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1
How to Construct an Organism

What I cannot create I do not understand.
—Richard P. Feynman3

Not so long ago, newspaper headlines around the world proclaimed 
that scientists had created “artificial life.” This astonishing news referred 
to an experiment from the laboratory of maverick molecular biologist 
Craig Venter, in which the DNA molecule of a simple type of bacteria 
had been artificially synthesized from its chemical building blocks (with 
some curious embellishments, like Venter’s email address encrypted in 
the DNA’s genetic code), and then inserted into a different species of 
bacteria, replacing that cell’s own genome. Amazingly, this procedure 
resulted in a living bacterial cell that went on to divide and produce a 
colony of bacteria.4

Beyond its sheer technical wizardry, Venter’s experiment seems to 
offer a unique insight into the nature of heredity—the transmission of 
biological information across generations that causes offspring to re-
semble their parents, and can thereby enable evolution by natural se-
lection.5 After all, Venter’s research group had managed to decouple 
two fundamental components of a cellular organism—the genome 
(that is, the DNA sequence) and its cytoplasmic surroundings (that is, 
the immensely complex biomolecular machinery that constitutes a liv-
ing cell). The resulting bacterial chimera, which combines the genome 
of one species with the cytoplasm of another, should therefore tell us 
something about the roles of the DNA sequence and the cytoplasm in 
the transmission of organismal traits across generations. Did Venter’s 
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bacterium resemble the species from which it got its DNA sequence, the 
species from which it got its cytoplasm, or both?

Reports on Venter’s experiment emphasized the role of the genome in 
converting the bacterial host cell into a different species of bacteria: the 
genome induced changes in the features of the cell into which it had been 
inserted, such that, after several cycles of cell division, the descendants of 
the original chimeric cell came to resemble the genome-donor species. 
This result illustrates the DNA’s well-known role in heredity: the base-
pair sequence of the DNA molecule encodes information that is expressed 
in the features of the organism. Indeed, from here, it seems a small step 
to conclude that the cytoplasm (and, by extension, any multicelled body) 
is fully determined by the genome, and that the DNA sequence is all we 
need to know to understand heredity. Venter’s experiment thus seems to 
provide a powerful confirmation of a concept of heredity that has under-
pinned genetics and evolutionary biology for nearly a century.

But take a closer look at Venter’s experiment and the picture becomes 
less clear. Although many media reports gave the impression that Ven-
ter’s “artificial” organism was created from a genome in a petri dish, 
the bacterial chimera actually consisted of a completely natural bacte-
rial cell in which only one of many molecular components had been 
replaced with an artificial substitute. This is an important reality check: 
although it’s now possible to synthesize a DNA strand, the possibility 
of creating a fully synthetic cell remains the stuff of science fiction.6 In 
fact, rather than demonstrating the creation of artificial life, Venter’s ex-
periment neatly illustrates a universal property of cellular life-forms: all 
living cells come from preexisting cells, forming an unbroken cytoplas-
mic lineage stretching back to the origin of cellular life. This continuity 
of the cytoplasm is as universal and fundamental a feature of cellular 
life-forms as the continuity of the genome. Of course, cytoplasmic con-
tinuity does not in itself demonstrate that the cytoplasm plays an inde-
pendent role in heredity. After all, the features of the cytoplasm could be 
fully encoded in the genes. Yet, the potential for a nongenetic dimension 
of heredity clearly exists.7

The continuity of the cell lineage has been recognized since the 
mid-nineteenth century but, since the dawn of classical genetics in the 
early twentieth century, many biologists have been at pains to deny or 
downplay the role of nongenetic factors in heredity, arguing that the 
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transmission of organismal features across generations results more or 
less entirely from the transmission of genes in the cell nucleus.8 Genes 
were assumed to be impervious to environmental influence, so that an 
individual could only transmit traits that it had itself inherited from its 
parents. These ideas gained prominence while the term “gene” still re-
ferred to an entirely theoretical entity, and long before molecular biolo-
gists uncovered DNA’s structure and the genetic code. More recently, this 
view was popularized by Richard Dawkins in his memorable image of the 
body as a lumbering robot built by genes to promote their own replica-
tion. But this purely genetic concept of heredity was never firmly backed 
by evidence or logic. Venter’s chimeric bacteria were foreshadowed by 
late nineteenth-century embryological experiments that combined the 
cytoplasm of one species with a nucleus from another species, providing 
the first hints that the cytoplasm is not a homogeneous jelly but a com-
plex machine whose components and three-dimensional structure con-
trol early development. Further tantalizing hints of a nongenetic dimen-
sion to heredity were provided by the work of mid-twentieth-century 
biologists who discovered that mechanical manipulation of the structure 
of single-celled organisms like Paramecium could result in variations that 
were passed down unchanged over many generations. Today, after many 
more clues have come to light, biologists are finally beginning to recon-
sider the possibility that there is more to heredity than genes.

RETURN OF THE NEANDERTHALS?

Venter’s experiment raises intriguing questions about the nature of he-
redity at the level of a single cell, but what about multicelled organisms 
like plants and animals? A single cell’s cytoplasm is divided in half each 
time the cell divides and then supplemented with newly synthesized 
proteins encoded by the genome. It is this process of gradual conversion 
that allowed the bacterial genome to gradually reset features of the host 
cell in Venter’s experiment. Can such conversion also reset the features 
of more complex life-forms?

Consider an example at the opposite extreme of the complexity 
gradient—the recent idea of resurrecting a Neanderthal. Some people 
believe that such a feat could be accomplished by implanting a synthetic 
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Neanderthal genome (whose sequence was recently deciphered from 
DNA fragments extracted from ancient bones) into a modern human 
egg or stem cell deprived of its own genome. Ethical considerations 
aside, it would be extremely interesting to compare the physical and 
mental traits of our enigmatic sister species with our own, and on the 
face of it, such an experiment could be carried out by following Venter’s 
recipe. What’s less clear is how closely the resulting creature would re-
semble a genuine Neanderthal.

Neanderthals differed from us Homo sapiens in many features of 
their bodies, such as their muscular build, long, low skulls with heavy 
brow ridges, and more rapid juvenile development9 (figure 1.1). Some 
paleoanthropologists also believe that Neanderthals differed from con-
temporaneous Homo sapiens populations in various aspects of their 
culture and social organization, such as their use of clothing, foraging 
techniques, and reliance on long-distance trading networks.10 Which of 
these features could we expect to observe in an individual derived from 
a Neanderthal genome implanted into a modern human egg?

Clearly, such a creature would fail to exhibit Neanderthal cultural 
practices, since culture is not encoded in the genes (although a popula-
tion of such creatures, if allowed to interbreed for many generations in 
isolation, could perhaps tell us something about Neanderthals’ capac-
ity to develop complex culture). A lone Neanderthal growing up playing 
video games and watching movies in its enclosure at the primate research 
institute would surely fail to develop many of the behavioral peculiarities 
of its species. Moreover, we know that physical activity influences the de-
velopment of bones and muscles, while dietary preferences and practices 
(which are partly culturally transmitted) influence the development of 
dental and cranial features. So even the distinctive features of Neander-
thal bodies may have been a product not only of Neanderthal genes but 
also of how they behaved and what they ate. A couch-potato Neanderthal 
will undoubtedly exhibit some of the distinctive features of Neanderthal 
physiology but might still end up looking more like a specimen of mod-
ern, industrialized Homo sapiens, with its proverbial joy-stick thumb, 
fondness for potato chips, and alarming body-mass index.

But the problem runs even deeper. In all complex organisms, devel-
opment is largely regulated by epigenetic factors—molecules (such as 
methyl groups and noncoding RNAs) that interact with the DNA and 



How to Construct an Organism  ■  5

Figure 1.1. Skeletons of a Neanderthal (left) and modern human (right). Can a 
Neanderthal be resurrected by implanting a Neanderthal DNA sequence into a 
modern human egg? (© I. Tattersall, Photo: K. Mowbray)
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influence when, where, and how much genes are expressed. Some epi-
genetic factors can be acquired through exposure to particular environ-
mental factors such as diet, and can then be transmitted to offspring. 
Although recent research by Liran Carmel’s lab in Israel has begun to 
uncover aspects of the Neanderthal epigenome,11 it remains unclear 
which differences between Neanderthals and Homo sapiens were down-
stream consequences of genetic differences and which differences re-
sulted from their long-vanished environment and lifestyle. Indeed, 
some epigenetic patterns found in children conceived during seasonal 
cycles of food shortage in an agricultural population in The Gambia in 
West Africa were also characteristic of Neanderthals, suggesting that 
these epigenetic features of Neanderthals may have been a result of their 
diet rather than their genes.12 Unless such epigenetic factors, and other 
nongenetic influences on development such as cytoplasmic and intra-
uterine factors, can be reconstructed along with the Neanderthal DNA 
sequence, our Neanderthal may lose even more of its distinctive traits.

In short, we suspect that implanting a Neanderthal genome into a 
modern human egg would result in a creature that diverged in many be-
havioral and physical features from genuine Neanderthals. The reason 
for this is simply that a DNA sequence does not contain all the informa-
tion needed to re-create an organism.

WHY NOTHING IN BIOLOGY  
MAKES SENSE ANYMORE

The idea that genes encode all the heritable features of living things has 
been a fundamental tenet of genetics and evolutionary biology for many 
years, but this assumption has always coexisted uncomfortably with the 
messy findings of empirical research. The complications have multiplied 
exponentially in recent years under the weight of new discoveries.

Classical genetics draws a fundamental distinction between the “gen-
otype” (that is, the set of genes that an individual carries and can pass on 
to its descendants) and the “phenotype” (that is, the transient body that 
bears the stamp of the environments and experiences that it has encoun-
tered but whose features cannot be transmitted to offspring). Only those 
traits that are genetically determined are assumed to be heritable—that 
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is, capable of being transmitted to offspring—because inheritance oc-
curs exclusively through the transmission of genes. Yet, in violation of 
the genotype/phenotype dichotomy, lines of genetically identical ani-
mals and plants have been shown to harbor heritable variation and re-
spond to natural selection. Conversely, genes currently fail to account 
for resemblance among relatives in some complex traits and diseases—a 
problem dubbed the “missing heritability.”13 But, while an individual’s 
own genotype doesn’t seem to account for some of its features, parental 
genes have been found to affect traits in offspring that don’t inherit those 
genes. Moreover, studies on plants, insects, rodents, and other organ-
isms show that an individual’s environment and experiences during its 
lifetime—diet, temperature, parasites, social interactions—can influ-
ence the features of its descendants, and research on our own species 
suggests that we are no different in this respect. Some of these findings 
clearly fit the definition of “inheritance of acquired traits”—a phenom-
enon that, according to a famous analogy from before the Google era, 
is as implausible as a telegram sent from Beijing in Chinese arriving in 
London already translated into English.14 But today such phenomena 
are regularly reported in scientific journals. And just as the Internet and 
instant translation have revolutionized communication, discoveries in 
molecular biology are upending notions about what can and cannot be 
transmitted across generations.

Biologists are now faced with the monumental challenge of making 
sense of a rapidly growing menagerie of discoveries that violate deeply 
ingrained ideas. One can get a sense of the growing dissonance between 
theory and evidence by perusing a recent review of such studies and 
then reading the introductory chapter from any undergraduate biology 
textbook. Something is clearly missing from the conventional concept 
of heredity, which asserts that inheritance is mediated exclusively by 
genes and denies the possibility that some effects of environment and 
experience can be transmitted to descendants.

In the following chapters, we will sketch the outlines of an extended 
concept of heredity that encompasses both genetic and nongenetic 
factors and explore its implications for evolutionary biology and for 
human life.
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