
Contents

Preface xiii

1 Introduction to Machine Learning Methods 1
1.1 What Is Machine Learning? 1
1.2 What Can We Do with It? 1
1.3 The Language of Machine Learning 3
1.4 Supervised Learning 4
1.5 Unsupervised Learning 10
1.6 Machine Learning versus Inference 13
1.7 Review and Discussion Questions 20
1.8 Programming Exercises 20

2 First Supervised Models: Neighbors and Trees 21
2.1 Building an ML Model 21
2.2 Decision Trees 25
2.3 kNN: Finding Neighbors 31
2.4 Lessons Learned 34
2.5 Review and Discussion Questions 35
2.6 Programming Exercises 37

3 Supervised Classification: Evaluation and Diagnostics 38
3.1 Working with Research-level Data Sets: Preprocessing

and Analysis 38
3.2 Binary Classification Evaluation 40

ix

x Contents

3.3 Choosing an Evaluation Metric 44
3.4 Beyond Training and Testing: Cross Validation 45
3.5 Diagnosing a Supervised Classification Model 49
3.6 Improving a Supervised Classification Model 52
3.7 Beyond Binary Classification 55
3.8 Lessons Learned 58
3.9 Review and Discussion Questions 59
3.10 Programming Exercises 60

4 Supervised Learning Models: Optimization 61
4.1 Data Set Description 61
4.2 A New Algorithm: Support Vector Machines 64
4.3 Data Exploration and Preprocessing 72
4.4 Diagnosis 77
4.5 Hyperparameter Optimization 78
4.6 Feature Engineering 83
4.7 Further Diagnostics and Final Model Selection 86
4.8 Lessons Learned 87
4.9 Review and Discussion Questions 88
4.10 Programming Exercises 89

5 Regression 90
5.1 From Classification to Regression: What's New in

the Analysis Pipeline? 90
5.2 Linear Regression 92
5.3 Linear Models and Loss Functions 95
5.4 Gradient Descent 98
5.5 Bias-variance Trade-off 103
5.6 Regularization 105
5.7 Generalized Linear Models 108
5.8 Poisson Regression 114
5.9 Lessons Learned 117
5.10 Review and Discussion Questions 118
5.11 Programming Exercises 119

Contents xi

6 Ensemble Methods 121
6.1 Bias-variance Decomposition for Ensembles 123
6.2 A Three-dimensional Map of the Universe 123
6.3 Bagging Methods 127
6.4 Bagging Algorithms for Photometric Redshifts 130
6.5 Boosting Methods 135
6.6 Boosting Methods for Photometric Redshifts 140
6.7 Feature Importance 145
6.8 Lessons Learned 148
6.9 Review and Discussion Questions 150
6.10 Programming Exercises 151

7 Clustering and Dimensionality Reduction 152
7.1 Clustering 152
7.2 Density-based Clustering 160
7.3 Mixture Models 162
7.4 Dimensionality Reduction 168
7.5 Application: Hyperspectral Images Analysis 176
7.6 So Close, No Matter How Far: The Importance of Distance Metrics 185
7.7 Other Nonlinear Mapping Techniques 188
7.8 Supervised or Unsupervised Dimensionality Reduction? 191
7.9 Lessons Learned 192
7.10 Review and Discussion Questions 193
7.11 Programming Exercises 195

8 Introduction to Neural Networks 196
8.1 Deep Learning and Why It Works 196
8.2 Assembling a Neural Network 197
8.3 Have Network, Will Train 202
8.4 Two Worked Examples: Particle Classification and

Photometric Redshifts 211
8.5 Beyond Fully Connected Networks 224
8.6 Lessons Learned 234
8.7 Review and Discussion Questions 236
8.8 Programming Exercises 236

xii Contents

9 Summary and Additional Resources 238
9.1 Have Problem, Have Data: What Next? 238
9.2 Additional Resources 246
9.3 Conclusion 248

References 249
Index 257

CHAPTER ONE

Introduction to Machine
Learning Methods 1
I have a great supervised machine learning joke. . .
But you need to have heard a similar one before.

1.1 WHAT IS MACHINE LEARNING?
Thefirst question I amalways askedwhen I seedistant relatives at holiday gatherings
is: What are you working on? And if for many years, “Astrophysics” was a popular
yet often misleading answer (as I had to explain that I was not training to be an
astronaut, and in fact, sadly, I would probably never even discover a new world),
now that I’ve thrownmachine learning into themix, my answers have become even
moremurky and vague. However, I think it’s important that we can explain without
any jargonwhat we do, and as a consequence, I’ve spentmany hours thinking about
how to describe machine learning.

To the best of my knowledge/ability to explain, I would say that it’s the pro-
cess of teaching a machine to make informed, data-driven decisions. Examples of such
decisions include recognizing and characterizing objects based on similarities or
differences, detecting patterns, and distinguishing signal from noise.

In many ways, the boundaries and definition of machine learning as a disci-
pline are fluid, and so far, it’s often been approached without a scientific spirit of
inquiry. But it is my opinion that this process should be subject to the same level
of rigor and testing that any scientific investigation needs to endure. In this book,
we will explore many ways to build, test, understand, and break machine learning
models.

1.2 WHAT CAN WE DO WITH IT?
Once we’ve established a working definition of machine learning, a far more inter-
esting question to ask is: What can we do with machine learning tools? And this is
where the conversation canbecome really long. Iwon’t strive for completeness here,

1

2 Chapter 1 Introduction to Machine Learning Methods

Recognize

Predict Simplify

Group together

Figure 1.1: A cartoon example showing some types of problems that machine learning can help
solve.

and there aremany real-life applications that involvemachine learningmethods but
are so complicated that they can’t quite fit in amold, for example, self-driving cars or
AI (artificial intelligence) systems playing video games. But when reduced to build-
ing blocks of larger operations, I would say that often machine learning tools are
used to do one of the following four things (see Figure 1.1):

• Recognize an instance of a certain type. For example, this couldmean correctly
labeling different type of animals, like cats or dogs, from images, or recognizing
a specific person in a picture, as is done in social media “tagging” of people.

• Predict some property or information on the basis of some other information.
For example,wemay attempt topredict future behavior basedonpast behavior;
use previous utility bills to predict the next one, or reconstruct a missing part
of an image based on other examples of similar images.

• Group together objects that are similar, which can also be used to single
out objects that are different (“outliers” in scientific parlance). For example,
we might try figuring out how many different types of galaxies there are in
a picture of the sky, or which strange-looking astrophysical sources are more
likely to be artifacts of the camera. This type of application is referred to as
clustering.

• Simplify the information contained in a complicated data set to condense it
to its quintessential nature. For example, we could ask what’s the simplest way
to draw a cat so that it’s still recognizable as a cat. This process has the dou-
ble advantage of reducing the volume of data we need to deal with (which is
desirable for manipulation, storage, and visualization purposes) and helping
us understand what the essential properties are of a given category (in our
case, cats). These are often called dimensionality reduction techniques by the
initiated.

1.3 The language of Machine Learning 3

1.3 THE LANGUAGE OF MACHINE LEARNING
Unlike in the Fight Club,1 the first rule of machine learning is to learn how to talk
about it: Laying down very clearly what it is that we know and what it is that we
want to know is incredibly important.

To begin with, the elements of a data set are often called instances; other com-
monly used names are “samples” or “examples.” In the physical sciences, it is not
uncommon to hear “observations” in reference to instances, but we will try to
stay away from this confusing habit. For each one of these instances, there will be
some properties that are known; these are usually things that can be measured,
observed through experiment, or simulated.They are called features (or less techni-
cally, “input”). For example, if you are studying Newton’s law of gravity, you might
measure the distance and time of falling objects, and you might ask yourself about
the final speed. In this case, the features of your problem are two: distance and
time. If you are studying galaxies and you are observing them in different regions
of the electromagnetic spectrum (say, for example, ultraviolet, visible, infrared, and
radio), and you have one data point for each of those measurements, those will
be your four features. Note that the features don’t need to be numerical! They can
also be of categorical type, like yes/no, or 0/1, or low/medium/high, or even have
a descriptive quality like red/blue/green. Usually, it is necessary to map such types
to numerical values before plugging them into ML machinery.

It is customary to organize a data set in rows and columns, where each row
describes one instance, and each column contains the measured value of one fea-
ture associated with that instance. Therefore, usually the total size of your data set
will be given by the number of instances times the number of features.

At times, there will be one or more additional pieces of information (proper-
ties; in the example above, thefinal speed) that youwould like to estimateor predict,
given the value of the features. This property is called target, or sometimes label, or
more generally, output. In other cases, the output might not be a specific quantity,
but rather a pattern, or a rule.

A summary plot of this basic terminology is shown in Figure 1.2.
Usually, the goal of an ML task is to build a relationship between input and

output, which will then be described by our machine learning model. A model is a
mathematical object that allows us to go from the input space of features to the
output space of targets. Related terms include the words “method” and (more
commonly) “algorithm,” which usually refer to particular classes of mathematical
relationships that can be used to buildmodels. Examples ofML algorithms that you
might have heard of include RandomForests and neural networks.They exist inde-
pendently of our input and output, and once they are used for a specific problem,
they define some rules on how we can build models.

1 https://en.wikipedia.org/wiki/Fight_Club

4 Chapter 1 Introduction to Machine Learning Methods

F1 F2 F3 F4 F5 … FN T

Known Known Known Known Known

Known Known Known Known Known

Known Known Known Known Known

Known Known Known Known Known

Known Known Known Known Known

Known Known Known Known Known

Known Known Known Known Known

Known Known Known Known Known

Known Known Known Known Known

Known Known Known Known Known

Known Known Known Known Known

Known

Known

Known

Known

Known

Known

Known

Known

Known

Known

Known

Known

Known

Known

Known

Known

Known

Known

Known

Known

Known

Known

Known

Known

Known

Known

Known

Known

(Known)

(Known)

(Known)

Known ?

Features (input) Output

T
ra

in
in

g

Prediction

La
b

e
ls/ta

rg
e

ts

T
e

st

New data

Figure 1.2: A visual summary of some terminology frequently used in machine learning.

One important distinction amongmachine learningmethods is between super-
vised and unsupervised methods. The boundary between them is sometimes blurry,
and their union doesn’t cover the whole range of possibilities; some practition-
ers prefer to use different terminology or to do away with these denominations.
Nonetheless, understanding the distinction between the two methods is, in my
opinion, important, and we will discuss it below.

1.4 SUPERVISED LEARNING
In a supervised learning task, we assume that there is a collection of instances for
which the target property is known (besides the features, which are assumed to
be known for all data). This collection is called the learning set. For example, let’s
assume that each of the data points in the left panel of Figure 1.3 has a color asso-
ciated with it: blue or green. We would like to learn to predict the color, based on
each point’s coordinates; gray indicates that the color is not yet known.This data set
has two features (the x and y coordinates). Supervised learning consists of learning
by example: we need to be shown some instances for which the color is known, in
order to develop an intuition—in ML parlance, to build a model—of the relation-
ship between coordinate and color.The learning set for this problem is shown in the
right panel of the figure, and it contains 30 instances (thenumberof coloredpoints).

To solve this problem, an ML algorithm will attempt to use the instances in
the learning set to infer the rule that connects the coordinates to the color. If
it is successful, when presented with another point for which only the features

1.4 Supervised Learning 5

y

0.0

0.0 0.2 0.4 0.6

x

0.8 1.0 0.0 0.2 0.4 0.6

x

0.8 1.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1.3: A simple example of a supervised problem. We would like to learn to predict the
color of a point, given its coordinates (points for which the color is unknown are gray). To do so,
we are provided with a learning set (right): a subset of instances for which both the features
(coordinates) and the target property (color) are known.

(coordinates) are known (e.g., any of the gray-colored points in the figure), the
algorithm will be able to make a correct prediction of the target property (color).

As a general rule, a supervised learning method is only as good as its learning set
or at least it starts out like that. A training set that contains too few examples would
not allow an ML model to learn the relationship correctly. Let’s look at this simple
example:

input output
1 3
2 3
3 ?

Here I am providing two examples in the learning set, and I am asking you to
predict the output of a third example. Most likely, you would predict “3” as the out-
put, but alas, this is not the correct answer. We can try to improve by adding a few
more examples to the learning set:

input output
1 3
2 3
3 5
4 4
5 ?

Now, it is possible that someof youhave alreadyfiguredoutwhat the rule is. But
for the vast majority of us who still wouldn’t know, let me rewrite the information
above in a slightly more helpful form:

6 Chapter 1 Introduction to Machine Learning Methods

input output
one 3
two 3
three 5
four 4
five ?

I won’t spoil the fun right here, but you can check your intuition (or give up
and move on) by reading the note at the bottom of the page.2 Hopefully, this toy
example serves to show some important properties of a good learning set. The first
is that it needs to be large enough so that our algorithms can figure out what the
rule is.The second is that the choice of featuresmatters; some representations of the
data work better than others, even if they are based on the same information. In our
simple case, deciding to spell out the numbers instead of using their mathematical
representation served to emphasize which aspect of the data was important. This is
relevant, because it is usually the job of the scientist to decide how to organize the
information when building a data set.

1.4.1 Train and test sets
One important consideration in supervised learning is that it would not be wise
to use all the objects in the learning set to infer the relationship between features
and target (again in ML parlance, to train the model). This is best understood, in
my opinion, by thinking about the scientific method itself. The process of training
the model is akin to formulating a hypothesis. The next step then is to make pre-
dictions that result from that hypothesis, and to test them to verify whether they
are correct. It should be clear that we cannot verify the predictions of the model on
the same instances that were used in the training process, because our verification
process needs tobe independent of the trainingprocess.Anotherway to think about
this issue is that we are interested in assessing how well our model can predict the
target property of new data; objects that participated inmodel building are not new
to the model.

Therefore, it is customary to set aside a subset of the learning set that does not
participate in themodel building.Once the training process is complete, we can use
the model to make predictions for the target property of those objects and verify
that they are correct. Or more generally, we can check how the model performs on
that subset anddecidewhetherwe are satisfiedor require further improvement.The
subdivisionsof the learning set used for training and testing amodel are called—you
guessed it—training (or train) set and test set, respectively.The idea is illustrated in

2 The model should return the number of letters in the input.

1.4 Supervised Learning 7

0.0 0.2 0.4 0.6

x

0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0
Figure 1.4: The learning set (the set of objects for
which the labels are known) from the right panel of
Figure 1.3 is split in a training set (square points) and
test set (crossed-out points). The test set does not
participate in the training process. The performance
of the algorithm on new data can be estimated by
applying the trained model to the test set features
to generate predicted labels (colors) and comparing
them to the true ones.

Figure 1.4. In the next few chapters, we will discuss at length what the best way is to
split a data set into training and test sets.

The performance of a model can be expressed as rate of failure (error) or rate
of success (score); these are just two equivalent ways of reporting howwell amodel
works.Wewill often distinguish between the performance of amodel when applied
to the training set (the training error or training score) and the performance of a
model when applied to the test set (the test error or test score). Finally, the perfor-
mance of a model on new data, which were not part of our learning set, is called
the generalization error (or generalization score) of the model. We don’t have a way
of calculating the generalization error directly, because the ground truth labels
are not known. Therefore, we use the test error as a proxy for the generalization
error.

Let’s continue our preliminary investigation by looking at one more simple
example. Imagine that we want to apply an ML method to the population of points
from Figure 1.3. What would happen if our learning set was only made up of the
blue objects, as in Figure 1.5? No matter how we decide to split in train and test
sets, our model would learn that any combination of coordinates leads to predict-
ing the color as blue, because it has never been shown that green points exist. And
this is not even the worst problem. The problem is that if we then proceeded, like
good ML practitioners, to verify our predictions on the test set, our constant pre-
diction of “blue” would be correct 100% of the time. So we would get a false sense
of confidence that our model is reliable, when instead it would fail miserably on the
vast majority of the other data points in Figure 1.5, which (as we know from the
previous sections) are mostly green.

This simple example illustrates one of the cruxes of machine learning tech-
niques: Because they are driven by the data as opposed to relying on physical
intuition, we are bound to make a fool of ourselves if we don’t understand the data

8 Chapter 1 Introduction to Machine Learning Methods

Figure 1.5: The subsample of blue points is a danger-
ous choice of learning set, if our goal is to learn how to
predict color, based on coordinates, for all the points
in this diagram (same population as Figure 1.3).

0.0 0.2 0.4 0.6

x

0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

well.Howcanwe saveourselves fromthis sorrydestiny? In the case consideredhere,
we should have noticed right away that the feature space (i.e., the range of x and y
coordinates) spanned by our learning set is very different from the feature space
spanned by the population we want to apply our model to (i.e., the gray points in
Figure 1.5). This should have made us suspicious, because in general a learning set
should be representative of the application domain, meaning that the learning set
and application set should be statistically similar. If they are not, then we can hold
no hope that the test error will be a good proxy for the generalization error. This is
an importantminimumrequirement to add to the desired characteristics of learning
sets: We’d like them to be large enough, representative of our application domain,
and ideally organized in a way that optimizes the information content for the task
at hand.

It’s not always easy tomake sure that these conditions hold, as wewill see as we
continue our ML journey.

1.4.2 Classification vs Regression
Another important distinction (although possibly more in terms of nomenclature
than methods) in the realm of supervised problems is between classification and
regression tasks. They only differ in the “output” part: in classification, the target
property belongs to a discrete set of possibilities (in other words, a class). A simple
toy example could be to correctly identify fruit in a bag on the basis of properties
that can be measured through touch, such as height, width, weight, and shape. For
something more relevant to daily life, recognizing people in pictures (the “tagging”
of social media) is an example of a classification problem: The output can only be
a specific person, and there is no notion of adjacency or continuity between out-
puts. As a result, classification algorithms will output a response that is either 100%

1.4 Supervised Learning 9

correct or 100% wrong. Either they recognize you (yay!), or they will mistake you
for someone else (nay). When we evaluate the performance of a classifier, we will
“count” (in more or less smart ways) the number of correct answers.

The other option is regression. In regression tasks, the output is a continuous
variable (typically, a real number). For example, if wewere trying to emulateGalileo
and learn to predict the timings of different falling objects (without knowing the
formula!) on the basis of distance traveled, our output would be time, probably in
seconds. The output can take any value; in fact, the number of significant digits is
only dictatedby theprecisionof ourmeasurements. As a consequence, in regression
tasks, we cannot evaluate our model by asking for an exact answer; instead, we will
assess howclosewe are to the correct value.Unlike in classification problems,where
we are either correct or wrong, if the correct answer is 3.1415, predicting 3.0 and
10.0 are very different results.

It is important to note that the distinction between classification and regres-
sion problems can be quite fuzzy. For example, many problems in which the output
is a decision (“Will it rain later today?” or “Will I be approved for a loan?”) rely,
both from a conceptual and a mathematical perspective, on the idea of a thresh-
old. Even if the final output is discrete, the features will be implicitly mapped to
a probability, which is a continuous variable, and then a threshold will be cho-
sen to separate the classes (e.g., if the probability of rain is assessed to be more
than 50%, the answer will be “yes”).Therefore, while these types of problems tech-
nically meet the definition of classification, they can be easily recast or thought
of as regression problems. In fact, casting them as such might be advantageous,
because outputting a probability retainsmore information about how confident we
are in our prediction. Our model might indicate “no rain later” for two different
sets of conditions, but if all weather models indicate a high pressure front, there is
not a single cloud in the sky, and you are in the desert, the prediction for no rain
will be much more solid than in a scenario of high humidity, low pressure, and a
cloudy sky.

However, there are some classification problems that are truly “discretized” in
nature. For example, one of the classic data sets formachine learning applications is
the digits data set [Le Cun et al., 1989], where themachine is tasked with “reading”
images of hand-written digits. The output is one of ten classes, the numbers from
0 to 9. In this case, the classes are truly separate from one another: 0 is not more
similar to 1 than it is to 8 or 9. Another, more modern, example is the CIFAR-10
data set [Krizhevsky and Hinton, 2009], which is an image recognition problem
with ten possible outputs, including birds, cars, and airplanes, as seen in Figure 1.6.
Again, there is no obvious mapping of the distance between classes. This lack of
contiguity among classes is what characterizes pure classification problems.

Finally, let me state again that the difference between classification and regres-
sion tasks is unrelated to the features of the problem and is only determined by the

10 Chapter 1 Introduction to Machine Learning Methods

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Figure 1.6: The CIFAR-10 data set is composed of tiny, and therefore blurry, images belonging
to 10 distinct classes (for example, cats, automobiles, and birds). Picture from the PyTorch
[Paszke et al., 2019] website. Copyright ©2013 Valay Shah

target property, or output. Somehow, this always seems to be a tricky point for my
students, so I just state it again here for emphasis.

1.5 UNSUPERVISED LEARNING
In unsupervised learning tasks, there are no labeled examples. Rather than pre-
dicting a specific quantity or property from the features, we are trying to discover
patterns in the data. In a way, the target of an unsupervised learning algorithm is a
pattern, as opposed to an unknown property.

1.5.1 Clustering
A vast subset of unsupervised learning tasks has to do with counting or group-
ing objects in a smart way; these applications are known as clustering. For exam-
ple, imagine that you want to count how many friends appear in your childhood
(or Facebook) photos. A successful clustering algorithm would be able to group

1.5 Unsupervised Learning 11

(A) 0.24610 (B) 0.21877 (C) 0.21145 (D) 0.20088

(E) 0.01112 (F) 0.01174 (G) 0.01187 (H) 0.01223

Figure 1.7: A sample set of galaxies observed by the Sloan Digital Sky Surveys (SDSS), showing
different types of galaxy morphologies. Clustering could be used to determine from data how
many fundamental morphological types exist. Reproduced with permission from [Dieleman
et al., 2015].

together all instances of the same person, which would become a cluster; you could
then count the number of occurrences.This happens without needing to know any-
thing about the identity of the individuals beforehand; in other words, without the
supervision process. Another application that we all, sadly, have become familiar
with has been visualizing outbreaks of a disease; most recently, COVID-19. The
outbreaks are usually represented with noncontiguous circles on a map. The clus-
tering process can be used to determine the location (centers) and size (radii) of
those circles that best represent the data.

Unsupervised learning methods often can be used to check a scientist’s intu-
ition. One historic example is the Hubble classification of galaxies. Edwin Hubble
was one of the pioneers of extragalactic astronomy, and he proposed to divide galax-
ies into the main categories of elliptical, spiral, and irregular galaxies, according to
their morphology (shape), as illustrated in Figure 1.7. There were further subdivi-
sions, but let’s ignore them for the time being.His reasoningwasmotivated bywhat
he (largely incorrectly) believed to be the evolutionary track of galaxies. Nowadays,
the task of automated morphology classification has become quite crucial, because
we have observed many millions of galaxies, and upcoming instruments, such as
the Vera Rubin Observatory or the JamesWebb Space Telescope are set to observe
many more; with more than 200 billion of them in the Universe, we won’t be done
any time soon. This problem can be solved in a supervised manner, by deciding
which classes to use beforehand (e.g., see [Dieleman et al., 2015]); in the case of
Hubble’s original proposal, they would be elliptical/spiral/irregular. Humans then

12 Chapter 1 Introduction to Machine Learning Methods

would need to build a learning set by providing visual classifications for an appro-
priate number and range of galaxies. However, it might be more advantageous to
cast this problem as an unsupervised task, as in [Hocking et al., 2018]. In this case,
our ML model will decide for itself which classes to pick by selecting its own crite-
rion for forming clusters, which will determine which objects are assigned to each
cluster, as well as (possibly) how many clusters will be found. This process cre-
ates a completely data-driven classification scheme, whichmight differ significantly
from the one proposed in a supervised scheme and could reveal something new and
important about galaxy formation and evolution. For example, if we found a “new”
type of galaxy that is different enough from others to warrant its own cluster, this
discoverymight point to a different evolutionary pattern for those galaxies. Another
advantage of the unsupervised approach is that no learning set is needed. How-
ever, the classification (or regression) schemes provided by unsupervised models
are often harder to interpret, as it might not be easy to understand what classifica-
tion criterion has been chosen (i.e., what the common properties of objects in the
same cluster are), so human intervention might still be required. Sometimes, these
two-step approaches are referred to as semi-supervised learning.

1.5.2 Dimensionality reduction
Another broad subcategory of unsupervised learning tasks refers to “simplification”
processes, known as dimensionality reduction (DR). These techniques are typically
used to make a data set smaller, and therefore more manageable and easier to visu-
alize, withminimal loss of information.Their eventual success relies on the amount
of redundancy present in the original data set and on the efficiency of the chosen
compression technique.

DRmethods tend to work in one of three ways.The simplest approach consists
of retaining theoriginal features and just selecting those that are expected tobemore
meaningful.The second approach is to remap the feature space to a different one, in
which fewer components can express the highest amount of variance of the original
data. Finally, a third approach consists of learning a manifold, a nonlinear space in
which some interesting properties of the original data set (e.g., pairwise distances
or dot products between elements) are preserved. See [Sorzano et al., 2014] for
a review. Often, DR techniques can be used as a preprocessing step for clustering
algorithms.

A simple graphical representation of clustering and dimensionality reduction
is shown in Figure 1.8.

The most fun, useful, and creative applications of machine learning happen
when we learn to mix and match all the techniques. For example, we can decide
to learn (unsupervised) feature representation as a way of preprocessing a labeled
data set, obtaining a more efficient and helpful representation of a learning set, and

1.6 Machine Learning versus Inference 13

Original PCAprojection

LLEprojection IsoMapprojection

Figure 1.8: Left: An example of a clustering algorithm applied to a set of points. The algorithm
assigns each point to one of three clusters. Right: Different examples of dimensionality reduc-
tion algorithms, with varying degrees of information loss. Figure from the sklearnmanual
[Pedregosa et al., 2011].

then apply a supervised learning method. Or we can recycle pieces of pre-trained
algorithms to accelerate the training and learning process for a different but related
data set or problem. Science progresses with rigor and creativity; machine learning
methods provide a versatile range of techniques to tackle problems in innova-
tive ways.

1.6 MACHINE LEARNING VERSUS INFERENCE
Machine learning methods can be used to solve many problems, as we will see as
we continue our journey. But of course many research questions would be better
approached from a different perspective, or put more simply, other approaches can
be equally beneficial. If we think ofmachine learning as ameans to build an implicit
relationship between input and output (whether the output is a quantity, a rule,
or a pattern), the alternative is often seen as classical inference, where we explicitly
specify what the output would look like as a function of the input features, with some
parameters chosen by us. This model could be a simple mathematical formula or the
result of a complex numerical simulation; the important aspect is that we are able
to predict y, the output, for a given value of x and the model parameters. The goal
of the inference process is to determine the model’s parameters, unlike in machine
learning, where the goal is (usually) to make a prediction.

Let us consider a very simple example.
Suppose that a friend comes to you and says: I have this list of time measure-

ments of a car moving at uniform speed. My wicked physics teacher asked me to

14 Chapter 1 Introduction to Machine Learning Methods

figure out where the car would be at time t= 12 seconds. I have no idea of how to
proceed. Can you help? These are my data:

time (s) distance (m)
0 5.1
1 5.5
2 8.4
3 11.1
4 11.8
5 14.4
6 16.1
7 19.5
8 20.2
9 23.1

So you—being a good scientist—would certainly know that you can use this
well-tested formula for the relationship between the input (time) and the output
(distance traveled):

d= d0 + v× t (1.1)

This model has two parameters: the initial distance (or coordinate), d0, measured
at time t= 0, and the speed, v, which is constant, as we know from your friend’s
description. But how can we work out what the correct values are to plug in the
formula for d0 and v? This process is called parameter fitting.

There are many great books that describe this process in detail (some of which
you can find in the References at the end of this book), so I’ll just mention a very
basic approach.

First of all, since we have only two coordinates, it’s always a good idea to look
at our data. The left panel of Figure 1.9 shows that the data lie approximately on

0 2 4 6

Time (s)

8

D
is

ta
n

ce
 (

m
)

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

0 2 4 6

Time (s)

8

Figure 1.9: A simple example of fitting data by using a linear model.

1.6 Machine Learning versus Inference 15

a straight line, as expected; the deviation can be interpreted as the consequence
of statistical error (measurement noise). The parameters d0 and v that we want to
measure are the y intercept and the slope of this hypothetical line.

Themain idea of parameter fitting is to try outmany different combinations (in
this case, pairs) of parameter values until we find something that works well. So we
need at least three steps: 1. Decide on a range of possible values to try out; 2. Decide
how topickparameters; and3. Establish an evaluation criterion that tells uswhether
a model is good or bad.

For the first step, a visual inspection of our graph tells us that probably the
y intercept of a line that goes approximately through the points will be between
4 and 6, and the slope of the line will safely be between 1 and 3 (we can get a
quick estimate by calculating slopes as rise over run for a couple of time intervals).
Because our data space is very small, we can use a brute-force approach, dividing
our ranges in equally spaced intervals and trying out every possible combination.
We can either decide the spacing between different values we want to consider,
or the total number of points; for this example, let us consider 100 values, which
corresponds to a 0.02 spacing.The third step requires building ameasure of the dis-
tance between the predictions of each model (i.e., the 10 distances provided by the
model, given the 10 times, slopes, and y intercepts) and the observed data (the nine
measured distances). In the simplest case where there is no uncertainty associated
with eachmeasurement (which is deeply unphysical!), we can use the square of the
Euclidean distance between the 10 distances predicted by the model (Dm

i) and the
10 observed distances (Do

i):

Σ10
i=1(D

m(d0, v, xi)−Do
i)

2. (1.2)

Better models should be closer to the observed data, so the combination of
parameters that generates the minimum distance can be considered the winning
model, or best fit. In the real world, where every measurement has an uncertainty
associated to it, the distance should be weighed against the uncertainty, so that
points with large measurement errors contribute less to the total distance. If some
assumptions about the distribution of uncertainties can be made, this process cor-
responds to writing a χ2 distribution, or a likelihood. As already mentioned, there
is a vast literature on this subject; see, for example, [Hogg et al., 2010] and [Hastie
et al., 2001].

To summarize, we pick every possible pair of (d0, v) according to the chosen
range and spacing, calculate the above metric, and choose the pair that minimizes
it. We can do this easily as a Python exercise. We start by choosing an appropriate
range and spacing for the parameter values:

slopes = np.linspace(1,3,101)

intercepts = np.linspace(4,6,101)

16 Chapter 1 Introduction to Machine Learning Methods

Then we define our model and fitness metric, the sum of squared errors:

def model(x,m,b):

return m*x+b

def se(m,b,x,y):

return np.sum(((model(x,m,b) - y)**2))

Finally, we calculate the squared error for all combinations of parameters and
choose the ones that lead to the minimum error:

square_errs = np.array([[se(m,b,x,y) for b in intercepts] for m in slopes])

indices = np.unravel_index(square_errs.argmin(), square_errs.shape)

bestm, bestb = slopes[indices[0]],intercepts[indices[1]]

Through this process, we end up with a minimum distance value dmin ∼ 3.65,
corresponding to a y intercept (d0 in the language of our problem) of 4.34 and a
slope (v) of 2.04.The corresponding line is plotted in Figure 1.9, sowe can convince
ourselves that our procedure works.

Finally, we can use the equation of the line we found—in other words, our
model—to predict the coordinate of the car at other times, for example, the t= 12s
required by the physics problem:

d= d0 + v× t= 4.34m+ 2.04m/s× 12 s= 28.82m. (1.3)

What would be the corresponding approach in machine learning? The main
difference is thatwewon’t explicitlywrite out amodel, sowewon’twrite parameters
or a likelihood; in general, we are not required to be able to predict the observed
outcome of a given combination of parameters. However, in practice the choice of
ML algorithm ormethod that wemake will affect what kind of input/output (I/O)
relationship can be represented by our model, as well as its ability to learn from the
training data.

In this case, we are dealing with a supervised learning problem, and we have 10
points in our learning set. As we know from the previous sections, we need to split
them in a training set and a test set. For now, let us assume that we will use seven of
them for training and three of them for testing; the test/train split can be selected
randomly. Note that, in general, this is not allowed in time series problems; but for
the purpose of our problem, the fact that our independent (input) variable is a time
is not relevant, so making this choice is OK.

Our problem is a regression problem, because we are predicting a continuous
variable. So we need to pick an algorithm that can handle regression, and the met-
ric we use to estimate how good our model is will also be sensitive to the distance

1.6 Machine Learning versus Inference 17

between predicted and observed points; for example, it could be the mean squared
error (MSE), which is in fact the square of the Euclidean distance along the y axis,
averaged over the number of points.

Even if we are not properly defining machine learning algorithms yet, for the
sake of the argument, let us try out two very simple ones: a linear regressor and
a decision tree. You can see the implementation in the lecture notebook “Straight
Line with ML.ipynb.”

We can select a training set for each model, which contains seven points
from the learning set. In scikit-learn or sklearn [Pedregosa et al., 2011],
the Python package for machine learning that will be our main software library
throughout the book, we can do this easily by using the auxiliary function
train_test_split and fixing the random seed for reproducibility:

np.random.seed(10)

X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=3)

In this case, the training set is made by instances with time coordinates 6, 3, 1,
0, 7, 4, and 9 s.

After training each model, we can ask them to predict the y coordinates (i.e.,
traveled distances) of the points in the test set, which have x coordinates 8, 2,
and 5, respectively. This is an example for the Decision Tree algorithm (note that
scikit-learn is imported in code as sklearn, and for this reason, we will use
the latter notation throughout the book):

from sklearn.tree import DecisionTreeRegressor

treemodel = DecisionTreeRegressor()

y_pred_tree = treemodel.fit(X_train.reshape(-1, 1),y_train).predict(X_test.reshape

(-1, 1))

The responses of the two algorithms are as follows:

x = 8 x = 2 x = 5 MSE
True values y(x) 20.2 8.4 14.4
Prediction LR 20.9 8.42 14.7 0.18
Prediction DT 19.5 5.5 11.8 5.22

The built-in evaluation process of the machine learning approach tells us immedi-
ately that the linear regressionmodel is superior to the decision treemodel, because
the mean squared error on the test set is lower; the decision tree model is quite
severely underestimating each prediction.

Just as in the inference exercise above, we can now use either model to predict
the traveled distance at time t= 12 s; the prediction of the linear regression model
is 29.2 m, and the prediction of the decision tree model is 23.1 m.

18 Chapter 1 Introduction to Machine Learning Methods

1.6.1 Who fit it better?
The simple example above showed us two approaches to solving the same problem:
one using classic inference, the other relying on machine learning methods. Both
can be used to output a prediction. So which one is better? There is no hard-and-
fast rule, but we can try to focus on some differences, and perhaps debunk some
myths at the same time.

In the inference approach, we choose the functional form of the input/output
relation explicitly, in parametric form, and we optimize the model parameters. This
strategy is usually convenient when we have a good understanding (e.g., from phys-
ical principles, as in this case) of which variables matter and how different variables
are related, or when we are looking at a very simple problem and data set. It is intu-
ition driven; I like to joke that it is only as good as the scientist, but in general it’s
only as good as the model. If our choice of model is unphysical (e.g., if we had tried
to model our data with a sinusoidal curve instead of a straight line), the parame-
ter values we would have obtained would have not made any sense, and the model
would have no predictive power.

Machine learning approaches are, in principle, more model agnostic, although
as we saw above, the results obtained can be significantly algorithm dependent,
because the choice of algorithmmay shape the forms of input/output relations that
we can explore. Even when we use very flexible ML methods, such as deep neu-
ral networks, which can alleviate this problem, they can only be good as the data
that are used to build them. As a general and simplistic rule, I think that when we
understand the physics but don’t have data, we should use a probabilistic approach
to model fitting, and when we don’t understand the physics but we have data, we
should use machine learning. Figure 1.10 summarizes some more of my thoughts
on either approach; often, the synergy between these two approaches can be most
powerful.

As a final note, I should add that distinguishing between probabilistic inference
and the machine learning approach as I did here is too naive, and rather incorrect.
There is more overlap between the two methods than Figure 1.10 implies, and ML
methods can serve the purpose of probabilistic inference very well (e.g., see the
recent review of simulation-based inference [Cranmer et al., 2020]). However, I
think this framework is useful for building understanding of the scope and limits of
MLmethods for beginning practitioners, and I will stand by it for this introductory
textbook.

1.6.2 The black box issue
Even after solving a problem usingmachine learning, the input/output relationship
is never obtained explicitly, so the process of making predictions for new instances
consists of feeding the trained algorithm new data and receiving some numbers

1.6 Machine Learning versus Inference 19

Machine learning

• Data-driven (only as good as the

 data)

• Usually generalizes poorly (model

 derived using some data can’t be

 applied blindly to different data)

• Interpretation is possible but might

 be nontrivial

• Fast(er)

• More robust/accommodating of

 mixed and missing data

• Allows serendipitous discoveries

• Intuition or model-driven (only as

 good as the scientist :))

• Generalizes well if physics is well

 understood

• Easier to interpret

• Might be computationally intensive

• Dealing with heterogenous data

 often a pain in the neck

• Leads to loss of information if

 models are too simplistic

Model fitting

Figure 1.10: Some advantages and disadvantages of the two approaches. My claim is that
synergy is often the best strategy. Figure from [Acquaviva, 2019].

in return. The fact that we cannot simply write down an equation has gained ML
models the infamous moniker of “black boxes.” However, there are many ways of
gathering insights on the nature of the trained model, and in my opinion, a good
scientist wouldwant to open the black box.This approach has the double advantage
of validating the model and possibly gaining new information by analyzing the rea-
sons for the algorithm’s response. We will look at some ways to gather intelligence
from ML models throughout this book.

1.6.3 There is no magic!
Although I do, inmanyways, “believe the hype” aboutmachine learning, and I think
it is important for scientists to become proficient with these methods, I also think
we should keep inmind thatML techniques are just tools of the trade, not the trade
itself. When I was in graduate school, the most useful class I took was one about
numerical methods; we learned from a giant book titled Numerical Recipes; I’ve
often joked that ML methods are the Numerical Recipes3 of this decade. In fact,
many ML algorithms are nicely packaged, linear-algebra-based sequences of oper-
ations. They enable us to solve some problems in new, or more efficient, ways; as
always, though, it’s part of a scientist’s job to understand how to tackle a difficult
problem,with orwithoutmachine learning.Oneofmyhopes for this book is to gen-
erate some understanding of when machine learning can help and of the strengths
and weaknesses of specific methods. In all cases, and especially when we lose some
transparency because of complexmathematics, it is essential to stick to the rigorous
process of hypothesis testing spelled out by the scientific method.

3 http://numerical.recipes/

20 Chapter 1 Introduction to Machine Learning Methods

1.7 REVIEW AND DISCUSSION QUESTIONS
Note: Questions and exercises marked by ** are more complex, open-ended, or time consuming.

Exercise 1. For each one of the scenarios described
here, answer the following questions. 1. Is it a super-
vised or unsupervised learning problem? 2. Is it a
classificationor regression task?3.What couldbeuse-
ful features (data) to collect? You should be able to
motivate your answers; several of them can be inter-
preted inmultiple ways, so the argument will bemore
important than the answer!
Scenario 1. Email providers placing emails in the

“Spam” folder.
Scenario 2. House selling prices: imagine that you

are a real estate agent and want to come
up with a data-driven listing price.

Scenario 3. Predicting used car prices (same as
before, but now you sell cars).

Scenario 4. Twitter showing “trending topics.”
Scenario 5. Recommending sizes for clothes bought

online.
Scenario 6. Guessing a college student’s major from

personal information.
Scenario 7. Counting the number of people appear-

ing in a collection of photos.
Scenario 8. Predicting the number of hours a college

student will sleep tonight.
Note: This also works well as class exercise, or think/pair/share.

Exercise 2. Popular services like Netflix or Spotify
include a “recommendation engine” for movies or
music. Discuss similarities and differences in how
they collect information, what information they col-
lect, and how they use it to provide suggestions.

Exercise 3. For each of the following problems, dis-
cuss whether they could be partially or completely
solved with machine learning. If the answer is pos-
itive, specify whether you would use supervised or
unsupervised learning, the potential features, target
properties if relevant, and potential process of data
collection:

Problem 1. Determining the constant of gravity.
Problem 2. Determining the specific heat of a liquid.
Problem 3. Counting the number of sources in an

astronomical image.

Exercise 4. ** Come up with a problem (related to
your area of research or personal interest) that is bet-
ter solved through classic inference and with a prob-
lem that is better solved through machine learning.

1.8 PROGRAMMING EXERCISES
Exercise 1. The linear model we used should be
mathematically equivalent to the linear regression
ML model, but the predictions for the distance at
time t= 12 s are slightly different. Can you figure out
why? Hint: There are (at least) two different reasons!

Exercise 2. ** Modify the “ModelingStraight-
Line.ipynb” notebook to includemeasurement errors
for all the measured distances generated from a nor-
mal distribution with mean= 0 and variance= 2.0

(set the random seed to ensure that your results
are reproducible). Assume that the errors on the
time measurements are negligible. Modify the eval-
uation metric for the model to inverse-weigh the
uncertainties. Does the best fit model change? Why
or why not?

Exercise 3. ** Use the Dark Energy exercise note-
book (“DarkEnergyFromSupernovae.ipynb”) to find
evidence for the existence ofDarkEnergy fromsuper-
novae data with classic inference methods.

Index

accuracy, 29, 243
accuracy paradox, 40
activation, 201, 207

ELU, 207
Leaky ReLU, 207
ReLU, 207
sigmoid, 201, 207, 212
softmax, 212
tanh, 201, 207

activation functions, see activation
AdaBoost, 136
Adam, 102, 235
Adjusted Rand Index, 179, 185, 244
AIC (Akaike Information Criterion), 166
Akaike Information Criterion, 166
algorithm, 3
anomaly detection, 153, 232
area under the curve, 43, 243
artificial intelligence, 2
AUC (area under the curve), 43, 243
autodiff (automatic differentiation), 103
autoencoders, 176, 188, 224, 235, 243

convolutional, 232
denoising, 231
sparse, 231
undercomplete, 231
variational, 233, 235, 241

automatic differentiation, 99, 103,
206

backpropagation, 102, 203, 235
bagging methods, 127, 210
batch normalization, 210
Bayes Information Criterion, 166, 192
Bayesian optimization, 219
bias, 49, 103, 245
bias-variance decomposition, 90, 103, 123
bias-variance trade-off, 50, 103, 104, 117
BIC (Bayes Information Criterion), 166,

192

boosting methods, 135
building a model, 21

categorical variables, 85
centroid, 154
chain rule, 204
class weight, 72
classification, 8
clustering, 2, 10, 152, 239

density-based, 160
hierarchical, 154
k-means, 154, 193, 239
OPTICS, 162
partitional, 154

coefficient of determination, 91
computer vision, 176
confusion matrix, 41
correlation, 92

Spearman, 141
cost function, 90
cross entropy loss, 110, 202, 212,

243
cross validation, 45, 175, 220

k-fold, 45, 208, 211, 221
grid search, 98
Leave-One-Out, 46
Leave-p-Out, 47
nested, 61, 208, 211, 221, 223, 245

custom loss, 45, 220

data augmentation, 228
data frame, 28, 39, 73, 240
DBSCAN, 160, 193
decision boundary, 65
decision trees, 123, 127, 132
deep learning, 196
dendrogram, 154
deviance, 116
dimensionality reduction, 2, 12, 53, 146,

152, 168, 232, 239

dropout, 210, 215, 235
fraction, 215
Monte Carlo, 234

early stopping, 210, 235
Earth Mover Distance, 187, 244
eigenvalues, 169
eigenvectors, 169, 174
Elastic Net, 107, 113
elbow method, 158, 166, 183, 192,

243
encoding, 85

label, 73, 88, 240
one-hot, 85, 88, 240

ensemble methods, 148
epochs, 203, 210
ERTs (extra random trees), 130
evaluation metrics, 90
expectation-maximization, 155, 164
exploding gradients, 207
extra random trees, 130

F1 score, 42, 243
false negatives, 40
false positive rate, 43
false positives, 40
feature engineering, 53
feature importance, 145, 239

permutation-based, 146
feature map, 225
feature ranking, 150
feature selection, 53, 106, 191

random, 128, 140
features, 3

GANs (generative adversarial neural
networks), 234

Gated Recurrent Units, 230
Gauss-Markov theorem, 93
GBM, see gradient boosting machines

257

258 Index

generalization error, 7, 34, 46, 61, 78, 103,
123, 211

generalization score, 7, 245
generalized linear models, 90, 108, 114
generative models, 162, 166, 233
gradient boosting machines, 136, 138, 149,

241
histogram-based, 143

gradient descent, 90, 99, 111, 117, 202
batch, 99, 209
mini-batch, 101, 117, 203, 209, 210
stochastic, 100, 113, 117, 203, 209, 210

grid search, 78, 141, 143, 208, 218, 245

Hubble law, 124
Huber loss, 98, 117
Hyperband, 218
hyperparameter optimization, 78, 82, 128,

132, 221, 235
hyperparameter space, 142, 144
hyperparameter tuning, 52, 245
hyperparameters, 69, 98, 207

imputing, 39, 73, 240
inertia, 155
inference, 13
information gain, 26
instances, 3
Ising model, 111

k Nearest Neighbors, 31, 75, 162, 187
keras, 197, 207, 242
keras tuner, 216, 222
kernel

Mercer, 69
functions, 70
Gaussian, 70, 175
linear, 70
polynomial, 70
SVM, 69

kernel trick, 69, 174
K-L (Kullback-Leibler) divergence, 190
kNN (k Nearest Neighbors), 31
Kullback-Leibler divergence, 190, 233, 244

label, 3
Lasso regression, 106, 210
layers, 201

convolutional, 225
dense, 211, 224
dropout, 211, 224
hidden, 199
pooling, 226

leakage, 74, 82
learning curves, 51, 77, 245
learning rate, 99, 139, 208, 218, 222

adaptive, 209
least squares method, 94

likelihood, 15, 166
link function, 108
log-loss (cross-entropy loss), 110, 202, 212,

243
logistic loss (cross-entropy loss), 110, 202,

212, 243
logistic regression, 109, 201
logit, 110, 114
Long Short-Term Memory cell, 230
loss function, 91, 202, 242
LSTM (Long Short-Term Memory) cell,

230

macro averaging, 57
MAE, 243
MAE (mean absolute error), 91
margin, 65

hard, 68, 76
soft, 68

Markov Chain Monte Carlo, 111
mean absolute error, 91, 117, 243
mean square error, 17, 91, 117, 123, 139,

147, 169, 202, 243
micro averaging, 57
mixture models, 162, 166

Gaussian, 163, 193, 233, 241
MLP (Multi-Layer Perceptron), 198
model

machine learning, 3
pipeline, 48, 79

model complexity, 52
momentum trick, 209
Monte Carlo sampling, 148
MSE (mean square error), 17, 91, 117, 123,

139, 147, 169, 202, 243
Multi-Layer Perceptron, 198
multiclass classifier, 55
multilinear regression, 92

natural language processing, 228
neural networks, 54, 141, 196

adversarial, 224
architecture, 199, 224
autoencoders, 231
Bayesian, 234
convolutional, 208, 224, 235
fully connected, 200, 235
generative adversarial, 234
recurrent, 208, 224, 228, 235
train, 202, 210
weights, 198

NGBoost, 148
NMAD (normalized median absolute

deviation), 131, 217
normal equation, 95, 117
normalized median absolute deviation, 131,

217
numpy, 96

one-vs-all, 55, 64
OPTICS, 193
optimizers, 99, 102

Adam, 218
outliers, 39, 49, 73, 98, 105, 131, 160,

217
overfitting, 49, 103

pandas, 28, 39, 73
parameter fitting, 14
PCA, see Principal Component Analysis
Perceptron, 197
perplexity, 190
photometric redshifts, 123
pipeline, 222
Poisson regression, 114
precision, 41, 243
Principal Component Analysis, 168, 232,

239
kernel, 174

pruning, 128

quantization error, 189

R2 score, 91, 92, 97, 117, 135, 243
random forests, 127, 128, 241
random search, 79, 143, 144, 218, 235,

245
recall, 41, 43, 243
receiver operating characteristic, 42
redshift, 124
regression, 8, 88, 90
regularization, 90, 105, 106, 139, 210, 235

Lasso, 106, 118, 191, 210, 239
parameters, 105
Ridge, 106, 112, 118, 210

rescaling, 33
residuals, 91
responsibility, 164
Ridge regression, 106, 210
RMSE (root mean square error), 91, 243
ROC (receiver operating characteristic), 42
root mean square error, 91, 243

scikit-learn sklearn, 17
self-organizing maps (SOMs), 188, 241
semi-supervised learning, 12
seq2seq, 230
seq2vec, 230
sequence, 228
SHAP values, 146
shrinkage, 139
sigmoid, 110
silhouette score, 159, 192, 243
sklearn, 17
slack variables, 67
SOMs (self-organizing maps), 188, 241
spectroscopic redshift, 125

Index 259

Standard Model of particle physics, 62
standardizing, 33
stratification, 47
strides, 226
subsampling, 140
supervised learning, 4
Support Vector Machines (SVMs), 54, 61,

64, 196, 216, 241
support vectors, 65
SVMs (Support Vector Machines), 54, 61,

64, 196, 216, 241

target, 3
test error, 7
test set, 6

time series, 228
forecasting, 229

topographic error, 189
training error, 7
training score, 7
training set, 6
true negatives, 40
true positive rate, 43
true positives, 40
t-SNE, 188, 191, 241

unbiased estimator, 91, 93
uncertainty

aleatory, 147
epistemic, 147

statistical, 147
systematic, 147

uncertainty estimation, 234
underfitting, 49, 103
universal approximation theorem, 202, 235

vanishing gradients, 207
variance, 49, 103, 245
vec2seq, 230

Wasserstein distance (Earth Mover
Distance), 187, 244

weight initialization, 206, 235

XGBoost, 144

