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In support of the theoretical calculations performed in this book, 
numerical “confi rmations” are occasionally provided by using 
soft ware developed by Th e MathWorks, Inc., of Natick, MA. 
Specifi cally, MATLAB 8.9 (release 2019b) running on a Windows 
10 PC. I’ve done this because I support the position advocated by 
Victor Moll (professor of mathematics at Tulane University) in his 
book, Experimental Mathematics in Action (CRC Press, 2007, 
pp. 4–5): “Given an interesting identity buried in a long and 
complicated paper on an unfamiliar subject, which would give you 
more confi dence in its correctness: staring at the proof, or con-
fi rming computationally that it is correct to 10,000 decimal 
places?” Th e calculations I have MATLAB do in this book rarely 
exceed seven decimal places, but the idea is the same. MATLAB is 
the registered trademark of Th e MathWorks, Inc. Th e MathWorks, 
Inc. does not warrant the accuracy of the text in this book. Th is 
book’s use or discussion of MATLAB does not constitute an 
endorsement or sponsorship by Th e MathWorks, Inc., of a 
particular pedagogical approach or particular use of the MATLAB 
soft ware.



CHAPTER 1

Euler’s Problem

1.1 Introducing Euler

Th e title of this book has been carefully craft ed to attract the interest 
of all those who love mathematics, which would seem to be an 
obvious thing to do for the author of a book like this one. However, 
the subtitle of this book seems likely to provoke controversy among 
professional mathematicians, which, at the other extreme, might 
seem to be a rather odd thing for an author to do. My primary 
goal is clear, I think, as everybody likes a good hunt involving puz-
zles, a fact that explains the attraction of mystery novels, adventure 
video games, and Indiana Jones movies like Raiders of the Lost 
Ark. Hardly anybody, I think, would quibble with that. But how, 
I can hear each mathematician on the planet grumbling as he/
she reads this, can I claim that the puzzle of zeta-3—I’ll tell you 
what that is, in just a bit—is the world’s most puzzling unsolved 
math problem? Aft er all, as each of my critics would emphatically 
state, even while (perhaps) vigorously pounding a desktop or 
thumping a fi nger into my chest, “it’s quite clear that the problem 
that’s holding my work up is the world’s most puzzling unsolved 
problem!”
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My selection criteria for choosing which math problem is assigned 
the label as the most puzzling problem are quite simple: (1) the prob-
lem is (obviously!) unsolved; (2) people have been trying (and fail-
ing) for centuries to solve it; (3) it has at least some connection to the 
real world of physics and engineering; and most important of all, 
(4) despite (1), (2), and (3), a grammar school student who knows 
how to do elementary arithmetic can instantly understand the prob-
lem. Th e fi rst three criteria are satisfi ed by lots of really hard problems 
in math, but if it takes a degree in math to simply understand the 
question, then such problems clearly fail the fourth test (this elimi-
nates the famous problem of the Riemann hypothesis, about which 
I’ll say more in the next section). At the end of the next chapter, I’ll 
return to this issue, that of selecting the most puzzling math problem.1

But for now, let me set the stage for all that follows by introducing 
the personality most closely associated with the problem of zeta-3, 
the great (perhaps the greatest in history) mathematician, Leonhard 
Euler (1707–1783). Th e son of a rural Swiss pastor, Euler trained for 
the ministry at the University of Basel and at age 17, received a grad-
uate degree from the Faculty of Th eology. While a student at Basel, 
however, he also studied with the famous mathematician Johann 
Bernoulli (1667–1748), and despite his years-long immersion in reli-
gious thought, it was mathematics that captured his soul. Euler never 
lost his belief in God and in an aft erlife, but while he was in this world, 
it was mathematics that had his supreme devotion.

It seemed that there was nothing that could keep him from doing 
mathematics, not even blindness from a botched cataract operation. 

1. Until it was solved in 1995 by Andrew Wiles, perhaps Fermat’s Last Th eorem 
would be the problem that would have occurred to most people as the “world’s most 
puzzling math problem,” even though many professional mathematicians would have 
disagreed: for example, the great German mathematician Carl Friedrich Gauss 
(1777–1855), perhaps as great as Euler, refused to work on the Fermat problem, 
because he simply found it uninteresting. And, unlike the zeta-3 problem, the Fermat 
problem makes no appearance (as far as I know) in either science or engineering. 
Finally, the 1995 solution has been examined and understood by only a few world-
class mathematicians. Everybody else simply accepts their thumbs-up verdict that 
Wiles’ proof is correct (it’s certainly far beyond AP-calculus!).
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(Can you imagine enduring, with no anesthetic, such an operation in 
the 18th century?) Euler had a marvelous memory (it was said he knew 
the thousands of lines in the Aeneid by heart) and so, for the last 17 years 
of his life aft er losing his vision, he simply did monstrously complicated 
calculations in his head and dictated the results to an aide. Many years 
aft er his death, the 19th-century French astronomer Dominique Arago 
said of him, “Euler calculated without apparent eff ort, as men breathe 
or as eagles sustain themselves in the wind.” By the time he died, he had 
written more brilliant mathematics than had any other mathematician 
in history, and that claim remains true to this day.

Here’s one of Euler’s accomplishments. Some of the great prob-
lems of mathematics involve the prime numbers, which since Euclid’s 
day (more than three centuries before Christ) have been known to 
be infi nite in number. Euclid’s proof of that is a gem, commonly 
taught in high school (see the box), and it wasn’t until 1737 that Euler 
found a second, totally diff erent (but equally beautiful) proof of the 
infi nity of the primes that I’ll show you later in this chapter. But what 
Euler wasn’t able to prove (and nobody else since has either) is if the 
twin primes are infi nite in number. With the lone exception of 2, all 
the primes are odd numbers, and two primes form a twin pair if they 
are consecutive odd numbers (3 and 5, or 17 and 19, for example). 
Mathematicians would be absolutely astounded if the twin primes 
are not infi nite in number, but there is still no proof of that.2

2. Th is just goes to show that there will never be an end to wonderful math 
problems, because, if in the (most unlikely) event that the twin primes are someday 
shown to be fi nite in number, the hunt would then immediately begin for the largest 
pair! In 1919, the Norwegian mathematician Viggo Brun (1885–1978) showed that 
the sum of the reciprocals of the twin primes is fi nite:

1 1 1 1 1 1 1 1
3 5 5 7 11 13 17 19( ) ( ) ( ) ( ) 1.90216 , a number called Brun’s 

constant. Th is small value does not, however, prove that there are a fi nite number of 
twin primes, but only that they thin out pretty fast. In 2013 the Chinese-born Amer-
ican mathematician Yitang Zhang showed (when at the University of New Hamp-
shire, just down the hall from my old offi  ce in Kingsbury Hall) that there is an infi nity 
of pairs of primes such that each pair is separated by no more than 70 million. In 2014 
that rather large gap was reduced to 246. If it could be reduced to 2 (or shown it 
couldn’t be so reduced), then the twin prime problem would be resolved.
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Euclid proved the primes are infi nite in number by showing that a 
listing of any fi nite number n of primes must necessarily be incom-
plete, and so there must instead be an infi nite number of primes. 
Here’s how the logic goes. Let the n listed primes be labeled p1, p2, 
p3, . . . , pn. Th en, consider the number N = p1 p2 p3 . . . pn + 1, which 
is obviously not equal to any of the primes on the list. Now, N is 
either prime or it isn’t. If it is then we have directly found a prime 
not on the list. If, however, N is not a prime, that means it can be 
factored into a product of two (or more) primes. Equally obvious, 
however, is that p1 doesn’t divide N (because of that +1), and in 
fact none of the rest of the primes on the list divides N either, for 
the same reason. Th e immediate conclusion is that there must 
be at least two more primes that are not on the list. Since this 
argument holds for any listing of fi nite length, there must, in fact, 
be an infi nite number of primes. Done! You’re not going to fi nd 
many proofs in math more elegantly concise than that.

Th e problem of determining the size of the set of the twin primes 
is an unsolved problem that defi nitely fi ts most (if not all, as perhaps 
some extra explanation would be required for a grammar school stu-
dent3) of my selection criteria. So, why (you ask) doesn’t the twin 
prime problem deserve to have the label of being the most puzzling 
math problem? Well, maybe it does, but I’m making a judgment call 
here, with the following reason for why I’ve come down on the side 
of zeta-3. Th e twin prime problem appears to stand mostly alone, 
with few peripheral connections to the rest of math and science. In 
contrast, the zeta-3 problem is at the center of all sorts of other prob-
lems. (You’ll see some of them, starting in the next section when 
I’ll fi nally tell you what the zeta-3 problem is!) It’s this issue, of the 

3. For example, to understand the nature of the primes, it is necessary to fi rst 
study the so-called unique factorization theorem, which says that every integer can be 
factored into a product of primes in exactly one way. Th is is not terribly diffi  cult to 
show, but it is a step beyond mere arithmetic.
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relative connectedness to the rest of math, that makes our ignorance 
of the nature of zeta-3 the more exasperating (hence, the more puz-
zling and mysterious) in comparison to the problem of the infi nity 
(or not) of the twin primes.

Challenge Problem 1.1.1: In a 1741 letter to a friend, Euler made 
the following claim:

1 1 102 2
2 13

, a claim that must have appeared to his friend to be 
like something he would have found in a book of magical incanta-
tions. Calculate each side of this “almost equality” out to several 
decimal places and so verify Euler’s claim. Hint: You may fi nd what 
today is called Euler’s identity to be of great help: eix = cos(x) + 
i sin(x), where 1i . You can fi nd an entire book on this identity 
in my Dr. Euler’s Fabulous Formula (Princeton University Press, 
2017), but you do not have to read that book to do this problem. 
Simply notice that ln(2 ) ln(2)2

ii ie e  (and similarly for 2− i). Th en 
apply Euler’s identity.

1.2 The Harmonic Series and the 
Riemann Zeta Function

As Euler entered the second half of his third decade, he was known 
to his local contemporaries as a talented mathematician, but to 
become a famous mathematician, it was necessary (as it is today) to 
be the fi rst to solve a really hard problem. Th ere are always numer-
ous such problems in mathematics, but in the 1730s, there was one 
that was particularly challenging, one that satisfi es all of my selec-
tion criteria. Th is was the problem of summing the infi nite series of 
the reciprocals of the squares of the positive integers. Th at is, the 
calculation of

(1.2.1) 2 2 2 21

1 1 1 1
1 ?

2 3 4k k

It’s important to understand what is really being asked for in 
(1.2.1). Th e numerical value of the sum is a calculation in arithmetic 
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(but it’s not a trivial one, if one wants, for example, the fi rst 1,000 
correct digits), and almost from the very day the problem was fi rst 
posed, it was known that the value is about 1.6 or so. But that’s not 
what mathematicians wanted. Th ey wanted an exact symbolic expres-
sion involving integers (and roots of integers), simple functions (like 
the exponential, logarithmic, factorial, and trigonometric), and 
known constants like π and e. Th e simpler that expression, the bet-
ter, and in fact, Euler found such an expression in 1734. A little later 
I’ll show you his brilliant solution (and not to keep you in suspense, 
run π2/6 through your calculator). For now, my central point is that, 
from 1734 on, Euler was a superstar in mathematics whose fame 
extended from one end of Europe to the other. Th e origin of the 
problem in (1.2.1) played a big, continuing role in both Euler’s life 
and the zeta-3 problem (which I admit I still have yet to tell you 
about, but I will, soon!).

In the 14th century, a similar problem had bedeviled mathemati-
cians: summing the infi nite series of the reciprocals of the positive 
integers. Th at is, calculating

(1.2.2) 
1

1 1 1 1
1 ?

2 3 4k k

Th en, about 1350, the French mathematician and philosopher 
Nicole Oresme (c. 1320–1382) showed that the answer is infi nity! 
Th at is, as mathematicians put it, the sum in (1.2.2) diverges. 
Oresme’s claim, without exception, surprises (greatly!) students 
when they fi rst are told this, because the individual terms continu-
ally get smaller and smaller (indeed, they are approaching zero). It 
just seems impossible that, eventually, if you keep adding these ever-
decreasing terms, the so-called partial sum will exceed any value you 
wish. Th at is, no matter how large a number N that you name, there 
is a fi nite value for q such that

(1.2.3) 
1

1
( ) .

q

k
h q N

k
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Th e symbol h is used in (1.2.3) because the sum of the reciprocals of 
the positive integers is called the harmonic series. Th e h(q) function 
will occur over and over in this book. Some of Euler’s most beautiful 
discoveries aft er 1734 involve h(q), and it continues to inspire 
researchers to this day.

Oresme’s proof of (1.2.3) is an elegant example of the power of 
mathematical reasoning, even at the high school level. One simply 
makes clever use of brackets to group the terms as follows:

1

1 1 1 1 1 1 1 1
1

2 3 4 5 6 7 8k k

followed by replacing each term in each pair of curly brackets with 
the last (smallest) term in that pair. Notice that this last term is always 
of the form 1

2m  where m is some integer (m = 1 in the fi rst pair, 
m = 2 in the second pair, m = 3 in third pair, and so on), and that 
there are 2m−1 terms in a bracket pair. Th e process gives a lower 
bound on the sum, and so we have

1

1 1 1 1 1 1 1 1 1 1 1
1 1 .

2 4 4 8 8 8 8 2 2 2k k

Th at is, the lower bound is 1 plus an infi nity of 1
2 ’s, which obviously 

gives a sum that “blows up” (diverges) to infi nity, just as claimed in 
the Preface:

(1.2.4) lim ( ) .q h q

Th e explanation for (1.2.3) and (1.2.4) is that while it is clearly 
necessary for the terms in an infi nite series in which every term is 
positive to continually decrease toward zero if the sum is to be 
fi nite (for the sum to converge, as mathematicians put it), a decrease 
alone is not a suffi  cient condition for a fi nite sum. Not only must 
the terms decrease toward zero, but that decrease has to be a 
suffi  ciently fast one. Th e terms of the harmonic series simply 
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don’t go to zero fast enough. Almost fast enough, to be sure, but 
not quite fast enough, which results in the divergence of the 
harmonic series being astonishingly slow. For h(q) > 15, for exam-
ple, we must have q > 1.6 × 106 terms, while h(q) > 100 requires 
q > 1.5 × 1043 terms.

Once Oresme had solved the problem of summing the harmonic 
series, the question of summing the reciprocals squared stepped for-
ward, with its explicit statement attributed to the Italian Pietro Men-
goli (1625–1686) in 1644. And once Euler had solved that problem 
in 1734, you can surely understand the curiosity that drove mathe-
maticians to next turn their attention to summing the reciprocals 
cubed. To their dismay, they couldn’t do it. Even Euler couldn’t do 
it. And so, at last, we have the zeta-3 problem: What is

(1.2.5) 
3 3 3 31

1 1 1 1
1 ?

2 3 4k k

Th e numerical value is easily calculated to be 1.2020569 . . . but, 
unlike the sum of the reciprocals squared, there is no known simple 
symbolic expression. Th e search for such an expression is, today, an 
ongoing eff ort involving many of the best mathematicians in the 
world.

Th is search is not an idle one of mere curiosity, either, as the 
value of zeta-3 appears in physics (as you’ll see later) as well as in 
mathematics.

Th e pressure on modern academics to solve problems is, as it was 
in Euler’s day, enormous, and in fact, that pressure is relentless. 
Th at is, aft er solving a tough problem, the successful analyst 
certainly gets a pat on the back but then, almost immediately 
aft er, is asked “So, what are you going to do next?” Having a good 
answer to that question may be more a matter of professional 
pride for a tenured senior professor, but for a young untenured 
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assistant professor, it is, quite literally, a matter of survival. Th e 
famous Hungarian mathematician Paul Erdӧs (1913–1996) wrote 
a little witticism that nicely sums up this situation:

A theorem a day
Means promotion and pay.
A theorem a year
And you’re out on your ear!

To that, in the spirit of this book, I would add these two lines:

But if your next theorem computes zeta-3
Th en acclaimed tenured full prof you’ll instantly be!

Erdӧs, who received the 1983 Wolf Prize, never held an academic 
position, but instead endlessly traveled the world, living tempo-
rarily with mathematician friends, then moving on to his next 
stop. At each stay, he and his host would write a joint paper (his 
co-authors numbered in the hundreds): his motto was “Another 
roof, another proof.”

Th e reason for the name zeta is that in 1737, Euler considered the 
general problem of summing the reciprocals of the sth power of the 
positive integers:

(1.2.6) 1

1 1 1 1
1 ,

2 3 4s s s sk k

which is today written (with the Greek letter zeta) as ζ(s), and so 
(1.2.1) is ζ(2) and (1.2.5) is ζ(3). Th at is, zeta(2) and zeta(3), pro-
nounced “zeta-2” and “zeta-3.” Euler took s to be a positive integer, 
subject only to the constraint that s > 1 to ensure convergence of 
(1.2.6) (s = 1 gives, of course, the divergent harmonic series). What 
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makes the failure to solve the zeta-3 problem particularly puzzling 
is that not only did Euler solve the zeta-2 problem, but he also solved 
all of the zeta-2n problems. Th at is, he found symbolic expressions 
for the sum of the reciprocals of any even power of the integers. Th e 
fi rst few of these solutions are:

Zeta-2 = 
2

(2) ,
6

Zeta-4 = 
4

(4) ,
90

Zeta-6 = 
6

(6) ,
945

Zeta-8 = 
8

(8) ,
9,450

Zeta-10 = 
10

(10) .
93,555

Starting with ζ(3), however, not even one of the ζ(2n + 1) prob-
lems has been solved. Lots of results that dance around ζ(2n + 1) 
have been found since Euler—in 1979, for example, the French 
mathematician Roger Apéry (1916–1994) showed that, whatever 
ζ(3) is, it is irrational (which confi rmed what every mathematician 
since Euler has always believed, but having a proof is, of course, the 
Holy Grail of mathematics).4 A simple symbolic expression for ζ(3) 
remains as elusive today as it was for Euler.

4. Th e irrationality of zeta-2 wasn’t proven until 1796, decades aft er Euler calcu-
lated ζ(2), when the French mathematician Adrien-Marie Legendre (1752–1833) 
proved that π2 is irrational (the Swiss mathematician Johann Lambert (1728–1777) 
proved that π is irrational in 1761, but that does not prove that π2 is irrational). Can 
you think of an irrational number whose square is rational? Th is should take you, at 
most, two (big hint here) seconds!
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In 1859 the German mathematician Bernhard Riemann (1826–1866) 
extended Euler’s ζ(s) to complex values of s (which, of course, 
includes the integers as special cases). Today, ζ(s) is called the 
Riemann zeta function, although its origin is with Euler. For highly 
technical reasons, beyond the level of this book, there are many 
important problems in mathematics (including the theory of 
primes) that are connected to what are called the zeros of ζ(s). Th at 
is, to the solutions of the equation ζ(s) = 0. All the even, negative 
integer values of s are zeros, but the situation for complex zeros is far 
from resolved. Aft er calculating just the fi rst three (!) complex zeros, 
Riemann conjectured, but was unable to prove (and nobody else 
since has, either), that all the infi nite number of complex zeros of 
ζ(s) are “very likely” of the form 1

2  1s b  for an infi nite number 
of values for b > 0. Th at is, what has become known as the Riemann 
hypothesis is that all of the complex zeros are on the vertical line 
(called the critical line) in the complex plane with its real part equal 
to 1

2 . (In Chapter 3, I’ll tell you a lot more about the critical line.) In 
1914 the English mathematician G. H. Hardy (1877–1947) proved 
that ζ(s) has an infi nite number of complex zeros on the critical line, 
but that does not prove that all the complex zeros are there. In 1989 
it was shown that at least two-fi ft hs of the complex zeros are on the 
critical line. Again, that does not prove that all the complex zeros are 
there. In 2011, 22 years later, that 40% value was increased to 
41.05%, a small increase for two decades of work that hints at just 
how diffi  cult a challenge the Riemann hypothesis is. Using high-
speed electronic computers, billions upon billions of the complex 
zeros have been calculated as the parameter b is steadily increased 
and, so far, every last one of them does indeed have a real part of 
exactly 1

2 . But that does not say anything about all of the complex 
zeros being on the critical line. If just one complex zero is ever 
found off  the critical line, then the Riemann hypothesis will be 
instantly swept into the wastebasket of history (and the discoverer 
of that rogue zero will become an instant superstar in the world 
of mathematics).
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Euler’s results for ζ(2n) all have the form of

2(2 ) ,na
n

b

where a and b are positive integers. Th at is, for k an even integer, ζ(k) 
is a rational number, times pi to the kth power. Th is suggests that, 
for some integers a and b,

3(3)
a
b

but that suggestion has not been realized (nobody has ever found 
integers a and b that give the known numerical value of ζ(3)). In 1740 
Euler conjectured that, instead,

ζ(3) = Nπ3

where N somehow involves ln(2), but that hasn’t resulted in any 
progress, either.

Why ln(2)? Why not ln(17) or ln(3)? Perhaps because Euler 
had shown, before he solved the zeta-2 problem, that 

2    1
21

1 2
(2) {ln(2)}kk k

. Th is was helpful in calculating 
the numerical value of ζ(2) because this sum converges much 
more rapidly than does the original sum in the defi nition of 
ζ(2), and he knew the value of ln(2) to many decimal places. 
Th e Russian mathematician Andrei Markov (1856–1922) 
did the same for ζ(3) when he showed, in 1890, that 

323

2( !1 15 5
1 1

)1
( ) (22 )!2(3) ( 1) ( 1)k

k

k k
k kk

k
kk

, where ( )n
k  is the 

binomial coeffi  cient !
! !

n
n k k . I’ll show you the details of how Euler 

derived his fast-converging series expression for ζ(2) (it’s all just 
AP-calculus) in the next chapter. Markov’s analysis is, as you 
might suspect, just a bit more advanced.
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Another formula, one known to Euler (and which we’ll derive 
later), is particularly tantalizing:

3

3 3 3

1 1 1
1 .

3 5 7 32

Why the sum of the reciprocals of the odd integers cubed, with alter-
nating signs, has such a nice form, a form that matches that of ζ(2n), 
while ζ(3) seems not to, is an exasperating puzzle for mathemati-
cians. What worries many of today’s mathematicians is that if Eul-
er—a genius of the fi rst rank (if not even higher)—couldn’t solve for 
zeta-3, even aft er decades of trying, well, maybe there simply isn’t 
an exact symbolic expression. What a dreary thought! Why would 
the world be made that way? It seems so . . . inelegant. And yet, such 
things do happen. Th e ancient geometric construction problems of 
angle trisection, cube doubling, and circle squaring, for example, all 
stumped mathematicians for thousands of years until all were even-
tually proven to have (using only a straightedge and a compass) no 
solutions (see Appendix 1 for one way to sidestep this perhaps 
shocking conclusion).

Challenge Problem 1.2.1: Th e older brother of Euler’s mentor in 
Basel ( Johann Bernoulli) was Jacob Bernoulli (1654–1705), also a 
talented mathematician. He was highly skilled in summing infi nite 
series,5 but the problem of ζ(2) utterly defeated him. When Johann 
learned of his former student’s success, he wrote “If only my brother 
were alive!” Jacob did have his successes, however. For example, 
three interesting series he evaluated are:

5. Johann was fascinated by infi nite series, too. Th e mysterious integral 1
0

xx dx  was 
done by him in 1697, when he showed the answer is 2 3 4 5

1 1 1 1
2 3 4 5

1 0.7834 .
Th is result, called by Bernoulli his “series mirabili” (“marvelous series”)—as well as the 
perhaps even more intimidating 

2

2 3 4 5
1
0

1 1 1 1
3 5 7 9

1 0.8964 ,xx dx  or its 
“twin” 1

0
2 3 4 52 2 2 2

3 4 5 61 0.6585( ) ( ) ( ) ( )xx dx  —is derived in my Inside 
Interesting Integrals (2nd edition, Springer 2020, pp. 227–229).
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2 3

1 1 1
2, 6, 26.

2 2 2k k kk k k

k k k

Can you discover a general way to sum series like these? If so, con-
fi rm Jacob’s results, and then do the next obvious sum: 4

1 2
?k

k
k  

Hint: Try diff erentiating a certain geometric series.

1.3 Euler’s Constant, the Zeta Function, 
and Primes

In 1731 Euler made a curious observation. Writing the harmonic 
series, (1.2.3), we have

(1.3.1) 
1

1 1

1 1 1 1
( ) ( 1) .

q q

k k
h q h q

k k q q

If h(q) were a continuous function of q (which it isn’t, but just sup-
pose), then we could write

0

( ) ( )
lim .

q

dh h q h q q
dq q

Of course, we are stuck with Δq = 1, but suppose we ignore that and, 
using (1.3.1), we write

1
( ) ( 1)h q h q

q

and so

(1.3.2) 1dh
dq q

and argue that (1.3.2) gets “better and better” as q → ∞.
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Th is is all very casual, of course, but in fact it is fairly typical of how 
Euler found inspiration. We then integrate (1.3.2) indefi nitely to get

h(q) = ln(q) + C

where C is the constant of indefi nite integration. Well, you ask, what 
is C? For Euler,

(1.3.3) C = limq→∞{h(q) – ln(q)}.

Now, as Oresme showed, h(q) blows up in (1.2.4) as q → ∞, but 
so does ln(q), and so (perhaps pondered Euler) might their diff er-
ence approach a fi nite limit? Th is is what in fact happens, and C (now 
usually written as the Greek gamma, γ) has become famous in math-
ematics as Euler’s constant. Aft er π and e, γ is perhaps the most 
important constant in mathematics. We can get an idea of the value 
of γ by simply plotting (1.3.3), and this is done in the semi-log plot 
of Figure 1.3.1 as q varies from 1 to 10,000. Th e plot is certainly not 
a proof that there is such a limit (maybe for physicists or engineers, 
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FIGURE 1.3.1.

Computer determination of Euler’s constant as a limit.
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but not for rigorous mathematicians), but it does strongly suggest 
that γ ≈ 0.57.

To get our hands on the actual value of γ, we need an analytical 
expression, and here’s one possible way to do that, using the power 
series expansion for ln(1 + x), where x is in the interval −1 to 1. Th is 
expression was derived by the Danish mathematician Nikolaus Mer-
cator (1620–1687) in 1668, and we’ll do it here as follows. We start 
by observing that

(1.3.4) 2 3 41
1 ,

1
x x x x

x

which you can confi rm by either doing the long division or by doing 
the multiplication (1 + x)(1 − x + x2 − x3 + x4 − . . . ) and seeing that 
all the terms cancel except for the leading 1. Th en, integrating, 
(1.3.4) term-by-term yields

2 3 4 51 1 1 1 1
ln(1 )

1 2 3 4 5
dx x x x x x x K

x

where K is the constant of indefi nite integration. Setting x = 0 gives 
ln(1) = 0 = K and so

2 3 4 51 1 1 1
ln(1 )

2 3 4 5
x x x x x x

or, rearranging,

(1.3.5) 2 3 4 51 1 1 1
ln(1 ) .

2 3 4 5
x x x x x x

Now, successively substitute the values of x = 1, 1 1 1 1
2 3 4,  ,  , , q  into 

(1.3.5), which gives the following sequence of expressions:

1 1 1 1
1 ln(2)

2 3 4 5
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2 3 4 5

2 3 4 5

2 3 4 5

1 3 1 1 1 1 1 1 1 1
ln

2 2 2 2 3 2 4 2 5 2
1 4 1 1 1 1 1 1 1 1

ln
3 3 2 3 3 3 4 3 5 3
1 5 1 1 1 1 1 1 1 1

ln
4 4 2 4 3 4 4 4 5 4

1 1
ln

q
q q 2 3 4 5

1 1 1 1 1 1 1 1
.

2 3 4 5q q q q

What do we do with all of these expressions? Th ere are a lot of things 
we could do, but let’s do the simplest thing and simply add them. On 
the left , we immediately get

1 1 1 1
1 ( ).

2 3 4
h q

q

Next, we’ll add the right-hand sides of the expressions in two 
steps. First, adding all the logarithmic terms gives us

3 4 5 1
ln(2) ln ln ln ln

2 3 4
ln(2) {ln(3) ln(2)} {ln(4) ln(3)}

 {ln(5) ln(4)} {ln( 1) ln( )} ln( 1),

q
q

q q q

because all the terms but the penultimate one cancel (as mathemati-
cians put it, the series telescopes). Next, adding the rest of the terms 
on the right-hand sides of the sequences of expressions together in 
the highly suggestive way they present themselves (in columns), we 
see that

2 2 2 2 3 3 3 3

4 4 4 4 5 5 5 5

1 1 1 1 1 1 1 1 1 1
( ) ln( 1) 1 1

2 2 3 4 3 2 3 4

1 1 1 1 1 1 1 1 1 1
1 1

4 2 3 4 5 2 3 4

h q q
q q

q q
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or, from (1.3.3)—with its ln(q) term replaced with ln(q + 1), which 
hardly matters, since we are about to let q → ∞ anyway—we have 
(writing γ now, instead of C)

2 1

1 1
lim ( ) ln( 1

(
{ )

)
}

s

ss qq
h q q

s q

or, amazingly and seemingly out of nowhere,

(1.3.6) 
2

1
(

(
)

)
.

s

s
s

s

Th e intimate connection between Euler’s constant and the zeta 
function is on full display in (1.3.6) but, alas, the sum doesn’t con-
verge very rapidly.6 Still, using just the fi rst 10 terms gives γ ≈ 0.5338 
(using the fi rst 100 terms gives γ ≈ 0.5723), which is consistent with 
Figure 1.3.1. (Th e actual value is γ = 0.5772156649 . . . .) Th ere is still 
a lot of mystery to γ. Euler was able to correctly calculate the fi rst 
few digits (an impressive feat, in its own right), and electronic com-
puters have extended that out to millions of digits. Despite all that, 
however, it is still not known if γ is rational or not, although every 
mathematician in the Solar System would be astonished if it turned 
out to be rational. If it is rational, then it is known that the denomi-
nator integer b in γ = a/b would have to have hundreds of thousands 
of digits! As a practical matter, the fraction 228/395 correctly gives 
the fi rst six digits, which is almost certainly (as engineers like to put 
it) “good enough for government work.”

6. Th e ultimate convergence of (1.3.6) is, however, guaranteed by the following 
beautiful little theorem from fi rst-year calculus: an alternating series in which the 
successive terms continually decrease in magnitude toward zero always converges. 
Th e issue of the rapidity of the decrease no longer appears. Since (1.2.6) tells us that 
lims→∞ ζ(s) = 1, then from (1.3.6), we see that ( ) 0s

s  as s → ∞, and so the theorem’s 
requirements are satisfi ed. At the end of this chapter, I’ll show you a generalization 
of (1.3.6) that converges much faster.
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Now, for just a moment, let me indulge in a little aside. If you plug 
x = 1 into the power series expansion for ln(1 + x) you get

1 1 1 1 1 1
ln(2) 1 .

2 3 4 5 6 7

Th at is, if we write the harmonic series with alternating signs as on 
the right-hand side, the sum now converges, just as footnote 6 
claims. Th ere is, however, a subtle, perplexing issue with the con-
vergence of the series: if we sum the terms in a diff erent order, we’ll 
get a diff erent sum. For example, suppose we start with the 1, then 
add the next two negative terms, then the fi rst skipped positive term, 
then the next two negative terms, then the next skipped positive 
term, and so on. Th us, we add the same terms that appear in the 
ln(2) expression, but now in the following order:

1 1 1 1 1 1 1 1 1 1 1 1
1 .

2 4 3 6 8 5 10 12 7 14 16 9

If we group these terms as

1 1 1 1 1 1 1 1 1 1 1
1

2 4 3 6 8 5 10 12 7 14 16

that gives

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1

2 4 6 8 10 12 14 2 2 3 4 5 6 7

 1
ln(2) ln(2).

2

In 1837 the German mathematician Gustav Dirichlet (1805–
1859) proved that for any rearrangement of a series to always con-
verge to the same value, the series must be what mathematicians call 



20 Chapter 1

absolutely convergent. Th at is, the series must converge even if all its 
terms are taken as positive (and, as Oresme showed, that is not the 
case for the harmonic series, and that’s why we see this curious 
behavior). In 1854, Riemann observed that the terms of the har-
monic series with alternating signs can always be rearranged to con-
verge to any value, positive or negative, that you wish! (For a sketch 
on how to prove that, see the solution to Challenge Problem 1.3.1.)

In 1737 Euler did something with ζ(s) that, in some ways, might be 
even more astounding than is (1.3.6). What he did was show that there 
is an intimate connection between ζ(s), a continuous function of s, and 
the primes (which as integers are the very signature of discontinuity). 
To start, multiply through (1.2.6), the defi nition of ζ(s), by 1

2 s
 to get

(1.3.7) 
1 1 1 1 1 1 1

( ) ,
2 2 4 6 8 10 12s s s s s s ss

then subtract (1.3.7) from (1.2.6) to arrive at

(1.3.8) 
1 1 1 1 1

( ) ( ) 1 ( ) 1
2 2 3 5 7s s s s ss s s

 
1 1 1

.
9 11 20s s s

Now, multiply (1.3.8) by 1
3s  to get

(1.3.9) 
1 1 1 1 1 1

1 ( )
2 3 3 9 15 21s s s s s ss

and so, if we subtract (1.3.9) from (1.3.8), we have

(1.3.10) 
1 1 1 1 1

1 ( ) 1 ( ) 1 1 ( )
2 2 3 2 3s s s s ss s s

   

1 1 1
1 .

5 7 11s s s
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Next, multiply (1.3.10) by 1
5s  to get . . . and on and on we go, and I’m 

sure you see the pattern. As we repeat this process over and over, 
multiplying through our last result by 1/ps, where p denotes succes-
sive primes, we relentlessly subtract out all the multiples of the 
primes. You may recognize what we’re doing here as essentially 
executing the famous method called Eratosthenes’ sieve, developed 
by the third century BC Greek mathematician Eratosthenes of 
Cyrene as the fundamental algorithmic procedure for fi nding all of 
the primes in the fi rst place.

If we imagine doing this multiply-and-subtract process for all 
primes, then when we are done (aft er an infi nity of such operations), 
we will have removed every term but the leading 1 on the 
right-hand side of (1.3.10) exactly once because of the unique 
factorization theorem (see note 3). Th us, using Π to denote a 
product, Euler arrived at

 

1
1 ( ) 1s

p prime

s
p

or, as it is more commonly written,

(1.3.11) 
1

 

1
( ) 1 ,sp prime
s

p

which is called the Eulerian product form of the zeta function.
In addition to simply being a beautiful expression as it stands, 

there are two astonishing implications hidden in (1.3.11). One was 
already known (the infi nity of the primes), while the other was new 
and totally unexpected. To see how Euler had found a new proof for 
the infi nity of the primes, simply notice that if we set s = 1, then ζ(1) 
is the divergent harmonic series. Th at is,

(1.3.12) 
1

 

1
1 .

p prime p
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Now, since p ≥ 2, then every factor in the product is greater than 1, 
and so the product increases with each additional factor. To increase 
without bound (that is, to diverge), however, requires that there be 
an infi nite number of factors (that is, an infi nity of primes).

Th is is nice (it’s always good to have multiple proofs of a theorem), 
but it really can’t compare with the second, new result Euler extracted 
from (1.3.11): Th e sum of the reciprocals of just the primes, alone, 
diverges! It was, aft er all, a huge surprise when it was realized that the 
harmonic series, the sum of the reciprocals of all the positive integers, 
diverges, but to still have divergence even when just the primes are 
used seems completely and totally unbelievable. Here’s how Euler 
showed, despite that skepticism, that we nevertheless have to believe 
it. Taking the natural logarithm of (1.3.12), we have (because the log 
of a product is the sum of the logs, and because ln(∞) = ∞)

(1.3.13)  

1
ln 1 . 

p prime p

Next, looking back at (1.3.5), if we set 1
px  then

(1.3.14) 2 3 4 5

1 1 1 1 1 1 1 1 1 1
ln 1

2 3 4 5p p p p p p

and so (1.3.13) becomes

 

2 3 4 5
 

1 1 1 1 1 1 1 1 1
 

2 3 4 5p prime p p p p p

or

(1.3.15) 2 3   

1 1 1 1 1
2 3p prime p primep p p

4 5

1 1 1 1
.

4 5p p
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In the second sum on the left , replace every term with a larger 
one and, in addition, include terms for every p (not just for p a 
prime). Th en it is certainly true that

2 3 4 5
 

1 1 1 1 1 1 1 1
2 3 4 5p prime p p p p

2 3 4 5
2

1 1 1 1

p p p p p
.

Th e expression in the curly brackets on the right is a geometric 
series, easily summed to give

2 3 4 5  2

1 1 1 1 1 1 1 1 1
2 3 4 5   1 p prime pp p p p p p

.

Th e sum on the right is easily evaluated, because it telescopes as

2 2

1 1 1 1 1 1
1

(   1  )   1  2 3 4p pp p p p

1 1 1
1

2 3 4

and so (1.3.15) becomes

 

 

1
something less than 1 

p prime p

or, just like that,

 

 

1

p prime p
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and so the sum of the reciprocals of nothing but the primes, alone, 
diverges.

Th at is hard to believe, without a doubt, but it’s true. As you 
won’t be surprised to learn, the divergence is excruciatingly slow. 
We know from (1.3.3) that the harmonic series diverges logarithmi-
cally: that is, for large q, h(q) ≈ ln(q), where we ignore the “correc-
tion” term of γ, which becomes ever-less signifi cant as q increases. 
Th e log function is a slowly increasing function of its argument, and 
so the obvious question now is: What grows even more slowly than 
the log? I won’t prove it here, but an answer is the iterated-log, that 
is, the log of a log. Th e divergence of the sum of the reciprocals of 
the primes is as ln{ln(q)}. How good is this estimate? By actual cal-
culation, when the reciprocals of all the primes in the fi rst 1 million 
integers are added, the result is slightly less than 2.9. Th e iterated-log 
estimate gives us

ln{ln(106)} = ln{6ln(10)} = ln(13.815) = 2.6,

which is, in fact, actually not that far off  the mark.
Challenge Problem 1.3.1: Write the harmonic series with alternat-

ing signs as, fi rst, the sum of all the positive terms, added to the sum 
of all the negative terms. Th at is, as

1 1 1 1 1 1
1 .

3 5 7 2 4 6
A B

Explain why 1 1 1
3 5 71A  diverges to plus infi nity, while 

1 1 1
2 4 6B  diverges to minus infi nity. (Hint: With what 

you’ve read in the text, not much more actual math is needed 
to explain either of these divergences.) Can you use these two 
conclusions to justify Riemann’s observation that there is always 
some rearrangement of the terms in A and B that will result in 
the convergence of A + B to any value, negative or positive, that 
you wish?
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1.4 Euler’s Gamma Function, the Refl ection 
Formula, and the Zeta Function

As 1729 turned to 1730, Euler started the development of what we 
today call the gamma function.7 Th is involves a study of the integral

(1.4.1)       1

0
( ) ,   0,x nn e x dx n

which has the wonderful property of extending the idea of the facto-
rial function from just the non-negative integers to all real numbers. 
Here’s how that works.

For n = 1, it is easy to calculate

(1.4.2)     
00

(1) { } | 1x xe dx e .

If you integrate by parts, (1.4.1) quickly becomes8

(1.4.3) Γ(n + 1) = nΓ(n)

and so, for n a positive integer, we immediately see the connection 
between Γ(n) and the factorial function:

Γ(2) = 1Γ(1) = 1(1) = 1!

Γ(3) = 2Γ(2) = 2(1!) = 2!

Γ(4) = 3Γ(3) = 3(2!) = 3!

and so on, all the way to

(1.4.4) Γ(n) = (n − 1)(n − 2)! = (n − 1)!

7. For an erudite presentation, see Philip J. Davis, “Leonhard Euler’s Integral: A 
Historical Profi le of the Gamma Function,” American Mathematical Monthly, Decem-
ber 1959, pp. 849–869.

8. In 0 0 0  { } |  udv uv v du, let u = e− x and dv = xn − 1 dx. Expression (1.4.3) is 
called the functional equation of the gamma function.
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Notice, in particular, that setting n = 1 in (1.4.4) results in

Γ(1) = 0!

but (1.4.2) then tells us that

0! = 1

not 0, as most students initially think.9 To be really emphatic 
about this,

0! ≠ 0 (!!!!!)

In the integral defi nition of Γ(n), in (1.4.1), n does not have to be 
a positive integer. Indeed, it was the question of how to interpolate 
the factorial function (for example, 1

2( )!  ?) that motivated Euler to 
develop the integral defi nition in the fi rst place. We can also use 
(1.4.4) to extend n to all real n, including negative values, and so give 
meaning to objects as strange looking as 1

2( )! probably strikes you. 
Here’s how to do that.

First, a specifi c example. Setting 1
2n  in both (1.4.1) and (1.4.4), 

we have

(1.4.5) 
 

0

1   1
!

2 2

xe
dx

x

Next, change variable to x = t2, and so dx = 2t dt. Th us,

2
2

 
 

0 0

1 1
! 2   2 2

2 2

t
te

t dt e dt
t

9. A more direct way to arrive at this result is to write n! = n(n − 1)! and then set 
n = 1. Th us, 1! = 1(0!) = 0! Since 1! = 1 we have, again, 0! = 1.
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and so

(1.4.6) 
1 1

! .
2 2

Who would have believed that 1
2( )! could mean anything, before 

Euler came along? Until Euler, nobody had even wondered about 
such a weird thing.10 (Th at last integral, 

2 
0

te dt , of course, needs 
some explaining; see Appendix 2 for a derivation.)

Now, let’s be more general. If, in (1.4.4), we replace n with 
1 − n on both sides of the expression, we obtain the interesting 
result

(1.4.7) Γ(1 – n) = (1 − n – 1)! = (–n)!

Since from (1.4.4) we have

nΓ(n) = n(n − 1)! = n!

then

(1.4.8) nΓ(n)Γ(1 − n) = (n!)(−n)!

Th at is, if we could evaluate the left -hand side of (1.4.8), we would 
then have a way to calculate (−n)! from the value of n!, for any 
n ≥ 0. An evaluation of nΓ(n)Γ(1 − n) can, in fact, be done by work-
ing directly with the integral defi nition of the gamma function, 
(1.4.1), but that approach has (for us, in this book) the drawback of 
using some mathematics that is just beyond AP-calculus.11 What I’ll 

10. See if you can calculate 1
2( )! right now. I’ll ask you to think about this again a 

little later in this section and, yet again, at the end of this section as a challenge question.
11. See my An Imaginary Tale: Th e Story of 1 (Princeton University Press, 

2016), pp. 182–184. Th at discussion concludes with an evaluation of the integral 
   1

0 1   
s

s
ds, which is done using complex function theory (contour integration), a topic 

developed in that book on its pp. 187–226.
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show you next, instead, is a way to calculate (n!)(−n)! which neatly 
avoids that problem.

To start, let’s develop another of Euler’s beautiful discoveries, 
one that we’ll need in just a bit. Th is is his formulation of the sine 
function as an infi nite product:

(1.4.9) 
2

2 21
sin( ) 1

n

y
y y

n
.

Th is famous expression is normally established with some pretty 
sophisticated mathematics, but I’ll limit my comments here to a 
series of plausible assertions (but I think you’ll fi nd them pretty 
convincing). If we write sin(y) as a power series, that is, as

3 51 1
sin( )

3! 5!
y y y y ,

or, dividing through by y,

(1.4.10) 2 4sin( ) 1 1
1 ,

3! 5!
y

y y
y

then it doesn’t seem unreasonable to say (as, in fact, did Euler) that 
sin( )y

y
 is a polynomial of infi nite degree. Notice, in particular, that y 

appears in (1.4.10) raised only to ever-increasing even powers.
Now, fall back on your algebraic experience with polynomials of 

fi nite degree. If somebody told you she was thinking of a polynomial 
P(y) of degree s, with non-zero roots r1, r2, . . . , rs , then to within a 
scale factor of A you’d write that polynomial as the product

P(y) = A(y − r1)(y − r2) . . . (y − rs).

If we write each factor as y − rk = − (rk − y) and absorb the s minus 
signs into A, then

P(y) = A(r1 − y)(r2 − y) . . . (rs − y)
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or, factoring out r1, r2, . . . , rs,

1 2
1 2

( ) 1 1 1 .s
s

y y y
P y A r r r

r r r

Again, if we absorb the product r1 r2 . . . rs into A,

(1.4.11) 
1 2

( ) 1 1 1 .
s

y y y
P y A

r r r

We know the roots of sin(y) = 0 are y equal to any integer mul-
tiple of π. Th at is, the roots are y = 0, ±π, ±2π, ±3π, and so on, 
or equivalently, y2 = 0, π2, 22π2, 32π2, and so on. Th e situation for 
sin( )y

y  is the same, with the exception that y = 0 is not a root of 
sin( ) 0y

y
, because limy→0

sin( )y
y  = 1 by L’Hôpital’s rule. So, using 

(1.4.11) as a guide, it seems reasonable to jump from the fi nite 
to the infi nite (but, to be honest, this is not always legitimate!) 
and write

(1.4.12)  
2 2 2

2 2 2 2 2

sin( )
1 1 1 .

2 3
y y y y

A
y

Notice that (1.4.12) has y raised only to even powers of y, just as in 
(1.4.10). Since the left -hand side of (1.4.12) is 1 at y = 0, and the 
right-hand side is A, we have

2

2 2
1

sin( )
1

n

y y
y n

or

2

2 2
1

sin( ) 1 ,
n

y
y y

n
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which is (1.4.9). (See the following box for how the value for 
ζ (2) follows almost immediately from (1.4.9).)

From (1.4.9), and writing sin(y) as a power series, we have

2 2 2
3 5

2 2 2 2 2

1 1
1 1 1

3! 5! 2 3
y y y

y y y y

3
2 2 2 2 2

1 1 1
higher-order terms.

2 3
y y

Equating the coeffi  cients of the y3 term on each side,

2 2 2 2 2

1 1 1 1
3! 2 3

or,

2 2

2 2

1 1
1 (2).

3! 6 2 3

Done!

Okay, back to calculating (n!)(−n)!
Let’s initially assume n is a positive integer, and so

(1.4.13) n! = 1 . 2 . 3 .... (n – 1)n

and then we’ll manipulate (1.4.13)—using a method due to the 
German mathematician Karl Weierstrass (1815–1897)—until we get 
an expression that makes sense even when n is not an integer, or 
even positive. So, suppose α is another integer whose particular 
value doesn’t matter, because we are going to be taking the limit 
α → ∞. Multiplying (1.4.13) by 1, we have

(continued...)
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