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C H A P T E R  1

ON HUMAN NATURE

How would you describe yourself? If you had to list some personality 
traits, say for a dating website or a job application, what words would 
you use? Do you consider yourself shy or outgoing? Are you cautious 
or reckless? Anxious or carefree? Are you creative, artistic, adventurous, 
stubborn, impulsive, sensitive, brave, mischievous, kind, imaginative, 
selfish, irresponsible, conscientious? People clearly differ in such traits 
and in many other aspects of their psychology—such as intelligence and 
sexual preference, for example. All of these things feed into making us 
who we are.

The question is, how do we get that way? This has been a subject of 
endless debate for literally thousands of years, with various prominent 
thinkers, from Aristotle and Plato to Pinker and Chomsky, lining up to 
argue for either innate differences between people or for everyone start-
ing out with a blank slate and our psychology being shaped by experi-
ence alone. In the past century, the tradition of Freudian psychology 
popularized the idea that our psychological dispositions could be traced 
to formative childhood experiences. In many areas of modern academic 
sociology and psychology this belief is still widespread, though it has 
been extended to include cultural and environmental factors more 
broadly as important determinants of our characters.

But these fields have been fighting a rearguard action in recent years, 
against an onslaught from genetics and neuroscience, which have pro-
vided strong evidence that such traits have at least some basis in our 
innate biology. To some, this is a controversial position, perhaps even 
a morally offensive one. But really it fits with our common experience 
that, at some level, people just are the way they are—that they’re just 
made that way. Certainly, any parent with more than one child will 
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know that they start out different from each other, in many important 
ways that are unrelated to parenting.

This notion of innate traits is often equated with the influences of 
genes—indeed, “innate” and “genetic” are often used interchangeably. 
This idea is captured in common phrases such as “the apple doesn’t fall 
far from the tree,” or “he didn’t lick it off the stones.” These sayings re-
flect the widespread belief that many of our psychological traits are not 
determined solely by our upbringing but really are, to some extent at 
least, “in our DNA.”

How that could be is the subject of this book. How could our indi-
vidual natures be encoded in our genomes? What is the nature of that 
information and how is it expressed? That is, in a sense, just a different 
version of this question: How is human nature, generally, encoded in 
the human genome? If there is a program for making a human being 
with typical human nature, then our individual natures may simply be 
variations on that theme. In the same way, the human genome contains 
a program for making a being about so tall, but individual humans are 
taller or shorter than that due to variation in the programs encoded in 
their respective genomes. We will see that the existence of such variation 
is not only plausible—it is inevitable.

BEING HUMAN

If we think about human nature generally, then we should ask, first, 
whether it even exists. Are there really typical characteristics that are 
inherent in each of us that make humans different from other animals? 
This question has exercised philosophers for millennia and continues to 
today, partly because it can be framed in many different ways. By human 
nature, do we mean expressed behaviors that are unique to humans and 
not seen in other animals? Do we mean ones that are completely uni-
versal across all members of the species? Or ones that are innate and in-
stinctive and not dependent at all on maturation or experience? If those 
are the bars that are set, then not much gets over them.

But if instead we define human nature as a set of behavioral capaci-
ties or tendencies that are typical of our species, some of which may 
nevertheless be shared with other animals, and which may be expressed 
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either innately or require maturation or experience to develop, then the 
list is long and much less contentious. Humans tend to walk upright, 
be active during the day, live in social groups, form relatively stable 
pair-bonds, rely on vision more than other senses, eat different kinds 
of food, and so on. A zoologist studying humans would say they are bi-
pedal, diurnal, gregarious, monogamous, visual, and omnivorous—all 
of these traits are shared by some other species, but that overall profile 
characterizes humans.

And humans have capacities for highly dexterous movements, tool 
use, language, humor, problem solving, abstract thought, and so on. 
Many of those capacities are present to some degree in other animals, 
but they are vastly more developed in humans. The actual behaviors 
may only emerge with maturation and many depend to some extent 
on learning and experience, but the capacities themselves are inherent. 
Indeed, even our capacity to learn from experience is itself an innate 
trait. Though our intellect separates us from other animals—by en-
abling the development of language and culture, which shape all of our 
behaviors—our underlying nature is a product of evolution, the same as 
for any other species.

Simply put, humans have those species-general tendencies and ca-
pacities because they have human DNA. If we had chimp DNA or tiger 
DNA or aardvark DNA, we would behave like chimps or tigers or aard-
varks. The essential nature of these different species is encoded in their 
genomes. Somehow, in the molecules of DNA in a fertilized egg from 
any of these species is a code or program of development that will pro-
duce an organism with its species-typical nature. Most importantly, that 
entails the specification of how the brain develops in such a way that 
wires in these behavioral tendencies and capacities. Human nature, thus 
defined, is encoded in our genomes and wired into our brains in just the 
same way.

This is not a metaphor. The different natures of these species arise 
from concrete differences in some physical properties of their brains. 
Differences in overall size, structural organization, connections between 
brain regions, layout of microcircuits, complement of cell types, neuro-
chemistry, gene expression, and many other parameters all contribute 
in varied ways to the range of behavioral tendencies and capacities that 
characterize each species. It’s all wired in there somehow. Human nature 
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thus need not be merely an abstract philosophical topic—it is scientifi-
cally tractable. We can look, experimentally, at the details of how our 
species-typical properties are mediated in neural circuitry. And we can 
seek to uncover the nature of the genetic program that specifies the rel-
evant parameters of these circuits.

THE WORD MADE FLESH

To understand this genetic program, it is crucial to appreciate the way in 
which information is encoded in our genomes and how it gets expressed. 
It is not like a blueprint, where a given part of the genome contains the 
specifications of a corresponding part of the organism. There is not, in 
any normal sense of the word, a representation of the final organism 
contained within the DNA. Just as there is no preformed homunculus 
curled up inside the fertilized egg, there is no simulacrum of the organ-
ism strung out along its chromosomes. What is actually encoded is a 
program—a series of developmental algorithms or operations, mediated 
by mindless biochemical machines, that, when carried out faithfully, 
will result in the emergence of a human being.

This is not a reductionist view. The DNA doesn’t do any of this by 
itself. The information in the genome has to be decoded by a cell (the 
fertilized egg, in the first place), which also contains important compo-
nents required to kick the whole process off. And, of course, the organ-
ism has to have an environment in which to develop, and variation in 
environmental factors can also affect the outcome. Indeed, one of the 
most important capacities encoded in the genetic program is the ability 
of the resultant organism to respond to the environment.

Moreover, while the information to make any given organism and to 
keep it organized in that way is written in its genome, there is a web of 
causation that extends far beyond the physical sequence of its DNA. Its 
genome reflects the life histories of all its ancestors and the environments 
in which they lived. It has the particular sequence it has because indi-
viduals carrying those specific genetic variants survived and passed on 
their genes, while individuals with other genetic variants did not. A full 
map of what causes an organism to be the way it is and behave the way it 
does thus extends out into the world and over vast periods of time.
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However, what we are after in this book is not a full understanding 
of how such systems work—how all those genetically encoded com-
ponents interact to produce a human being with human nature. It is 
something subtly but crucially different—how variation in the genetic 
program causes variation in the outcome. Really, that’s what we’ve been 
talking about when we’ve been comparing different species. The differ-
ences between our genomes and those of chimps or tigers or aardvarks 
are responsible for the differences in our respective natures.

INDIVIDUAL DIFFERENCES

The same can be said for differences within species. There is extensive 
genetic variation across the individuals in every species. Every time the 
DNA is copied to make a sperm or egg cell, some errors creep in. If 
these new mutations don’t immediately kill the resultant organism or 
prevent it from reproducing then they can spread through the popu-
lation in subsequent generations. This leads to a buildup of genetic 
variation, which is the basis for variation in all kinds of traits—most 
obviously physical ones like height or facial morphology. (Conversely, 
shared profiles of genetic variants are the basis for familial similarities in 
such traits.) Some of those genetic variants affect the program of brain 
development or brain function in ways that contribute to differences in 
behavioral tendencies or capacities.

We know this is the case because we can successfully breed for be-
havioral traits in animals. When wolves were tamed, for example, or 
when other animals were domesticated, early humans selected animals 
that were less fearful, less aggressive, more docile, more submissive—
perhaps the ones that came nearest to the fire or that allowed humans 
to approach the closest without running away. If the reason that some 
were tamer was the genetic differences between them, and if those ones 
who hung around and tagged along with human groups then mated 
together, this would over time enrich for genetic variants predispos-
ing to those traits. On the other hand, if the variation was not at least 
partly genetic in origin then breeding together tame individuals would 
not increase tameness in the next generation—the trait would not be 
passed on.
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Well, we know how that turned out—with modern dogs that have a 
nature very distinct from their lupine ancestors. And that process has 
been played out over and over again in the creation of modern dog 
breeds (see figure 1.1). These breeds were selected in many cases for 
behavioral traits, according to the functions that humans wanted them 
to perform. Terriers, pointers, retrievers, herders, trackers, sled dogs, 
guard dogs, lapdogs—all show distinct profiles of traits like affection, 
vigilance, aggression, playfulness, activity, obedience, dominance, loy-
alty, and many others. All these traits are thus demonstrably subject to 
genetic variation. The details of how genetic differences influence them 
remain largely mysterious, but the fact that they do is incontrovertible.

And the same is true in humans, as we will see in subsequent chap-
ters. The empirical evidence for this is every bit as strong as it is in dogs. 
Even just at a theoretical level, this is what we should expect, based on 
the geneticist’s version of Murphy’s Law: anything that can vary will. The 
fact that our nature as a species is encoded in the human genome has an 
inevitable consequence: the natures of individual humans will differ due 
to differences in that genetic program. It is not a question of whether 
or not it does—it must. There is simply no way for natural selection to 
prevent that from happening.

Figure 1.1 Selection of dog breeds for diverse behavioral traits.
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BECOMING A PERSON

Just showing that a trait is genetic does not mean that there are genes “for 
that trait.” Behavior arises from the function of the whole brain—with 
a few exceptions it is very far removed from the molecular functions of 
specific genes. In fact, many of the genetic variants that influence be-
havior do so very indirectly, through effects on how the brain develops.

This was dramatically highlighted by the results of a long-running ex-
periment in Russia to tame foxes. Over 30 generations or more, scientists 
have been selecting foxes on one simple criterion—which ones allowed 
humans to get closest. The tamest foxes were allowed to breed together 
and the process repeated again in the next generation, and the next, and 
so on. The results have been truly remarkable—the foxes did indeed end 
up much more tame, but it is how that came about that is most interesting.

While they selected only for behavior, the foxes’ appearance also 
changed in the process. They started to look more like dogs—with 
floppier ears and shorter snouts, for example—even the coat color 
changed. The morphological changes fit with the idea that what was 
really being selected for was retention of juvenile characteristics. 
Young foxes are tamer than older ones, so selecting for genetic differ-
ences that affected the extent of maturation could indirectly increase 
tameness, while simultaneously altering morphology to make them 
look more like pups.

This highlights a really important point. Just because you can select 
for a trait like tameness does not mean that the underlying genetic varia-
tion is affecting genes for tameness. The effect on tameness is both indi-
rect and nonspecific, in that other traits were also affected. Though their 
identities are not yet known, the genes affected are presumably involved 
in development and maturation somehow.

The same kind of relationship holds in us. As we will see, the genetic 
variants that affect most psychological traits do so in indirect and non-
specific ways—we should not think of these as “genes for intelligence” 
or “genes for extraversion” or “genes for autism.” It is mainly genetic 
variation affecting brain development that underlies innate differences 
in psychological traits. We are different from each other in large part 
because of the way our brains get wired before we are born.
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But this is only half the story. Genetic variation is only one source of 
differences in how our brains get wired. The processes of development 
themselves introduce another crucial source of variation—one that is 
often overlooked. The genome does not encode a person. It encodes a 
program to make a human being. That potential can only be realized 
through the processes of development (see figure 1.2). Those processes 
of development are noisy, in engineering terms. They display significant 
levels of randomness, at a molecular level. This creates strong limits on 
how precisely the outcome can be controlled.

Thus, even if the genetic instructions are identical between two peo-
ple, the outcome will still differ. Just as the faces of identical twins differ 
somewhat, so does the physical structure of their brains, especially at 
the cellular level. The progressive nature of development means that this 

Figure 1.2 Human embryonic and fetal brain development. (Modified from B. Kolb and B. D. Fantie, 
“Development of the Child’s Brain and Behavior,” in Handbook of Clinical Child Neuropsychology 
(Critical Issues in Neuropsychology), 3rd ed., ed. C. R. Reynolds and E. Fletcher-Janzen (New York: 
Springer, 2008), 19–46.)
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inherent variability can have very substantial effects on the outcome, 
and, along with genetic differences, be a major contributor to differ-
ences in people’s psychological makeup.

In sum, the way our individual brains get wired depends not just on 
our genetic makeup, but also on how the program of development hap-
pens to play out. This is a key point. It means that even if the variation in 
many of our traits is only partly genetic, this does not necessarily imply 
that the rest of the variation is environmental in origin or attributable to 
nurture—much of it may be developmental. Variation in our individual 
behavioral tendencies and capacities may thus be even more innate than 
genetic effects alone would suggest.

A LOOK AHEAD

This book is split into two main sections. In the first, I present a con-
ceptual overview of the origins of innate differences in human facul-
ties. We will start by looking at the evidence from twin and adoption 
studies of genetic effects on human psychological traits, brain anatomy, 
and brain function. These studies can begin to dissociate the effects of 
nature and nurture as contributors to variation across the population. 
They aim to explain not what makes individuals the way they are but 
what makes people different from each other. Because they are often 
misconstrued, we will look carefully at what the findings mean and 
what they don’t mean.

We will then look in more detail at genetic variation, where it comes 
from and the kinds of effects it can have. We will examine how differ-
ences in the DNA sequence ultimately impact the kinds of traits we 
are interested in—often, as discussed above, through effects on devel-
opment. We will look in depth at the mechanisms underlying the self-
assembly of the brain’s circuitry to see how it is affected by variation in 
the genetic instructions. And we will consider just how noisy and inher-
ently variable those developmental processes can be. In the end, I hope 
to have convinced you that both genetic and developmental variation 
contribute to innate differences in people’s natures.

In the final chapter of the first section we will look at the role of nur-
ture in shaping people’s psyches. The human brain continues to mature 
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and develop over decades, and our brains are literally shaped by the ex-
periences we have over that period. It is common to view “nurture” as 
being in opposition to nature, such that the environment or our experi-
ences act as a great leveler, to smooth over innate differences between 
people or counteract innate traits in individuals. I will describe an alter-
native model: that the environments and experiences we each have and 
the way our brains react to them are largely driven by our innate traits. 
Due to the self-organizing nature of the processes involved, the effects 
of experience therefore typically act to amplify rather than counteract 
innate differences.

With that broad framework in place, we will then examine a number 
of specific domains of human psychology in the second section. These 
include personality, perception, intelligence, and sexuality. These diverse 
traits affect our lives in different ways and genetic variation that influ-
ences them is therefore treated very differently by natural selection. As a 
result, their underlying genetic architecture—the types and number and 
frequency of mutations that contribute to them—can be quite different. 
Much of the variation in these traits is developmental in origin—the cir-
cuits underlying these functions work differently in part at least because 
they were put together differently. This means that random variation in 
developmental processes, in addition to genetic variation, also makes 
an important—sometimes crucial—contribution to innate differences 
in these faculties.

We will also look at the genetics of common neurodevelopmental dis-
orders, such as autism, epilepsy, and schizophrenia. There has been great 
progress in recent years in dissecting the genetics of these conditions, 
with results that are fundamentally changing the way we think about 
them. Genetic studies clearly show that each of these labels really refers 
to a large collection of distinct genetic conditions. Moreover, while these 
disorders have long been thought to be distinct, the genetic findings re-
veal the opposite—these are all possible manifestations of mutations in 
the same genes, which impair any of a broad range of processes in neural 
development.

The final chapter will consider the social, ethical, and philosophical 
implications of the framework I’ve described. If people really have large 
innate differences in the way their brains and minds work, what does 
that mean for education and employment policies? What does it mean 
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for free will and legal responsibility? Does it necessarily imply that our 
traits are fixed and immutable? What are the prospects for genetic pre-
diction of psychological traits? What limits does developmental varia-
tion place on such predictions? And, finally, how does this view of the 
inherent diversity of our minds and our subjective experiences influ-
ence our understanding of the human condition?
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