Contents

Acknowledgments xi

1 Prelude: What Is Algebra?
- Why This Book? 3
- Setting and Examining the Historical Parameters 4
- The Task at Hand 10

2 Egypt and Mesopotamia
- Proportions in Egypt 12
- Geometrical Algebra in Mesopotamia 17

3 The Ancient Greek World
- Geometrical Algebra in Euclid’s *Elements* and *Data* 34
- Geometrical Algebra in Apollonius’s *Conics* 48
- Archimedes and the Solution of a Cubic Equation 53

4 Later Alexandrian Developments
- Diophantine Preliminaries 60
- A Sampling from the *Arithmetica*: The First Three Greek Books 63
- A Sampling from the *Arithmetica*: The Arabic Books 68
- A Sampling from the *Arithmetica*: The Remaining Greek Books 73
- The Reception and Transmission of the *Arithmetica* 77

5 Algebraic Thought in Ancient and Medieval China
- Proportions and Linear Equations 82
- Polynomial Equations 90
- Indeterminate Analysis 98
- The Chinese Remainder Problem 100
Contents

6 **Algebraic Thought in Medieval India**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportions and Linear Equations</td>
<td>107</td>
</tr>
<tr>
<td>Quadratic Equations</td>
<td>109</td>
</tr>
<tr>
<td>Indeterminate Equations</td>
<td>118</td>
</tr>
<tr>
<td>Linear Congruences and the Pulverizer</td>
<td>119</td>
</tr>
<tr>
<td>The Pell Equation</td>
<td>122</td>
</tr>
<tr>
<td>Sums of Series</td>
<td>126</td>
</tr>
</tbody>
</table>

7 **Algebraic Thought in Medieval Islam**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadratic Equations</td>
<td>137</td>
</tr>
<tr>
<td>Indeterminate Equations</td>
<td>153</td>
</tr>
<tr>
<td>The Algebra of Polynomials</td>
<td>158</td>
</tr>
<tr>
<td>The Solution of Cubic Equations</td>
<td>165</td>
</tr>
</tbody>
</table>

8 **Transmission, Transplantation, and Diffusion in the Latin West**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Transplantation of Algebraic Thought in the Thirteenth Century</td>
<td>178</td>
</tr>
<tr>
<td>The Diffusion of Algebraic Thought on the Italian Peninsula and Its Environs from the Thirteenth Through the Fifteenth Centuries</td>
<td>190</td>
</tr>
<tr>
<td>The Diffusion of Algebraic Thought and the Development of Algebraic Notation outside of Italy</td>
<td>204</td>
</tr>
</tbody>
</table>

9 **The Growth of Algebraic Thought in Sixteenth-Century Europe**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solutions of General Cubics and Quartics</td>
<td>215</td>
</tr>
<tr>
<td>Toward Algebra as a General Problem-Solving Technique</td>
<td>227</td>
</tr>
</tbody>
</table>

10 **From Analytic Geometry to the Fundamental Theorem of Algebra**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas Harriot and the Structure of Equations</td>
<td>248</td>
</tr>
<tr>
<td>Pierre de Fermat and the Introduction to Plane and Solid Loci</td>
<td>253</td>
</tr>
<tr>
<td>Albert Girard and the Fundamental Theorem of Algebra</td>
<td>258</td>
</tr>
</tbody>
</table>
1

Prelude: What Is Algebra?

What is algebra? It is a question to which a high school student will give one answer, a college student majoring in mathematics another, and a professor who teaches graduate courses and conducts algebraic research a third. The educated “layperson,” on the other hand, might simply grimace while retorting, “Oh, I never did well in mathematics. Wasn’t algebra all of that x and y stuff that I could never figure out?” This ostensibly simple question, then, apparently has a number of possible answers. What do the “experts” say?

On 18 April 2006, the National Mathematics Advisory Panel (NMAP) within the US Department of Education was established by executive order of then President George W. Bush to advise him, as well as the Secretary of Education, on means to “foster greater knowledge of and improved performance in mathematics among American students.” Among the panel’s charges was to make recommendations on “the critical skills and skill progressions for students to acquire competence in algebra and readiness for higher levels of mathematics.” Why should competence in algebra have been especially singled out?

When it issued its final report in March 2008, the panel stated that “a strong grounding in high school mathematics through Algebra II or higher correlates powerfully with access to college, graduation from college, and earning in the top quartile of income from employment.” Furthermore, it acknowledged that “although our students encounter difficulties with many aspects of mathematics, many observers of

1 US Dept. of Education, 2008, p. 71. The next quotation is also found here.
2 US Dept. of Education, 2008, p. xii. For the next two quotations, see pp. xiii and 16, respectively.
educational policy see Algebra as a central concern.” The panel had thus sought to determine how best to prepare students for entry into algebra and, since algebra was of such concern, it had first to come to terms with the question, what is the essential content of school algebra? In answer, it identified the following as the major topics: symbols and expressions, linear equations, quadratic equations, functions, the algebra of polynomials, and combinatorics and finite probability. Of course, each of these topics encompasses several subtopics. For example, the “algebra of polynomials” includes complex numbers and operations, the fundamental theorem of algebra, and Pascal’s triangle. Interestingly, the panel mentioned “logarithmic functions” and “trigonometric functions” under the topic of “functions” but made no explicit mention of analytic geometry except in the special case of graphs of quadratic functions. Although the details of the panel’s list might prompt these and other quibbles, it nevertheless gives some idea of what high school students, in the United States at least, generally study—or should study—under the rubric of “algebra.”

These topics, however, constitute “school algebra.” What about algebra at the college level? Most courses entitled “college algebra” in the United States simply revisit the aforementioned topics, sometimes going into slightly greater depth than is expected in high school. Courses for mathematics majors—entitled “modern algebra” or “abstract algebra”—are quite another matter, however. They embrace totally different topics: groups, rings, fields, and, often, Galois theory. Sometimes such courses also include vectors, matrices, determinants, and algebras (where the latter is a technical term quite different from the broad subject under consideration here).

And then there is algebra at the graduate and research levels. Graduate students may take courses in commutative or noncommutative algebra, representation theory, or Lie theory, while research mathematicians styled “algebraists” may deal with topics like “homological functors on modules,” “algebraic coding theory,” “regular local rings,” or any one of hundreds of topics listed in the American Mathematical Society’s “Mathematics Subject Classification.” How do all of these subjects at all of these levels of sophistication fit together to constitute something called “algebra”? Before addressing this question, we might first ask why we need this book about it?
WHY THIS BOOK?

To be sure, the historical literature already includes several more or less widely ranging books on the history of algebra that are targeted, like the present book, at those with a background equivalent to a college major in mathematics; a recent “popular” book assumes even less in the way of mathematical prerequisites. Most in the former group, however, are limited either in the eras covered or in geographical reach, while that in the latter has too many errors of fact and interpretation to stand unchallenged. This book thus grew out of a shared realization that the time was ripe for a history of algebra that told the broader story by incorporating new scholarship on the diverse regions within which algebraic thought developed and by tracing the major themes into the early twentieth century with the advent of the so-called “modern algebra.”

We also believe that this is a story very much worth telling, since it is a history very much worth knowing. Using the history of algebra, teachers of the subject, either at the school or at the college level, can increase students’ overall understanding of the material. The “logical” development so prevalent in our textbooks is often sterile because it explains neither why people were interested in a particular algebraic topic in the first place nor why our students should be interested in that topic today. History, on the other hand, often demonstrates the reasons for both. With an understanding of the historical development of algebra, moreover, teachers can better impart to their students an appreciation that algebra is not arbitrary, that it is not created “full-blown” by fiat. Rather, it develops at the hands of people who need to solve vital problems, problems the solutions of which merit understanding. Algebra has been and is being created in many areas of the world, with the same solution often appearing in disparate times and places.

And this is neither a story nor a history limited to school students and their teachers. College-level mathematics students and their

3 In fact, the prerequisites for reading the first ten chapters are little more than a solid high school mathematics education. The more general histories of algebra include van der Waerden, 1985; Scholz, 1990; Bashmakova and Smirnova, 2000; and Cooke, 2008, while the more targeted include Nový, 1973; Sesiano, 1999 and 2009; Kleiner, 2007; and Stedall, 2011.

4 Derbyshire, 2006.
professors should also know the roots of the algebra they study. With an understanding of the historical development of the field, professors can stimulate their students to master often complex notions by motivating the material through the historical questions that prompted its development. In absorbing the idea, moreover, that people struggled with many important mathematical ideas before finding their solutions, that they frequently could not solve problems entirely, and that they consciously left them for their successors to explore, students can better appreciate the mathematical endeavor and its shared purpose. To paraphrase the great seventeenth- and early eighteenth-century English mathematician and natural philosopher, Sir Isaac Newton, mathematicians have always seen farther by “standing on the shoulders” of those who came before them.

One of our goals in the present book is thus to show how—in often convoluted historical twists and turns—the deeper and deeper consideration of some of the earliest algebraic topics—those generally covered in schools—ultimately led mathematicians to discover or invent the ideas that constitute much of the algebra studied by advanced college-level students. And, although the prerequisites assumed of our readers limit our exploration of the development of the more advanced algebraic topics encountered at the graduate and research levels, we provide at least a glimpse of the origins of some of those more advanced topics in the book’s final chapters.

SETTING AND EXAMINING THE HISTORICAL PARAMETERS

Nearly five decades before the National Mathematics Advisory Panel issued its report, historian of mathematics, Michael Mahoney, gave a more abstract definition of algebra, or, as he termed it, the “algebraic mode of thought”:

What should be understood as the “algebraic mode of thought”? It has three main characteristics: first, this mode of thought is characterized by the use of an operative symbolism, that is, a symbolism that not only abbreviates words but represents the workings of the combinatory operations, or, in other words, a symbolism with which one operates. Second, precisely because of the central role of combinatory operations, the algebraic mode of thought deals
with mathematical relations rather than objects. Third, the algebraic mode of thought is free of ontological commitment. In particular, this mode of thought is free of the intuitive ontology of the physical world. Concepts like “space,” “dimension,” and even “number” are understood in a purely mathematical sense, without reference to their physical interpretation.\(^5\)

Interestingly, Mahoney’s first characteristic of algebraic thought as an “operative symbolism”—as well as the discussion of symbolism—is the first of the topics mentioned in the NMAP report. If, however, we believed that an operative symbolism is a necessary characteristic of algebra, this book would not begin before the seventeenth century since, before that time, mathematics was generally carried out in words. Here, we shall argue that symbolism is not necessary for algebra, although it has certainly come to characterize it—and, indeed, all of mathematics—over the past three centuries. We shall also argue that, initially, algebra dealt with objects rather than relations and that the beginnings of algebra actually required physical interpretations.

The roots of algebra go back thousands of years, as we shall see in the next chapter, but the two earliest texts that serve to define a subject of algebra are the *Arithmetica* of Diophantus (third century CE) and *The Compendious Book on the Calculation of al-Jabr and al-Muqābala* of al-Khwārizmī (ninth century CE). Although neither of these books required physical interpretations of the problems they presented, they did deal with objects rather than relations and neither used any operative symbolism. However, as we shall see below, al-Khwārizmī’s book in particular was on the cusp of the change from “physical interpretations” to “abstract number” in the development of algebra. And, although the term “algebra” is absent from the texts both of Diophantus and al-Khwārizmī, it is clear that their major goal was to find unknown numbers that were determined by their relationship to already known numbers, that is, in modern terminology, to solve equations. This is also one of the goals listed in the NMAP report, so it would be difficult to deny that these works exhibit “algebraic thought.” Thus, in order to study algebra historically, we need a definition of it somewhat different from that of Mahoney, which applies only to the algebra of the past three centuries.

\(^5\) Mahoney, 1971, pp. 1–2.
It is interesting that school algebra texts today do not even attempt to define their subject. In the eighteenth and nineteenth centuries, however, textbook writers had no such compunction. The standard definition, in fact, was one given by Leonhard Euler in his 1770 textbook, *Elements of Algebra*. Algebra, for Euler, was "the science which teaches how to determine unknown quantities by means of those that are known." He thus articulated explicitly what most of his predecessors had implicitly taken as the meaning of their subject, and we follow his lead here in adopting his definition, at least in the initial stages of this book when we explore how “determining unknowns” was accomplished in different times and places.

Now, there is no denying that, taken literally, Euler’s definition of algebra is vague. It is, for example, not immediately clear what constitutes the “quantity” to be determined. Certainly, a “number” is a quantity—however one may define “number”—but is a line segment a “quantity”? Is a vector? Euler was actually clear on this point. “In algebra,” he wrote, “we consider only numbers, which represent quantities, without regarding the different kinds of quantity.” So, unless a line segment were somehow measured and thus represented by a number, Euler would not have considered it a legitimate unknown of an algebraic equation. Given, however, the close relationship between geometry and what was to evolve into algebra, we would be remiss here not to include line segments as possible unknowns in an equation, regardless of how they may be described, or line segments and areas as “knowns,” even if they are not measured. By the time our story has progressed into the nineteenth century, moreover, we shall see that the broadening of the mathematical horizon will make it necessary also to consider vectors, matrices, and other types of mathematical objects as unknowns in an equation.

Besides being vague, Euler’s definition, taken literally, is also quite broad. It encompasses what we generally think of as “arithmetic,” since the sum of 18 and 43 can be thought of as an “unknown” that can be expressed by the modern equation $x = 18 + 43$. To separate arithmetic from algebra, then, our historical analysis will generally be restricted to efforts to find unknowns that are linked to knowns in a more complicated way than just via an operation. This still leaves room for debate, however,

6 Euler, 1770/1984, p. 186.
7 Euler, 1770/1984, p. 2.
as to what actually constitutes an “algebraic” problem. In particular, some of the earliest questions in which unknowns are sought involve what we term proportion problems, that is, problems solved through a version of the “rule of three,” namely, if \(\frac{a}{b} = \frac{x}{c} \), then \(x = \frac{ac}{b} \). These appear in texts from ancient Egypt but also from Mesopotamia, India, China, Islam, and early modern Europe. Such problems are even found, in geometric guise, in classical Greek mathematics. However, al-Khwārizmī and his successors generally did not consider proportion problems in discussing their own science of al-jabr and al-muqābala. Rather, they preferred to treat them as part of “arithmetic,” that is, as a very basic part of the foundation of mathematical learning. In addition, such problems generally arose from real-world situations, and their solutions thus answered real-world questions. It would seem that in ancient times, even the solution of what we would call a linear equation in one variable was part of proportion theory, since such equations were frequently solved using “false position,” a method clearly based on proportions. Originally, then, such equations fell outside the concern of algebra, even though they are very much part of algebra now.

Given these historical vagaries, it is perhaps easiest to trace the development of algebra through the search for solutions to what we call quadratic equations. In the “West”—which, for us, will include the modern-day Middle East as far as India in light of what we currently know about the transmission of mathematical thought—a four-stage process can be identified in the history of this part of algebra. The first, geometric stage goes back some four millennia to Mesopotamia, where the earliest examples of quadratic equations are geometric in the sense that they ask for the unknown length of a side of a rectangle, for example, given certain relations involving the sides and the area. In general, problems were solved through manipulations of squares and rectangles and in purely geometric terms. Still, Mesopotamian mathematicians were flexible enough to treat quadratic problems not originally set in a geometric context by translating them into their geometric terminology. Mesopotamian methods for solving quadratic problems were also reflected in Greek geometric algebra, whether or not the Greeks were aware of the original context, as well as in some of the earliest Islamic algebraic texts.

Al-Khwārizmī’s work, however, marked a definite shift to what may be called the static, equation-solving, algorithmic stage of algebra. Although
al-Khwārizmī and other Islamic authors justified their methods through geometry—either through Mesopotamian cut-and-paste geometry or through formal Greek geometry—they were interested not in finding sides of squares or rectangles but in finding numbers that satisfied certain conditions, numbers, in other words, that were not tied to any geometric object. The procedure for solving a quadratic equation for a number is, of course, the same as that for finding the side of a square, but the origin of a more recognizable algebra can be seen as coinciding with this change from the geometric to the algorithmic state, that is, from the quest for finding a geometric object to the search for just an unknown “thing.” The solution of cubic equations followed the same path as that of the quadratics, moving from an original geometric stage, as seen initially in the writing of Archimedes (third century BCE) and then later in the work of various medieval Islamic mathematicians, into an algorithmic stage by the sixteenth century.

Interestingly, in India, there is no evidence of an evolution from a geometric stage to an algorithmic one, although the ancient Indians knew how to solve certain problems through the manipulation of squares and rectangles. The earliest written Indian sources that we have containing quadratic equations teach their solution via a version of the quadratic formula. In China, on the other hand, there is no evidence of either geometric or algorithmic reasoning in the solution of quadratic equations. All equations, of whatever degree above the first, were solved through approximation techniques. Still, both Indian and Chinese mathematicians developed numerical algorithms to solve other types of equations, especially indeterminate ones. One of our goals in this book is thus to highlight how each of these civilizations approached what we now classify as algebraic reasoning.

With the introduction of a flexible and operative symbolism in the late sixteenth and seventeenth century by François Viète, Thomas Harriot, René Descartes, and others, algebra entered yet another new stage. It no longer reflected the quest to find merely a numerical solution to an equation but expanded to include complete curves as represented by equations in two variables. This stage—marked by the appearance of analytic geometry—may be thought of as the dynamic stage, since studying curves as solutions of equations—now termed differential equations—arose in problems about motion.
New symbolism for representing curves also made it possible to translate the complicated geometric descriptions of conic sections that Apollonius had formulated in the third century BCE into brief symbolic equations. In that form, mathematics became increasingly democratic, that is, accessible for mastery to greater numbers of people. This was even true of solving static equations. The verbal solutions of complicated problems, as exemplified in the work of authors like the ninth-century Egyptian Abū Kāmil and the thirteenth-century Italian Leonardo of Pisa, were extremely difficult to follow, especially given that copies of their manuscripts frequently contained errors. The introduction of symbolism, with its relatively simple rules of operation, made it possible for more people to understand mathematics and thus, ultimately, for more mathematics to be created. It also provided a common language that, once adopted, damped regional differences in approach.8

Moreover, spurred by Cardano’s publication in 1545 of the algorithmic solutions of cubic and quartic equations, the new symbolism enabled mathematicians to pursue the solution of equations of degree higher than four. That quest ultimately redirected algebra from the relatively concrete goal of finding solutions to equations to a more abstract stage, in which the study of structures—that is, sets with well-defined axioms for combining two elements—ultimately became paramount. In this changed algebraic environment, groups were introduced in the nineteenth century to aid in the determination of which equations of higher degree were, in fact, solvable by radicals, while determinants, vectors, and matrices were developed to further the study of systems of linear equations, especially when those systems had infinitely many solutions.

Complex numbers also arose initially as a result of efforts to understand the algorithm for solving cubic equations, but subsequently took on a life of their own. Mathematicians first realized that the complex numbers possessed virtually the same properties as the real numbers, namely, the properties of what became known as a field. This prompted the search for other such systems. Given fields of various types, then, it

8 This is not to say that indigenous techniques and traditions did not persist. Owing to political and cultural mores, for example, Japan and China can be said to have largely maintained indigenous mathematical traditions through the nineteenth century. However, see Hsia, 2009 and Jami, 2012 for information on the introduction of European mathematics into China beginning in the late sixteenth century.
was only natural to look at the analogues of integers in those fields, a step that led ultimately to the notions of rings, modules, and ideals. In yet a different vein, mathematicians realized that complex numbers provided a way of multiplying vectors in the plane. This recognition motivated the nineteenth-century Irish mathematician, William Rowan Hamilton, to seek an analogous generalization for three-dimensional space. Although that problem proved insoluble, Hamilton’s pursuits resulted in a four-dimensional system of “generalized numbers,” the quaternions, in which the associative law of multiplication held but not the commutative law. Pushing this idea further, Hamilton’s successors over the next century developed the even more general notion of algebras, that is, n-dimensional spaces with a natural multiplication.

At the close of the nineteenth century, the major textbooks continued to deem the solution of equations the chief goal of algebra, that is, its main defining characteristic as a mathematical subject matter. The various structures that had been developed were thus viewed as a means to that end. In the opening decades of the twentieth century, however, the hierarchy flipped. The work of the German mathematician, Emmy Noether, as well as her students and mathematical fellow travelers fundamentally reoriented algebra from the more particular and, in some sense, applied solution of equations to the more general and abstract study of structures per se. The textbook, *Moderne Algebra* (1930–1931), by one of those students, Bartel van der Waerden, became the manifesto for this new definition of algebra that has persisted into the twenty-first century.

THE TASK AT HAND

Here, we shall trace the evolution of the algebraic ideas sketched above, delving into some of the many intricacies of the historical record. We shall consider the context in which algebraic ideas developed in various civilizations and speculate, where records do not exist, as to the original reasoning of the developers. We shall see that some of the same ideas appeared repeatedly over time and place and wonder if there were means of transmission from one civilization to another that are currently invisible in the historical record. We shall also observe how mathematicians, once they found solutions to concrete problems,
frequently generalized to situations well beyond the original question. Inquiries into these and other issues will allow us to reveal not only the historicity but also the complexity of trying to answer the question, what is algebra?, a question, as we shall see, with different answers for different people in different times and places.
Index

abbracus schools (see also libri d'abbaco), 191, 235
Abel, Niels Henrik, 299–300, 309–310
abelian groups, 319; fundamental
theorem of, 321
Abraham bar Hiyya of Barcelona (or
Savasorda), 137n6, 178n6, 181n14
Abu Bekr, 137, 181n14
Abū Kāmil ibn Aslam, 9, 147–157, 172–173
academic competition in Renaissance Italy,
216–219
Academy of Sciences, Paris (or Académie des
Sciences), 292, 299; and the reception of
Galois’s work, 311n43
A’h-mose, 13
Alberti, Leon Battista, 200–201
Alexander the Great, 58, 105
Alexandria, 58–60, 133; algebra in
(see algebra, in Alexandria); Muslim
conquest of, 79–80
algebra: in Alexandria, 58–80; in ancient
Greece, 7–8, 33–57; in China, 7, 8, 81–104,
335; commutative (see commutative
algebra); definitions of, 1–2, 5–7, 36,
236–238, 334, 399–408, 417; in Egypt, 7,
12–16, 32; in eighteenth-century Europe,
280–288; geometrical, 17–30, 34–53, 57,
139, 238–240, 250; in India, 7, 8, 105–131,
335; in medieval Islam, 7–8, 132–173, 335; in
Mesopotamia, 7–8, 17–32, 137, 139;
modern (see modern algebra); polynomial
(see polynomial algebra); in seventeenth-
century Europe, 248–280; in sixteenth-
century Europe, 214–246, 335; stages in
development of, 7–10, 20, 139, 267,
287–288; structural approach to, 333, 428,
433, 437, 438–447
algebraic curves, 339–340, 342
algebraic function fields, 399
algebraic geometry, 399, 423
algebraic integers, 394–399
algebraic number field, 394–395, 397, 433
algebraic notation (see symbolism in algebra)
algebras, 2, 10, 358, 415–426, 428, 442, 444;
axiomatization of, 437
analysis and synthesis, 78, 237–238
analytic geometry, 49, 53, 253–258, 262–268,
269–274, 280
Apollonius, 9, 48, 58, 133, 253, 265; Conics,
as reinterpreted in the work of Fermat,
253–255
application of areas, 42–43, 48
Archimedes, 53–54, 58, 133, 258; The Sphere
and the Cylinder, 53–57; work on of cubic
equations, 53–57, 165–166, 168
Archytas, 33
Aristotle, 34
Arithmetica of Diophantus, 60–80, 156–158,
187n27, 227–228, 229–230, 233–235,
237–238, 240, 335; cubic equations in the,
70–72; indeterminate equations in the,
64–68, 335; linear equations in the, 63–64;
notational conventions in the, 61–62;
powers of the unknown in the, 61, 69,
158–159; quadratic equations in the,
64–68, 72–77; quartic equations in the,
74–77; reception and transmission of the,
77–80
arithmetic progression, 30–31, 111, 159–160
Aronhold, Siegfried, 367, 374–377
Artin, Emil, 443, 444
Āryabhat.īya, 106, 108, 113, 116, 121;
Āryabhat.īya, 106–108, 111–112, 116, 119,
126–127
Azhel, Cesare, 324n80
Ashoka, 105
Autolycus, 33
axiomatization: of an algebra, 437; of a field,
434–437; of a group by Weber, 329–330;
Hilbert’s call for, 429–430; of a ring,
433–434, 440–441; of a vector space by
Peano, 430–432
Babbage, Charles, 401, 404
Bachmann, Paul, 324n81
back-reckoning, 74–75
Bagio the Elder, 194
Banach, Stefan, 432
\textit{Baudh\'ayana-s\ul{a}ba-s\utra} (see \textit{\S\ul{u}ba-s\utra}s)
Bellavits, Giusto, 410–411
Benedetto, Maestro, 197–200
Berlin Papyrus, 15
Bernoulli, Daniel, 345
Bernoulli, Johann, 283, 345
Bernoulli, Nicolaus, 284, 286
Bertrand, Joseph, 315
Bh\'askara I, 106–108, 112, 119
binary forms, 332, 351–355, 368–378
binomial theorem, 90–91, 162–164
biquadratic reciprocity, law of, 386–388
biquaternions (see also quaternions, complex), 408
al-B\'ir\'un\'i, Ab\'u Rayh\'an, 135–136
Bombelli, Rafael, 62, 228; \textit{L'Algebra}, 229–235, 381
Boole, George, 367–368, 369; work of on linear transformation, 350–353
Borchardt, Carl, 320, 349
Borrel, Jean (also known as Johannes Buteo), 212, 235–236
Bravais, Auguste, 328n93
Brioschi, Francesco, 344
Bruno, Francesco F\'a di, 344
Burali-Forti, Cesare, 432
Burnside, William, 333, 442n26
Bush, George W., 1
Buteo, Johannes (see Borrel, Jean)
Cambridge Analytical Society, 401, 404
\textit{Cambridge Mathematical Journal}, 404
Cantor, Georg, 430
Carolingian Empire, 175–176
Cartan, Elie, 425
Catherine I of Russia, 291
Cauchy, Augustin-Louis, 300–301; determinants in the work of, 343–344, 347–349, 353, 357, 361; permutations in the work of, 300–303; and the principal axis problem, 347–349
Cayley-Hermite problem, 357–358, 364–366
Cayley’s theorem, 325
chain conditions on ideals (see ideals, chain conditions on)
Chandra Gupta II, 105
Chandragupta Maurya, 105
characteristic (of a field) (see fields, characteristic of)
characteristic polynomial, 348, 359–363
Charlemagne, 175–176
chemistry and group theory, 328n93
Chevalier, Auguste, 311
China, algebra in (see algebra, in China)
Chinese remainder problem, 82, 100–104
Chrysippus, 34
Chuquet, Nicolas, 204–205, 230n37, 233n44
Citrabh\'anu, 116–118
Clavius, Christoph, 213
Clebsch, Alfred, 367, 376–377, 413
Clifford, William Kingdom, 420–421
Cockle, James, 408
Colson, John, 282
Commandino, Federico, 237
commutative algebra, 423
completing the square, 227; in the \textit{Elements} of Euclid, 39–40; in Indian mathematics, 109–111, 114; in Islamic mathematics, 40–41; in Mesopotamian mathematics, 20–22, 24–25
complex numbers, 9–10, 225–227, 230–233, 252, 260–261, 270, 381, 386–388; ideal (see ideal complex numbers); in the work of Euler, 382–384
congruences, 100–104, 119–121, 385
conic sections (see also ellipse; hyperbola; parabola), 48–49, 257–258, 267, 272–274, 279–280
cossic algebra, 205–212
counting boards, 85–86, 93, 95, 97–98
cyclotomic integers, 390
Cramer, Gabriel, 339–342
Cramer’s paradox, 342, 414
Cramer’s rule, 341–342
Crelle, Auguste, 320
Crelle’s Journal (see Journal für die reine und angewandte Mathematik)

cubic reciprocity, law of, 388

cyclotomic equations, 303–309, 313
cyclotomic integers, 390, 391–394, 396
d’Alembert, Jean le Rond, 285, 345
Darboux, Gaston, 327
Dedekind, Richard, 324, 380, 423, 432; work of on algebraic integers, 394–399; work of on fields, 396–397
Dedekind domain, 398n43
de la Roche, Étienne, 205, 235
del Ferro, Scipione, 215–217, 219
della Nave, Annibale, 216, 219
de Moivre, Abraham, 290–291
De Morgan, Augustus, 403–404, 415
Descartes, René, 8, 245n74, 248, 261–262, 280, 338; La Géométrie (The Geometry), 248, 261, 262–272, 274, 287, 335; rule of signs of, 269, 275–276
De Séguier, Jean-Armand, 333–334
determinants, 2, 9, 318, 335–338, 376, 427; in the work of Cauchy, 343–344, 347–349, 353, 357, 361; in the work of Sylvester, 344
Deutsche Mathematiker-Vereinigung, 433n8
Dickson, Leonard Eugene, 333n107, 437
Diophantus of Alexandria (see also Arithmetica of Diophantus), 7, 60, 134
Dirichlet, Peter-Lejeune, 320, 389, 394
discriminant, 180, 224n18, 297, 318, 332, 351–353, 368–369
Disquisitiones arithmeticae (see also Gauss, Carl Friedrich): congruence, definition of given in, 385; quadratic forms in, 318–321, 353–355, 357; quadratic reciprocity, proof of law of in, 385–386; solution of cyclotomic equations in, 303–309
division algebra, 406, 420n98
Doddson, Charles, 415

Egypt, algebra in (see algebra, in Egypt)
eigenvalues, 347, 349
eigenvectors, 347, 349
Eisenstein, Gotthold, 355, 357, 366, 373–374, 388, 394

Elliott, Edwin Bailey, 372
ellipse, Apollonian definition of, 51, 247, 279
Ellis, Robert, 404
Engel, Friedrich, 413
Eratosthenes, 58

Erlanger Programm, 326
Euclid (see also Elements of Euclid), 34, 38, 58, 133, 147–148, 153; Data, 46–48, 167
Euclidean algorithm, 104, 119–121

Eudemos of Rhodes, 33
Endoxus, 33
Euler, Leonhard, 6, 345, 357, 385, 400; and Cramer’s paradox, 342, 414; Elements of Algebra, 6; and the fundamental theorem of algebra, 283–287; and the solution of polynomial equations, 291–292; work of on complex numbers, 382–384; work of on Fermat’s last theorem, 381–384, 386 excess and deficit, method of, 83–87
exegetics, 237–238
exterior algebra, 413

factor theorem, 269
false position: in Chinese mathematics, 83–87; in Egyptian mathematics, 13–16; in Mesopotamian mathematics, 19–20
Fermat, Pierre de, 248, 252–253, 258, 261; and analytic geometry, 253–254, 262, 265, 280; as interpreted by Hudde and
Fermat, Pierre de (continued)
Van Schooten, 271–274; *Introduction to Plane and Solid Loci*, 253, 254–258; reinterpretation of Apollonius’s work by, 253–255
Fermat’s last theorem, 71, 381–384, 386, 388–399, 428
Fermat’s little theorem, 388n16
Ferrari, Ludovico, 218–219, 220, 223–224, 245, 252
fields, 2, 9; axiomatization of, 434–437; characteristic of, 435, 437; real (*see real fields*); in the work of Dedekind, 396–397; in the work of Galois, 312, 396–397; in the work of Steinitz, 397, 434–437, 443–444
Finzi, Mordecai, 173, 197n58
Fior, Antonio Maria, 217–218
Fontana, Niccolò (also known as Niccolò Tartaglia), 218–219, 235, 245
Forcadel, Pierre, 212, 236
forms, theory of (*see also invariants, theory of*), 344n17, 349–350; Boole’s work in the, 350–353, 367; Cauchy’s work in the, 347–349; Gauss’s work in the, 318–319, 320–321, 353–355, 357; Frobenius’s work in the, 363–366; Lagrange’s work in the, 345–347; Sylvester’s work in the, 349; Weierstrass’s work in the, 361–363
Fourier, Joseph, 311n43
Fraenkel, Adolf, 433–434, 437
Francesca, Piero della, 200
Frederick II, 184–185
Frend, William, 400–401
fundamental theorem of arithmetic, 387
Galen of Pergamum, 59
Galilei, Galileo, 247, 279
Galois, Évariste, 310–315, 382; permutations in the work of, 312–314; reception of the work of at the Académie des Sciences, 311n43; work of on field theory, 312, 396–397; work of on groups, 312–313, 427
Galois group, definition of, 313
Galois theory, 2, 315–316
Gaussian elimination, 87, 88, 89n15, 99
Gaussian integers, 386–388
generic reasoning, 360–361, 362, 363–364
geometrical algebra (*see algebra, geometrical*)
Gerardi, Paolo, 192–194
Gerard of Cremona, 177
Gerbert of Aurillac (later Pope Sylvester II), 176–177
Germain, Sophie, 388–389
Gibbs, Josiah Willard, 410
Gilio of Siena, 194
Giovanni di Bartolo, 197
Girard, Albert, 258–261, 283, 343n12
Goldbach, Christian, 382
Golius, Jacobus, 262, 266
Gordan, Paul, 367, 378, 438
Gosselin, Guillaume, 235–237, 245n74, 248; definition of algebra of, 236
Grassmann, Hermann, 411, 430; work of on vectors, 411–414
Graves, Charles, 408
Graves, John, 407–408
Greece, algebra in ancient (*see algebra, in ancient Greece*)
Gregory, Duncan, 404–405
Hahn, Hans, 432
Han dynasty, 81
Hankel, Hermann, 413
Harriot, Thomas, 8, 248–249, 258, 259, 261, 264, 268, 276; and the structure of equations, 249–252; work of on quartic equations, 251–252
Heaviside, Oliver, 410
Hensel, Kurt, 433, 435–436
Hermite, Charles, 344, 357–358, 394; solution of the quintic equation of, 315; work of on the Cayley-Hermite problem, 364, 366
Hero of Alexandria, 59
Herschel, John, 401
Hesse, Otto, 344, 367, 369–370, 373
higher reciprocity, laws of, 391
Hippocrates of Chios, 33
history vs. heritage, 34–35, 37n6, 53, 147–148, 164
Hölder, Otto, 330–331
Horner, William, 93
Horner method, 186n23
Hudde, Johann, 272
humanism, 177–178, 235–236, 237
hundred fowls problem, 98–99, 118, 154–155
Hutton, Charles, 249–250
Hypatia, 78–79, 174
hyperbola, Apollonian definition of, 49–51, 52, 257
hypercomplex number systems (see algebras)
ibn Abdun, 137
ibn al-Haytham, Abû 'Alî al-Hasan, 164–165, 173
ibn Turk, 'Abd al-Hamîd ibn Wâsi, 144–145
ideal complex numbers, 320–321, 390–394, 396
ideals, 397–398, 425n110, 432, 440–442; chain conditions on, 442
idempotent, 418
imaginary numbers, 400
indeterminate equations: in the Arithmetica of Diophantus, 64–68, 335; in China, 98–100; in India, 118–119; in Islamic mathematics, 153–158
India, algebra in (see algebra, in India) inductive proof, 164–165
infinite descent, method of, 382
integral domain, 398n43
International Congress of Mathematicians, 429–430
internationalization of mathematics, 429
invariants, theory of (see also forms, theory of), 318, 372–373, 377–378, 428; Aronhold’s work on the, 374–377; Cayley’s work on the, 366–371; Gordan’s work on the, 378; Hilbert’s work on the, 378–380; Sylvester’s work on the, 353, 367–373, 375
Islam, algebra in medieval (see algebra, in medieval Islam)
Iskur-mansum, 24
Jacobi, Carl, 344, 349, 388
Jacopo of Florence, 191–192
Jahrbuch über die Fortschritte der Mathematik, 429
Jayadeva, 124–125
Jean des Murs (see Johannes de Muris)
Jia Xian, 92
Jiu Zhang suanshu (see Nine Chapters on the Mathematical Art)
Johannes de Muris (or Jean des Murs), 181n14
John of Palermo, 185
Jordan, Camille, 316–317, 327; permutations in the work of, 316–317; Traité des substitutions et des équations algébriques, 316–317, 363
Jordanus of Nemore, 187–188, 190–191; De numeris datis, 187–190, 240n64; quadratic equations in the work of, 188–190
Journal für die reine und angewandte Mathematik, 320
Jyesṭhadeva, 127–130, 165
Kant, Immanuel, 402
al-Karajî, Abû Bakr, 156–160, 162, 173
Kepler, Johannes, 247–248, 279
Kerala school, 107, 116, 119, 130–131
Khayyam, Omar (see al-Khayyâmi, ‘Umar ibn Ibrâhîm)
Kirkman, Thomas, 408
Klein, Felix, 326–328, 413, 438–439
Königsberger, Leo, 438n19
Kovalevskaya, Sonya, 438n19
Kronecker, Leopold, 320–321, 360–361, 398n45
Kummer, Ernst, 320; work of on ideal complex numbers, 320, 390–394
Lacroix, Sylvestre, 401
Lagrange, Joseph-Louis, 299, 353, 400; *Méchanique analytique*, 345–346; permutations in the work of, 296–299; and the principal axis problem, 345–347, 357; and the solution of polynomial equations, 287, 295–298, 303; theorem of, 303n28
Lamé, Gabriel, 389–390
Laplace, Pierre Simon de, 343, 345
Lasker, Emmanuel, 440
law of exponents, 69, 158–161, 183–184, 207, 233, 264
law of inertia, 349
Legendre, Adrien-Marie, 385, 386, 389
Leibniz, Gottfried, 283–293, 336–339, 414
Leonardo of Pisa (see also *Liber abbaci* of Leonardo of Pisa), 9, 172–173, 178–179, 190, 275; *Flos*, 185–186; *Liber quadratorum* (or *Book of Squares*), 185–187; work on of quadratic equations, 179–182, 184–187
l'Hôpital, Marquis de, 336
Liber abbaci of Leonardo of Pisa, 179, 184–185, 191, 215, 229; linear equations in the, 179; powers of the unknown in the, 183–184; quadratic equations in the, 179–182, 184–187
libri d'abbaco (see also maestri d'abbaco), 191–200, 206, 208, 215, 229, 237, 246
Lie, Sophus, 414
Lie group, 427–428; Boole's work on, 350–353; Gauss's work on, 353–355; Weierstrass's work on, 361–363
Liouville, Joseph, 315, 390; and the work of Galois, 315
Liu Hui, 86, 89
Li Ye, 94–95
Macaulay, Francis, 440
MacMahon, Percy, 372
Mādhava, 127
maestri d'abbaco (see also libri d'abbaco), 201–202, 203n68, 205, 223, 228, 229, 237, 246
Mahāvīra, 109; *Ganita-sāra-saṅgṛaha* of, 109, 113, 118
Mahoney, Michael, 4–5, 446
al-Ma'mūn (Caliph), 133, 138
al-Mansūr (Caliph), 133
Marcolongo, Roberto, 432
Maseres, Frances, 400
Master Dardi of Pisa, 194–197
Mathematical Classic of Master Sun, 101–102
mathematical induction, 164–165
Maxwell, James Clerk, 410
Mazzinghi, Antonio de', 197–200, 206
Menaechmus, 33
Mesopotamia, algebra in (see algebra, in Mesopotamia)
Middle Ages, 174–178
Möbius, August Ferdinand, 410–411
modern algebra, 2, 382, 398, 427–447
module, in the work of Dedekind, 397, 432–433
modulus, 385
Molière, Theodor, 424–425
Moscow Mathematical Papyrus, 13–16, 83
Muhammad, 132–133
Müller, Johannes of Königsberg (also known as Regiomontanus), 227–228
multilinear forms, 367
National Mathematics Advisory Panel, 1–2, 4–5
negative numbers, 87–88, 225–227, 400–401
negative roots of algebraic equations, 224–225, 252, 260–261, 268–270
Netto, Eugen, 326, 331
Newton, Isaac, 4, 275, 283, 287–288, 313n11, 336, 343n12, 399; *Arithmetica universalis*, 275–282; quadratic equations in the work of, 278–279
Nilakantha, 127
nilpotent, 418–420
Nine Chapters on the Mathematical Art, 81, 84–92, 94
Noether, Emmy, 10, 380, 438–440, 443–444; work of on algebras, 442–443; work of on commutative algebra, 423; work of on ring theory, 434, 437, 440–442
Noether, Max, 438
Noetherian rings, 442n25
nonions, 421
notational conventions (see symbolism in algebra)
Nullstellensatz, 423
number, expanding concept of in the nineteenth century, 381–399
Nuñes, Pedro, 205, 235
octonions, 407–408
orthogonal transformation, 347, 349, 353, 359, 361
\(p \)-adic numbers, 433, 435
Pappus of Alexandria, 77; Mathematical Collection, 77–78, 237, 253, 266–267
parabola, Apollonian definition of, 51–52, 247, 257–258, 279–280
Pascal, Blaise, 162
Pascal triangle, 92–93, 162–164, 259
Pazzi, Antonio Maria, 228
Peacock, George, 401–402, 404
Peano, Giuseppe, 430; axiomatization of vector spaces of, 430–432
Peirce, Benjamin, 415–420, 421n100; definition of mathematics of, 416–417
Peirce, Charles Sanders, 420, 421n100
Peirce decomposition, 418–419
Peletier, Jacques, 212, 245, 248
Pell, John, 122
Pell equation, 107, 122–126, 130
Percy, Sir Henry, 249
perfect numbers, 381
Pincherle, Salvatore, 432
Plato of Tivoli, 178n6
Poincaré, Henri, 423–424
polynomial algebra, 2, 145–146, 158–165; of matrices, 358–360
polynomial equations: in Chinese mathematics, 82, 92–98; of degree five and higher (see also quintic equations), 289, 295, 298–300, 303–310, 313–317; method of elimination relative to, 95–98, 209–212, 276, 343, 350–353; in the work of Descartes, 270–271; in the work of Euler, 291–292; in the work of Harriot, 250–252; in the work of Hudde, 272; in the work of Newton, 275; in the work of Viète, 244–246; in the work of Weber, 332
poristics, 258
principal axis problem, 346–349, 357–358, 361n49
Próclus, 33
proof, notion of, 33–34
proportions, 7, 12–16, 18–20, 82–86, 107–108
Pythagoras, 33
Pythagorean theorem, 38–39, 41–42, 91–92, 97, 110, 152
Qin Jiushao, 92, 94, 98, 102; Mathematical Treatise in Nine Sections, 92–94, 102–104
quadratic equations, 2, 7–9; in Chinese mathematics, 91–92, 94; in Egyptian mathematics, 15–16; in Indian mathematics, 109–118, 130; in Islamic mathematics, 137–153; in Mesopotamian mathematics, 18, 20–32, 143, 147; six-fold classification of, 139–140, 144; in the work of the cossists, 208, 211–212; in the work of Descartes, 265; in the work of Diophantus, 64–68, 72–77; in the work of Euclid, 35–48; in the work of Girard, 260; in the work of Harriot, 251–252; in the work of Jordanus of Nemore, 188–190; in the work of Leonardo of Pisa, 179–182, 184–187; in the work of the maestri d’abbaco, 192, 197–200; in the work of Newton, 278–279; in the work of Viète, 241, 244–245
quadratic formula, 22, 24–25, 90, 94, 112–114, 130, 142, 149, 180, 190, 241, 251, 265, 276, 279
quadratic reciprocity, law of, 385–386
quadric surfaces, 347
quantics, 370–380
quartic equations, 246, 283, 297–298; in Chinese mathematics, 93–95, 98; in Indian mathematics, 115–116; in Islamic mathematics, 149–150; in the work of Cardano, 222–225, 227; in the work of Descartes, 268–270; in the work of Diophantus, 74–77; in the work of Girard, 260; in the work of Harriot, 251–252; in the work of the maestri d’abbaco, 196–197; in the work of Pacioli, 214–215; in the work of Viète, 245
quasi-real-world problems, 147, 151–152, 159–160, 192, 195, 208, 277
quaternions, 406–407, 415, 420–421, 428; complex, 408
quintic equations, 289, 314–315; in the work of Bezout, 293–294; in the work of de Moivre, 290–291; in the work of Hermite, 315; unsolvability of, 298–300
quotient group, definition of by Hölder, 330
Ramée, Pierre de (also known as Peter Ramus), 212–213, 236–237
Ramus, Peter (see Ramée, Pierre de)
ar-Rashîd, Harûn, 133
real fields, 444
reciprocity laws (see biquadratic reciprocity, law of; cubic reciprocity, law of; higher reciprocity, laws of; quadratic reciprocity, law of)
Recorde, Robert, 205–206
Regiomontanus (see Müller, Johannes of Königsberg)
representation theory, 442
resolvent, 223, 292–294, 296–299
Rhind Mathematical Papyrus, 13–15, 32, 77
Riemann surfaces, 399
rings, 2, 432, 437; axiomatization of, 433–434, 440–441; work on by Noether, 454, 437, 440–442
Robert of Chester, 177
Roman Empire, 59–60, 174–175, 184
Rompiansi, Antonio, 200
Rudolf, Christoff, 205–209, 235
Ruffini, Paolo, 298–300, 303
rule of three, 14; in China, 84–85; in India, 107–108
St. Petersburg Academy, 291
Salmon, George, 371, 373, 380
al-Samaw’al ben Yahyä al-Maghribî, 158, 160–164, 173
Savasorda (see Abraham bar Hiyya of Barcelona)
Scheffers, Georg, 424–425
Scheyl, Johann, 221, 235
Schmidt, Otto, 334
Schooten, Frans van, 272
Schreier, Otto, 444
Schur, Friedrich, 424
Schur, Issai, 442n26
Scot, Michael, 185
series, sums of, 126–130, 164–165
Serret, Joseph, 315–317, 432
Shi Huangdi, 81
Smith, Henry J. S., 363
solubility by radicals, definition of, 307
spectral theory, 349, 350n29, 360–366
square roots, 90–91
Steinitz, Ernst, 397, 434–437, 443–444
Stevin, Simon, 233n44
Stifel, Michael, 209–212, 235, 249
straight line, equation of, 255–256
Study, Eduard, 424
Suan shu shu, 81–84, 86
Sulba-sûtras, 105–106, 113n16; Baudhâya-saûbha-sûtra, 109–111
Sylow, Ludwig, 304n80, 325–326
Sylvester II, Pope (see Gerbert of Aurillac)
symmetric functions, 259–260, 343–344
synthesis (see analysis and synthesis)
syzygies, 368–371
Tait, Peter Guthrie, 410
Tartaglia, Niccolò (see Fontana, Niccolò)
Thales, 33
Theatetus, 33
Theon of Alexandria, 78, 237
Torporley, Richard, 249
transformation groups (see groups, of transformations)
transmission of Islamic texts into the Latin West, 177–178
al-Tūsī, Sharaf al-Dīn, 171–173
unique factorization domain, 383, 386, 387–388
Vandermonde, Alexandre-Théophile, 294–296, 308n35, 343
van der Waerden, Bartel, 10, 399, 442–444; *Moderne Algebra*, 10, 444–447
vectors, 2, 9, 410, 428; Grassmann’s work on, 411–414; Hamilton’s work on, 408–410
vector spaces, 412–413, 432; axiomatization of by Peano, 430–432
von Dyck, Walther, 328–329
Wallis, John, 249
Wantzel, Pierre, 309
Waring, Edward, 294
Weber, Heinrich, 399, 427, 434–435, 446; polynomial equations in the work of, 332; work of on group theory, 329–333
Wedderburn, Joseph Henry Maclagan, 419, 426, 437
Wedderburn-Artin theorem, 426n112
Weierstrass, Karl, 320, 330, 349, 360, 364, 428, 438n19; work of on algebras, 422–423; work of on the theory of forms, 361–363
Weil, André, 399
Weyl Hermann, 432
Whiston, William, 275, 280
Wiener, Norbert, 432
William de Lunis, 178n6
Witt, Jan de, 272–274
Yang Hui, 94–95, 99–100, 102
Zariski, Oscar, 399
zetetics, 237–238
Zhang Quijian, 92, 98
Zhu Shijie, 94–98, 276n52, 344n11
Zolotarev, Egor, 398n45