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1

Introduction
ARE WE SMART?

Against stupidity the gods themselves contend in vain.
—friedrich schiller

This book is motivated by a fundamental puzzle about human cognition:
How can we apparently be so stupid and so smart at the same time? On the
one hand, the catalog of human error is vast: we perceive things that aren’t
there and fail to perceive things right in front of us, we forget things that hap-
pened and remember things that didn’t, we say things we don’t mean and
mean things we don’t say, we’re inconsistent, biased, myopic, overly opti-
mistic, and—despite this litany of imperfections—overconfident. In short,
we appear to be as far as one can imagine from an ideal of rationality.1

On the other hand, there is an equally vast catalog of findings in support of
human rationality:we comeclose tooptimal performance indomains ranging
from motor control and sensory perception to prediction, communication,
decision making, and logical reasoning.2 Even more puzzlingly, sometimes
the very same phenomena appear to provide evidence both for and against
rationality, depending on the theoretical lens through which the phenomena
are studied.

This puzzle has been around for as long as people have contemplated the
nature of human intelligence. It was aptly summarized byRichardNisbett and
Lee Ross in the opening passage of their classic book on social psychology:

One of philosophy’s oldest paradoxes is the apparent contradiction
between the great triumphs and the dramatic failures of the human mind.
The same organism that routinely solves inferential problems too sub-
tle and complex for the mightiest computers often makes errors in the
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2 chapter 1

simplest of judgments about everyday events. The errors, moreover, often
seem traceable to violations of the same inferential rules that underlie
people’s most impressive successes.3

As indicated by Nisbett and Ross, the puzzle of human intelligence is
reflected in our conflicted relationship with computers. On the one hand, it
has long been advocated that error-prone human judgment be replaced by
statistical algorithms. In 1954, Paul Meehl published a bombshell book enti-
tled Clinical Versus Statistical Prediction, in which he argued (to the disbelief
of his clinical colleagues) that the intuitive judgments of clinical psycholo-
gists were typically less accurate than the outputs of statistical algorithms.
This conclusion was reinforced by subsequent studies and expanded to other
domains.4 For example, in his 2003 book Moneyball, Michael Lewis popu-
larized the story of the baseball manager Billy Beane, who showed (to the
disbelief of his managerial colleagues) that statistical analysis could be used
to predict player performance better than the subjective judgments of man-
agers.5 Today, the idea that computers can outperformhumans, even on tasks
previously thought to require human expertise, has become mundane, with
stunning victories in Go, poker, chess, and Jeopardy.6

And yet, despite these successes, computers still struggle to emulate the
scope and flexibility of human cognition.7 After the Go master Lee Sedol
was defeated by the AlphaGo computer program, he could get up, talk to
reporters, go home, read a book, make dinner, and carry out the countless
other daily activities that we do not even register as intelligence. AlphaGo,
on the other hand, simply turned off, its job complete. Even in the domains
for whichmachine learning algorithms have been specifically optimized, triv-
ial variations in appearance (e.g., altering the colors and shapes of objects)
or slight modifications in the rules will have catastrophic effects on perfor-
mance.What seems tobemissing is some formof “commonsense”—the set of
backgroundbeliefs and inferential abilities that allowhumans to adapt, almost
effortlessly, to an endless variety of problems.

The lack of common sense in modern artificial intelligence (AI) systems
is vivid in the domain of natural language processing. Consider the sentence
“I saw the Grand Canyon flying to New York.”8 When asked to translate
into German, Google Translate returns “Ich sah den Grand Canyon nach
New York fliegen,” which implies that it is the Grand Canyon that is doing
the flying, in defiance of common sense. In fact, the problem of common-
sense knowledgewas raised at the dawn ofmachine translation by the linguist
Yehoshua Bar-Hillel, who contrasted “The pen is in the box” with “The box
is in the pen.”9 Google Translate returns Stift (the writing implement) for
both instances of “pen,” despite its obvious incorrectness in the latter instance.
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These errors reflect the fact that modern machine translation systems like
Google Translate are based almost entirely on statistical regularities extracted
from parallel text corpora (i.e., texts that have already been translated into
multiple languages). Because the writing implement usage of “pen” is vastly
more common than the container usage, these systems will fail to appreciate
subtle contextual differences that are transparent to humans.

Similar issues arise when computers are asked to answer questions based
on natural language. The computer scientist Terry Winograd presented the
following two sentences that differ by a single word:10

1. The city councilmen refused the demonstrators a permit because they
feared violence.

2. The city councilmen refused the demonstrators a permit because they
advocated violence.

Who does “they” refer to? Humans intuitively understand that “they” refers
to the councilmen in sentence 1 and the demonstrators in sentence 2. Clearly
we are using background knowledge about councilmen, demonstrators, per-
mits, and violence to answer this simple question. But building AI systems
that can flexibly represent anduse such knowledge has proven to be extremely
challenging.11

As a final example, consider the abilities of amodern image-captioning sys-
tem.12 When given the image in Figure 1.1, it returns the caption, “I think it’s
a person holding a cup.” Apparently, the system has implicitly used a heuristic
that if it sees a cup and a person in the image, then the image probably shows
a person holding a cup. But now consider the image in Figure 1.2, which the
same system identifies as “amanholding a laptop.” Although the cup is heavily
occluded, humans have no trouble recognizing that the person on the left is
holding one. And of course the “laptop” is a piece of paper!13

The lesson from this cursory examination of AI systems is that it is much
easier to engineer systems that achieve superhuman performance on specific
tasks like Go than it is to engineer systems with human-like common sense.
This tells us something very important about the nature of human intelli-
gence: our brains are evolved for “breadth” rather than “depth.” We excel at
flexibly solving many different problems approximately rather than solving
a small number of specific problems precisely. Common sense enables us to
make sophisticated inferences on the basis of the most meager data—single
sentences or images. And the fact that this ability appears to us so effortless—
the very fact that common sense is “common” to the point of being almost
invisible—suggests that our brains are optimized for fast, subconscious infer-
ence and decision making.
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figure 1.1. Image of the author holding a notebook in
a restaurant. The image-captioning system believes the
image shows “a person holding a cup.”

figure 1.2. Image of the author’s brother and father. The
image-captioning system believes the image shows “a man
holding a laptop.”

These features of human cognition are shaped by the constraints of the
environment in which we live and the biological constraints imposed on
our brains. The complexity of our society and technology places a premium
on flexibility and scope. We constantly meet new people, visit new places,
encounter new objects, and hear new sentences. We are able to generalize
broadly from a limited set of experiences with these entities. We have to do
all of this with extremely limited energy andmemory resources (compared to
conventional computers), and under extreme time constraints. To negotiate
these demands, our brainsmake trade-offs and take aggressive shortcuts. This
gives rise to errors, but these errors are not haphazard “hacks” or “kluges,” as
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some have argued.14 They are inevitable consequences of a brain optimized
to operate under natural information-processing constraints. The central goal
of this book is to develop this argument and show how it reveals the deeper
computational logic underlying a range of errors in human cognition.

One might rightfully be concerned that the outcome of this endeavor will
be a collection of “just-so” stories—ad hoc justifications of various cogni-
tive oddities.15 Like Dr. Pangloss in Voltaire’s satirical novella Candide, we
could start from the assumption that “this is the best of all possible worlds”
and, given enough explanatory flexibility, explainwhy all these oddities spring
from “the best of all possible minds.” However, the goal of this book is not to
argue for optimality per se, but rather to show how thinking about optimal-
ity can guide us towards a small set of unifying principles for understanding
both the successes and failures of cognition. Unlike just-so stories, we will
not have bespoke explanations for individual phenomena; the project will be
judged successful if the same principles can be invoked to explain diverse and
superficially distinct phenomena.

I will argue that there are two fundamental principles governing the orga-
nization of human intelligence. The first is inductive bias: any system (natural
or artificial) that makes inferences on the basis of limited data must constrain
its hypotheses in some way before observing data. For those of you encoun-
tering this idea for the first time, it may seem highly unintuitive. Why would
we want to constrain our hypotheses before observing data? If the data don’t
conform to these constraints, won’t we be shooting ourselves in the foot? The
answer, as I elaborate in the next chapter, is that if all hypotheses are allow-
able, a huge (possibly infinite) number of hypotheses will be consistent with
any given pattern of data. The more agnostic an inferential system is (i.e., the
weaker its inductive biases), the more uncertain it will be about the correct
hypothesis. Naturally, this gives rise to errors when the inductive biases are
wrong. Chapters 2 through 9 are devoted to exploring the implications of this
fact, showing the ways in which many different errors that people make are
consistent with particular inductive biases. Critically, these are only errors
with respect to an objective description of reality, to which people do not have
direct access.16 From the subjective perspective of an inferential system, the
use of inductive biases is not an error at all—it is an indispensable property
of a rationally designed inferential system.

The second principle is approximation bias: any system (natural or arti-
ficial) that makes inferences and decisions with limited resources (time,
memory, energy)mustmake approximations. In particular, optimal inductive
inference and planning are intractable for most resource-bounded systems:
executing the computations needed to obtain the correct answer requires
more time, memory, and energy than is available to these systems. Thus,
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approximate algorithms are necessary which attain efficiency at the cost of
precision. These approximate algorithms give rise to different forms of error,
which I explore in Chapters 10 through 12. For example, I show how the
need to represent information efficiently leads to distortions in perception,
and how the need to calculate probabilities efficiently leads to algorithms
that exploit randomness. Again, these are errors with respect to an objec-
tive description of reality, whereas they may be optimal from the subjective
perspective of the computational system.
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Rational illusions

There are strange flowers of reason to match each error of the senses.
—louis aragon

Shortly after graduating from college, I went on a hiking trip with a friend in
New Hampshire. After hiking since dawn, we stopped for a rest on a plateau
and gazed at our goal: a mountain peak that loomed in the distance. As we
were sitting there, two people came from that direction, and we asked them
how long it would take to get to the peak. “About five minutes,” they replied.
Fiveminutes?!We stared at the peak in disbelief; it lookeddistant enough that
it would take at least another half hour of hiking. And then, as we were star-
ing, something monstrous appeared on the ascent to the peak: an enormous
giant, towering over the trees, surely at least 30 feet tall. After the initial shock,
I realized the trick that had been played on my visual system. Since we were
above the alpine level, the trees were only about 3 feet tall. But because we
were used to seeingmuch taller trees, our visual system inferred that the peak
must be very far away. The giant, of course, was simply another hiker.

The illusion I experienced is illustrative of how size perception is influ-
encedby contextual information.Awell-studied example is thePonzo illusion
(Figure 2.1). The two converging lines resemble train tracks that converge
into the distance, creating the impression of depth. Consequently, the lower
line looks shorter than the upper line, as though it was placed closer to the
observer. In fact, both lines are the same length.

While the Ponzo illusion is a contrived example, it relates to the real-world
“moon illusion” that has been known since ancient times. At its zenith, the
moon is perceived as smaller compared towhen it sits at thehorizon.The 2nd-
century Roman astronomer Ptolemy argued that the moon illusion is caused
by the greater apparent distance induced by terrain at the horizon, which
seems to fill more space. In support of this argument, the moon illusion can
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figure 2.1. The Ponzo illusion.

be virtually eliminated by obscuring
the terrain (e.g., viewing the moon
in complete darkness or through an
aperture). In fact, the moon illusion
can be reversed by inverting the im-
age so that the terrain appears closer
to the zenith moon than the horizon
moon.1

Contextually induced illusions go
far beyond size perception. They
appear in the perception of color,
location, brightness, speed, weight,
andmanyotherproperties.Theubiq-
uity of such illusions raises a gen-
eral question:Why didwe not evolve
brains that perceive the world as it
really is? One answer is that veridi-
cal perception is impossible given the
limits of our sensory organs.2 As a

consequence, the sensory information that reaches the brain is often highly
ambiguous. For example, the three-dimensional world is projected onto a
two-dimensional retina. This means that the size and distance of an object
are ambiguous: a retinal image could be produced by a small object up close
or a large object far away (Figure 2.2). The visual system partially resolves
this uncertainty by using contextual information (e.g., perspective cues) and
background knowledge (e.g., the canonical sizes of objects).

Illusions are a by-product of ambiguity resolution. The same strategy that
aids perception can lead it astray in certain cases (in fact, as I discuss later, it
is impossible to devise a strategy that will work well under all circumstances).
According to this view, illusions are not bugs, but rather essential design fea-
tures. If we were to design a robot to optimally perceive the world (within
the limits of its sensory receptors), then we would expect it to experience
illusions.3 To unpack this argument, we need to dive deeper into what we
mean by an optimally designed system. We can then ask to what extent such
optimality principles provide a general explanation for perceptual illusions. Is
there a logic of perception?4

Perception as inference

Putting our engineering hats on, let us consider how we would endow our
robot with a perceptual system. Our robot’s input is a retinal image, I, gen-
erated by some three-dimensional scene, S, which the robot can’t directly
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figure 2.2. Sensory information is ambiguous. All of the vertical lines project to the
same image on the retina.

observe. As an example, the scene structure could be (partially) specified by
the size and distance of a particular object. As already mentioned, the image
is typically consistent with many possible scenes. In the Ponzo illusion, for
example, a line segment is consistent with an arbitrary size or distance, since
we don’t have an objective reference point. It’s also possible for the image gen-
eration process to be “noisy” in the sense that it is influenced by effectively
random processes, like whether photons striking the retina cause photo-
receptive pigments to change shape, setting in motion the transduction of
light into neuronal firing patterns. These different sources of uncertainty can
be integrated into a single probability distribution, P(I|S), which expresses
the likelihood that image I was generated by scene S. Intuitively, the likelihood
measures the “fit” between the image and the hypothetical scene.

Note that even if theworldwere completely deterministic, one can still use
probability distributions to express uncertainty (what is sometimes referred
to as epistemic or subjective uncertainty). In our usage, it is better to think
of probabilities as degrees of belief rather than descriptions of randomness
(the frequencies of repeating events).5 In conventional usage, Imightdescribe
the probability that a coin lands heads by referring to the proportion of heads
that I’d expect were I to repeatedly flip the coin. But it’s also possible for a
weather forecaster to tell you that tomorrow the probability of rain is 70%.
Clearly the event “rain tomorrow” can only happen once, so it makes no
sense to assign probabilities to a one-time event if we are restricting our usage
to frequencies of repeating events. The forecaster is reporting a belief about
whether or not it will rain tomorrow. This is why Pierre-Simon Laplace, a
mathematician who contributed to the early development of probability the-
ory, remarked that probability was “nothing but common sense reduced to
calculus.”
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If our robot has to make a guess about the scene given the retinal image,
then one reasonable solution is to report the scenewith the highest likelihood
(i.e., the scene that is most consistent with the retinal image). This is known
asmaximum likelihood estimation. There are, however, two problems with this
solution. First, it neglects contextual information andbackgroundknowledge.
If you know something about the sizes and distances of nearby objects, or if
you know something about the canonical sizes of objects, then you should
be able to utilize this information to improve your guess. This leads to the
concept of “inductive bias,” which I will elaborate later. The second problem
is thatmaximum likelihood estimation neglects subjective uncertainty: if you
only report a single guess (a point estimate, in statistical parlance), then there’s
noway to distinguish different levels of confidence in that guess. Suppose you
had to bet on your guess; intuitively, you would be willing to bet more if your
confidence was higher.

We can remedy the shortcomings of maximum likelihood estimation in
two ways. First, we can integrate all of our robot’s contextual information and
background knowledge into a prior probability distribution,P(S). Second, we
can allow the robot to report subjective probabilities instead of point esti-
mates. Specifically, it reports the posterior probability distribution, P(S|I), the
robot’s degree of belief that scene Sproduced image I.Oneof themost power-
ful results in probability theory is Bayes’ rule, which tells us that the posterior
probability is simply the likelihood multiplied by the prior, and normalized
so that the probabilities sum to 1:

P(S|I) = P(I|S)P(S)∑
S′ P(I|S′)P(S′)

. (2.1)

This simple equation has had an enormous impact on theories of the brain
and cognition (Box 2.1). We will witness some of its many applications across
subsequent chapters in this book.

Box 2.1. The Bayesian brain hypothesis

The idea that the brain represents andmanipulates probability distributionsmight seem exotic
at first glance.When I first started studying this question as an undergraduate and told a family
friend (a computer science professor) about it, he pointed scornfully at his dog and said, “You
think he is doing statistics?” But the idea becomes less exotic when we recognize that not only
dowe routinely report our uncertainty about things, butwe can also act in accordancewith this
uncertainty (e.g., hedging our investments, buying insurance). Bayes’ rule has attracted neu-
roscientists and psychologists because it offers a self-consistent framework for thinking about
howuncertainty should be represented, updated, and acted upon.6 Naturally this doesn’tmean
that it’s correct as a hypothesis about the brain, but it has served as a useful starting point.
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Howdoes the brain represent probability distributions?Onehypothesis is that populations
of neurons implicitly encode distributions.7 The basic intuition is that downstream neurons
receiving signals (spikes) from this population have to reconstruct what information those
signals encode, and to do this, they need to take into account the randomness of a neuron’s
signal-generating process. For example, imagine neurons that fire selectively when particu-
lar locations on the retina are stimulated with light. The task for downstream neurons is to
reconstruct the stimulated location. Because the firing of neurons is noisy, the best that the
downstreamneurons cando is assignprobabilities to eachpossible location; these probabilities
will be higher to the extent that the noisy neurons selective for those locations are firing more
strongly.There are anumberof other schemes for representingprobabilitieswithneurons, such
as modeling neurons as generating random samples from a distribution8 (see Chapter 12), or
as signaling prediction errors9 (the discrepancy between expected and observed input). These
models have been successful at explaining why, for example, the randomness of neural firing
seems to track uncertainty (in the case of the random sampling hypothesis), and why expecta-
tions about stimuli can sometimes suppress the activity of neurons selective for those stimuli
(in the case of the prediction error hypothesis, also known as predictive coding).

Although Bayes’ rule is conceptually simple, implementing it turns out to
be tricky in situations where the denominator cannot be computed exactly
(e.g., if there are a very large number of possible scenes). For example, infer-
ring the size and position of even a single object could be computationally
intractable. If we discretize the 2 dimensions of object size and 2 dimensions
of spatial position intoK bins, then to compute thedenominator ofBayes’ rule
exactly would require summing overK6 possible size-position configurations
(amillionwithK = 10). InChapter 12, wewill see a surprisingly effective way
to deal with this problem approximately—using random numbers!

Putting aside these computational issues for the time being, suppose now
the robot had to act on its beliefs. It chooses an action A and gets rewarded
according to R(S,A), where S is the true state of the world (the scene that
generated the observed image). The optimal decision rule is to choose the
action that maximizes the expected reward under the posterior distribution,
defined as:

E[R(S,A)]=
∑

S

P(S|I)R(S,A). (2.2)

In other words, the robot should consider the posterior probability of each
hypothetical scene, weigh it by the reward associated with acting on that
hypothesis, and choose the action that leads to the highest weighted reward
when summed across all hypotheses. Putting some technical subtleties aside,
the Bayesian decision rule is optimal in the sense that no other decision rule
will reliably lead to higher reward.10
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As an example of how the Bayesian decision rule can be applied, consider
the situation in which the robot’s action is a guess (point estimate) about the
scene, denoted by Ŝ. I offer it $X if the estimate is correct, but if it is incor-
rect, then the robot has to pay me $X. Should the robot take this bet? The
expected reward in this case is $2P(Ŝ|I) − 1, which implies that the robot
should only take the bet if the posterior probability of its guess is greater
than 0.5 (otherwise the expected reward will be less than or equal to 0).
This illustrates how the robot can use its uncertainty to calibrate its betting.
This analysis also shows that the robot should (at least for this betting sce-
nario) report the scene with highest probability, also known as themaximum
a posteriori estimate, if forced to generate a point estimate.

There are several other theoretical arguments about why we would want
our robot to be Bayesian. One is the so-called Dutch book argument: if the
robot did not place its bets according to the Bayesian decision rule, one could
create a bet (the Dutch book) that would guarantee the robot a net loss but
that nonetheless the robot would accept.11 Conversely, if the robot follows
the Bayesian decision rule, it can guarantee that it won’t lose money.12

Another theoretical argument is that expressing beliefs as probabilities,
and updating them according to Bayes’ rule, guarantees that our robot will
satisfy an intuitive notion of rationality. Suppose the robot can assign a num-
ber, whichwe’ll call a plausibility, to each possible hypothesis about theworld.
Intuitively, logically equivalent hypotheses should have the same plausibility;
for example, if two different descriptions refer to the same object, then these
two descriptions should be assigned the same plausibility. Small changes in
hypotheses should yield small changes in plausibilities, and if a hypothesis
is true, it should have a higher plausibility than if it is false. When appropri-
ately formalized, these (and a fewother) desiderata lead to the conclusion that
plausibilitiesmust be proportional to probabilities, and be updated according
to Bayes’ rule; any other choice of plausibilities will lead to violations of these
criteria for rationality.13

Inductive bias

Central to the Bayesian framework is the notion of inductive bias: even before
our robot has acquired sensory information, it has some prior beliefs about
theworld. Bayes’ rule dictates that these prior beliefs should bias the posterior
beliefs, discounting the sensory evidence. This means that a Bayesian robot
will make systematic errors. But why would we design a robot that makes
systematic errors? The answer is that making inferences about the world is
impossible without an inductive bias. Errors are an inevitable consequence of
a well-designed inferential robot.
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Input space Test example

figure 2.3. A chair classifier draws a boundary (possibly complex and
non-linear) between chair and not-chair examples in some sensory input
space (represented here in 2D). A finite number of examples can be sep-
arated by an infinite number of boundaries, assuming the input space is
continuous. If none of these boundaries are preferred over others, then
the classifier will be unable to classify a test example.

To illustrate this point, I’ll borrow an example from the computer scientist
Eric Baum.14 Suppose I build a chair classifier into my robot’s visual system.
It takes sensory input (e.g., images) and outputs a binary judgment (chair
vs. not-chair). Let’s suppose I assemble an arbitrarily large (but finite) set of
training examples. The classifier is powerful enough to infer a boundary in
the input space that separates all the chair examples from all the not-chair
examples (Figure 2.3). This means that it can achieve perfect performance
on its training set. If the classifier has no inductive bias and the input space
is continuous, there exist an infinite number of boundaries that are equally
good, in the sense that they all perfectly separate the training examples and
thus achieve perfect performance. The implication of this fact is startling: if
I give the classifier a new example, it will be unable to determine whether it is
a chair or not a chair, nomatter how accurate it was on the training set, and no
matter how many examples it has collected (short of infinity). There are an
infinite number of boundaries that achieve perfect performance and classify



14 chapter 2

thenewexample as a chair; but there are also an infinite number of boundaries
that achieve perfect performance and classify the new example as not-chair.
Not having an inductive bias means that the robot has no reason to prefer
one of these boundaries over any of the others. Generalization is impossible
without an inductive bias!

So inductive bias is necessary, butwhich inductive bias shouldwehave? It’s
possible that we could choose a bad inductive bias which would cause us to
generalize very poorly, perhaps even worse than random guessing. One way
to finesse this problem is to learn the inductive bias through repeated experi-
ences with related problems. I will discuss this idea further in the next chapter
when we come to the topic of hierarchical learning.

Understanding perceptual illusions

Inductive bias is a key concept for understanding how we perceive the world.
Consider, for example, the Kanizsa triangle in Figure 2.4A.15 One interpreta-
tion of this image is that three “Pac-men” are positioned so that their missing
sectors form the apices of an equilateral triangle, while three V-junctions are
positioned so that their endpoints also form the apices of an equilateral tri-
angle, such that the endpoints intersect the imaginary edges of the triangle
formed by the Pac-men. Note that this interpretation does not require us to
posit any triangles at all; we simply use triangles to succinctly describe the
arrangement of the objects in the image. And yet, we vividly perceive an “illu-
sory surface” formedby a triangle that seems tobe impliedby the arrangement
of the other objects, consistent with an alternative interpretation in which
a “camouflaged” equilateral triangle is occluding another triangle flanked by
three black circles.

Why do our brains prefer the occlusion interpretation? Arguably because
it would require a highly improbable coincidence to arrange the Pac-men
and V-junctions in just the right way, whereas the occlusion of one surface
by another is quite common. The occlusion interpretation should be more
generalizable across different viewing conditions and slight perturbations of
the scene. For example, rotating the occluding surface should leave the effect
intact (Figure 2.4B). Even after rotating the bottom two Pac-men so that their
“mouths” point slightly upwards, one continues to see an illusory surface, as
though the trianglewas foldedat the corners (Figure 2.4C).16 Slightly rotating
the Pac-men and V-junctions in random directions, as though one bumped
a table overlaid with a fragile arrangement of cutouts, diminishes the effect
(Figure 2.4D), but even in this case one can discern a surface that has been
folded and partially cut.
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A B

C D

figure 2.4. (A) The Kanizsa triangle. (B) Rotating the invisible occluding surface
leaves the illusion intact. (C) If the bottom two Pac-men are rotated slightly, one sees
a bent occluding surface. (D) If the image is a suspicious coincidence of Pac-men and
V-junctions, then jittering the arrangement largely destroys the illusory surface.

These examples illustrate how our visual system has strong inductive
biases about the structure of the world. Though many different scene inter-
pretations are consistent with our sensory inputs, we strongly prefer certain
interpretations over others.

How far can we go with this framework? As we will see later, not all
errors are naturally derived from inductive biases. Before we get to that point,
it will be instructive to go through a few more examples in greater detail.
These examples were chosen to illustrate two fundamental principles that
arise naturally from the rules of probability:

1. Explaining away: When several hypotheses can potentially explain
the same observations, additional evidence for one of the hypotheses
reduces belief in the other hypotheses.17

2. Integration: When several sources of information about a hypothesis
are available, each source influences beliefs about the hypothesis in
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proportion to the source’s precision (the accuracy of the information
it provides).

Explaining away and lightness illusions

When a surface is illuminated by a light source, a proportion of it (the
reflectance) bounces off the surface. Some of this light (the luminance) reaches
our retina, activating photoreceptive neurons. One of the problems facing
the visual system is to reconstruct the reflectance from retinal measurements
of luminance. Lightness is the subjective estimate of reflectance. Whereas
reflectance and luminance are physically measurable quantities, lightness is
a perceptual quantity that can only be measured by self-report.

Reflectance is ambiguous, because a particular luminance could be pro-
duced by a highly reflective (shiny) surface under low levels of illumination
(dim light), or by a less reflective surface under high levels of illumination
(note the analogy to the size-distance ambiguity discussed earlier in this chap-
ter). The brain uses a number of visual cues to resolve this ambiguity. A
classic example of this ambiguity resolution is the Craik-O’Brien-Cornsweet
illusion (Figure 2.5).18 Two adjacent squares have identical surfaces, whose
reflectance (and hence luminance) decreases gradually from left to right.
Despite the fact that they are identical, the left square is perceived as slightly
darker than the right square.

One explanation for this error is that the brain has a strong inductive bias
to assume that a light sourcewill not uniformly illuminate a surface unless it is
placed directly above the object (an improbable coincidence).More typically,
objects and light sources are not aligned with one another, and therefore the
light hitting the surface of an object willmanifest as a gradient of illumination.
This gradient “explains away” the reflectance gradient; the visual system can
explain the luminance gradient in terms of differences in illumination, and
since it would be improbable for there to be both reflectance and illumination
gradients, the brain prefers only one of these explanations.

If other cues are available, the brain may resolve the ambiguity differently.
Figure 2.6 showsa three-dimensional versionof theCraik-O’Brien-Cornsweet
illusion using bricks that appear to be painted different shades of gray. In fact,
both bricks have identical reflectance gradients, as in the two-dimensional
version of the illusion. When we apply the same reflectance gradients to
two cylinders, the illusion is attenuated, because now object shape (surface
curvature) offers another plausible explanation of the luminance gradient.

The same line of reasoning can explain why a surface appears darker when
placed on a light background: the inferred surface reflectance is lower if the
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figure 2.5. The Craik-O’Brien-Cornsweet illusion. Source:Wikipedia.
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figure 2.6. The brick on the left appears darker than the brick on the right, as though they
were painted with different shades of gray, but in fact both bricks have the same reflectance.
This illusion is attenuated for the cylinders, because the shape (surface curvature) “explains
away” the luminance gradient. Below each stimulus is the scene interpretation favored by
the visual system. Adapted fromAdelson (2000) andKnill andKersten (1991). Courtesy of
Springer Nature.
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figure 2.7. Koffka rings.

inferred scene illumination is higher. Intuitively, shining a light on an object
will notmake the object appear to have a lighter shade, even though the lumi-
nance reaching your retina is greater. Illumination explains away reflectance.
Nonetheless, this explaining away can be overridden by other cues. For exam-
ple, the Koffka rings in Figure 2.7 illustrate how surface cues can produce
the appearance of uniform reflectance.When two half-rings are connected to
form a ring, the contrast illusion disappears, because the scene is more plau-
sibly explained by a single surface occluding two backgrounds with different
reflectances, rather than two surfaces with different reflectances occluding a
single background with uniform reflectance.

The idea that the brain seeks “explanations” of its visual inputs, and eval-
uates the quality of explanations using Bayes’ rule, can be contrasted with
“low-level” accounts of illusions, which attribute them to various kinds of
image-filtering operations implemented by the brain. For example, some
lightness illusions have been attributed to neurons that are excited in
response to luminance in a particular region of visual space and are sup-
pressed in response to luminance in neighboring regions. These “center-
surround” neurons collectively have the effect of enhancing edges in the
neural representation of an image, which in some cases produces illusory
lightness. In principle, all illusions could be accounted for by positing appro-
priate neural filtering operations. The basic problem facing such accounts
is that they cannot do justice to the bewildering flexibility of the visual
system—it would require a baroque collection of filtering operations akin to
Ptolemaic epicycles.How, for example, would these operations “know” about
the three-dimensional shape of objects and adjust their filter parameters in
just the right way?

The Bayesian framework lifts this problem to a higher level of abstrac-
tion by placing the explanatory burden on the internal models assumed
by the brain. As long as these internal models are sufficiently flexible
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(e.g., different luminance patterns can be explained by different combina-
tions of illumination, shape, and reflectance), then Bayes’ rule (and, more
generally, the probability calculus) offers a coherent mechanism for reason-
ing about them. This does not deny the existence of neural filtering opera-
tions, but rather constrains what kinds of operations the brain would need to
implement.

Integration and ventriloquism

Nearly everybody is familiar with the ventriloquist act: a puppeteer coordi-
nates her voice and the puppet’s movement in such a way that the puppet
appears to be talking. We really feel as though the voice is emanating from
the puppet. How is this feat accomplished?

From the observer’s perspective, we can formalize this scenario as a prob-
lem of multi-sensory cue combination. The observer needs to integrate audi-
tory and visual cues about the spatial location of the speaker. In a laboratory
setting, this can be studied by presenting human subjects with auditory and
visual cues simultaneously, and then asking them to indicate the location of
the audiovisual source on a one-dimensional axis (e.g., horizontal positions
on a computer screen) or to judge whether the source location was to the left
or right of some preceding reference event. The standard finding is that vision
“captures” sound: localization of the source is systematically biased towards
the visual location.19

A simple mathematical model can explain this phenomenon (Figure 2.8).
Assume for simplicity that the prior distribution over location is uniform, so
that no location is preferred a priori. Then Bayes’ rule says that the posterior
over location S given sensory information I is proportional to the likelihood:

P(S|I) ∝ P(I|S) = P(IA|S)P(IV |S). (2.3)

The sensory information consists of two parts—auditory (IA) and visual
(IV)—each corresponding to a location sampled from distributions centered
on the true (but unknown) location S. The widths of these distributions
depend on the precision of each sensorymodality, with broader distributions
for less precise modalities. At a physical level, precision derives from many
different sources (e.g., the structure of the retina and cochlea), but we can
operationally define precision as the average accuracy of spatial localization
when a cue from a single modality is presented. Humans are less accurate at
localizing auditory cues compared to visual cues. Consequently, the posterior
distribution is biased towards themean of the visual location distribution—a
simple laboratory analog of the ventriloquist illusion.
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figure 2.8. Ventriloquism as optimal cue com-
bination.Auditory andvisual signals are sampled
from observation distributions and then com-
bined via Bayes’ rule to produce a posterior dis-
tribution. The location with the highest poste-
rior probability is usually taken as the subjective
estimate of the source object’s location. Because
visual precision is higher than auditory preci-
sion, the subjective estimate is biased towards
the mean of the visual distribution.

The Bayesian model makes ano-
ther striking prediction: the ven-
triloquist illusion can be reversed!
Specifically, if the precision of
the location information provided
by the visual cue is sufficiently
degraded (e.g., by blurring or en-
largement), then the auditory cue
will have higher relative precision,
causing sound to capture vision.20

The story does not end there,
however. It turns out that multi-
sensory integration (and hence
the ventriloquist illusion) breaks
down when the discrepancy bet-
ween auditory and visual infor-
mation is large.21 Thus, the sim-
ple model in which auditory and
visual cues are obligatorily inte-
grated seems to fail under these
conditions.Oneexplanation is that
people aremaking inferences about
the causal structure of the cues.22
Integration occurs when people
infer that a single object (hid-
den cause) produces both audi-
tory and visual cues. This single-

cause hypothesis becomes increasingly improbable when the location infor-
mation provided by the two cues is highly discrepant. Instead, a multiple-
cause hypothesis becomes more probable, according to which the two cues
are generated by different objects. Indeed, when asked directly, people are
more likely to report that a single object generated both cues under low-
discrepancy conditions.23

Cognitive illusions

A key idea of this chapter is that many perceptual illusions are fundamentally
cognitive, in the sense that they draw upon high-level knowledge. At the same
time, high-level cognition is itself susceptible to many illusions. One view of
cognitive illusions attributes them to heuristics that, while typically useful,
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generate systematic errors.24 These heuristics are analogous to the image-
filtering operations discussed above in the context of lightness illusions, and
they run into some of the same explanatory problems. They can account
for specific illusions, but they don’t offer a coherent account of cognitive
flexibility:What allows us to adapt to thewide range of circumstances that we
regularly face? Just as it did for perceptual illusions, the Bayesian framework
places the explanatory burden on internal models combined with probabilis-
tic reasoning. Cognitive flexibility derives from the richness of the mind’s
internal models and the versatility of Bayes’ rule. To illustrate this point, I
will consider a few examples here that parallel the perceptual examples in
the previous section. We will encounter many other examples in subsequent
chapters.

Explaining away and the fundamental attribution error

Most of human behavior is a function of personal disposition (e.g., how nice
a person is) and situational factors (e.g., cultural norms). In 2004, journalists
uncovered evidence of prisoner abuse at Abu Ghraib prison in Iraq, leading
to the dishonorable discharge of several soldiers. When interviewed on CBS,
Brigadier General Mark Kimmitt made the argument that this was the action
of a few bad apples:

Sowhatwould I tell thepeopleof Iraq?This iswrong.This is reprehensible.
But this is not representative of the 150,000 soldiers that are over here . . .

I’d say the same thing to the American people . . . Don’t judge your army
based on the actions of a few.25

In other words, Kimmitt is making a dispositional inference about the
soldiers, discounting the situational factors that may have influenced their
behavior. The focus on the responsibility of individual actors, rather than sit-
uational factors, is characteristic of human social judgment—so characteristic
that this tendency has been designated the fundamental attribution error.26
The reason it is called an error is because people seem to inadequately take
into account the power of situational factors, even when they are highly rel-
evant. Inspections of Abu Ghraib prison by the International Committee of
the RedCross led to the conclusion that the abuses were not isolated acts, but
rather part of a “pattern and broad system.”27

This conclusion echoes Hannah Arendt’s famous “banality of evil” argu-
ment that Adolf Eichmann’s crimes during the Holocaust were not the
idiosyncratic acts of an unusually evil individual.28 The Nazis had created a
legal system that justified and normalized acts considered crimes by people
outside the Nazi system. Eichmann was just doing his job. Arendt’s argument
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sparked a huge amount of controversy, in part because it seems to contradict
our strong inclination to assign responsibility to individuals rather than to
situations.29

Stanley Milgram’s studies of obedience to authority reinforce this obser-
vation. Milgram took ostensibly normal people off the street of New Haven
and asked them to act as a “teacher,” delivering electric shocks to another
individual (the “learner”) whenever the learner gave an incorrect response
to a question.30 The shocks increased in voltage for each incorrect answer.
In reality, there were no shocks, and the learner was a confederate pretend-
ing to be shocked, but from the teacher’s perspective everything was quite
real. Despite their visible discomfort, most teachers, when commanded by
the experimenter, continued delivering shocks with higher and higher volt-
ages, as the learner’s expressions of pain and protest gave way to screams and
ultimately complete silence. I recall watching videos of these experiments
as a high school student and being astonished that “normal” people could,
under sufficient pressure, commit what looked like murder. My astonish-
ment derived from the fundamental attribution error: my mind resisted the
inevitable conclusion that these people were not dispositionally “bad.” Like
Eichmann, they were just doing their job.31

Psychologists have investigated the fundamental attribution error more
directly by asking people to make dispositional inferences about actors
after receiving various kinds of situational information. In one classic study,
university students read an essay (supposedly written by a classmate),
which gave a favorable or unfavorable opinion about Fidel Castro.32 In the
free-choice condition, the students were told that their classmate was free
to write a pro or con essay, whereas in the forced-choice condition, the stu-
dents were told that their classmate was instructed to write a pro or con
essay. Not surprisingly, students in the free-choice condition judged the atti-
tude of their classmate towards Castro to be consistent with the opinion
expressed in the essay. Critically, this was still true (albeit more weakly) for
the students in the forced-choice condition. In other words, they failed to
completely explain away the situational constraints in forming a dispositional
inference.

The normative question here is whether people discount enough relative
to a rational standard of inference. If one assumes that instructions deter-
ministically control behavior, then the answer is no: discounting should be
complete, but empirically it is not. We know, however, that instructions are
rarely so potent. When asked about the probability that a classmate with an
anti-Castro attitude would write a pro-Castro essay in the forced-choice con-
dition, students judged this probability to be 0.85. Thus, instructions are not
considered sufficient to produce behavior.33 Indeed, 35% of people in the
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