

to be contraction(T)=A . B+ C . D+ . . . . Note that this contraction process lowers
the rank of the tensor by two, from 2 to 0. Similarly, for a tensor of rank n one can
construct a tensor of rank n − 2 by contraction, but in this case one must specify
which slots are to be contracted. For example, if T is a third-rank tensor, expressible
as T= A⊗ B⊗ C+ E⊗ F⊗G+ . . ., then the contraction of T on its first and third
slots is the rank-1 tensor (vector)

1&3contraction(A⊗ B⊗ C + E ⊗ F⊗ G+ . . .)≡ (A . C)B+ (E . G)F+ . . . .
(1.6b)

Unfortunately, there is no simple index-free notation for contraction in common use.
All the concepts developed in this section (vector, tensor, metric tensor, inner

product, tensor product, and contraction of a tensor) can be carried over, with no
change whatsoever, into any vector space9 that is endowed with a concept of squared
length—for example, to the 4-dimensional spacetime of special relativity (next
chapter).

1.41.4 Particle Kinetics and Lorentz Force in Geometric Language

In this section, we illustrate our geometric viewpoint by formulating Newton’s laws
of motion for particles.

In Newtonian physics, a classical particle moves through Euclidean 3-space as
universal time t passes. At time t it is located at some point x(t) (its position). The

trajectory, velocity,
momentum, acceleration,
and energy

function x(t) represents a curve in 3-space, the particle’s trajectory. The particle’s
velocity v(t) is the time derivative of its position, its momentum p(t) is the product of
its mass m and velocity, its acceleration a(t) is the time derivative of its velocity, and
its kinetic energy E(t) is half its mass times velocity squared:

v(t)= dx
dt

, p(t)=mv(t), a(t)= dv
dt
= d

2x
dt2

, E(t)= 1
2
mv2. (1.7a)

9. Or, more precisely, any vector space over the real numbers. If the vector space’s scalars are complex
numbers, as in quantum mechanics, then slight changes are needed.
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Since points in 3-space are geometric objects (defined independently of any coordi-
nate system), so also are the trajectory x(t), the velocity, the momentum, the acceler-
ation, and the energy. (Physically, of course, the velocity has an ambiguity; it depends
on one’s standard of rest.)

Newton’s second law of motion states that the particle’s momentum can change
only if a force F acts on it, and that its change is given by

dp/dt =ma = F. (1.7b)

If the force is produced by an electric field E and magnetic field B, then this law of
motion in SI units takes the familiar Lorentz-force form

dp/dt = q(E + v × B). (1.7c)

(Here we have used the vector cross product, with which the reader should be familiar,
and which will be discussed formally in Sec. 1.7.)

laws of motion The laws of motion (1.7) are geometric relationships among geometric objects.
Let us illustrate this using something very familiar, planetary motion. Consider a
light planet orbiting a heavy star. If there were no gravitational force, the planet
would continue in a straight line with constant velocity v and speed v = |v|, sweeping
out area A at a rate dA/dt = rvt/2, where r is the radius, and vt is the tangential
speed. Elementary geometry equates this to the constant vb/2, where b is the impact
parameter—the smallest separation from the star. Now add a gravitational force F and
let it cause a small radial impulse. A second application of geometry showed Newton
that the product rvt/2 is unchanged to first order in the impulse, and he recovered
Kepler’s second law (dA/dt = const) without introducing coordinates.10

Contrast this approach with one relying on coordinates. For example, one in-
troduces an (r , φ) coordinate system, constructs a lagrangian and observes that the
coordinate φ is ignorable; then the Euler-Lagrange equations immediately imply the
conservation of angular momentum, which is equivalent to Kepler’s second law. So,
which of these two approaches is preferable? The answer is surely “both!” Newton
wrote the Principia in the language of geometry at least partly for a reason that remains
valid today: it brought him a quick understanding of fundamental laws of physics.
Lagrange followed his coordinate-based path to the function that bears his name,
because he wanted to solve problems in celestial mechanics that would not yield to

10. Continuing in this vein, when the force is inverse square, as it is for gravity and electrostatics, we can
use Kepler’s second law to argue that when the orbit turns through a succession of equal angles dθ ,
its successive changes in velocity dv = adt (with a the gravitational acceleration) all have the same
magnitude |dv| and have the same angles dθ from one to another. So, if we trace the head of the velocity
vector in velocity space, it follows a circle. The circle is not centered on zero velocity when the eccentricity
is nonzero but there exists a reference frame in which the speed of the planet is constant. This graphical
representation is known as a hodograph, and similar geometrical approaches are used in fluid mechanics.
For Richard Feynman’s masterful presentation of these ideas to first-year undergraduates, see Goodstein
and Goodstein (1996).
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Newton’s approach. So it is today. Geometry and analysis are both indispensible. In the
domain of classical physics, the geometry is of greater importance in deriving and un-
derstanding fundamental laws and has arguably been underappreciated; coordinates
hold sway when we apply these laws to solve real problems. Today, both old and new
laws of physics are commonly expressed geometrically, using lagrangians, hamiltoni-
ans, and actions, for example Hamilton’s action principle δ

∫
Ldt = 0 where L is the

coordinate-independent lagrangian. Indeed, being able to do this without introducing
coordinates is a powerful guide to deriving these laws and a tool for comprehending
their implications.

symmetry and
conservation laws

A comment is needed on the famous connection between symmetry and conserva-
tion laws.In our example above, angular momentum conservation followed from axial
symmetry which was embodied in the lagrangian’s independence of the angle φ; but
we also deduced it geometrically. This is usually the case in classical physics; typically,
we do not need to introduce a specific coordinate system to understand symmetry
and to express the associated conservation laws. However, symmetries are sometimes
well hidden, for example with a nutating top, and coordinate transformations are then
usually the best approach to uncover them.

Often in classical physics, real-world factors invalidate or complicate Lagrange’s
and Hamilton’s coordinate-based analytical dynamics, and so one is driven to geo-
metric considerations. As an example, consider a spherical marble rolling on a flat
horizontal table. The analytical dynamics approach is to express the height of the
marble’s center of mass and the angle of its rotation as constraints and align the basis
vectors so there is a single horizontal coordinate defined by the initial condition. It is
then deduced that linear and angular momenta are conserved. Of course that result
is trivial and just as easily gotten without this formalism. However, this model is also
used for many idealized problems where the outcome is far from obvious and the ap-
proach is brilliantly effective. But consider the real world in which tables are warped
and bumpy, marbles are ellipsoidal and scratched, air imposes a resistance, and wood
and glass comprise polymers that attract one another. And so on. When one includes
these factors, it is to geometry that one quickly turns to understand the real marble’s
actual dynamics. Even ignoring these effects and just asking what happens when the
marble rolls off the edge of a table introduces a nonholonomic constraint, and figuring
out where it lands and how fast it is spinning are best addressed not by the methods of
Lagrange and Hamilton, but instead by considering the geometry of the gravitational
and reaction forces. In the following chapters, we shall encounter many examples
where we have to deal with messy complications like these.

EXERCISESExercise 1.1 Practice: Energy Change for Charged Particle
Without introducing any coordinates or basis vectors, show that when a particle with
charge q interacts with electric and magnetic fields, its kinetic energy changes at a rate

dE/dt = q v . E. (1.8)
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Exercise 1.2 Practice: Particle Moving in a Circular Orbit
Consider a particle moving in a circle with uniform speed v = |v| and uniform
magnitude a = |a| of acceleration. Without introducing any coordinates or basis
vectors, do the following.

(a) At any moment of time, let n= v/v be the unit vector pointing along the velocity,
and let s denote distance that the particle travels in its orbit. By drawing a picture,
show that dn/ds is a unit vector that points to the center of the particle’s circular
orbit, divided by the radius of the orbit.

(b) Show that the vector (not unit vector) pointing from the particle’s location to the
center of its orbit is (v/a)2a.

1.5 1.5 Component Representation of Tensor Algebra

Cartesian coordinates and
orthonormal basis vectors

In the Euclidean 3-space of Newtonian physics, there is a unique set of orthonormal
basis vectors {ex , ey , ez} ≡ {e1, e2, e3} associated with any Cartesian coordinate system
{x , y , z} ≡ {x1, x2, x3} ≡ {x1, x2, x3}. (In Cartesian coordinates in Euclidean space,
we usually place indices down, but occasionally we place them up. It doesn’t matter.
By definition, in Cartesian coordinates a quantity is the same whether its index is
down or up.) The basis vector ej points along the xj coordinate direction, which is
orthogonal to all the other coordinate directions, and it has unit length (Fig. 1.3), so

ej . ek = δjk , (1.9a)

where δjk is the Kronecker delta.
Any vector A in 3-space can be expanded in terms of this basis:

A= Ajej . (1.9b)

Here and throughout this book, we adopt the Einstein summation convention: repeatedEinstein summation
convention indices (in this case j ) are to be summed (in this 3-space case over j = 1, 2, 3), unless
Cartesian components of a
vector

otherwise instructed. By virtue of the orthonormality of the basis, the components
Aj of A can be computed as the scalar product

Aj = A . ej . (1.9c)

[The proof of this is straightforward: A . ej = (Akek) . ej = Ak(ek . ej ) = Akδkj =
Aj .]

Any tensor, say, the third-rank tensor T( , , ), can be expanded in terms of
tensor products of the basis vectors:

T = Tijkei ⊗ ej ⊗ ek . (1.9d)
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FIGURE 1.3 The orthonormal basis vectors
ej associated with a Euclidean coordi-
nate system in Euclidean 3-space.

The components Tijk of T can be computed from T and the basis vectors by the Cartesian components of a
tensorgeneralization of Eq. (1.9c):

Tijk = T(ei , ej , ek). (1.9e)

[This equation can be derived using the orthonormality of the basis in the same way
as Eq. (1.9c) was derived.] As an important example, the components of the metric
tensor are gjk = g(ej , ek)= ej . ek = δjk [where the first equality is the method (1.9e)
of computing tensor components, the second is the definition (1.4b) of the metric, and
the third is the orthonormality relation (1.9a)]:

gjk = δjk . (1.9f)

The components of a tensor product [e.g., T( , , )⊗ S( , )] are easily de-
duced by inserting the basis vectors into the slots [Eq. (1.9e)]; they are T(ei , ej , ek)⊗
S(el , em)= TijkSlm [cf. Eq. (1.5a)]. In words, the components of a tensor product are
equal to the ordinary arithmetic product of the components of the individual tensors.

In component notation, the inner product of two vectors and the value of a tensor
when vectors are inserted into its slots are given by

A . B= AjBj , T(A, B, C)= TijkAiBjCk , (1.9g)

as one can easily show using previous equations. Finally, the contraction of a tensor
[say, the fourth-rank tensor R( , , , )] on two of its slots (say, the first and
third) has components that are easily computed from the tensor’s own components:

components of [1&3contraction of R]= Rijik . (1.9h)

Note thatRijik is summed on the i index, so it has only two free indices, j and k, and
thus is the component of a second-rank tensor, as it must be if it is to represent the
contraction of a fourth-rank tensor.

1.5.11.5.1 Slot-Naming Index Notation

We now pause in our development of the component version of tensor algebra to
introduce a very important new viewpoint.
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BOX 1.2. VECTORS AND TENSORS IN QUANTUM THEORY

The laws of quantum theory, like all other laws of Nature, can be expressed as
geometric relationships among geometric objects. Most of quantum theory’s
geometric objects, like those of classical theory, are vectors and tensors: the
quantum state |ψ〉 of a physical system (e.g., a particle in a harmonic-oscillator
potential) is a Hilbert-space vector—a generalization of a Euclidean-space
vector A. There is an inner product, denoted 〈φ|ψ〉, between any two states
|φ〉 and |ψ〉, analogous to B . A; but B . A is a real number, whereas 〈φ|ψ〉 is
a complex number (and we add and subtract quantum states with complex-
number coefficients). The Hermitian operators that represent observables
(e.g., the hamiltonian Ĥ for the particle in the potential) are two-slotted
(second-rank), complex-valued functions of vectors; 〈φ|Ĥ |ψ〉 is the complex
number that one gets when one inserts φ and ψ into the first and second
slots of Ĥ . Just as, in Euclidean space, we get a new vector (first-rank tensor)
T( , A) when we insert the vector A into the second slot of T, so in quantum
theory we get a new vector (physical state) Ĥ |ψ〉 (the result of letting Ĥ “act
on” |ψ〉) when we insert |ψ〉 into the second slot of Ĥ . In these senses, we can
regard T as a linear map of Euclidean vectors into Euclidean vectors and Ĥ as
a linear map of states (Hilbert-space vectors) into states.

For the electron in the hydrogen atom, we can introduce a set of
orthonormal basis vectors {|1〉, |2〉, |3〉, . . .}, that is, the atom’s energy
eigenstates, with 〈m|n〉 = δmn. But by contrast with Newtonian physics,
where we only need three basis vectors (because our Euclidean space is 3-
dimensional), for the particle in a harmonic-oscillator potential, we need an
infinite number of basis vectors (since the Hilbert space of all states is infinite-
dimensional). In the particle’s quantum-state basis, any observable (e.g., the
particle’s position x̂ or momentum p̂) has components computed by inserting
the basis vectors into its two slots: xmn = 〈m|x̂|n〉, and pmn = 〈m|p̂|n〉. In this
basis, the operator x̂p̂ (which maps states into states) has components xjkpkm
(a matrix product), and the noncommutation of position and momentum
[x̂ , p̂]= i� (an important physical law) is expressible in terms of components
as xjkpkm − pjkxkm = i�δjm.

Consider the rank-2 tensor F( , ). We can define a new tensor G( , ) to be
the same as F, but with the slots interchanged: i.e., for any two vectors A and B, it is
true that G(A, B)= F(B, A). We need a simple, compact way to indicate that F and
G are equal except for an interchange of slots. The best way is to give the slots names,
say a and b—i.e., to rewrite F( , ) as F( a , b) or more conveniently as Fab, and
then to write the relationship between G and F as Gab = Fba. “NO!” some readers
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might object. This notation is indistinguishable from our notation for components on
a particular basis. “GOOD!” a more astute reader will exclaim. The relationGab = Fba
in a particular basis is a true statement if and only if “G= F with slots interchanged”
is true, so why not use the same notation to symbolize both? In fact, we shall do
this. We ask our readers to look at any “index equation,” such asGab = Fba, like they
would look at an Escher drawing: momentarily think of it as a relationship between
components of tensors in a specific basis; then do a quick mind-flip and regard it quite
differently, as a relationship between geometric, basis-independent tensors with the
indices playing the roles of slot names. This mind-flip approach to tensor algebra will
pay substantial dividends.

slot-naming index notationAs an example of the power of this slot-naming index notation, consider the con-
traction of the first and third slots of a third-rank tensor T. In any basis the components
of 1&3contraction(T) are Taba; cf. Eq. (1.9h). Correspondingly, in slot-naming index
notation we denote 1&3contraction(T) by the simple expression Taba. We can think
of the first and third slots as annihilating each other by the contraction, leaving free
only the second slot (named b) and therefore producing a rank-1 tensor (a vector).

We should caution that the phrase “slot-naming index notation” is unconventional.
You are unlikely to find it in any other textbooks. However, we like it. It says precisely
what we want it to say.

1.5.21.5.2 Particle Kinetics in Index Notation

As an example of slot-naming index notation, we can rewrite the equations of particle
kinetics (1.7) as follows:

vi = dxi
dt

, pi =mvi , ai = dvi
dt
= d

2xi
dt2

,

E = 1
2
mvjvj , dpi

dt
= q(Ei + εijkvjBk). (1.10)

(In the last equation εijk is the so-called Levi-Civita tensor, which is used to produce
the cross product; we shall learn about it in Sec. 1.7. And note that the scalar energy
E must not be confused with the electric field vector Ei.)

Equations (1.10) can be viewed in either of two ways: (i) as the basis-independent
geometric laws v = dx/dt , p=mv, a = dv/dt = d2x/dt2, E = 1

2mv2, and dp/dt =
q(E + v × B) written in slot-naming index notation; or (ii) as equations for the
components of v, p, a, E, and B in some particular Cartesian coordinate system.

EXERCISESExercise 1.3 Derivation: Component Manipulation Rules
Derive the component manipulation rules (1.9g) and (1.9h).

Exercise 1.4 Example and Practice: Numerics of Component Manipulations
The third-rank tensor S( , , ) and vectors A and B have as their only nonzero
components S123 = S231 = S312 = +1, A1 = 3, B1 = 4, B2 = 5. What are the
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components of the vector C= S(A, B, ), the vector D= S(A, , B), and the tensor
W = A⊗ B?

[Partial solution: In component notation, Ck = SijkAiBj , where (of course) we
sum over the repeated indices i and j . This tells us that C1= S231A2B3, because
S231 is the only component of S whose last index is a 1; this in turn implies that
C1= 0, since A2 = 0. Similarly, C2 = S312A3B1= 0 (because A3= 0). Finally, C3=
S123A1B2 =+1× 3× 5= 15. Also, in component notation Wij = AiBj , so W11=
A1× B1= 3× 4 = 12, and W12 = A1× B2 = 3× 5= 15. Here the × stands for
numerical multiplication, not the vector cross product.]

Exercise 1.5 Practice: Meaning of Slot-Naming Index Notation
(a) The following expressions and equations are written in slot-naming index nota-

tion. Convert them to geometric, index-free notation:AiBjk,AiBji, Sijk = Skji,
AiBi = AiBjgij .

(b) The following expressions are written in geometric, index-free notation. Convert
them to slot-naming index notation: T( , , A), T( , S(B, ), ).

1.6 1.6 Orthogonal Transformations of Bases

Consider two different Cartesian coordinate systems {x , y , z} ≡ {x1, x2, x3}, and
{x̄ , ȳ , z̄} ≡ {x1̄, x2̄, x3̄}. Denote by {ei} and {ep̄} the corresponding bases. It is possible
to expand the basis vectors of one basis in terms of those of the other. We denote the
expansion coefficients by the letter R and write

ei = ep̄Rp̄i , ep̄ = eiRip̄. (1.11)

The quantities Rp̄i and Rip̄ are not the components of a tensor; rather, they are the
elements of transformation matrices

[Rp̄i]=
⎡⎢⎣ R1̄1 R1̄2 R1̄3

R2̄1 R2̄2 R2̄3

R3̄1 R3̄2 R3̄3

⎤⎥⎦, [Rip̄]=
⎡⎢⎣ R11̄ R12̄ R13̄

R21̄ R22̄ R23̄

R31̄ R32̄ R33̄

⎤⎥⎦. (1.12a)

(Here and throughout this book we use square brackets to denote matrices.) These
two matrices must be the inverse of each other, since one takes us from the barred basis
to the unbarred, and the other in the reverse direction, from unbarred to barred:

Rp̄iRiq̄ = δp̄q̄ , Rip̄Rp̄j = δij . (1.12b)

The orthonormality requirement for the two bases implies that δij = ei . ej =
(ep̄Rp̄i) . (eq̄Rq̄j) = Rp̄iRq̄j(ep̄ . eq̄) = Rp̄iRq̄jδp̄q̄ = Rp̄iRp̄j. This says that the
transpose of [Rp̄i] is its inverse—which we have already denoted by [Rip̄]:

[Rip̄]≡ inverse
(
[Rp̄i]
)= transpose

(
[Rp̄i]
)
. (1.12c)
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This property implies that the transformation matrix is orthogonal, so the transfor- orthogonal transformation
and rotationmation is a reflection or a rotation (see, e.g., Goldstein, Poole, and Safko, 2002). Thus

(as should be obvious and familiar), the bases associated with any two Euclidean co-
ordinate systems are related by a reflection or rotation, and the matrices (1.12a) are
called rotation matrices. Note that Eq. (1.12c) does not say that [Rip̄] is a symmetric
matrix. In fact, most rotation matrices are not symmetric [see, e.g., Eq. (1.14)].

The fact that a vector A is a geometric, basis-independent object implies that
A= Aiei = Ai(ep̄Rp̄i)= (Rp̄iAi)ep̄ = Ap̄ep̄:

Ap̄ = Rp̄iAi , and similarly, Ai = Rip̄Ap̄; (1.13a)

and correspondingly for the components of a tensor:

Tp̄q̄r̄ = Rp̄iRq̄jRr̄kTijk , Tijk = Rip̄Rjq̄Rkr̄Tp̄q̄r̄ . (1.13b)

It is instructive to compare the transformation law (1.13a) for the components of
a vector with Eqs. (1.11) for the bases. To make these laws look natural, we have
placed the transformation matrix on the left in the former and on the right in the
latter. In Minkowski spacetime (Chap. 2), the placement of indices, up or down, will
automatically tell us the order.

If we choose the origins of our two coordinate systems to coincide, then the vector
x reaching from the common origin to some point P, whose coordinates arexj andxp̄,
has components equal to those coordinates; and as a result, the coordinates themselves
obey the same transformation law as any other vector:

xp̄ = Rp̄ixi , xi = Rip̄xp̄ . (1.13c)

The product of two rotation matrices [Rip̄Rp̄ ¯̄s] is another rotation matrix [Ri ¯̄s],
which transforms the Cartesian bases e ¯̄s to ei. Under this product rule, the rotation

rotation groupmatrices form a mathematical group: the rotation group, whose group representations
play an important role in quantum theory.

EXERCISESExercise 1.6 **Example and Practice: Rotation in x-y Plane
Consider two Cartesian coordinate systems rotated with respect to each other in the
x-y plane as shown in Fig. 1.4.
(a) Show that the rotation matrix that takes the barred basis vectors to the unbarred

basis vectors is

[Rp̄i]=
⎡⎢⎣ cos φ sin φ 0
− sin φ cos φ 0

0 0 1

⎤⎥⎦, (1.14)

and show that the inverse of this rotation matrix is, indeed, its transpose, as it
must be if this is to represent a rotation.

(b) Verify that the two coordinate systems are related by Eq. (1.13c).
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FIGURE 1.4 Two Cartesian coordinate systems {x , y , z} and
{x̄ , ȳ , z̄} and their basis vectors in Euclidean space, rotated
by an angle φ relative to each other in the x-y plane. The z- and
z̄-axes point out of the paper or screen and are not shown.

(c) Let Aj be the components of the electromagnetic vector potential that lies in
the x-y plane, so that Az = 0. The two nonzero components Ax and Ay can be
regarded as describing the two polarizations of an electromagnetic wave propa-
gating in the z direction. Show thatAx̄ + iAȳ = (Ax + iAy)e−iφ. One can show
(cf. Sec. 27.3.3) that the factor e−iφ implies that the quantum particle associ-
ated with the wave—the photon—has spin one [i.e., spin angular momentum
� = (Planck’s constant)/2π].

(d) Let hjk be the components of a symmetric tensor that is trace-free (its contraction
hjj vanishes) and is confined to the x-y plane (so hzk = hkz = 0 for all k). Then
the only nonzero components of this tensor are hxx = −hyy and hxy = hyx.
As we shall see in Sec. 27.3.1, this tensor can be regarded as describing the
two polarizations of a gravitational wave propagating in the z direction. Show
that hx̄x̄ + ihx̄ȳ = (hxx + ihxy)e−2iφ. The factor e−2iφ implies that the quantum
particle associated with the gravitational wave (the graviton) has spin two (spin
angular momentum 2�); cf. Eq. (27.31) and Sec. 27.3.3.

1.7 1.7 Differentiation of Scalars, Vectors, and Tensors; Cross Product and Curl

Consider a tensor field T(P) in Euclidean 3-space and a vector A. We define the
directional derivative directional derivative of T along A by the obvious limiting procedure

∇AT ≡ lim
ε→0

1
ε

[T(xP + εA)− T(xP)] (1.15a)

and similarly for the directional derivative of a vector field B(P) and a scalar field
ψ(P). [Here we have denoted points, e.g., P, by the vector xP that reaches from some
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arbitrary origin to the point, and T(xP) denotes the field’s dependence on location in
space; T’s slots and dependence on what goes into the slots are suppressed; and the
units of ε are chosen to ensure that εA has the same units as xP . There is no other
appearance of vectors in this chapter.] In definition (1.15a), the quantity in square
brackets is simply the difference between two linear functions of vectors (two tensors),
so the quantity on the left-hand side is also a tensor with the same rank as T.

It should not be hard to convince oneself that this directional derivative∇AT of any
tensor field T is linear in the vector A along which one differentiates. Correspondingly,
if T has rankn (n slots), then there is another tensor field, denoted∇T, with rankn+ 1,
such that

∇AT =∇T( , , , A). (1.15b)

Here on the right-hand side the first n slots (3 in the case shown) are left empty, and gradient
A is put into the last slot (the “differentiation slot”). The quantity ∇T is called the
gradient of T. In slot-naming index notation, it is conventional to denote this gradient
by Tabc;d , where in general the number of indices preceding the semicolon is the rank
of T. Using this notation, the directional derivative of T along A reads [cf. Eq. (1.15b)]
Tabc;jAj .

It is not hard to show that in any Cartesian coordinate system, the components of
the gradient are nothing but the partial derivatives of the components of the original
tensor, which we denote by a comma:

Tabc;j = ∂Tabc
∂xj

≡ Tabc ,j . (1.15c)

In a non-Cartesian basis (e.g., the spherical and cylindrical bases often used in electro-
magnetic theory), the components of the gradient typically are not obtained by simple
partial differentiation [Eq. (1.15c) fails] because of turning and/or length changes of
the basis vectors as we go from one location to another. In Sec. 11.8, we shall learn
how to deal with this by using objects called connection coefficients. Until then, we
confine ourselves to Cartesian bases, so subscript semicolons and subscript commas
(partial derivatives) can be used interchangeably.

Because the gradient and the directional derivative are defined by the same stan-
dard limiting process as one uses when defining elementary derivatives, they obey the
standard (Leibniz) rule for differentiating products:

∇A(S⊗ T)= (∇AS)⊗ T + S⊗∇AT,
or (SabTcde);jAj = (Sab;jAj)Tcde + Sab(Tcde;jAj); (1.16a)

and

∇A(f T)= (∇Af )T + f∇AT, or (f Tabc);jAj = (f;jAj)Tabc + f Tabc;jAj .

(1.16b)
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In an orthonormal basis these relations should be obvious: they follow from the
Leibniz rule for partial derivatives.

Because the components gab of the metric tensor are constant in any Cartesian
coordinate system, Eq. (1.15c) (which is valid in such coordinates) guarantees that
gab;j = 0; i.e., the metric has vanishing gradient:

∇g= 0, or gab;j = 0. (1.17)

From the gradient of any vector or tensor we can construct several other important
derivatives by contracting on slots:

1. Since the gradient ∇A of a vector field A has two slots, ∇A( , ), we can
contract its slots on each other to obtain a scalar field. That scalar field is the

divergence divergence of A and is denoted

∇ . A≡ (contraction of ∇A)= Aa ;a . (1.18)

2. Similarly, if T is a tensor field of rank 3, then Tabc;c is its divergence on its
third slot, and Tabc;b is its divergence on its second slot.

3. By taking the double gradient and then contracting on the two gradient slots
we obtain, from any tensor field T, a new tensor field with the same rank,

laplacian ∇2T ≡ (∇ . ∇)T , or Tabc;jj . (1.19)

Here and henceforth, all indices following a semicolon (or comma) represent
gradients (or partial derivatives):Tabc;jj ≡ Tabc;j ;j ,Tabc ,jk ≡ ∂2Tabc/∂xj∂xk.
The operator ∇2 is called the laplacian.

The metric tensor is a fundamental property of the space in which it lives; it
embodies the inner product and hence the space’s notion of distance. In addition to
the metric, there is one (and only one) other fundamental tensor that describes a piece
of Euclidean space’s geometry: the Levi-Civita tensor ε, which embodies the space’sLevi-Civita tensor

notion of volume.
In a Euclidean space with dimension n, the Levi-Civita tensor ε is a completely

antisymmetric tensor with rank n (with n slots). A parallelepiped whose edges are the
n vectors A, B, . . . , F is said to have the volume

volume volume= ε(A, B, . . . , F). (1.20)

(We justify this definition in Sec. 1.8.) Notice that this volume can be positive or
negative, and if we exchange the order of the parallelepiped’s legs, the volume’s sign
changes: ε(B, A, . . . , F)=−ε(A, B, . . . , F) by antisymmetry of ε.

It is easy to see (Ex. 1.7) that (i) the volume vanishes unless the legs are all linearly
independent, (ii) once the volume has been specified for one parallelepiped (one
set of linearly independent legs), it is thereby determined for all parallelepipeds,
and therefore, (iii) we require only one number plus antisymmetry to determine ε

24 Chapter 1. Newtonian Physics: Geometric Viewpoint

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



fully. If the chosen parallelepiped has legs that are orthonormal (all are orthogonal
to one another and all have unit length—properties determined by the metric g),
then it must have unit volume, or more precisely volume ±1. This is a compatibility
relation between g and ε. It is easy to see (Ex. 1.7) that (iv) ε is fully determined by its
antisymmetry, compatibility with the metric, and a single sign: the choice of which
parallelepipeds have positive volume and which have negative. It is conventional
in Euclidean 3-space to give right-handed parallelepipeds positive volume and left-
handed ones negative volume: ε(A, B, C) is positive if, when we place our right thumb
along C and the fingers of our right hand along A, then bend our fingers, they sweep
toward B and not−B.

These considerations dictate that in a right-handed orthonormal basis of Eu-
clidean 3-space, the only nonzero components of ε are

ε123=+1,

εabc =

⎧⎪⎨⎪⎩
+1 if a , b, c is an even permutation of 1, 2, 3
−1 if a , b, c is an odd permutation of 1, 2, 3
0 if a , b, c are not all different;

(1.21)

and in a left-handed orthonormal basis, the signs of these components are reversed.
cross product and curlThe Levi-Civita tensor is used to define the cross product and the curl:

A× B≡ ε( , A, B); in slot-naming index notation, εijkAjBk; (1.22a)

∇× A≡ (the vector field whose slot-naming index form is εijkAk;j ). (1.22b)

[Equation (1.22b) is an example of an expression that is complicated if stated in index-
free notation; it says that ∇×A is the double contraction of the rank-5 tensor ε⊗∇A
on its second and fifth slots, and on its third and fourth slots.]

Although Eqs. (1.22a) and (1.22b) look like complicated ways to deal with concepts
that most readers regard as familiar and elementary, they have great power. The power
comes from the following property of the Levi-Civita tensor in Euclidean 3-space
[readily derivable from its components (1.21)]:

εijmεklm = δijkl ≡ δikδjl − δil δjk . (1.23)

Here δi
k

is the Kronecker delta. Examine the 4-index delta function δijkl carefully; it says
that either the indices above and below each other must be the same (i = k and j = l)
with a+ sign, or the diagonally related indices must be the same (i = l and j = k) with
a− sign. [We have put the indices ij of δijkl up solely to facilitate remembering this rule.
Recall (first paragraph of Sec. 1.5) that in Euclidean space and Cartesian coordinates,
it does not matter whether indices are up or down.] With the aid of Eq. (1.23) and the
index-notation expressions for the cross product and curl, one can quickly and easily
derive a wide variety of useful vector identities; see the very important Ex. 1.8.
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EXERCISES Exercise 1.7 Derivation: Properties of the Levi-Civita Tensor
From its complete antisymmetry, derive the four properties of the Levi-Civita tensor,
in n-dimensional Euclidean space, that are claimed in the text following Eq. (1.20).

Exercise 1.8 **Example and Practice: Vectorial Identities for the Cross Product
and Curl
Here is an example of how to use index notation to derive a vector identity for the dou-
ble cross product A× (B× C): in index notation this quantity is εijkAj(εklmBlCm).
By permuting the indices on the second ε and then invoking Eq. (1.23), we can write
this as εijkεlmkAjBlCm = δlmij AjBlCm. By then invoking the meaning of the 4-index
delta function [Eq. (1.23)], we bring this into the form AjBiCj − AjBjCi, which
is the slot-naming index-notation form of (A . C)B− (A . B)C. Thus, it must be that
A× (B× C)= (A . C)B− (A . B)C. Use similar techniques to evaluate the following
quantities.

(a) ∇× (∇× A).
(b) (A× B) . (C×D).
(c) (A× B)× (C×D).

Exercise 1.9 **Example and Practice: Levi-Civita Tensor in 2-Dimensional
Euclidean Space
In Euclidean 2-space, let {e1, e2} be an orthonormal basis with positive volume.

(a) Show that the components of ε in this basis are

ε12 =+1, ε21=−1, ε11= ε22 = 0. (1.24a)

(b) Show that

εikεjk = δij . (1.24b)

1.8 1.8 Volumes, Integration, and Integral Conservation Laws

In Cartesian coordinates of 2-dimensional Euclidean space, the basis vectors are
orthonormal, so (with a conventional choice of sign) the components of the Levi-
Civita tensor are given by Eqs. (1.24a). Correspondingly, the area (i.e., 2-dimensional
volume) of a parallelogram whose sides are A and B is

2-volume= ε(A, B)= εabAaBb = A1B2 − A2B1= det
[
A1 B1

A2 B2

]
, (1.25)

a relation that should be familiar from elementary geometry. Equally familiar should
be the following expression for the 3-dimensional volume of a parallelepiped with legs
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A, B, and C [which follows from the components (1.21) of the Levi-Civita tensor]:

3-volume3-volume= ε(A, B, C)= εijkAiBjCk =A . (B×C)= det

⎡⎢⎣ A1 B1 C1

A2 B2 C2

A3 B3 C3

⎤⎥⎦. (1.26)

Our formal definition (1.20) of volume is justified because it gives rise to these familiar
equations.

Equations (1.25) and (1.26) are foundations from which one can derive the usual
formulas dA = dx dy and dV = dx dy dz for the area and volume of elementary
surface and volume elements with Cartesian side lengths dx, dy, and dz (Ex. 1.10).

In Euclidean 3-space, we define the vectorial surface area of a 2-dimensional
parallelogram with legs A and B to be

�= A× B= ε( , A, B). (1.27)

This vectorial surface area has a magnitude equal to the area of the parallelogram vectorial surface area
and a direction perpendicular to it. Notice that this surface area ε( , A, B) can be
thought of as an object that is waiting for us to insert a third leg, C, so as to compute
a 3-volume ε(C, A, B)—the volume of the parallelepiped with legs C, A, and B.

A parallelogram’s surface has two faces (two sides), called the positive face and the
negative face. If the vector C sticks out of the positive face, then �(C)= ε(C, A, B) is
positive; if C sticks out of the negative face, then �(C) is negative.

1.8.11.8.1 Gauss’s and Stokes’ Theorems

Such vectorial surface areas are the foundation for surface integrals in 3-dimensional Gauss’s and Stokes’
theoremsspace and for the familiar Gauss’s theorem,∫

V3

(∇ . A)dV =
∫
∂V3

A . d� (1.28a)

(where V3 is a compact 3-dimensional region, and ∂V3 is its closed 2-dimensional
boundary) and Stokes’ theorem,∫

V2

∇× A . d�=
∫
∂V2

A . dl (1.28b)

(where V2 is a compact 2-dimensional region, ∂V2 is the 1-dimensional closed curve
that bounds it, and the last integral is a line integral around that curve); see, e.g.,
Arfken, Weber, and Harris (2013).

This mathematics is illustrated by the integral and differential conservation laws
for electric charge and for particles: The total charge and the total number of particles
inside a 3-dimensional region of space V3 are

∫
V3
ρe dV and

∫
V3
ndV , where ρe is

the charge density and n the number density of particles. The rates that charge and
particles flow out of V3 are the integrals of the current density j and the particle flux
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vector S over its boundary ∂V3. Therefore, the integral laws of charge conservation and

integral conservation laws

particle conservation are

d

dt

∫
V3

ρe dV +
∫
∂V3

j . d�= 0, d

dt

∫
V3

ndV +
∫
∂V3

S . d�= 0. (1.29)

Pull the time derivative inside each volume integral (where it becomes a partial
derivative), and apply Gauss’s law to each surface integral; the results are

∫
V3
(∂ρe/∂t +

∇ . j)dV = 0 and similarly for particles. The only way these equations can be true for
all choices of V3 is for the integrands to vanish:

∂ρe/∂t +∇ . j= 0, ∂n/∂t +∇ . S= 0. (1.30)

These are the differential conservation laws for charge and for particles. They have a

differential conservation
laws

standard, universal form: the time derivative of the density of a quantity plus the
divergence of its flux vanishes.

Note that the integral conservation laws (1.29) and the differential conservation
laws (1.30) require no coordinate system or basis for their description, and no coordi-
nate system or basis was used in deriving the differential laws from the integral laws.
This is an example of the fundamental principle that the Newtonian physical laws are
all expressible as geometric relationships among geometric objects.

EXERCISES Exercise 1.10 Derivation and Practice: Volume Elements in Cartesian Coordinates
Use Eqs. (1.25) and (1.26) to derive the usual formulas dA= dxdy and dV = dxdydz
for the 2-dimensional and 3-dimensional integration elements, respectively, in right-
handed Cartesian coordinates. [Hint: Use as the edges of the integration volumes
dx ex, dy ey, and dz ez.]

Exercise 1.11 Example and Practice: Integral of a Vector Field over a Sphere
Integrate the vector field A = zez over a sphere with radius a, centered at the origin
of the Cartesian coordinate system (i.e., compute

∫
A . d�). Hints:

(a) Introduce spherical polar coordinates on the sphere, and construct the vectorial
integration element d� from the two legs adθ e

θ̂
and a sin θdφ e

φ̂
. Here e

θ̂
and

e
φ̂

are unit-length vectors along the θ and φ directions. (Here as in Sec. 1.6 and
throughout this book, we use accents on indices to indicate which basis the index
is associated with: hats here for the spherical orthonormal basis, bars in Sec. 1.6
for the barred Cartesian basis.) Explain the factors adθ and a sin θdφ in the
definitions of the legs. Show that

d�= ε( , e
θ̂

, e
φ̂
)a2 sin θdθdφ . (1.31)

(b) Using z= a cos θ and ez = cos θer̂ − sin θe
θ̂

on the sphere (where er̂ is the unit
vector pointing in the radial direction), show that

A . d�= a cos2 θ ε(er̂ , e
θ̂

, e
φ̂
) a2 sin θdθdφ .
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(c) Explain why ε(er̂ , e
θ̂

, e
φ̂
)= 1.

(d) Perform the integral
∫

A . d�over the sphere’s surface to obtain your final answer
(4π/3)a3. This, of course, is the volume of the sphere. Explain pictorially why this
had to be the answer.

Exercise 1.12 Example: Faraday’s Law of Induction
One of Maxwell’s equations says that ∇× E =−∂B/∂t (in SI units), where E and
B are the electric and magnetic fields. This is a geometric relationship between ge-
ometric objects; it requires no coordinates or basis for its statement. By integrating
this equation over a 2-dimensional surface V2 with boundary curve ∂V2 and applying
Stokes’ theorem, derive Faraday’s law of induction—again, a geometric relationship
between geometric objects.

1.91.9 The Stress Tensor and Momentum Conservation

Press your hands together in the y-z plane and feel the force that one hand exerts
on the other across a tiny area A—say, one square millimeter of your hands’ palms

force vector(Fig. 1.5). That force, of course, is a vector F. It has a normal component (along the
x direction). It also has a tangential component: if you try to slide your hands past
each other, you feel a component of force along their surface, a “shear” force in the
y and z directions. Not only is the force F vectorial; so is the 2-surface across which
it acts, �= A ex. (Here ex is the unit vector orthogonal to the tiny area A, and we
have chosen the negative side of the surface to be the−x side and the positive side to
be +x. With this choice, the force F is that which the negative hand, on the −x side,
exerts on the positive hand.)

Now, it should be obvious that the force F is a linear function of our chosen surface
stress tensor�. Therefore, there must be a tensor, the stress tensor, that reports the force to us when

we insert the surface into its second slot:

F( )= T( , �), or Fi = Tij�j . (1.32)

x y

z

FIGURE 1.5 Hands, pressed
together, exert a force on
each other.
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Newton’s law of action and reaction tells us that the force that the positive hand
exerts on the negative hand must be equal and opposite to that which the negative
hand exerts on the positive. This shows up trivially in Eq. (1.32): by changing the sign
of �, one reverses which hand is regarded as negative and which positive, and since
T is linear in �, one also reverses the sign of the force.

The definition (1.32) of the stress tensor gives rise to the following physical mean-
ing of its components:

meaning of components of
stress tensor

Tjk =
(
j component of force per unit area
across a surface perpendicular to ek

)

=
⎛⎝ j component of momentum that crosses a unit

area that is perpendicular to ek, per unit time,
with the crossing being from−xk to+xk

⎞⎠.
(1.33)

The stresses inside a table with a heavy weight on it are described by the stress
tensor T, as are the stresses in a flowing fluid or plasma, in the electromagnetic field,
and in any other physical medium. Accordingly, we shall use the stress tensor as an
important mathematical tool in our study of force balance in kinetic theory (Chap.
3), elasticity (Part IV), fluid dynamics (Part V), and plasma physics (Part VI).

symmetry of stress tensor It is not obvious from its definition, but the stress tensor T is always symmetric in its
two slots. To see this, consider a small cube with sideL in any medium (or field) (Fig.
1.6). The medium outside the cube exerts forces, and hence also torques, on the cube’s
faces. The z-component of the torque is produced by the shear forces on the front and
back faces and on the left and right. As shown in the figure, the shear forces on the front
and back faces have magnitudes TxyL2 and point in opposite directions, so they exert
identical torques on the cube, Nz = TxyL2(L/2) (where L/2 is the distance of each
face from the cube’s center). Similarly, the shear forces on the left and right faces have
magnitudesTyxL2 and point in opposite directions, thereby exerting identical torques
on the cube,Nz =−TyxL2(L/2). Adding the torques from all four faces and equating
them to the rate of change of angular momentum, 1

6ρL
5d�z/dt (where ρ is the mass

density, 1
6ρL

5 is the cube’s moment of inertia, and�z is the z component of its angular
velocity), we obtain (Txy − Tyx)L3= 1

6ρL
5d�z/dt . Now, let the cube’s edge length

become arbitrarily small, L→ 0. If Txy − Tyx does not vanish, then the cube will be
set into rotation with an infinitely large angular acceleration, d�z/dt ∝ 1/L2→∞—
an obviously unphysical behavior. Therefore, Tyx = Txy, and similarly for all other
components: the stress tensor is always symmetric under interchange of its two slots.

1.9.1 1.9.1 Examples: Electromagnetic Field and Perfect Fluid

Two examples will make the concept of the stress tensor more concrete.

. Electromagnetic field: See Ex. 1.14.
perfect fluid . Perfect fluid: A perfect fluid is a medium that can exert an isotropic pressure

P but no shear stresses, so the only nonzero components of its stress tensor
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FIGURE 1.6 The shear forces exerted on the left, right, front, and
back faces of a vanishingly small cube of side length L. The
resulting torque about the z direction will set the cube into
rotation with an arbitrarily large angular acceleration unless the
stress tensor is symmetric.

in a Cartesian basis are Txx = Tyy = Tzz = P . (Examples of nearly perfect
fluids are air and water, but not molasses.) We can summarize this property
by Tij = Pδij or equivalently, since δij are the components of the Euclidean
metric, Tij = P gij . The frame-independent version of this is

T = Pg or, in slot-naming index notation, Tij = P gij . (1.34)

Note that, as always, the formula in slot-naming index notation looks iden-
tical to the formula Tij = P gij for the components in our chosen Cartesian
coordinate system. To check Eq. (1.34), consider a 2-surface �= An with
area A oriented perpendicular to some arbitrary unit vector n. The vecto-
rial force that the fluid exerts across � is, in index notation, Fj = Tjk�k =
P gjkAnk = PAnj (i.e., it is a normal force with magnitude equal to the fluid
pressure P times the surface area A). This is what it should be.

1.9.21.9.2 Conservation of Momentum

The stress tensor plays a central role in the Newtonian law of momentum conservation
because (by definition) the force acting across a surface is the same as the rate of flow of
momentum, per unit area, across the surface: the stress tensor is the flux of momentum.

Consider the 3-dimensional region of space V3 used above in formulating the
integral laws of charge and particle conservation (1.29). The total momentum in V3
is
∫
V3

GdV , where G is the momentum density. This quantity changes as a result
of momentum flowing into and out of V3. The net rate at which momentum flows
outward is the integral of the stress tensor over the surface ∂V3 of V3. Therefore, by
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analogy with charge and particle conservation (1.29), the integral law of momentum
conservation says

integral conservation of
momentum

d

dt

∫
V3

GdV +
∫
∂V3

T . d�= 0. (1.35)

By pulling the time derivative inside the volume integral (where it becomes a
partial derivative) and applying the vectorial version of Gauss’s law to the surface
integral, we obtain

∫
V3
(∂G/∂t + ∇ . T) dV = 0. This can be true for all choices of

V3 only if the integrand vanishes:

∂G
∂t
+∇ . T = 0, or

∂Gj

∂t
+ Tjk; k = 0. (1.36)

(Because T is symmetric, it does not matter which of its slots the divergence acts on.)
This is the differential law of momentum conservation. It has the standard form for

differential conservation
of momentum

any local conservation law: the time derivative of the density of some quantity (here
momentum), plus the divergence of the flux of that quantity (here the momentum
flux is the stress tensor), is zero. We shall make extensive use of this Newtonian law
of momentum conservation in Part IV (elasticity), Part V (fluid dynamics), and Part
VI (plasma physics).

EXERCISES Exercise 1.13 **Example: Equations of Motion for a Perfect Fluid
(a) Consider a perfect fluid with density ρ, pressure P , and velocity v that vary in

time and space. Explain why the fluid’s momentum density is G= ρv, and explain
why its momentum flux (stress tensor) is

T = Pg+ ρv ⊗ v , or, in slot-naming index notation, Tij = P gij + ρvivj .

(1.37a)

(b) Explain why the law of mass conservation for this fluid is

∂ρ

∂t
+∇ . (ρv)= 0. (1.37b)

(c) Explain why the derivative operator

d

dt
≡ ∂

∂t
+ v . ∇ (1.37c)

describes the rate of change as measured by somebody who moves locally with
the fluid (i.e., with velocity v). This is sometimes called the fluid’s advective time
derivative or convective time derivative or material derivative.
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(d) Show that the fluid’s law of mass conservation (1.37b) can be rewritten as
1
ρ

dρ

dt
=−∇ . v , (1.37d)

which says that the divergence of the fluid’s velocity field is minus the fractional
rate of change of its density, as measured in the fluid’s local rest frame.

(e) Show that the differential law of momentum conservation (1.36) for the fluid can
be written as

dv
dt
=−∇P

ρ
. (1.37e)

This is called the fluid’s Euler equation. Explain why this Euler equation is New-
ton’s second law of motion, F=ma, written on a per unit mass basis.

In Part V of this book, we use Eqs. (1.37) to study the dynamical behaviors of fluids.
For many applications, the Euler equation will need to be augmented by the force per
unit mass exerted by the fluid’s internal viscosity.

Exercise 1.14 **Problem: Electromagnetic Stress Tensor
(a) An electric field E exerts (in SI units) a pressure εoE2/2 orthogonal to itself and

a tension of this same magnitude along itself. Similarly, a magnetic field B exerts
a pressure B2/2μo = εoc2B2/2 orthogonal to itself and a tension of this same
magnitude along itself. Verify that the following stress tensor embodies these
stresses:

T = εo
2

[
(E2 + c2B2)g− 2(E ⊗ E + c2B⊗ B)

]
. (1.38)

(b) Consider an electromagnetic field interacting with a material that has a
charge density ρe and a current density j. Compute the divergence of the electro-
magnetic stress tensor (1.38) and evaluate the derivatives using Maxwell’s
equations. Show that the result is the negative of the force density that the
electromagnetic field exerts on the material. Use momentum conservation to
explain why this has to be so.

1.101.10 Geometrized Units and Relativistic Particles for Newtonian Readers

Readers who are skipping the relativistic parts of this book will need to know two
important pieces of relativity: (i) geometrized units and (ii) the relativistic energy and
momentum of a moving particle.

1.10.11.10.1 Geometrized Units

The speed of light is independent of one’s reference frame (i.e., independent of how
fast one moves). This is a fundamental tenet of special relativity, and in the era before
1983, when the meter and the second were defined independently, it was tested and
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confirmed experimentally with very high precision. By 1983, this constancy had
become so universally accepted that it was used to redefine the meter (which is hard
to measure precisely) in terms of the second (which is much easier to measure with
modern technology).11 The meter is now related to the second in such a way that the
speed of light is precisely c = 299,792,458 m s−1 (i.e., 1 meter is the distance traveled
by light in 1/299,792,458 seconds). Because of this constancy of the light speed, it is
permissible when studying special relativity to set c to unity. Doing so is equivalent
to the relationship

c = 2.99792458× 108 m s−1= 1 (1.39a)

between seconds and centimeters; i.e., equivalent to

1 s= 2.99792458× 108 m. (1.39b)

geometrized units We refer to units in which c= 1 as geometrized units, and we adopt them through-
out this book when dealing with relativistic physics, since they make equations look
much simpler. Occasionally it will be useful to restore the factors of c to an equation,
thereby converting it to ordinary (SI or cgs) units. This restoration is achieved easily
using dimensional considerations. For example, the equivalence of massm and rela-
tivistic energy E is written in geometrized units as E =m. In SI units E has dimensions
of joule = kg m2 s−2, whilem has dimensions of kg, so to make E =m dimensionally
correct we must multiply the right side by a power of c that has dimensions m2 s−2

(i.e., by c2); thereby we obtain E =mc2.

1.10.2 1.10.2 Energy and Momentum of a Moving Particle

A particle with rest massm, moving with velocity v = dx/dt and speed v = |v|, has a
relativistic energy and
momentum

relativistic energy E (including its rest mass), relativistic kinetic energyE (excluding
its rest mass), and relativistic momentum p given by

E = m√
1− v2

≡ m√
1− v2/c2

≡ E +m, p= Ev = mv√
1− v2

;

so E =
√
m2 + p2.

(1.40)

In the low-velocity (Newtonian) limit, the energy E with rest mass removed (kinetic
energy) and the momentum p take their familiar Newtonian forms:

When v c ≡ 1, E→ 1
2
mv2 and p→mv . (1.41)

11. The second is defined as the duration of 9,192,631,770 periods of the radiation produced by a certain
hyperfine transition in the ground state of a 133Cs atom that is at rest in empty space. Today (2016)
all fundamental physical units except mass units (e.g., the kilogram) are defined similarly in terms of
fundamental constants of Nature.
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A particle with zero rest mass (a photon or a graviton)12 always moves with the speed
of light v = c= 1, and like other particles it has momentum p= Ev, so the magnitude
of its momentum is equal to its energy: |p| = Ev = Ec = E.

When particles interact (e.g., in chemical reactions, nuclear reactions, and
elementary-particle collisions) the sum of the particle energies E is conserved, as
is the sum of the particle momenta p.

For further details and explanations, see Chap. 2.

EXERCISESExercise 1.15 Practice: Geometrized Units
Convert the following equations from the geometrized units in which they are written
to SI units.
(a) The “Planck time” tP expressed in terms of Newton’s gravitation constantG and

Planck’s reduced constant �, tP =
√
G�. What is the numerical value of tP in

seconds? in meters?
(b) The energy E = 2m obtained from the annihilation of an electron and a positron,

each with rest massm.
(c) The Lorentz force lawmdv/dt = e(E + v × B).
(d) The expression p= �ωn for the momentum p of a photon in terms of its angular

frequency ω and direction n of propagation.
How tall are you, in seconds? How old are you, in meters?

Bibliographic Note

Most of the concepts developed in this chapter are treated, though from rather dif-
ferent viewpoints, in intermediate and advanced textbooks on classical mechanics
or electrodynamics, such as Marion and Thornton (1995); Jackson (1999); Griffiths
(1999); Goldstein, Poole, and Safko (2002).

Landau and Lifshitz’s (1976) advanced text Mechanics is famous for its concise
and precise formulations; it lays heavy emphasis on symmetry principles and their
implications. A similar approach is followed in the next volume in their Course of
Theoretical Physics series, The Classical Theory of Fields (Landau and Lifshitz, 1975),
which is rooted in special relativity and goes on to cover general relativity. We refer
to other volumes in this remarkable series in subsequent chapters.

The three-volume Feynman Lectures on Physics (Feynman, Leighton, and Sands,
2013) had a big influence on several generations of physicists, and even more so on
their teachers. Both of us (Blandford and Thorne) are immensely indebted to Richard
Feynman for shaping our own approaches to physics. His insights on the foundations

12. We do not know for sure that photons and gravitons are massless, but the laws of physics as currently
understood require them to be massless, and there are tight experimental limits on their rest masses.
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of classical physics and its relationship to quantum mechanics, and on calculational
techniques, are as relevant today as in 1963, when his course was first delivered.

The geometric viewpoint on the laws of physics, which we present and advocate
in this chapter, is not common (but it should be because of its great power). For ex-
ample, the vast majority of mechanics and electrodynamics textbooks, including all
those listed above, define a tensor as a matrix-like entity whose components trans-
form under rotations in the manner described by Eq. (1.13b). This is a complicated
definition that hides the great simplicity of a tensor as nothing more than a linear
function of vectors; it obscures thinking about tensors geometrically, without the aid
of any coordinate system or basis.

The geometric viewpoint comes to the physics community from mathematicians,
largely by way of relativity theory. By now, most relativity textbooks espouse it. See the
Bibliographic Note to Chap. 2. Fortunately, this viewpoint is gradually seeping into
the nonrelativistic physics curriculum (e.g., Kleppner and Kolenkow, 2013). We hope
this chapter will accelerate that seepage.
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4-force
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4-momentum
as a geometric object, 50
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and affine parameter, 51
related to 4–velocity, 50
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4-momentum conservation (energy-momentum
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3+1 split: energy and momentum conservation, 60, 85–88
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for perfect fluid, 86–87
for electromagnetic field and charged matter, 88

4-momentum density, 82
4–velocity
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aberration of photon propagation direction, 107
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action principles

Hamilton’s, in analytical mechanics, 15
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definition, 243
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advective (convective) time derivative, 32
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Andromeda galaxy, 305
angular momentum
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of fundamental particles (spin), 22
of a Kerr black hole, 204–205, 226n
in statistical mechanics, 169, 172–173, 179

angular momentum conservation, Newtonian, 14–15
atmosphere of Earth

chemical reactions in, 256–258
and greenhouse effect, 138

atomic bomb, 153

bandwidth of a filter, 315–318
basis vectors in Euclidean space

orthogonal transformation of, 20–21
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Lorentz transformation of, 63–65
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concept of, 160
general, 172
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black holes
laws of black-hole mechanics and thermodynamics,

205–209
statistical mechanics of, 204–206
entropy of, 205–209
inside a box: thermal equilibrium, 206–209
quantum thermal atmosphere of, 204–205
Hawking radiation from, 204–205
accretion of gas onto, 205

blackbody (Planck) distribution and specific intensity, 113,
128, 132

Boltzmann distribution (mean occupation number), 113,
177

Boltzmann equation, collisionless, 134–135, 167, 169
derivation from Hamiltonian, 136b–137b
implies conservation of particles and 4-momentum, 135

Boltzmann transport equation, 135, 139
for photons scattered by thermalized electrons, 144–148
accuracy of solutions, 140–141
order-of-magnitude solution, 143–144
solution via Fokker-Planck equation, 343

boost, Lorentz, 64–65
Bose-Einstein condensate, 193–201

condensation process, 193, 196, 197f, 198–200
critical temperature, 196
specific heat change, 200
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Bose-Einstein ensemble
probabilistic distribution function for, 176
mean occupation number of, 112–113, 176–177
entropy of, 187

bosons, 110
bremsstrahlung, 142, 260
Brownian motion, 296, 309, 313–315. See also random walk

spectral density and correlation function for, 313–314
relaxation time for, 328
fluctuation-dissipation theorem applied to, 327–329

canonical ensemble, 160t, 169–172, 221t
distribution function, 171, 173

canonical transformation, 162, 164, 166
Cartesian coordinates, 16, 26, 28
central limit theorem, 292–294

examples and applications of, 261, 294–295, 322
Chapman-Kolmogorov equation. See Smoluchowski

equation
charge density

as time component of charge-current 4–vector, 74

charge-current 4–vector
geometric definition, 78
components: charge and current density, 78
local (differential) conservation law for, 79
global (integral) conservation law for, 79, 79f

evaluation in a Lorentz frame, 81
relation to nonrelativistic conservation of charge, 81

chemical free energy (Gibbs potential), 246–249. See also
under fundamental thermodynamic potentials;
fundamental thermodynamic potentials out of
statistical equilibrium

chemical potential, excluding rest mass, μ, 112, 173
chemical potential, including rest mass, μ̃, 112, 172–173
chemical reactions, including nuclear and particle, 256

direction controlled by Gibbs potential (chemical-
potential sum), 256–258

partial statistical equilibrium for, 256
examples

water formation from hydrogen and oxygen, 256–257
electron-positron pair formation, 258–259
emission and absorption of photons, 115–116
ionization of hydrogen: Saha equation, 259–260
nucleosynthesis in nuclear age of early universe,

192–193
chronology protection, 69
Clausius-Clapeyron equation, 254–255
clocks

ideal, 39, 39n, 49
frequency fluctuations of, 310f, 310n, 320–321

coarse graining, 183–185, 184f, 206, 210–211
communication theory, 211–217
component manipulation rules

in Euclidean space, 16–19
in spacetime with orthormal basis, 54–57

conductivity, electrical, κe, 139
conductivity, thermal, κ , 139

for photons scattered by thermalized electrons, 148
derivation from Boltzmann transport equation, 144–148

conservation laws
differential and integral, in Euclidean 3-space, 28
differential and integral, in spacetime, 79

contraction of tensors
formal definition, 12–13, 48
in slot-naming index notation, 19
component representation, 17, 56

coordinate independence. See geometric principle; principle
of relativity

correlation functions
for 1-dimensional random process, 297

correlation (relaxation) time of, 297
value at zero delay is variance, 297

for 2-dimensional random process, 306–308
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cross correlation, 307
for 3-dimensional random process

cosmological density fluctuations (galaxy distribution),
304–306, 306f

applications of
Brownian motion, 314
cosmological density fluctuations, 303–306

correlation (relaxation) time, 297, 298f
cosmic microwave background (CMB)

Doppler shift of due to Earth’s motion, 116–117
cross correlation, 306–308
cross product, 25–26
cross spectral density, 307–308
curl, 25–26
current density

as spatial part of charge-current 4–vector, 74
curve, 9, 49
Cygnus X-1, 111

d’Alembertian (wave operator), 71
de Broglie waves, 44b
decoherence, quantum, and entropy increase, 185, 186b–

187b, 190–191
degeneracy, of gas, 122–124, 122f

relativistic, 122f, 125, 127
density of states (modes)

for free particles, 108–110
in statistical mechanics, 162–163

density operator (matrix), in quantum statistical mechanics,
165b–166b

derivatives of scalars, vectors, and tensors
directional derivatives, 22–23, 70
gradients, 23, 70–71

differential forms, 78
one-forms used for 3–volumes and integration,

77n
and Stokes’ theorem, 78

diffusion. See also Boltzmann transport equation; diffusion
coefficient; diffusion equation

approximation: criteria for validity, 140
conditional probability for, 291–292
of neutrons in a nuclear reactor, 151–153

diffusion coefficient
defined, 139
for particle diffusion through thermalized scatterers,

150–151
for temperature, in thermally conducting fluid, 142

diffusion equation, 140
solution in infinite, homogenous medium, 141, 291
and random walk, 140, 140n
Fokker-Planck equation as, 339
for temperature in homogenous medium, 142

Dirac equation, 44b
energy eigenstates (modes) of, 175n

directional derivative, 22–23, 70
distribution function

as a geometrical object, 162
Newtonian number density in phase space, 99
relativistic number density in phase space, 104
statistical mechanical, number density of systems in phase

space, 163
statistical mechanical, probabilistic, ρ, 161

in statistical equilibrium, general, 173
normalization, 163

mean occupation number, 108–110. See also occupation
number, mean

isotropic, 120–121
integrals over momentum space, 117–121
evolution of. See Boltzmann equation, collisionless;

Boltzmann transport equation
for photons, 106–108

in terms of specific intensity, 107
for particles with range of rest masses, 104–105
for particles in a plasma, 105–106

divergence, 24, 71
Doob’s theorem, 295–296

proof of, 298–299
Doppler shift, 62

of temperature of CMB, 116–117

Einstein summation convention, 16, 55
electric charge. See charge density
electromagnetic field. See also electromagnetic waves;

Maxwell’s equations
electromagnetic field tensor, 52, 53, 72
electric and magnetic fields, 72

as 4–vectors living in observer’s slice of simultaneity,
72–73, 73f

4–vector potential, 74–75
scalar and 3–vector potentials, 75

stress tensor, 33
electromagnetic waves

vacuum wave equation for vector potential, 75
emission

spontaneous, 115
stimulated, 115

energy conservation, relativistic
differential, 85
integral (global) in flat spacetime, 84, 86

energy density, Newtonian, U
as integral over distribution function, 121

energy density, relativistic
as component of stress-energy tensor, 83
as integral over distribution function, 120, 126
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energy flux, Newtonian, F
in diffusion approximation, 147–148

energy flux, relativistic
as integral over distribution function, 120
as component of stress-energy tensor, 83

energy, relativistic, 34, 58
as inner product of 4-momentum and observer’s

4–velocity, 60–61
for zero-rest-mass particle, 60, 106
kinetic, 34, 59
Newtonian limit, 34, 112

engine, adiabatic, 241
engine, isothermal, 241
ensemble average

in statistical mechanics, 163–164
in theory of random processes, 287

ensemble of systems, 160
in statistical equilibrium, 160–161, 172–177

general, 172–173
tables summarizing, 160t, 221t

out of statistical equilibrium, 248–270
table summarizing, 251t

enthalpy, 174
enthalpy ensemble, 221t, 245
entropy, 181

additivity of, derived, 185
estimates of, 185
maximized in statistical equilibrium, 183
per particle, 187, 191–192
increase of. See thermodynamics, second law of
of specific entities

general ensemble, 181
microcanonical ensemble, 182
thermalized mode, 187
thermalized radiation, 188
classical, nonrelativistic, perfect gas, 188–190
mixing of two different gases, 190
black hole, 206
black hole and radiation inside a box, 206–209
the universe, 209–210
information, 211–217

equations of state
computed from kinetic theory, 121
for ideal or perfect gas, 228
for nonrelativistic hydrogen gas, 122–125
for van der Waals gas, 234
for thermalized radiation, 128–129

equipartition theorem, 177–178
ergodic hypothesis

in statistical mechanics, 180–181
in theory of random processes, 288–289

ergodic theory, 181n
Euler’s equation (relation) in thermodynamics, 226–227,

231, 240, 247, 256–257
event, 40
extensive variables, 169, 172, 221

complete set of, for a closed system, 222

Fermi momentum, 124
Fermi-Dirac distribution

probabilistic distribution function for, 176
mean occupation number of, 112–113, 176

near-degenerate, 124f, 125
entropy of, 187

fermion, 110
filtering of random processes (noise), 311–313

types of filters
differentiation and integration, 311
averaging, 317–318
band-pass, 315–317
finite-Fourier-transform, 317–318
Wiener’s optimal, 318–320

fluctuation-dissipation theorem
Langevin equation, 324–325
physics underlying, 323–325
elementary version of, 325–326

derivation of, 326–327
generalized version of, 331–334

derivation of, 334–335
applications of

Johnson noise in a resistor, 327
thermal noise in an oscillator, 329–330
laser-beam measurement of mirror position, 331–334

fluid dynamics, fundamental equations
mass conservation, 32–33

Fokker-Planck equation
in one dimension, 335–337

as a conservation law for probability, 339
derivation of, 337–338
for a Gaussian, Markov process, 338–339
for detailed-balance processes, 339–340
time-independent, 338

in multiple dimensions, 343
solutions of

for Brownian motion of a dust particle, 340
for Doppler cooling of atoms by laser beams, 340–343,

341f
for thermal noise in an oscillator, 344

Fourier transform, conventions for
in theory of random processes, 299

free energy, 241n
physical (Helmholtz) free energy, 241–246
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physical meaning of, 241, 241f
frequency and time standards, 310f, 310n
fundamental thermodynamic potentials. See also under

thermodynamics
energy potential

for energy representation of thermodynamics, 222–
223

for nonrelativistic, classical, perfect gas, 227
Gibbs potential, 246–247

physical interpretation as chemical free energy, 247–248
computed by a statistical sum, 246, 248

grand potential, 229–230
computed by a statistical sum, 230, 232–238
for relativistic, perfect gas, 238–239
for van der Waals gas, 234

physical-free-energy potential, 239–240
computed by a statistical sum, 239, 242–243
for ideal gas with internal degrees of freedom, 243

enthalpy potential, 244–245
fundamental thermodynamic potentials out of statistical

equilibrium
Gibbs potential, 248–250, 251t

minimum principle for, 249, 251t
other potentials and their extremum principles, 250,

251t
used to analyze fluctuations away from statistical

equilibrium, 260–270

galaxies
structures of, 201–202
spatial distribution of

correlation function for, 306f
statistical mechanics of, 202–204
formation of in early universe, 210–211
dark matter in, 201–204

gas
perfect, nonrelativistic, 121, 188–189
perfect, relativistic, 127, 238–239
ideal, 242–244
hydrogen, 122–123, 122f, 127
degenerate, 127–128

Gauss’s theorem
in Euclidean 3-space, 27
in spacetime, 78

Gaussian random process, 292–294. See also Markov,
Gaussian random process

geometric object, 1, 5, 41
geometric principle, 1, 6–7, 10

examples, 28, 29
geometrized units, 33–34, 35
Gibbs ensemble, 160t, 173–174, 221t. See also under

fundamental thermodynamic potentials;
thermodynamics

distribution function, 174
gradient operator, 23, 70–71
grand canonical ensemble, 160t, 174, 221t, 229–239. See

also under fundamental thermodynamic potentials;
thermodynamics

distribution function, 174
grand partition function. See also fundamental

thermodynamic potentials, grand potential
as log of grand potential, 229–230

gravitation theories
relativistic scalar theory, 53

gravitational waves
speed of, same as light, 45b
sources of

supernovae, 111
gravitons

speed of, same as light, 45b
Green’s functions

in Fokker-Planck theory, 343
greenhouse effect, 135, 137–138
gyroscopes

used to construct reference frames, 39

Hamilton’s equations
for particle motion, 136b
in statistical mechanics, 158

hamiltonian for specific systems
harmonic oscillator, 159
L-C circuit, 332
crystal

fundamental mode, 159
all modes, weakly coupled, 159

damped system, 159n
star moving in galaxy, 159

harmonic oscillator
hamiltonian for, 159
complex amplitude for, 344
thermal noise in, 344

Hawking radiation
from black holes, 204–205

heat conduction, diffusive. See also diffusion; diffusion
equation; random walk

in a stationary, homogeneous medium, 141–142
in a star, 142–148

helium formation in early universe, 192–193
Hilbert space, 18b
hydrogen gas. See gas, hydrogen

ideal gas. See gas, ideal
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impedance
complex, for fluctuation-dissipation theorem, 332

index gymnastics. See component manipulation rules
inertial (Lorentz) coordinates, 41, 54
inertial mass density (tensorial)

definition, 87
for perfect fluid, 87

inertial reference frame. See Lorentz reference frame
information

definition of, 212
properties of, 216
statistical mechanics of, 211–218
per symbol in a message, 214, 215
gain defined by entropy decrease, 211–212

inner product
in Euclidean space, 10–12, 17
in spacetime, 48, 56
in quantum theory, 18b

integrals in Euclidean space
over 2-surface, 27
over 3–volume, 27
Gauss’s theorem, 27

integrals in spacetime, 75–78
over 3-surface, 77, 80–81
over 4–volume, 75
Gauss’s theorem, 27, 78

intensive variables, 172, 221–222
interferometer

gravitational wave. See laser interferometer gravitational
wave detector

interval
defined, 45
invariance of, 45–48
spacelike, timelike, and null (lightlike), 45

Ising model for ferromagnetic phase transition, 272–282
1-dimensional Ising model, 278–279
2-dimensional Ising model, 272–273

solved by Monte Carlo methods, 279–282
solved by renormalization group methods, 273–278

isothermal engine, 241

Jeans’ theorem, 169
Johnson noise in a resistor, 327

Kepler’s laws, 14
kernel of a filter, in theory of random processes (noise),

311–313

Lagrange multiplier, 183
Landauer’s theorem in communication theory, 217–218
laplacian, 24

laser interferometer gravitational wave detector
spectral density of noise, 302

in initial LIGO detectors, 302f
latent heat, 252, 254, 255, 270
Levi-Civita tensor in Euclidean space, 24–26

product of two, 25
Levi-Civita tensor in spacetime, 71
LIGO (Laser Interferometer Gravitational-Wave

Observatory). See also laser interferometer
gravitational wave detector

initial LIGO detectors (interferometers)
noise in, 302f, 323, 334

signal processing for, 320, 329–330
line element, 57
Liouville equation, in statistical mechanics, 167

quantum analog of, 165b–166b
Liouville’s theorem

in kinetic theory, 132–134, 133f
in statistical mechanics, 166, 168f

Lorentz contraction
of length, 66–67
of volume, 99
of rest-mass density, 81

Lorentz coordinates, 41, 54
Lorentz factor, 58
Lorentz force

in terms of electromagnetic field tensor, 53, 71
in terms of electric and magnetic fields, 6, 14, 72
geometric derivation of, 52–53

Lorentz group, 64
Lorentz reference frame, 39, 39f

slice of simultaneity (3-space) in, 58, 59f
Lorentz transformation, 63–65

boost, 64, 65f
rotation, 65

Lorenz gauge
electromagnetic, 75

magnetic materials, 270–282
paramagnetism and Curie’s law, 271–272
ferromagnetism, 272–282

phase transition into, 272–273. See also Ising model for
ferromagnetic phase transition

magnetization
in magnetic materials, 270

Maple, 129, 132
Markov random process, 289–291
Markov, Gaussian random process

probabilities for (Doob’s theorem), 295–296, 298–299
spectral density for, 303, 304f
correlation function for, 297, 304f
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and fluctuation-dissipation theorem, 325
Fokker-Planck equation for, 336–338, 343

mass conservation, 32–33, 80
mass density

rest-mass density, 81
as integral over distribution function, 121

mass hyperboloid, 100–101, 100f
mass-energy density, relativistic

as component of stress-energy tensor, 83, 85
as integral over distribution function, 126

Mathematica, 129, 132
Matlab, 129, 132
Maxwell relations, thermodynamic, 227–228, 232, 240, 247

as equality of mixed partial derivatives of fundamental
thermodynamic potential, 227–228

Maxwell velocity distribution for nonrelativistic thermalized
particles, 113–114, 114f

Maxwell-Jüttner velocity distribution for relativistic
thermalized particles, 114–115, 114f

Maxwell’s equations
in terms of electromagnetic field tensor, 73–74
in terms of electric and magnetic fields, 74

mean free path, 140, 143–145, 146b, 149
metric tensor

in Euclidean space
geometric definition, 11–12
components in orthonormal basis, 17

in spacetime, 48
geometric definition, 48
components in orthonormal basis, 55

Metropolis rule in Monte Carlo computations, 280
microcanonical ensemble, 160t, 178–180, 221–228, 221t

correlations of subensembles in, 179
distribution function for, 179
and energy representation of thermodynamics, 221–228

Minkowski spacetime, 1–2
modes (single-particle quantum states), 174–176

for Bose-Einstein condensate, 194–195
momentum, relativistic, 34, 59

relation to 4-momentum and observer, 59, 61
of a zero-rest-mass particle, 60, 106
Newtonian limit, 34

momentum conservation, Newtonian
differential, 32
integral, 32

momentum conservation, relativistic
for particles, 60
differential, 85

momentum density
as component of stress-energy tensor, 83
as integral over distribution function, 118

momentum space
Newtonian, 98, 98f
relativistic, 100–101, 100f

Monte Carlo methods
origin of name, 279n
for 2-dimensional Ising model of ferromagnetism,

279–282
multiplicity factor for states in phase space, M, 163
multiplicity for particle’s spin states, gs , 109

neutrinos
chirality of, 109n
spin-state multiplicity, 109
in universe, evolution of

thermodynamically isolated after decoupling, 192,
209

neutron stars
birth in supernovae, 111
equation of state, 125

noise. See also fluctuation-dissipation theorem; spectral
density

as a random process, 308–313
types of spectra (spectral densities)

flicker noise, 308–310, 323
random-walk noise, 308–310
white noise, 308–310

information missing from spectral density, 310–311
filtering of, 311–313
Johnson noise in a resistor, 327
shot noise, 321–323
thermal noise, 302f, 329–330, 334, 343–345. See also

fluctuation-dissipation theorem
nuclear reactions. See chemical reactions, including nuclear

and particle
nuclear reactor

neutron diffusion in, 151–153
xenon poisoning in, 153

nucleosynthesis, in nuclear age of early universe, 192–193
number density

as time component of number-flux 4–vector, 79–80
as integral over distribution function, 117, 119, 121, 126

number flux
as spatial part of number-flux 4–vector, 79–80
as integral over distribution function, 117

number-flux 4–vector
geometric definition, 79–80
as integral over distribution function, 118, 119
components: number density and flux, 79–80
conservation laws for, 79–80

observer in spacetime, 41
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occupation number, mean
defined, 110
ranges, for fermions, bosons, distinguishable particles,

and classical waves, 110, 111
for cosmic X-rays, 111
for astrophysical gravitational waves, 111

Ohm’s law, 139
Olber’s paradox, 138–139
optical frequency comb, 310n
optimal filtering, 318–320
orthogonal transformation, 20–21

pairs, electron-positron
thermal equilibrium of, 258–259
temperature-density boundary for, 259f

Parseval’s theorem, 300, 303
particle conservation law

Newtonian, 28
relativistic, 80

particle density. See number density
particle kinetics

in Euclidean space
geometric form, 13–15
in index notation, 19–20

in flat spacetime
geometric form, 49–52
in index notation, 57–62

in Newtonian phase space, 97–99
partition function, in statistical mechanics. See also

fundamental thermodynamic potentials, physical-
free-energy potential

as log of physical free energy, 239
path of particle (Newtonian analog of world line), 9–10
perfect fluid (ideal fluid), 30

Euler equation for, 33
stress tensor for, 30–31, 32

phase mixing in statistical mechanics, 184, 184f, 210–211
phase space

Newtonian, 98–99
relativistic, 101–105
in statistical mechanics, 161–163

phase transitions, 251
governed by Gibbs potential, 251–254
first-order, 252

Clausius-Clapeyron equation for, 254–255
second-order, 253

specific heat discontinuity in, 200, 254
triple point, 254–255, 255f
specific examples

water-ice, 251–252, 254–255
water vapor–water, 255

van der Waals gas, 266–268
crystal structure change, 253–254
Bose-Einstein condensation, 196–197, 197f, 254
ferromagnetism, 272–282. See also Ising model for

ferromagnetic phase transition
phonons

modes for, 175, 175n
specific heat of in an isotropic solid, 131–132

physical laws
frameworks and arenas for, 1–3
geometric formulation of. See geometric principle;

principle of relativity
Planck time, 209
Poisson distribution, 264
pressure, 30

as component of stress tensor, 30–31
as component of stress-energy tensor, 85
as integral over distribution function, 121, 126

primordial nucleosynthesis, 192–193
principle of relativity, 42
probability distributions, 286–288

conditional, 287
projection tensors

into Lorentz frame’s 3-space, 61
proper time, 49

quadratic degree of freedom, 177
quantum state

single-particle (mode), 174–175
for Bose-Einstein condensate, 194–195

many-particle, 175
distribution function for, 175

quantum statistical mechanics, 165b–166b
quasars, 193, 309

radiation, equation of state for thermalized, 128–129, 132
radiative processes

in statistical equilibrium, 115–116
bremsstrahlung, 142, 260
Thomson scattering, 142–144

radiative transfer, Boltzmann transport analysis of
by two-lengthscale-expansion, 145–148

random process, 1-dimensional, 285
stationary, 287–288
ergodic, 288–289
Gaussian, 292–294
Markov, 289–290
Gaussian, Markov. See Markov, Gaussian random process

random process, 3-dimensional
cosmological density fluctuations, 304–306

random process, 2-dimensional, 306–308

362 Subject Index

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



random variable, 285
random walk, 139, 140, 140n, 141, 286f, 291–292, 294–295,

309, 310, 314–315, 320, 321. See also diffusion
random-number generator, 279n, 294, 294n
rank of tensor, 11
redshift, gravitational

experimental tests of, 70
reionizaton of universe, 193
relaxation (correlation) time, 297, 298f
renormalization group

idea of, 273
applied to 2-dimensional Ising model for ferromagnetism,

273–278
resistance

in electrical circuit, 324
in an oscillator, 326
in Stokes fluid flow, 328
as real part of complex impedance, 332

rest frame
momentary, 49
local, 85, 86

rest mass, 34, 58–59
global and local conservation laws for, 80, 82

rest-mass density, relativistic, 81
rest-mass-flux 4–vector

geometric definition of, 80
components: rest-mass density and flux, 81

rotation group, 21
rotation matrix, 21, 65

Sackur-Tetrode equation for entropy of a perfect gas,
189

Saha equation for ionization equilibrium, 259–260
Schrödinger equation

energy eigenstates (modes) of, 175n, 194–195
propagation speed of waves, 44b

second quantization, 175
shot noise, 321–323
signal-to-noise ratio

for band-pass filter, 317
for Wiener’s optimal filter, 319–320

simultaneity in relativity
breakdown of, 66
slices of, 58, 73, 73f

single-particle quantum states (modes), 174–175, 194–195
slot-naming index notation, 19–20, 23, 25, 56–57, 70
Smoluchowski equation, 290

applications of, 291–292, 337
solar furnace, 138–139
spacetime diagram, 40–41

for Lorentz boost, 65–67, 65f

specific heats, Cp, cp, CV , and cV , 244. See also adiabatic
index

for nonrelativistic, degenerate electrons, 130–131
for phonons in an isotropic solid, 131–132

specific intensity (spectral intensity) of radiation, 107,
107f

spectral density
for a 1-dimensional random process, 299–300

as mean of square of Fourier transform, 303, 304
double-sided vs single-sided, 300
for sum of two random processes, 308
integral of is variance, 300
physical meaning of, 301–302
rms oscillations in terms of, 301

for a 2-dimensional random process, 307–308
cross spectral density, 307

for a 3-dimensional random process
cosmological density fluctuations (galaxy distribution),

304–306, 306f
Wiener-Khintchine theorem for. See Wiener-Khintchine

theorem
influence of filtering on, 312
applications of

Brownian motion, 314
light, 301
LIGO gravitational wave detector, 302
noise, 308–311, 321–323, 334. See also noise
cosmological density fluctuations, 304–306

spectrum of light related to spectral density, 301
speed of light

constancy of, 34, 42
measuring without light, 43b
in geometrized units, 34
contrasted with speeds of other waves, 44b

stars. See also neutron stars
diffusive heat conduction in, 142–148

statistical equilibrium, 168–178
ensembles in, 168–177

general, 172–173
tables summarizing, 160t, 221t

fluctuations away from, 260–270
for ensemble of closed systems, 260–261
for particle distribution in a closed box, 262–263
for particle number in an open box, 263–264
for temperature and volume of an ideal gas, 264–265
for van der Waals gas: volume fluctuations, 266–268
for volume of a thermally isolated gas (constant-

pressure balloon), 265–266
statistical equilibrium for fundamental particles

for identical bosons, Bose-Einstein distribution, 112–113
for identical fermions, Fermi-Dirac distribution, 112
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statistical equilibrium for fundamental particles (continued)
for identical classical particles, Boltzmann distribution,

113
statistical independence, 170
stellar dynamics. See also under galaxies

statistical mechanics of galaxies and star clusters, 201–
204

evolution of cluster due to ejection of stars, 203–204
violent relaxation of star clusters, 113n

stochastic differential equations, 325
Stokes’ theorem for integrals, 27
stress tensor

geometric definition of, 29
components, meaning of, 30
symmetry of, 30
as integral over distribution function, 118
as spatial part of relativistic stress-energy tensor, 83
for specific entities

electromagnetic field, 33
perfect fluid, 30–31, 32

stress-energy tensor
geometric definition of, 82
components of, 82–83, 120
symmetry of, 83–84
as integral over distribution function, 118, 120
and 4-momentum conservation, 84–85
for electromagnetic field

in terms of electromagnetic field tensor, 86
in terms of electric and magnetic fields, 88

for perfect fluid, 85
subensemble, 170
supernovae

neutron stars produced in, 111
as gravitational-wave sources, 111

system, in statistical mechanics
defined, 157
closed, 158–159
semiclosed, 157–158

tangent space, 9
tangent vector, 9, 49
temperature

definition, 168, 168n, 171
measured by idealized thermometer, 223–224

temperature diffusion equation, 142
tensor in Euclidean space

definition and rank, 11
algebra of without coordinates or bases, 11–13
expanded in basis, 16
component representation, 17–19

tensor in quantum theory, 18b

tensor in spacetime. See also component manipulation rules
definition and rank, 48
bases for, 55
components of, 54–57

contravariant, covariant, and mixed components, 55
raising and lowering indices, 55

algebra of
without coordinates or bases, 48, 61–62
component representation in orthonormal basis, 54–57

tensor product, 12, 48
thermal equilibrium. See statistical equilibrium
thermodynamics. See also equations of state; fundamental

thermodynamic potentials; Maxwell relations,
thermodynamic

representations of, summarized, 221t, 228
Legendre transformation between representations,

230–232, 240, 244, 247
energy representation, and microcanonical ensemble,

221–229
enthalpy representation, 244–246
grand-potential representation and grand canonical

ensemble, 229–239
physical-free-energy representation, and canonical

ensemble, 239–244
Gibbs representation and Gibbs ensemble, 246–260
first law of, 225

in all representations, 221t
as mnemonic for deducing other relations, 227–228
for black hole, 205

second law of, 182
underlying physics of: coarse graining and discarding

correlations, 183–185, 184f, 186b–187b
underlying quantum physics of: discarding correlations

(quantum decoherence), 185, 186b–187b, 190–191
in theory of information: when information is erased,

217–218
of black holes, 204–209

Thomson scattering of photons by electrons, 142–144
time. See also clocks, ideal; simultaneity in relativity, slices of

coordinate, of inertial frame, 39–40
proper, 49
imaginary, 54

time and frequency standards, 310f, 310n
time derivative

advective (convective), 32
with respect to proper time, 49, 52

time dilation, 66
observations of, 70

time travel, 67–70
transformation matrices, between bases

orthogonal, 20–21
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Lorentz, 63–65, 65f
transport coefficients, 139. See also diffusion coefficient
triple point for phase transitions, 254–255, 255f
twins paradox, 67–70
two-lengthscale expansion, 146b

and statistical independence in statistical mechanics, 170n
for solving Boltzmann transport equation, 145

two-point correlation function, 305
for galaxy clustering, 305, 306f

universe, evolution of
formation of structure

statistical mechanics of, 210–211
seven ages

nuclear age, primordial nucleosynthesis, 192–193
atomic age, from recombination through reionization,

193
galaxy formation, 210–211

universe, statistical mechanics of, 209–211

van der Waals gas
equation of state for, 234
grand potential for, 234

derivation of, 232–238
phase transition for, 266–268
volume fluctuations in, 266–268

variance, 287
vector

as arrow, 8, 40
as derivative of a point, 9, 49

vector in Euclidean space (3–vector): components, 16
vector in quantum theory, 18b
vector in spacetime (4–vector)

contravariant and covariant components of, 55
raising and lowering indices of, 55

timelike, null, and spacelike, 47
velocity

Newtonian, in Euclidean space, 9
ordinary, in relativity, 58, 59f, 61–62. See also 4–velocity

violent relaxation of star distributions, 210
viscosity, shear, coefficient of, 139

for monatomic gas, 149–150
volume in Euclidean space

2–volume (area), 26
vectorial surface area in 3-space, 27
3–volume, 27
n-volume, 24
differential volume elements, 28

volume in phase space
Newtonian, 98
relativistic, 102–104

Lorentz invariance of, 103–104, 105f
volume in spacetime, 75–77

4–volume, 75
vectorial 3–volume, 76–77, 77f

positive and negative sides and senses, 76
differential volume elements, 77

wave equations
for electromagnetic waves. See electromagnetic waves

Wiener-Khintchine theorem
for 1-dimensional random process, 303
for 2-dimensional random process, 307–308

Wiener’s optimal filter, 318–320
world line, 49, 59f
world tube, 49n, 68f, 69
wormhole, 68–69, 68f

as time machine, 69

zero point energy, 175n
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