ACT I

The Nature of Space

1 Euclidean and Non-Euclidean Geometry 3
1.1 Euclidean and Hyperbolic Geometry 3
1.2 Spherical Geometry 6
1.3 The Angular Excess of a Spherical Triangle 8
1.4 Intrinsic and Extrinsic Geometry of Curved Surfaces 9
1.5 Constructing Geodesics via Their Straightness 11
1.6 The Nature of Space 14

2 Gaussian Curvature 17
2.1 Introduction 17
2.2 The Circumference and Area of a Circle 19
2.3 The Local Gauss–Bonnet Theorem 22

3 Exercises for Prologue and Act I 24

ACT II

The Metric

4 Mapping Surfaces: The Metric 31
4.1 Introduction 31
4.2 The Projective Map of the Sphere 32
4.3 The Metric of a General Surface 34
4.4 The Metric Curvature Formula 37
4.5 Conformal Maps 38
4.6 Some Visual Complex Analysis 41
4.7 The Conformal Stereographic Map of the Sphere 44
4.8 Stereographic Formulas 47
4.9 Stereographic Preservation of Circles 49

5 The Pseudosphere and the Hyperbolic Plane 51
5.1 Beltrami’s Insight 51
5.2 The Tractrix and the Pseudosphere 52
5.3 A Conformal Map of the Pseudosphere 54
5.4 The Beltrami–Poincaré Half-Plane 56
Example: The Area 2-Form

In \(\mathbb{R}^2 \), let us define
\[
\mathcal{A}(u, v) = \text{oriented area of the parallelogram with edges } u \text{ and } v.
\]

Then \(\mathcal{A} \) is a 2-form!

First, it is immediately clear that \(\mathcal{A}(u, v) \) is antisymmetric: if we swap \(u \) and \(v \), then the magnitude of the area is unaltered, but the orientation of the parallelogram is reversed. It remains to verify that \(\mathcal{A} \) is a tensor, i.e., that it is linear in each slot. As we did with 1-forms, we may break down the linearity requirement into two parts: (32.2) and (32.3), applied to each slot.

The truth of (32.3) is explained by [34.1a], which illustrates the fact that if we expand either edge of a parallelogram by \(k \), then its area is expanded by \(k \), too:
\[
\mathcal{A}(ku, v) = \mathcal{A}(u, kv) = k \mathcal{A}(u, v).
\]

Note that if \(\Psi \) is an arbitrary 2-form, then if (32.3) is true for one slot, it must be true for the other slot, too:
\[
\Psi(ku, v) = k \Psi(u, v) \quad \Rightarrow \quad \Psi(u, kv) = -\Psi(kv, u) = -k \Psi(v, u) = k \Psi(u, v).
\]

The truth of (32.2) is less obvious, but the argument just given means that we need only prove it for the first slot—the truth for the second slot then follows from antisymmetry.

Let \(u = u_1 + u_2 \), and define
\[
A = \mathcal{A}(u, v), \quad A_1 = \mathcal{A}(u_1, v), \quad A_2 = \mathcal{A}(u_2, v).
\]

Then (32.2) requires that
\[
A = A_1 + A_2.
\]

That this is indeed true is demonstrated geometrically in [34.1b]. Thus \(A \) is indeed a 2-form.
<table>
<thead>
<tr>
<th>Contents</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 The Extrinsic Curvature of a Surface</td>
<td>130</td>
</tr>
<tr>
<td>12.1 Introduction</td>
<td>130</td>
</tr>
<tr>
<td>12.2 The Spherical Map</td>
<td>130</td>
</tr>
<tr>
<td>12.3 Extrinsic Curvature of Surfaces</td>
<td>131</td>
</tr>
<tr>
<td>12.4 What Shapes Are Possible?</td>
<td>135</td>
</tr>
<tr>
<td>13 Gauss's Theorema Egregium</td>
<td>138</td>
</tr>
<tr>
<td>13.1 Introduction</td>
<td>138</td>
</tr>
<tr>
<td>13.2 Gauss's Beautiful Theorem (1816)</td>
<td>138</td>
</tr>
<tr>
<td>13.3 Gauss's Theorema Egregium (1827)</td>
<td>140</td>
</tr>
<tr>
<td>14 The Curvature of a Spike</td>
<td>143</td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>143</td>
</tr>
<tr>
<td>14.2 Curvature of a Conical Spike</td>
<td>143</td>
</tr>
<tr>
<td>14.3 The Intrinsic and Extrinsic Curvature of a Polyhedral Spike</td>
<td>145</td>
</tr>
<tr>
<td>14.4 The Polyhedral Theorema Egregium</td>
<td>147</td>
</tr>
<tr>
<td>15 The Shape Operator</td>
<td>149</td>
</tr>
<tr>
<td>15.1 Directional Derivatives</td>
<td>149</td>
</tr>
<tr>
<td>15.2 The Shape Operator (S)</td>
<td>151</td>
</tr>
<tr>
<td>15.3 The Geometric Effect of (S)</td>
<td>152</td>
</tr>
<tr>
<td>15.4 DETOUR: The Geometry of the Singular Value Decomposition and of the Transpose</td>
<td>154</td>
</tr>
<tr>
<td>15.5 The General Matrix of (S)</td>
<td>158</td>
</tr>
<tr>
<td>15.6 Geometric Interpretation of (S) and Simplification of ([S])</td>
<td>159</td>
</tr>
<tr>
<td>15.7 ([S]) Is Completely Determined by Three Curvatures</td>
<td>161</td>
</tr>
<tr>
<td>15.8 Asymptotic Directions</td>
<td>162</td>
</tr>
<tr>
<td>15.9 Classical Terminology and Notation: The Three Fundamental Forms</td>
<td>164</td>
</tr>
<tr>
<td>16 Introduction to the Global Gauss–Bonnet Theorem</td>
<td>165</td>
</tr>
<tr>
<td>16.1 Some Topology and the Statement of the Result</td>
<td>165</td>
</tr>
<tr>
<td>16.2 Total Curvature of the Sphere and of the Torus</td>
<td>168</td>
</tr>
<tr>
<td>16.2.1 Total Curvature of the Sphere</td>
<td>168</td>
</tr>
<tr>
<td>16.2.2 Total Curvature of the Torus</td>
<td>169</td>
</tr>
<tr>
<td>16.3 Seeing (X(S_g)) via a Thick Pancake</td>
<td>170</td>
</tr>
<tr>
<td>16.4 Seeing (X(S_g)) via Bagels and Bridges</td>
<td>171</td>
</tr>
<tr>
<td>16.5 The Topological Degree of the Spherical Map</td>
<td>172</td>
</tr>
<tr>
<td>16.6 Historical Note</td>
<td>174</td>
</tr>
<tr>
<td>17 First (Heuristic) Proof of the Global Gauss–Bonnet Theorem</td>
<td>175</td>
</tr>
<tr>
<td>17.1 Total Curvature of a Plane Loop: Hopf's Umlaufsatz</td>
<td>175</td>
</tr>
<tr>
<td>17.2 Total Curvature of a Deformed Circle</td>
<td>178</td>
</tr>
<tr>
<td>17.3 Heuristic Proof of Hopf’s Umlaufsatz</td>
<td>179</td>
</tr>
</tbody>
</table>
17.4 Total Curvature of a Deformed Sphere 180
17.5 Heuristic Proof of the Global Gauss–Bonnet Theorem 181

18 Second (Angular Excess) Proof of the Global Gauss–Bonnet Theorem 183
18.1 The Euler Characteristic 183
18.2 Euler’s (Empirical) Polyhedral Formula 183
18.3 Cauchy’s Proof of Euler’s Polyhedral Formula 186
18.3.1 Flattening Polyhedra 186
18.3.2 The Euler Characteristic of a Polygonal Net 187
18.4 Legendre’s Proof of Euler’s Polyhedral Formula 188
18.5 Adding Handles to a Surface to Increase Its Genus 190
18.6 Angular Excess Proof of the Global Gauss–Bonnet Theorem 193

19 Third (Vector Field) Proof of the Global Gauss–Bonnet Theorem 195
19.1 Introduction 195
19.2 Vector Fields in the Plane 195
19.3 The Index of a Singular Point 196
19.4 The Archetypal Singular Points: Complex Powers 198
19.5 Vector Fields on Surfaces 201
19.5.1 The Honey-Flow Vector Field 201
19.5.2 Relation of the Honey-Flow to the Topographic Map 203
19.5.3 Defining the Index on a Surface 204
19.6 The Poincaré–Hopf Theorem 206
19.6.1 Example: The Topological Sphere 206
19.6.2 Proof of the Poincaré–Hopf Theorem 207
19.6.3 Application: Proof of the Euler–L’Huilier Formula 208
19.6.4 Poincaré’s Differential Equations Versus Hopf’s Line Fields 209
19.7 Vector Field Proof of the Global Gauss–Bonnet Theorem 214
19.8 The Road Ahead 218

20 Exercises for Act III 219

ACT IV

Parallel Transport

21 An Historical Puzzle 231

22 Extrinsic Constructions 233
22.1 Project into the Surface as You Go! 233
22.2 Geodesics and Parallel Transport 235
22.3 Potato-Peeler Transport 236

23 Intrinsic Constructions 240
23.1 Parallel Transport via Geodesics 240
23.2 The Intrinsic (aka, “Covariant”) Derivative 241
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Holonomy</td>
<td>245</td>
</tr>
<tr>
<td>24.1</td>
<td>Example: The Sphere</td>
<td>245</td>
</tr>
<tr>
<td>24.2</td>
<td>Holonomy of a General Geodesic Triangle</td>
<td>246</td>
</tr>
<tr>
<td>24.3</td>
<td>Holonomy Is Additive</td>
<td>248</td>
</tr>
<tr>
<td>24.4</td>
<td>Example: The Hyperbolic Plane</td>
<td>248</td>
</tr>
<tr>
<td>25</td>
<td>An Intuitive Geometric Proof of the Theorema Egregium</td>
<td>252</td>
</tr>
<tr>
<td>25.1</td>
<td>Introduction</td>
<td>252</td>
</tr>
<tr>
<td>25.2</td>
<td>Some Notation and Reminders of Definitions</td>
<td>253</td>
</tr>
<tr>
<td>25.3</td>
<td>The Story So Far</td>
<td>253</td>
</tr>
<tr>
<td>25.4</td>
<td>The Spherical Map Preserves Parallel Transport</td>
<td>254</td>
</tr>
<tr>
<td>25.5</td>
<td>The Beautiful Theorem and Theorema Egregium Explained</td>
<td>256</td>
</tr>
<tr>
<td>26</td>
<td>Fourth (Holonomy) Proof of the Global Gauss–Bonnet Theorem</td>
<td>257</td>
</tr>
<tr>
<td>26.1</td>
<td>Introduction</td>
<td>257</td>
</tr>
<tr>
<td>26.2</td>
<td>Holonomy Along an Open Curve?</td>
<td>257</td>
</tr>
<tr>
<td>26.3</td>
<td>Hopf’s Intrinsic Proof of the Global Gauss–Bonnet Theorem</td>
<td>258</td>
</tr>
<tr>
<td>27</td>
<td>Geometric Proof of the Metric Curvature Formula</td>
<td>261</td>
</tr>
<tr>
<td>27.1</td>
<td>Introduction</td>
<td>261</td>
</tr>
<tr>
<td>27.2</td>
<td>The Circulation of a Vector Field Around a Loop</td>
<td>262</td>
</tr>
<tr>
<td>27.3</td>
<td>Dry Run: Holonomy in the Flat Plane</td>
<td>264</td>
</tr>
<tr>
<td>27.4</td>
<td>Holonomy as the Circulation of a Metric-Induced Vector Field in the Map</td>
<td>266</td>
</tr>
<tr>
<td>27.5</td>
<td>Geometric Proof of the Metric Curvature Formula</td>
<td>268</td>
</tr>
<tr>
<td>28</td>
<td>Curvature as a Force between Neighbouring Geodesics</td>
<td>269</td>
</tr>
<tr>
<td>28.1</td>
<td>Introduction to the Jacobi Equation</td>
<td>269</td>
</tr>
<tr>
<td>28.1.1</td>
<td>Zero Curvature: The Plane</td>
<td>269</td>
</tr>
<tr>
<td>28.1.2</td>
<td>Positive Curvature: The Sphere</td>
<td>270</td>
</tr>
<tr>
<td>28.1.3</td>
<td>Negative Curvature: The Pseudosphere</td>
<td>272</td>
</tr>
<tr>
<td>28.2</td>
<td>Two Proofs of the Jacobi Equation</td>
<td>274</td>
</tr>
<tr>
<td>28.2.1</td>
<td>Geodesic Polar Coordinates</td>
<td>274</td>
</tr>
<tr>
<td>28.2.2</td>
<td>Relative Acceleration = Holonomy of Velocity</td>
<td>276</td>
</tr>
<tr>
<td>28.3</td>
<td>The Circumference and Area of a Small Geodesic Circle</td>
<td>278</td>
</tr>
<tr>
<td>29</td>
<td>Riemann’s Curvature</td>
<td>280</td>
</tr>
<tr>
<td>29.1</td>
<td>Introduction and Summary</td>
<td>280</td>
</tr>
<tr>
<td>29.2</td>
<td>Angular Excess in an n-Manifold</td>
<td>281</td>
</tr>
<tr>
<td>29.3</td>
<td>Parallel Transport: Three Constructions</td>
<td>282</td>
</tr>
<tr>
<td>29.3.1</td>
<td>Closest Vector on Constant-Angle Cone</td>
<td>282</td>
</tr>
<tr>
<td>29.3.2</td>
<td>Constant Angle within a Parallel-Transported Plane</td>
<td>283</td>
</tr>
<tr>
<td>29.3.3</td>
<td>Schild’s Ladder</td>
<td>284</td>
</tr>
</tbody>
</table>
29.4 The Intrinsic (aka “Covariant”) Derivative ∇_v 284
29.5 The Riemann Curvature Tensor 286
29.5.1 Parallel Transport Around a Small “Parallelogram” 286
29.5.2 Closing the “Parallelogram” with the Vector Commutator 287
29.5.3 The General Riemann Curvature Formula 288
29.5.4 Riemann’s Curvature Is a Tensor 291
29.5.5 Components of the Riemann Tensor 292
29.5.6 For a Given w_α, the Vector Holonomy Only Depends on the Plane of the Loop and Its Area 293
29.5.7 Symmetries of the Riemann Tensor 294
29.5.8 Sectional Curvatures 296
29.5.9 Historical Notes on the Origin of the Riemann Tensor 297
29.6 The Jacobi Equation in an n-Manifold 299
29.6.1 Geometrical Proof of the Sectional Jacobi Equation 299
29.6.2 Geometrical Implications of the Sectional Jacobi Equation 300
29.6.3 Computational Proofs of the Jacobi Equation and the Sectional Jacobi Equation 301
29.7 The Ricci Tensor 302
29.7.1 Acceleration of the Area Enclosed by a Bundle of Geodesics 302
29.7.2 Definition and Geometrical Meaning of the Ricci Tensor 304
29.8 Coda 306

30 Einstein’s Curved Spacetime 307
30.1 Introduction: “The Happiest Thought of My Life.” 307
30.2 Gravitational Tidal Forces 308
30.3 Newton’s Gravitational Law in Geometrical Form 312
30.4 The Spacetime Metric 314
30.5 Spacetime Diagrams 315
30.6 Einstein’s Vacuum Field Equation in Geometrical Form 317
30.7 The Schwarzschild Solution and the First Tests of the Theory 319
30.8 Gravitational Waves 323
30.9 The Einstein Field Equation (with Matter) in Geometrical Form 326
30.10 Gravitational Collapse to a Black Hole 329
30.11 The Cosmological Constant: “The Greatest Blunder of My Life.” 331
30.12 The End 333

31 Exercises for Act IV 334
ACT V

Forms

32 1-Forms

32.1 Introduction 345
32.2 Definition of a 1-Form 346
32.3 Examples of 1-Forms 347
 32.3.1 Gravitational Work 347
 32.3.2 Visualizing the Gravitational Work 1-Form 348
 32.3.3 Topographic Maps and the Gradient 1-Form 349
 32.3.4 Row Vectors 352
 32.3.5 Dirac's Bras 352
32.4 Basis 1-Forms 352
32.5 Components of a 1-Form 354
32.6 The Gradient as a 1-Form: \(df \)
 32.6.1 Review of the Gradient as a Vector: \(\nabla f \) 354
 32.6.2 The Gradient as a 1-Form: \(df \) 355
 32.6.3 The Cartesian 1-Form Basis: \{dx\} 356
 32.6.4 The 1-Form Interpretation of \(df = (\partial_x f) \, dx + (\partial_y f) \, dy \) 357
32.7 Adding 1-Forms Geometrically 357

33 Tensors

33.1 Definition of a Tensor: Valence 360
33.2 Example: Linear Algebra 361
33.3 New Tensors from Old
 33.3.1 Addition 361
 33.3.2 Multiplication: The Tensor Product 361
33.4 Components 362
33.5 Relation of the Metric Tensor to the Classical Line Element 363
33.6 Example: Linear Algebra (Again) 364
33.7 Contraction 365
33.8 Changing Valence with the Metric Tensor 366
33.9 Symmetry and Antisymmetry 368

34 2-Forms

34.1 Definition of a 2-Form and of a p-Form 370
34.2 Example: The Area 2-Form 371
34.3 The Wedge Product of Two 1-Forms 372
34.4 The Area 2-Form in Polar Coordinates 374
34.5 Basis 2-Forms and Projections 375
34.6 Associating 2-Forms with Vectors in \(\mathbb{R}^3 \): Flux 376
34.7 Relation of the Vector and Wedge Products in \(\mathbb{R}^3 \) 379
34.8 The Faraday and Maxwell Electromagnetic 2-Forms 381
35 3-Forms

- 35.1 A 3-Form Requires Three Dimensions
- 35.2 The Wedge Product of a 2-Form and 1-Form
- 35.3 The Volume 3-Form
- 35.4 The Volume 3-Form in Spherical Polar Coordinates
- 35.5 The Wedge Product of Three 1-Forms and of p 1-Forms
- 35.6 Basis 3-Forms
- 35.7 Is $\Psi \wedge \Psi \neq 0$ Possible?

36 Differentiation

- 36.1 The Exterior Derivative of a 1-Form
- 36.2 The Exterior Derivative of a 2-Form and of a p-Form
- 36.3 The Leibniz Rule for Forms
- 36.4 Closed and Exact Forms
 - 36.4.1 A Fundamental Result: $d^2 = 0$
 - 36.4.2 Closed and Exact Forms
 - 36.4.3 Complex Analysis: Cauchy–Riemann Equations
- 36.5 Vector Calculus via Forms
- 36.6 Maxwell's Equations

37 Integration

- 37.1 The Line Integral of a 1-Form
 - 37.1.1 Circulation and Work
 - 37.1.2 Path-Independence \iff Vanishing Loop Integrals
 - 37.1.3 The Integral of an Exact Form: $\varphi = df$
- 37.2 The Exterior Derivative as an Integral
 - 37.2.1 d(1-Form)
 - 37.2.2 d(2-Form)
- 37.3 Fundamental Theorem of Exterior Calculus (Generalized Stokes's Theorem)
 - 37.3.1 Fundamental Theorem of Exterior Calculus
 - 37.3.2 Historical Aside
 - 37.3.3 Example: Area
- 37.4 The Boundary of a Boundary Is Zero!
- 37.5 The Classical Integral Theorems of Vector Calculus
 - 37.5.1 $\Phi = 0$-Form
 - 37.5.2 $\Phi = 1$-Form
 - 37.5.3 $\Phi = 2$-Form
- 37.6 Proof of the Fundamental Theorem of Exterior Calculus
- 37.7 Cauchy’s Theorem
- 37.8 The Poincaré Lemma for 1-Forms
- 37.9 A Primer on de Rham Cohomology
 - 37.9.1 Introduction
37.9.2 A Special 2-Dimensional Vortex Vector Field 419
37.9.3 The Vortex 1-Form Is Closed 420
37.9.4 Geometrical Meaning of the Vortex 1-Form 420
37.9.5 The Topological Stability of the Circulation of a Closed 1-Form 421
37.9.6 The First de Rham Cohomology Group 423
37.9.7 The Inverse-Square Point Source in \(\mathbb{R}^3 \) 424
37.9.8 The Second de Rham Cohomology Group 426
37.9.9 The First de Rham Cohomology Group of the Torus 428

38 Differential Geometry via Forms 430

38.1 Introduction: Cartan’s Method of Moving Frames 430
38.2 Connection 1-Forms 432
 38.2.1 Notational Conventions and Two Definitions 432
 38.2.2 Connection 1-Forms 432
 38.2.3 WARNING: Notational Hazing Rituals Ahead! 434
38.3 The Attitude Matrix 435
 38.3.1 The Connection Forms via the Attitude Matrix 435
 38.3.2 Example: The Cylindrical Frame Field 436
38.4 Cartan’s Two Structural Equations 438
 38.4.1 The Duals \(\theta^i \) of \(m_i \) in Terms of the Duals \(dx^j \) of \(e_j \) 438
 38.4.2 Cartan’s First Structural Equation 439
 38.4.3 Cartan’s Second Structural Equation 440
 38.4.4 Example: The Spherical Frame Field 441
38.5 The Six Fundamental Form Equations of a Surface 446
 38.5.1 Adapting Cartan’s Moving Frame to a Surface: The Shape Operator and the Extrinsic Curvature 446
 38.5.2 Example: The Sphere 447
 38.5.3 Uniqueness of Basis Decompositions 447
 38.5.4 The Six Fundamental Form Equations of a Surface 448
38.6 Geometrical Meanings of the Symmetry Equation and the Peterson–Mainardi–Codazzi Equations 449
38.7 Geometrical Form of the Gauss Equation 450
38.8 Proof of the Metric Curvature Formula and the Theorema Egregium 451
 38.8.1 Lemma: Uniqueness of \(\omega_{12} \) 451
 38.8.2 Proof of the Metric Curvature Formula 451
38.9 A New Curvature Formula 452
38.10 Hilbert’s Lemma 453
38.11 Liebmann’s Rigid Sphere Theorem 454
38.12 The Curvature 2-Forms of an \(n \)-Manifold 455
 38.12.1 Introduction and Summary 455
 38.12.2 The Generalized Exterior Derivative 457
Chapter 1

Euclidean and Non-Euclidean Geometry

1.1 Euclidean and Hyperbolic Geometry

Differential Geometry is the application of calculus to the geometry of space that is curved. But to understand space that is curved we shall first try to understand space that is flat.

We inhabit a natural world pervaded by curved objects, and if a child asks us the meaning of the word “flat,” we are most likely to answer in terms of the absence of curvature: a smooth surface without any bumps or hollows. Nevertheless, the very earliest mathematicians seem to have been drawn to the singular simplicity and uniformity of the flat plane, and they were rewarded with the discovery of startlingly beautiful facts about geometric figures constructed within it. With the benefit of enormous hindsight, some of these facts can be seen to characterize the plane’s flatness.

One of the earliest and most profound such facts to be discovered was Pythagoras’s Theorem. Surely the ancients must have been awed, as any sensitive person must remain today, that a seemingly unalloyed fact about numbers,

\[3^2 + 4^2 = 5^2, \]

in fact has geometrical meaning, as seen in [1.1].

While Pythagoras himself lived in Greece around 500 BCE, the theorem bearing his name was discovered much earlier, in various places around the world. The earliest known example of such knowledge is recorded in the Babylonian clay tablet (catalogued as “Plimpton 322”) shown in [1.2], which was unearthed in what is now Iraq, and which dates from about 1800 BCE.

The tablet lists Pythagorean triples: integers \((a, b, h)\) such that \(h\) is the hypotenuse of a right triangle with sides \(a\) and \(b\), and therefore \(a^2 + b^2 = h^2\). Some of these ancient examples are impressively large, and it seems clear that they did not stumble upon them, but rather possessed a mathematical process for generating solutions. For example, the fourth row of the tablet records the fact that \(13500^2 + 12709^2 = 18541^2\).

The deeper knowledge that underlay these ancient results is not known, but to find the first evidence of the “modern,” logical, deductive approach to mathematics we must jump 1200 years into the future of the clay tablet. Scholars believe that it was Thales of Miletus (around 600 BCE)

1 We repeat what was said in the Prologue: equations are labelled with parentheses (round brackets)—\((\ldots)\), while figures are labelled with square brackets—\([\ldots]\).

2 In fact the tablet only records two members \((a, h)\) of the triples \((a, b, h)\).

3 In the seventeenth century, Fermat and Newton reconstructed and generalized a geometrical method of generating the general solution, due to Diophantus. See Exercise 5.
Chapter 1 Euclidean and Non-Euclidean Geometry

Plimpton 322: A clay tablet of Pythagorean triples from 1800 BCE.

Euclid’s Parallel Axiom: P is the unique parallel to L through p, and the angle sum of a triangle is π.

Parallel Axiom. Through any point p not on the line L there exists precisely one line P that is parallel to L.

But the character of this axiom was more complex and less immediate than that of the first four, and mathematicians began a long struggle to dispense with it as an assumption, instead seeking to show that it must be a logical consequence of the first four axioms.

This tension went unresolved for the next 2000 years. As the centuries passed, many attempts were made to prove the Parallel Axiom, and the number and intensity of these efforts reached a crescendo in the 1700s, but all met with failure.

Yet along the way useful equivalents of the axiom emerged. For example: There exist similar triangles of different sizes (Wallis in 1663; see Stillwell (2010)). But the very first equivalent was already present in Euclid, and it is the one still taught to every school child: the angles in a triangle add up to two right angles. See [1.3].

The explanation of these failures only emerged around 1830. Completing a journey that had begun 4000 years earlier, Nikolai Lobachevsky and János Bolyai independently announced the

4Euclid did not state his axiom in this form, but it is logically equivalent.
discovery of an entirely new form of geometry (now called \textit{Hyperbolic Geometry}) taking place in a new kind of plane (now called the \textit{hyperbolic plane}). In this Geometry the first four Euclidean axioms hold, but the parallel axiom does \textit{not}. Instead, the following is true:

\begin{center}
\textbf{Hyperbolic Axiom.} There are at least two parallel lines through \(p\) that do not meet \(L\). \quad (1.1)
\end{center}

These pioneers explored the logical consequences of this axiom, and by purely abstract reasoning were led to a host of fascinating results within a rich new geometry that was bizarrely different from that of Euclid.

Many others before them, perhaps most notably Saccheri (in 1733; see Stillwell 2010) and Lambert (in 1766; see Stillwell 2010), had discovered some of these consequences of (1.1), but their aim in exploring these consequences had been to find a \textit{contradiction}, which they believed would finally prove that Euclidean Geometry to be the One True Geometry.

Certainly Saccheri believed he had found a clear contradiction when he published “Euclid Freed of Every Flaw.” But Lambert is a much more perplexing case, and he is perhaps an unsung hero in this story. His results penetrated so deeply into this new geometry that it seems impossible that he did not at times believe in the reality of what he was doing. Regardless of his motivation and beliefs, Lambert (shown in [1.4]) was certainly the first to discover a remarkable fact about the angle sum of a triangle under axiom (1.1), and his result will be central to much that follows in Act II.

Nevertheless, Lobachevsky and Bolyai richly deserve their fame for having been the first to recognize and fully embrace the idea that they had discovered an entirely new, consistent, non-Euclidean Geometry. But what this new geometry really \textit{meant}, and what it might be useful for, even they could not say.

Remarkably and surprisingly, it was the \textit{Differential Geometry of curved surfaces} that ultimately resolved these questions. As we shall explain, in 1868 the Italian mathematician Eugenio Beltrami finally succeeded in giving Hyperbolic Geometry a concrete interpretation, setting it upon a firm and intuitive foundation from which it has since grown and flourished. Sadly, neither Lobachevsky nor Bolyai lived to see this; they died in 1856 and 1860, respectively.

This non-Euclidean Geometry had in fact already manifested itself in various branches of mathematics throughout history, but always in disguise. Henri Poincaré (beginning around 1882) was the first not only to strip it of its camouflage, but also to recognize and exploit its power.

5I thank Roger Penrose for making me see that Lambert deserves greater credit than he is usually granted. Penrose did so by means of the following analogy: “Should we not give credit to Einstein for the cosmological constant, even if he introduced it for the wrong reasons? And should we blame him for later retracting it, calling it the “greatest blunder of my life”? Or what about General Relativity itself, which Einstein seemed to become less and less convinced was the right theory (needing to be replaced by some kind of non-singular unified field theory) as time went on?” [Private communication.]

6If you cannot wait, it’s (1.8).

7Lobachevsky did in fact put this geometry to use to evaluate previously unknown integrals, but (at least in hindsight) this particular application must be viewed as relatively minor.
in such diverse areas as Complex Analysis, Differential Equations, Number Theory, and Topology. Its continued vitality and centrality in the mathematics of the 20th and twenty-first centuries is demonstrated by Thurston’s work on 3-manifolds, Wiles’s proof of Fermat’s Last Theorem, and Perelman’s proof of the Poincaré Conjecture (as a special case of Thurston’s Geometrization Conjecture), to name but three examples.

In Act II we shall describe Beltrami’s breakthrough, as well as the nature of Hyperbolic Geometry, but for now we wish to explore a different, simpler kind of non-Euclidean Geometry, one that was already known to the Ancients.

1.2 Spherical Geometry

To construct a non-Euclidean Geometry we must deny the existence of a unique parallel. The Hyperbolic Axiom assumes two or more parallels, but there is one other logical possibility—no parallels:

Spherical Axiom. There are no lines through \(p \) that are parallel to \(L \): every line meets \(L \).

Thus there are actually two non-Euclidean\(^6\) geometries: spherical and hyperbolic.

As the name suggests, Spherical Geometry can be realized on the surface of a sphere—denoted \(S^2 \) in the case of the unit sphere—which we may picture as the surface of the Earth. On this sphere, what should be the analogue of a “straight line” connecting two points on the surface? Answer: the shortest route between them! But if you wish to sail or fly from London to New York, for example, what is the shortest route?

The answer, already known to the ancient mariners, is that the shortest route is an arc of a great circle, such as the equator, obtained by cutting the sphere with a plane passing through its centre. In [1.5] we have chosen \(L \) to be the equator, and it is clear that (1.2) is satisfied: every line through \(p \) meets \(L \) in a pair of antipodal (i.e., diametrically opposite) points.

In the plane, the shortest route is also the straightest route, and in fact the same is true on the sphere: in a precise sense to be discussed later, the great circle trajectory bends neither to the right nor to the left as it traverses the spherical surface.

There are other ways of constructing the great circles on the Earth that do not require thinking about planes passing through the completely inaccessible centre of the Earth. For example, on a globe you may map out your great circle journey by holding down one end of a piece of string on London and pulling the string tightly over the surface so that the other end is on New York. The taut string has

\(^6\)Nevertheless, the reader should be aware that in modern usage “non-Euclidean Geometry” is usually synonymous with “Hyperbolic Geometry.”
automatically found the shortest, straightest route—the shorter\(^9\) of the two arcs into which the great circle through the two cities is divided by those cities.

With the analogue of straight lines now found, we can “do geometry” within this spherical surface. For example, given three points on the surface of the Earth, we can connect them together with arcs of great circles to obtain a “triangle.” Figure [1.6] illustrates this in the case where one vertex is located at the north pole, and the other two are on the equator.

But if this non-Euclidean Spherical Geometry was already used by ancient mariners to navigate the oceans, and by astronomers to map the spherical night sky, what then was so shocking and new about the non-Euclidean geometry of Lobachevsky and Bolyai?

The answer is that this Spherical Geometry was merely considered to be inherited from the Euclidean Geometry of the 3-dimensional space in which the sphere resides. No thought was given in those times to the sphere’s internal 2-dimensional geometry as representing an alternative to Euclid’s plane. Not only did it violate Euclid’s fifth axiom, it also violated a much more basic one (Euclid’s first axiom) that we can always draw a unique straight line connecting two points, for this fails when the points are antipodal.

On the other hand, the Hyperbolic Geometry of Lobachevsky and Bolyai was a much more serious affront to Euclidean Geometry, containing familiar lines of infinite length, yet flaunting multiple parallels, ludicrous angle sums, and many other seemingly nonsensical results. Yet the 21-year-old Bolyai was confident and exuberant in his discoveries, writing to his father, “From nothing I have created another entirely new world.”

We end with a tale of tragedy. Bolyai’s father was a friend of Gauss, and sent him what János had achieved. By this time Gauss had himself made some important discoveries in this area, but had kept them secret. In any case, János had seen further than Gauss. A kind word in public from Gauss, the most famous mathematician in the world, would have assured the young mathematician a bright future. But Nature and nurture sometimes conspire to pour extraordinary mathematical gifts into a vessel marred by very ordinary human flaws, and Gauss’s reaction to Bolyai’s marvellous discoveries was mean-spirited and self-serving in the extreme.

First, Gauss kept Bolyai in suspense for six months, then he replied as follows:

Now something about the work of your son. You will probably be shocked for a moment when I begin by saying that I cannot praise it, but I cannot do anything else, since to praise it would be to praise myself. The whole content of the paper, the path that your son has taken, and the results to which he has been led, agree almost everywhere with my own meditations, which have occupied me in part for 30–35 years.

Gauss did however “thank” Bolyai’s son for having “saved him the trouble”\(^10\) of having to write down theorems he had known for decades.

János Bolyai never recovered from the surgical blow delivered by Gauss, and he abandoned mathematics for the rest of his life.\(^11\)

\(^9\)If the two points are antipodal, such as the north and south poles, then the two arcs are the same length. Furthermore, the great circle itself is no longer unique: every meridian is a great circle connecting the poles.

\(^10\)Gauss had previously denigrated Abel’s discovery of elliptic functions in precisely the same manner; see Stillwell (2010, p. 236).

\(^11\)If this depresses you, turn your thoughts to the uplifting counterweight of Leonhard Euler. An intellectual volcano erupting with wildly original thoughts (some of which we shall meet later) he was also a kind and generous spirit. We cite one, parallel
1.3 The Angular Excess of a Spherical Triangle

As we have said, the parallel axiom is equivalent to the fact that the angles in a triangle sum to \(\pi \). It follows that both the spherical axiom and the hyperbolic axiom must lead to geometries in which the angles do not sum to \(\pi \). To quantify this departure from Euclidean Geometry, we introduce the angular excess, defined to be the amount \(E \) by which the angle sum exceeds \(\pi \):

\[
E \equiv (\text{angle sum of triangle}) - \pi.
\]

For example, for the triangle shown in [1.6], \(E = \left(\frac{\theta}{2} + \frac{\pi}{2} + \frac{\pi}{2} \right) - \pi = \theta \).

A crucial insight now arises if we compare the triangle’s angular excess with its area \(A \). Let the radius of the sphere be \(R \). Since the triangle occupies a fraction \(\frac{\theta}{2\pi} \) of the northern hemisphere, \(A = \left(\frac{\theta}{2\pi} \right) 2\pi R^2 = \theta R^2 \). Thus,

\[
E = \frac{1}{R^2} A. \tag{1.3}
\]

In 1603 the English mathematician Thomas Harriot (see [1.7]) made the remarkable discovery\(^\text{12}\) that this relationship holds for any triangle \(\Delta \) on the sphere; see [1.8a]. Harriot’s elementary but ingenious argument\(^\text{13}\) goes as follows.

Prolonging the great-circle sides of \(\Delta \) divides the surface of the sphere into eight triangles, the four triangles labelled \(\Delta, \Delta_\alpha, \Delta_\beta, \Delta_\gamma \) each being paired with a congruent antipodal triangle. This is clearer in [1.8b]. Since the area of the sphere is \(4\pi R^2 \), we deduce that

\[
A(\Delta) + A(\Delta_\alpha) + A(\Delta_\beta) + A(\Delta_\gamma) = 2\pi R^2. \tag{1.4}
\]

On the other hand, it is clear in [1.8b] that \(\Delta \) and \(\Delta_\alpha \) together form a wedge whose area is a fraction \(\frac{\alpha}{2\pi} \) of the area of the sphere:

\[
A(\Delta) + A(\Delta_\alpha) = 2\alpha R^2.
\]

Similarly,

\[
A(\Delta) + A(\Delta_\beta) = 2\beta R^2,
\]

\[
A(\Delta) + A(\Delta_\gamma) = 2\gamma R^2.
\]

\(^{12}\)This discovery is most often attributed to Girard, who rediscovered it about 25 years later.

\(^{13}\)This argument was later rediscovered by Euler in 1781.
1.4 Intrinsic and Extrinsic Geometry of Curved Surfaces

Harriot’s Theorem (1603): $E(\Delta) = A(\Delta)/R^2$.

Adding these last three equations, we find that

$$3A(\Delta) + A(\Delta_\alpha) + A(\Delta_\beta) + A(\Delta_\gamma) = 2(\alpha + \beta + \gamma)R^2. \quad (1.5)$$

Finally, subtracting (1.4) from (1.5), we find that

$$A(\Delta) = R^2(\alpha + \beta + \gamma - \pi) = R^2E(\Delta),$$

thereby proving (1.3).

1.4 Intrinsic and Extrinsic Geometry of Curved Surfaces

The mathematics associated with this stretched-string construction of a “straight line” will be explored in depth later in the book. For now we merely observe that the construction can be applied equally well to a non-spherical surface, such as the crookneck squash shown in [1.9].

Just as on the sphere, we stretch a string over the surface, thereby finding the shortest, straightest route between two points, such as a and b. Provided that the string can slide around on the surface easily, the tension in the string ensures that the resulting path is as short as possible. Note that in the case of cd, we must imagine that the string runs over the inside of the surface.

In order to deal with all possible pairs of points in a uniform way, it is therefore best to imagine the surface as made up of two thinly separated layers, with the string trapped between them. On the other hand, this is only useful for thought experiments, not actual experiments. We shall overcome this obstacle shortly by providing a practical method of constructing these straightest curves on the surface of a physical object, even if the patch of surface bends the wrong way for a string to be stretched tightly over the outside of the object.

These shortest paths on a curved surface are the equivalent of straight lines in the plane, and they will play a crucial role throughout this book—they are called geodesics. Thus, to use this new word, we may say that geodesics in the plane are straight lines, and geodesics on the sphere are great circles.

But even on the sphere the length-minimizing definition of “geodesic” is provisional, because we see that nonantipodal points are connected by two arcs of the great circle passing through them: the short one (which is the shortest route) and the long one. Yet the long arc is every bit as much a geodesic as the short one. There is the additional complication on the sphere that antipodal points
The intrinsic geometry of the surface of a crookneck squash: geodesics are the equivalents of straight lines, and triangles formed out of them may possess an angular excess of either sign, depending on how the surface bends: $E(\Delta_1) > 0$ and $E(\Delta_2) < 0$.

are connected by multiple geodesics, and this nonuniqueness occurs on more general surfaces, too. What is true is that any two points that are sufficiently close together can be joined by a unique geodesic segment that is the shortest route between them.

Just as a line segment in the plane can be extended indefinitely in either direction by laying down overlapping segments, so too can a geodesic segment be extended on a curved surface, and this extension is unique. For example, in [1.9] we have extended the dashed geodesic segment connecting the black dots, by laying down the overlapping dotted segment between the white points.

Because of the subtleties associated with the length-minimizing characterization of geodesics, before long we will provide an alternative, purely local characterization of geodesics, based on their straightness.

With these caveats in place, it is now clear how we should define distance within a surface such as [1.9]: the distance between two sufficiently close points a and b is the length of the geodesic segment connecting them.

Figure [1.9] shows how we may then define, for example, a “circle of radius r and centre c” as the locus of points at distance r from c. To construct this geodesic circle we may take a piece of string of length r, hold one end fixed at c, then (keeping the string taut) drag the other end round on the surface. But just as the angles in a triangle no longer sum to π, so now the circumference of a circle no longer is equal to $2\pi r$. In fact you should be able to convince yourself that for the illustrated circle the circumference is less than $2\pi r$.

Given three points on the surface, we may join them with geodesics to form a geodesic triangle; [1.9] shows two such triangles, Δ_1 and Δ_2:

- Looking at the angles in Δ_1, it seems clear that they sum to more than π, so $E(\Delta_1) > 0$, like a triangle in Spherical Geometry.
1.5 Constructing Geodesics via Their Straightness

On the other hand, it is equally clear that the angles of Δ_2 sum to less than π: $E(\Delta_2) < 0$, and (as we shall explain) this opposite behaviour is in fact exhibited by triangles in Hyperbolic Geometry. Note also that if we construct a circle in this saddle-shaped part of the surface, the circumference is now greater than $2\pi r$.

The concept of a geodesic belongs to the so-called intrinsic geometry of the surface—a fundamentally new view of geometry, introduced by Gauss (1827). It means the geometry that is knowable to tiny, ant-like, intelligent (but 2-dimensional!) creatures living within the surface. As we have discussed, these creatures can, for example, define a geodesic “straight line” connecting two nearby points as the shortest route within their world (the surface) connecting the two points. From there they can go on to define triangles, and so on. Defined in this way, it is clear that the intrinsic geometry is unaltered when the surface is bent (as a piece of paper can be) into quite different shapes in space, as long as distances within the surface are not stretched or distorted in any way. To the ant-like creatures within the surface, such changes are utterly undetectable.

Under such a bending, the so-called extrinsic geometry (how the surface sits in space) most certainly does change. See [1.10]. On the left is a flat piece of paper on which we have drawn a triangle Δ with angles $(\pi/2)$, $(\pi/6)$, and $(\pi/3)$. Of course $E(\Delta) = 0$. Clearly we can bend such a flat piece of paper into either of the two (extrinsically) curved surfaces on the right. However, intrinsically these surfaces have undergone no change at all—they are both as flat as a pancake! The illustrated triangles on these surfaces (into which Δ is carried by our stretch-free bending of the paper) are identical to the ones that intelligent ants would construct using geodesics, and in both cases $E = 0$: geometry on these surfaces is Euclidean.

Even if we take a patch of a surface that is intrinsically curved, so that a triangle within it has $E \neq 0$, it too can generally be bent somewhat without stretching or tearing it, thereby altering its extrinsic geometry while leaving its intrinsic geometry unaltered. For example, cut a ping pong ball in half and gently squeeze the rim of one of the hemispheres, distorting that circular rim into an oval (but not an oval lying in a single plane).

1.5 Constructing Geodesics via Their Straightness

We have already alluded to the fact that geodesics on a surface have at least two characteristics in common with lines in the plane: (1) they provide the shortest route between two points that are not too far apart and (2) they provide the “straightest” route between these points. In this section we seek to clarify what we mean by “straightness,” leading to a very simple and practical method of constructing geodesics on a physical surface.

14But note that we must first trim the edges of the rectangle to bend it into the shape on the far right.
Chapter 1 Euclidean and Non-Euclidean Geometry

[1.11] On the curved surface of a fruit or vegetable, peel a narrow strip surrounding a geodesic, then lay it flat on the table. You will obtain a straight line in the plane!

Most texts on Differential Geometry pay scant attention to such practical matters, and it is perhaps for this reason that the construction we shall describe is surprisingly little known in the literature.¹⁵ In sharp contrast, in this book we urge you to explore the ideas by all means possible: theoretical contemplation, drawing, computer experiments, and (especially!) physical experiments with actual surfaces. Your local fruit and vegetable shop can supply your laboratory with many interesting shapes, such as the yellow summer squash shown in [1.11].

We can now use this vegetable to reveal the hidden straightness of geodesics via an experiment that we hope you will repeat for yourself:

1. On a fruit or vegetable, construct a geodesic by stretching a string over its curved surface.
2. Use a pen to trace the path of the string, then remove the string.
3. Make shallow incisions on either side of (and close to) the inked path, then use a vegetable peeler or small knife to remove the narrow strip of peel between the two cuts.
4. Lay the strip of peel flat on the table, and witness the marvellous fact that the geodesic within the peeled strip has become a straight line in the plane!

But why?!

To understand this, first let us be clear that although the strip is free to bend in the direction perpendicular to the surface (i.e., perpendicular to itself), it is rigid if we try to bend it sideways, tangent to the surface. Now let us employ proof by contradiction, and imagine what would happen if such a peeled geodesic did not yield a straight line when laid flat on the table. It is both a

¹⁵One of the rare exceptions is Henderson (1998), which we strongly recommend to you; for more details, see the Further Reading section at the end of this book.
1.5 Constructing Geodesics via Their Straightness

Suppose that the illustrated dotted path is a geodesic such that a narrow (white) strip surrounding it does not become a straight line when laid flat in the plane. But in that case we can shrink the dotted path in the plane (towards the shortest, straight-line route in the plane) thereby producing the solid path. But if we then reattach the strip to the surface, this solid path is still shorter than the original dotted path, which was supposed to be the shortest path within the surface—a contradiction!

The shortest route between the ends of this dotted (nonstraight) plane curve is the straight line connecting them. (As illustrated, this is the path of the true geodesic we already found using the string—but pretend you don’t know that for now!) Thus we may shorten the dotted curve by deforming it slightly towards this straight, shortest route, yielding the solid path along the edge of the peeled strip. Therefore, after reattaching the strip to the surface (bottom left) the solid curve provides a shorter route over the surface than the dotted one, which we had supposed to be the shortest: a contradiction! Thus we have proved our previous assertion:

\[\text{If a narrow strip surrounding a segment } G \text{ of a geodesic is cut out of a surface and laid flat in the plane, then } G \text{ becomes a segment of a straight line.} \] (1.6)

We are now very close to the promised simple and practical construction of geodesics. Look again at step 3 of [1.11], where we peeled off the strip of surface. But imagine now that we are reattaching the strip to the surface, instead. Ignore the history of how we got to this point: what are we actually doing right now in this reattachment process? We have picked up a narrow straight strip (of three-dimensional peel—but mathematically idealized as a two-dimensional strip) and we have unrolled it back onto the surface into the shallow channel from which we cut it. But here
is the crucial observation: this shallow channel need not exist—the surface decides where the strip must go as we unroll it!

Thus, as a kind of time-reversed converse of (1.6), we obtain a remarkably simple and practical method\(^\text{16}\) of constructing geodesics on a physical surface:

> To construct a geodesic on a surface, emanating from a point \(p\) in direction \(v\), stick one end of a length of narrow sticky tape down at \(p\) and unroll it onto the surface, starting in the direction \(v\).

(Note, however, that this does not provide a construction of the geodesic connecting \(p\) to a specified target point \(q\).)

If this construction seems too simple to be true, please try it on any curved surface you have to hand. You can check that the sticky tape\(^\text{17}\) is indeed tracing out a geodesic by stretching a string over the surface between two points on the tape: the string will follow the same path as the tape. But note that, as a promised bonus, this new tape construction works on any part of a surface, even where the surface is concave towards you, so that the stretched-string construction breaks down.

Of course all of this is a concrete manifestation of a mathematical idealization. A totally flat narrow strip of tape of nonzero width \(\text{cannot}\)\(^\text{18}\) be made to fit perfectly on a genuinely curved surface, but its centre line \(\text{can}\) be made to rest on the surface, while the rest of the tape is tangent to the surface.

1.6 The Nature of Space

Let us return to the history of the discovery of non-Euclidean Geometry, and take our first look at how these two new geometries differ from Euclid’s.

As we have said, Euclidean Geometry, is characterized by the vanishing of \(E(\Delta)\). Note that, unlike the original formulation of the parallel axiom, \(\text{this statement can be checked against experiment:}\) construct a triangle, measure its angles, and see if they add up to \(\pi\). Gauss may have been the first person to ever conceive of the possibility that physical space might not be Euclidean, and he even attempted the above experiment, using three mountain tops as the vertices of his triangle, and using light rays for its edges.

Within the accuracy permitted by his equipment, he found \(E = 0\). Quite correctly, Gauss did not conclude that physical space is definitely Euclidean in structure, but rather that if it is \(\text{not}\) Euclidean then its deviation from Euclidean Geometry is extremely small. But he did go so far as to say (see Rosenfeld 1988, p. 215) that he wished that this non-Euclidean Geometry might apply to the real world. In Act IV we shall see that this was a prophetic statement.

\(^{16}\)This important fact is surprisingly hard to find in the literature. After we (re)discovered it, more than 30 years ago, we began searching, and the earliest mention of the underlying idea we could find at that time was in Aleksandrov (1969, p. 99), albeit in a less practical form: he imagined pressing a flexible metal ruler down onto the surface. Later, the basic idea also appeared in Koenderink (1990), Casey (1996), and Henderson (1998). However, we have since learned that the essential idea (though not in our current, practical form) goes all the way back to Levi-Civita, more than a century ago! See the footnote on page 236.

\(^{17}\)We recommend using masking tape (aka painter’s tape) because it comes in bright colours, and once a strip has been created, it can be detached and reattached repeatedly, with ease. A simple way to create narrow strips (from the usually wide roll of tape) is to stick a length of tape down onto a kitchen cutting board, then use a sharp knife to cut down its length, creating strips as narrow as you please.

\(^{18}\)This is a consequence of a fundamental theorem we shall meet later, called the Theorema Egregium.
1.6 The Nature of Space

Although Gauss had bragged to friends that he had anticipated the Hyperbolic Geometry of Lobachevsky and Bolyai by decades, even he had unknowingly been scooped on some of its central results.

In 1766 (eleven years before Gauss was born) Lambert rediscovered Harriot’s result on the sphere and then broke totally new ground in pursuing the analogous consequences of the Hyperbolic Axiom (1.1). First, he found that a triangle in Hyperbolic Geometry (if such a thing even existed) would behave oppositely to one in Spherical Geometry:

- In Spherical Geometry the angle sum of a triangle is greater than \(\pi \): \(E > 0 \).
- In Hyperbolic Geometry the angle sum of a triangle is less than \(\pi \): \(E < 0 \).

Thus a hyperbolic triangle behaves like a triangle drawn on a saddle-shaped piece of surface, like \(\Delta_2 \) in [1.9]. Later we shall see that this is no accident.

Furthermore, Lambert discovered the crucial fact that \(E(\Delta) \) again simply proportional to \(A(\Delta) \):

\[
E(\Delta) = K A(\Delta),
\]

(1.8)

where \(K \) is a constant that is positive in Spherical Geometry, and negative in Hyperbolic Geometry.

Several interesting observations can be made in connection with this result:

- Although there are no qualitative differences between them, there are nevertheless infinitely many different Spherical Geometries, depending on the value of the positive constant \(K \). Likewise, each negative value of \(K \) yields a different Hyperbolic Geometry.

- Since the angle sum of a triangle cannot be negative, \(E \geq -\pi \). Thus in Hyperbolic Geometry (\(K < 0 \)) we have the strange and surprising result that no triangle can have an area greater than \(|\pi/K| \).

- From (1.8) we deduce that two triangles of different size cannot have the same angles. In other words, in non-Euclidean Geometry, similar triangles do not exist! (This accords with Wallis’s 1663 discovery that the existence of similar triangles is equivalent to the Parallel Axiom.)

- Closely related to the previous point is the fact that in non-Euclidean Geometry there exists an absolute unit of length. (Gauss himself found it to be an exciting possibility that this purely mathematical fact might be realized in the physical world.) For example, in Spherical Geometry we could define this absolute unit of length to be the side of the equilateral triangle having, for instance, angle sum 1.01\(\pi \). Similarly, in Hyperbolic Geometry we could define it to be the side of the equilateral triangle having angle sum 0.99\(\pi \).

- A somewhat more natural way of defining the absolute unit of length is in terms of the constant \(K \). Since the radian measure of angle is defined as a ratio of lengths, \(E \) is a pure number. On the other hand, the area \(A \) has units of \((\text{length})^2\). It follows that \(K \) must have units of \(1/(\text{length})^2 \), and so there exists a length \(R \) such that \(K \) can be written as follows: \(K = + (1/R^2) \) in Spherical Geometry; \(K = - (1/R^2) \) in Hyperbolic Geometry. Of course in Spherical Geometry we already know that the length \(R \) occurring in the formula \(K = + (1/R^2) \) is simply the
radius of the sphere. Later we will see that this length R occurring in the formula $\mathcal{K} = -(1/R^2)$ can be given an equally intuitive and concrete interpretation in Hyperbolic Geometry.

- The smaller the triangle, the harder it is to distinguish it from a Euclidean triangle: only when the linear dimensions are a significant fraction of R will the differences become discernable. For example, we humans are small compared to the radius of the Earth, so if we find ourselves in a boat in the middle of a lake, its surface appears to be a Euclidean plane, whereas in reality it is part of a sphere. This Euclidean illusion for small figures is the reason that Gauss chose the largest possible triangle to conduct his light-ray experiment, thereby increasing his chances of detecting any small curvature that might be present in the space through which the light rays travelled.
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>aberration formula, 93</td>
</tr>
<tr>
<td>Absolute Differential Calculus, 231</td>
</tr>
<tr>
<td>amplification, 43, 156</td>
</tr>
<tr>
<td>amplitude, 73, 85, 156, 417</td>
</tr>
<tr>
<td>amplification of, 43</td>
</tr>
<tr>
<td>Cauchy’s Theorem, 417</td>
</tr>
<tr>
<td>Cauchy–Riemann equations, 397</td>
</tr>
<tr>
<td>definition of, 43</td>
</tr>
<tr>
<td>of z^2, 43</td>
</tr>
<tr>
<td>of z^m, 44, 90</td>
</tr>
<tr>
<td>twist of, 43</td>
</tr>
<tr>
<td>analytic mapping, 42</td>
</tr>
<tr>
<td>angle of parallelism, 60</td>
</tr>
<tr>
<td>angular excess definition of, 8</td>
</tr>
<tr>
<td>equivalence to holonomy, 247</td>
</tr>
<tr>
<td>in a 3-manifold, 282</td>
</tr>
<tr>
<td>is additive, 23</td>
</tr>
<tr>
<td>of polygon, 19, 26, 83</td>
</tr>
<tr>
<td>of quadrilateral, 26</td>
</tr>
<tr>
<td>of spherical polygon, 147</td>
</tr>
<tr>
<td>proportional to area, 15</td>
</tr>
<tr>
<td>angular momentum, 128</td>
</tr>
<tr>
<td>and geodesics in \mathbb{H}^n, 129</td>
</tr>
<tr>
<td>anti-self-dual 2-form, 470</td>
</tr>
<tr>
<td>anticonformal definition of, 39</td>
</tr>
<tr>
<td>antipodal points, 49, 83</td>
</tr>
<tr>
<td>antipodal triangle, 8</td>
</tr>
<tr>
<td>Apollo 15, 308</td>
</tr>
<tr>
<td>Apollonius, xviii</td>
</tr>
<tr>
<td>Archimedes, 86</td>
</tr>
<tr>
<td>Archimedes–Lambert projection, 85</td>
</tr>
<tr>
<td>area of surface element, 38</td>
</tr>
<tr>
<td>Arnol’d</td>
</tr>
<tr>
<td>and Newton’s Principia, xviii</td>
</tr>
<tr>
<td>as champion of Newton’s geometrical method, xx</td>
</tr>
<tr>
<td>Newtonian problem, 24</td>
</tr>
<tr>
<td>asymptotic, 60</td>
</tr>
<tr>
<td>asymptotic direction, 162</td>
</tr>
<tr>
<td>at parabolic point, 164</td>
</tr>
<tr>
<td>effect of Shape Operator on, 163</td>
</tr>
<tr>
<td>generalized definition, 164</td>
</tr>
<tr>
<td>Atiyah</td>
</tr>
<tr>
<td>The Faustian Offer, xvii</td>
</tr>
<tr>
<td>Atiyah–Singer Index Theorem, 165</td>
</tr>
<tr>
<td>Attitude Matrix, 435–438</td>
</tr>
<tr>
<td>Bach, BWV 101, xxv</td>
</tr>
<tr>
<td>Baker, Michael, xxvii</td>
</tr>
<tr>
<td>banana skin</td>
</tr>
<tr>
<td>spherical image under deformation, 139</td>
</tr>
<tr>
<td>Theorema Egregium illustrated with, 140</td>
</tr>
<tr>
<td>banana, fried</td>
</tr>
<tr>
<td>Honey-Flow on, 202</td>
</tr>
<tr>
<td>topographic map of, 203</td>
</tr>
<tr>
<td>Banchoff, Thomas</td>
</tr>
<tr>
<td>and Theorema Egregium, 252</td>
</tr>
<tr>
<td>and Polyhedral Theorema Egregium, 148</td>
</tr>
<tr>
<td>author’s debt to, xxv</td>
</tr>
<tr>
<td>Global Gauss–Bonnet Theorem via pancakes, 171</td>
</tr>
<tr>
<td>Barish, Barry C., 231</td>
</tr>
<tr>
<td>Beautiful Theorem, 139</td>
</tr>
<tr>
<td>geometric proof of, 255</td>
</tr>
<tr>
<td>predates Theorema Egregium by eleven years, 253</td>
</tr>
<tr>
<td>Beethoven</td>
</tr>
<tr>
<td>death of, 138</td>
</tr>
<tr>
<td>Grosse Fuge, xxv</td>
</tr>
<tr>
<td>Beltrami</td>
</tr>
<tr>
<td>conformal metric of \mathbb{H}^1 and \mathbb{H}^n, 79</td>
</tr>
<tr>
<td>curvature at hyperbolic point, 164</td>
</tr>
<tr>
<td>discovered Beltrami–Poincaré disc model, 62</td>
</tr>
<tr>
<td>discovered Beltrami–Poincaré half-plane, 57</td>
</tr>
<tr>
<td>discovered SVD, 154</td>
</tr>
<tr>
<td>discovery of concrete interpretation of Hyperbolic Geometry, 5, 51</td>
</tr>
<tr>
<td>explanation of horosphere, 82</td>
</tr>
<tr>
<td>portrait of, 51</td>
</tr>
<tr>
<td>pseudospherical surfaces, 22</td>
</tr>
<tr>
<td>Beltrami–Laplace equation, 84</td>
</tr>
<tr>
<td>Beltrami–Poincaré disc, 63</td>
</tr>
<tr>
<td>apparent size of objects within, 63</td>
</tr>
<tr>
<td>conformal mapping to half-plane, 70</td>
</tr>
<tr>
<td>curvature of, 90</td>
</tr>
<tr>
<td>geodesics of, 62</td>
</tr>
<tr>
<td>mapping to half-plane, 90</td>
</tr>
<tr>
<td>metric of, 62, 90</td>
</tr>
<tr>
<td>Beltrami–Poincaré half-plane, 56</td>
</tr>
<tr>
<td>apparent size of objects within, 57</td>
</tr>
<tr>
<td>conformal mapping to disc, 70</td>
</tr>
<tr>
<td>connection Forms of, 472</td>
</tr>
<tr>
<td>discovery by Beltrami, 57</td>
</tr>
<tr>
<td>geodesics of, 60</td>
</tr>
<tr>
<td>mapping to disc, 90</td>
</tr>
<tr>
<td>semi-circular geodesics within, 57</td>
</tr>
<tr>
<td>Berger, Marcel, 131</td>
</tr>
<tr>
<td>on known proofs of Theorema Egregium, 252</td>
</tr>
<tr>
<td>on new proof of Theorema Egregium, 252</td>
</tr>
<tr>
<td>Bernoulli, Johann</td>
</tr>
<tr>
<td>Brachistochrone Problem, 58</td>
</tr>
<tr>
<td>Brahe, Tycho, 123</td>
</tr>
<tr>
<td>Bramson, Brian D., xxvii</td>
</tr>
<tr>
<td>branch points, 170</td>
</tr>
<tr>
<td>bridge (between bagels), 171</td>
</tr>
<tr>
<td>Brouwer degree, 173</td>
</tr>
<tr>
<td>Brouwer, L.E.J., 173</td>
</tr>
<tr>
<td>Burnett-Stuart, George, xxii, xxvii</td>
</tr>
<tr>
<td>Carathéodory, 81</td>
</tr>
<tr>
<td>Cartan</td>
</tr>
<tr>
<td>“debauch of indices”, xvii</td>
</tr>
<tr>
<td>Differential Geometry via Forms, 430–474</td>
</tr>
<tr>
<td>discovery of Forms, xxii</td>
</tr>
<tr>
<td>portrait of, 345</td>
</tr>
<tr>
<td>Bianchi Identities, 295</td>
</tr>
<tr>
<td>Algebraic (First), 295, 337</td>
</tr>
<tr>
<td>Differential (Second), 295, 298, 327, 340, 413</td>
</tr>
<tr>
<td>via Forms, 459–460</td>
</tr>
<tr>
<td>binormal, 107</td>
</tr>
<tr>
<td>only spins, 219</td>
</tr>
<tr>
<td>black hole, 329</td>
</tr>
<tr>
<td>as solution of Einstein’s Vacuum Field Equation, 460–464</td>
</tr>
<tr>
<td>Birkhoff’s Theorem, 329</td>
</tr>
<tr>
<td>Cosmic Censorship Hypothesis, 464</td>
</tr>
<tr>
<td>curvature of, 460–464</td>
</tr>
<tr>
<td>event horizon, 329, 330, 464</td>
</tr>
<tr>
<td>spacetime singularity, 330</td>
</tr>
<tr>
<td>Schwarzschild Solution, 320</td>
</tr>
<tr>
<td>spacetime depiction of birth, 330</td>
</tr>
<tr>
<td>Schwarzschild radius, 321, 329</td>
</tr>
<tr>
<td>Schwarzschild Solution, 320</td>
</tr>
<tr>
<td>supermassive, 331</td>
</tr>
<tr>
<td>Tolman–Oppenheimer–Volkoff limit, 329</td>
</tr>
<tr>
<td>versus naked singularity, 464</td>
</tr>
<tr>
<td>Blaschke metric notation, 37</td>
</tr>
<tr>
<td>Bolyai</td>
</tr>
<tr>
<td>co-discovered horosphere, 82</td>
</tr>
<tr>
<td>discovery of Hyperbolic Geometry, 4</td>
</tr>
<tr>
<td>initially sought 3-dimensional non-Euclidean Geometry, 79</td>
</tr>
<tr>
<td>treatment of by Gauss, 7</td>
</tr>
<tr>
<td>Bolyai–Lobachevsky Formula, 61, 62</td>
</tr>
<tr>
<td>Bonnet</td>
</tr>
<tr>
<td>Local Gauss–Bonnet Theorem, 174</td>
</tr>
<tr>
<td>unaware of Global Gauss–Bonnet Theorem, 174</td>
</tr>
<tr>
<td>Bowler, Michael G., xxvii</td>
</tr>
<tr>
<td>Boy, Werner, 174</td>
</tr>
<tr>
<td>Brachistochrone Problem, 58</td>
</tr>
<tr>
<td>Brahe, Tycho, 123</td>
</tr>
<tr>
<td>Bramson, Brian D., xxvii</td>
</tr>
<tr>
<td>branch points, 170</td>
</tr>
<tr>
<td>bridge (between bagels), 171</td>
</tr>
<tr>
<td>Brouwer degree, 173</td>
</tr>
<tr>
<td>Brouwer, L.E.J., 173</td>
</tr>
<tr>
<td>Burnett-Stuart, George, xxii, xxvii</td>
</tr>
<tr>
<td>Carathéodory, 81</td>
</tr>
<tr>
<td>Cartan</td>
</tr>
<tr>
<td>“debauch of indices”, xvii</td>
</tr>
<tr>
<td>Differential Geometry via Forms, 430–474</td>
</tr>
<tr>
<td>discovery of Forms, xxii</td>
</tr>
<tr>
<td>portrait of, 345</td>
</tr>
</tbody>
</table>

For general queries, contact webmaster@press.princeton.edu
Index

Euler, Leonhard
- breakthrough on curvature of surfaces, 109
- curvature formula, 110
- curvature formula (original form), 110
- description of polyhedra, 183
- generosity to young Lagrange, 7
- geodesics, 119
- impossibility of perfect map, 31
- portrait of, 183
- rescued Lambert’s career, 8
- rigid motions of the sphere, 73

Faraday
- 2-form, 383
- admiration of Maxwell, 382
- first electric generator, 381
- introduced flux concept, 377
- laboratory, 381
- portrait of, 381

Fermat, 58
- Fermat’s Last Theorem, 6, 58
- Fermat’s Principle, 58

Feynman
- Newtonian derivation of Snell’s Law, 58
- on Newton, 126
- quantum-mechanical explanation of Fermat’s Principle, 58
- fiducial vector field, 205
- field of line elements, 211
- fixed points, 77
- flux
 - as 2-form, 378, 408
 - associated vector, 377
 - definition of, 378
 - introduced by Faraday, 377
 - refined by Maxwell, 377
- Focus, 196, 200
- folding paper, 221

Forms
- 1-forms
 - “contravariant” explained, 465
 - “covariant” explained, 465
 - as duals of vectors, 347
 - basis, 352–354
 - Cartesian basis, 356–357
 - components of, 354
 - connection 1-forms, 432–435
 - contraction of, 347
 - definition of, 346–347
 - Dirac bras as, 352
 - Dirac delta function, 465
- direction (sense, orientation), 349
- dual basis, 352
- electromagnetic potential, 402
- examples of, 347–352
- field of, 347
- geometrical addition of, 357–359
- gradient, 350, 351
- gradient (defined), 355
- gravitational work as, 347–349
- interpretation of df, 357
- kernel of, 349
- notation, 346
- row vectors as, 352
- stack, 349
- topographic map, 350
- visualized, 349
- 2-forms
 - anti-self-dual, 470
 - area 2-form, 371, 373
 - area 2-form (polar), 374–375
 - area formula for surface, \(f = \text{const}, \ 467 \)
 - as flux, 378, 398
 - associated vector (definition of), 377
 - basis, 375–376
 - basis (as area projection), 376
 - basis (geometric meaning), 377
 - definition of, 370
 - factorizes in \(R^4, 466 \)
 - Faraday, 383, 402
 - flux, 408
 - flux as vector, 376–378
 - Maxwell, 402
 - need not factorize in \(R^4, 466 \)
 - self-dual, 470
 - symplectic manifolds, 370
 - vector product as wedge product, 379–381
 - via wedge product, 372–374
- 3-forms
 - basis, 390
 - factorizes in \(R^4, 467 \)
 - need at least three dimensions, 386
 - volume (Cartesian), 387
 - volume (spherical polar), 389
- 4-forms
 - volume, 391
 - Bianchi Identities, 459–460
 - Cauchy’s Theorem, 398, 417
 - Cauchy–Riemann Equations, 471
 - closed, 419–429, 467, 471
 - closed (definition), 396
 - de Rham cohomology, 397, 419–429
 - discovery by Cartan, 345
 - exact, 419–429, 467, 471
 - exact (definition), 396
 - exterior derivative
 - generalized to vectors, 457–460
 - as integral, 406–411
 - closed Forms (definition), 396
 - exact Forms (definition), 396
 - explanation of \(d^2 = 0, 413 \)
 - Fundamental result: \(d^2 = 0, 395–396 \)
- Leibniz Rule (Product Rule) for
 - 0-forms, 356
 - 1-forms, 394–395
 - of 0-form, 355
 - of 1-form, 392–394
 - of 2-form, 394
 - of p-form, 394
 - Poincaré Lemma, 396, 418
 - exterior product, 372
 - gauge freedom, 396
 - gauge transformation, 396
 - Maxwell’s Equations, 401–403
 - p-forms
 - definition of, 370
 - need at least \(p \) dimensions, 386
 - Poincaré Lemma, 396, 418
 - potential, 396
 - Vector Calculus
 - curl, 398
 - divergence, 399
 - flux 2-form, 398
 - Gibbs and Heaviside, 274
 - identities via Forms, 400, 468
 - integral theorems, 413–415
 - irrotational, 399
 - via Forms, 398–400
 - vector potential, 402
 - wedge product, 372–374
 - as vector product, 379–381
 - definition of, 372
 - geometry of, 374
 - of 2-form and 1-form, 387
 - of three 1-forms, 390
 - vector product formula, 380
 - volume formula, 381
- Frenet Approximation, 220
- Frenet frame, 106
- Frenet–Serret Equations, 108, 220, 430, 434
- variable speed, 219
- Friedmann, Alexander, 474
- Friedmann–Lemaître–Robertson–Walker Universe, 474
- Fundamental Forms
 - are not Differential Forms, 164
 - first, 164
 - second, 164
 - third, 164
 - fundamental group, 207
- Fundamental Theorem of Exterior Calculus, 411–412
- boundary of a boundary is zero: \(r^2 = 0, 413 \)
- Cauchy’s Theorem, 417
- circulation, 404
- Divergence Theorem, 415
- explanation of \(d^2 = 0, 413 \)
- exterior derivative as integral, 406–411
- Faraday’s Law of Electromagnetic Induction, 415
- flux 2-form, 408
- Gauss’s Theorem, 415
- Green’s Theorem, 414
- history of, 411–412

For general queries, contact webmaster@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
integral theorems of vector calculus, 413–415
line integral of 1-form, 404–406
line integral of 1-form (path-independence), 405–406
line integral of exact 1-form, 406
named by N.M.J. Woodhouse, 412
Penrose precedent for FTEC terminology, 412
proof of, 415–417
role of Stokes, 411
statement of, 411
Stokes’s Theorem, 414
work, 404

Galileo, 308
Gamow, George, 332
gauge freedom, 396
gauge transformation, 396
Gauss
and possibility of absolute unit of length, 15
and the spherical map, 131
Beautiful Theorem, 138
curvature, see curvature
discovery of intrinsic geometry, 11, 31
Dombrowski’s analysis of, 138
experimental test of the curvature of physical space, 14
first curvature formula, 40

General Investigations of Curved Surfaces, 3, 17
introduction of metric, 31
isometries versus bendings, 141
metric notation, 36, 37
motto, 138
portrait of, 17
reaction to Riemann’s ideas, 298
rotations of sphere as Möbius transformations, 73
Theorema Egregium, 138, 140, 142
treatment of Abel, 17
treatment of Bolyai, 7
treatment of Riemann, 297
unaware of Global Gauss–Bonnet Theorem, 174

Gauss map, 131
Gauss’s Integral Theorem, see Fundamental Theorem of Exterior Calculus
Gauss’s Lemma, 274
via computation, 337
visualized, 275
Gauss–Bonnet Theorem
General Local, 336
Global, see Global Gauss–Bonnet Theorem
Local, 22, 174, 336

Gaussian curvature, see curvature
General Relativity, see Gravity
Generalized Stokes’s Theorem (GST), see Fundamental Theorem of Exterior Calculus (FTEC)
genus, 166
increasing by adding handles, 191
of sphere, 166
of torus, 166
of two-holed doughnut, 166
Genzel, Reinhard, 464
generic
equivalent of straight line, 9
as shortest route, 9
as straightest route, 11, 13, 118
at taut string, 9, 118
equation of, 244
of \(H^1 \), 79
of Beltrami–Poincaré disc model, 62
of Beltrami–Poincaré half-plane, 60, 128–129
of cone, 27
of pseudosphere, 28, 89
parallel transport via, 240–241
possible nonuniqueness of, 10
relative acceleration, 270
sticky-tape construction of, 14, 239
vanishing geodesic curvature, 119
via parallel transport, 235–236, 238, 239
geodesic circle, 10
geodesic curvature, 115
extrinsic construction, 120
intrinsic formula for, 244
intrinsic measurement of, 119
on a cone, 334
on a sphere, 334
on touching surfaces, 334
used to construct geodesics, 120
vanishes for geodesics, 119
vector, 117, 243
via intrinsic differentiation, 335
geodesic equation, 244, 286
geodesic polar coordinates, 274–276
geodesic triangle, 10
geometric inversion, 68, 81, 82
geometrization conjecture, 6
geometrized units, 328
GGG, see Global Gauss–Bonnet Theorem
Ghez, Andrea, 464
Gibbs, Josiah Willard, 274
gimel (from the Hebrew alphabet), 75
Global Gauss–Bonnet Theorem, 167
discovered by Kronheimer and Dyck, 174
for sphere, 168–169
for torus, 90, 169–170
Hopf’s intrinsic proof, 258–260
intuitive interpretation of, 167
paradoxes?, 225
some predictions of, 224
via angular excess, 194
via Bagels and Bridges, 171–172
via folded membrane, 182
via thick pancake, 171
via topological degree, 173
via vector fields, 217
Goldbach’s Conjecture, 183
Goldbach, Christian, 183
gradient 1-form, 351
gradient vector, 354–355
graph (topological), 186
gravitation, see Gravity
gravitational lensing, 325
Gravitational Spinor, see Weyl Curvature
gravitational wave astronomy, 325
gravitational waves, 323–326
curvature of, 323
depiction of oscillating tidal forces, 324
details of first detection (14th of September, 2015), 325
Einstein’s 1916 prediction of, 231
enormous energy of, 325
field lines of tidal forces, 323
first detection of, 231
harnessed for gravitational wave astronomy, 325
naming convention for, 325

gravity
bending of light, 322
Big Bang, 474
Birkhoff’s Theorem, 329
birth of a black hole, 330
black hole, 329
Cosmological Einstein Field Equation, 332, 474
cosmological constant, \(\Lambda \), 332, 474
curvature of Friedmann–Lemaître–Robertson–Walker Universe, 474
dark energy, 333
eclipses and the tides, 339
Einstein (matter) Field Equation, 327
Einstein (matter) Field Equation (geometrical form), 328
Einstein (vacuum) Field Equation, 319

Einstein tensor, 328, 340
Einstein’s initial Gravitational Field Equation, 327
eliminated in free fall, 307
energy-momentum tensor, 326
event horizon, 329
geometrical signature of inverse-square attraction, 314
geometrical signature of inverse-square law, 313
geometrized units, 328
gravitational waves, 323–326
gravitational work as 1-form, 347–349
neutron star, 329
neutron star collision, 331
Newton’s apple, 307
Newton’s explanation of the ocean tides, 311
Newton’s Inverse-Square Law, 98, 307–309
precision of orbit of Mercury, 322
redshifting of light, 322
repulsion of negative energy, 333
spacetime singularity, 464
spacetime tidal forces, 317
spherical Schwarzschild field, 320
standard model (cosmological), 474
static Universe, 332
stellar evolution, 329
stress-energy tensor, 326

For general queries, contact webmaster@press.princeton.edu
gravity (continued)
tidal force field around spherical mass, 309
tidal forces, 308–312
Tolman–Oppenheimer–Volkoff limit, 329
Universe’s expansion is accelerating, 332
Weyl curvature, 340, see Weyl curvature
great circle, 6
Green’s theorem, see Fundamental Theorem of Exterior Calculus
Green, George, 411
group, 65
GST, see Fundamental Theorem of Exterior Calculus
\mathbb{H}^2, see hyperbolic plane
Hairy-Ball Theorem, 472
handle (topological), 192
harmonic oscillator, 271
Harriot
angular excess theorem on sphere, 8
discovered conformality of stereographic projection, 46
discovered Snell’s Law, 58
portrait of, 8
Heaviside, Oliver, 274, 382
helicoid, 224, 480
helix, 220
Henderson, David W., 252
Hilbert
and Polyhedral Theorema Egregium, 148
impossibility of hyperbolic plane within Euclidean space, 82
spherical map, 131
theorem on surfaces of constant negative curvature, 22, 52
worked with Schäfke, 319
Hipparchus, 44
Hodge duality, 377, 379, 385, 402, 468
Hodge, Sir W.V.D., 377
Hofstadter, Douglas, xxvi
holonomy
along open curve, 257–258
definition of, 245
equivalence to angular excess, 247
invariance under spherical map, 255
is additive, 248
measures relative acceleration of geodesics, 278
measures total curvature, 246
of geodesic polygon, 247
of geodesic triangle, 247
of the hyperbolic plane, 248–251
on cone and sphere, 335
on the sphere, 245–246
Riemann curvature and, 290
vector, 293
homeomorphic, 166
homeomorphism, 165
homogeneous coordinates, 70
homogeneous function (defined), 471
homogeneous functions, 471
honey-flow, 202
as orthogonal trajectories of topographic map, 204
on surface of genus g, 209, 227
precise definition of, 215
reversing flow preserves indices, 217
sign of index determines orientation of covering by spherical map, 216, 217
singular points related to spherical map, 215, 216
Hooke’s Law, 123, 271
Hofp
calculation of Euler characteristic, 227
indices (fractional), 213
intrinsic proof of Global Gauss–Bonnet Theorem, 258–260
line field, 211
metric notation, 37
Poincaré–Hopf Hopf, 206, 213
portrait of, 176
spherical map, 131
Umlaufsatz, 176, 225
horosphere, 82
curvature of, 92
metric of, 92
Hubble’s Law (1929), 332
constant of, 325
Hubble, Edwin
discovered expansion of Universe (1929), 332
discovered galaxies beyond our own (1924), 332
Huygens
finite area of pseudosphere, 88
influence on Newton, xviii
investigated pseudosphere, 22, 53
Hyperbolic Axiom, 5, 52, 60
Hyperbolic Geometry
$X = -1$, by convention, 56
3-dimensional, 74, 79–82
absolute unit of length, 16
angle of parallelism, 60
angular excess proportional to area, 15
as geometry of surface of constant negative curvature, 51
asymptotics, 60
Beltrami’s critical discovery, 51
Bolyai–Lobachevsky Formula, 61, 62
conformal Beltrami–Poincaré disc model of, 63
conformal Beltrami–Poincaré half-plane model of, 56
conformal mapping between models, 63
curvature of \mathbb{H}^3, 473
definition of, 5
discovery of, 4
Euclidean and Spherical Geometries subordinate to it, 82
Euclidean illusion for small figures, 16
Euclidean plane within \mathbb{H}^3, 82
Euclidean sphere within \mathbb{H}^3, 82
horizon, 57, 79
horosphere, 82, 92
isometries of \mathbb{H}^3, 81
Lambert as pioneer of, 5, 15
limit rotation, 74
maximum area of a triangle, 15
metric of \mathbb{H}^3, 79
Poincaré as prophet of, 5
points at infinity, 57
some properties of, 15–16
sphere in \mathbb{H}^3, 92
standardized half-plane metric, 56
ultraparallels, 60
visualizing length within, 57
hyperbolic plane, 5, 52
$X = -1$, by convention, 56
conformal Beltrami–Poincaré disc model of, 63
conformal Beltrami–Poincaré half-plane model of, 56
definition of, 57
generalized to \mathbb{H}^3, 79
geodesics via Clairaut’s Theorem, 128–129
hemispherical \mathbb{H}^2 in \mathbb{H}^3, 80
isometries as Möbius transformations, 73
metric within \mathbb{H}^3, 91
pseudosphere as flawed model of, 52
within \mathbb{H}^3, 80
hyperbolic point, 111, 134, 136
Ibn Sahl, 58
icosahedron, 185
tesselation of sphere, 26
ideal points, 57
index, 196
as winding number, 198
determined by infinitesimal neighbourhood, 199
formal definition, 197, 205
fractional, 213
illustrated for complex powers, 200
invariance of, 197, 198
of complex powers, 198–201
of dipole, 197, 199
of honey-flow on fried banana, 204
of saddle point, 197
of vortex, 197
on a surface, 204
on a surface (illustrated), 205
index of refraction, 59
integral curve, 195
integration, see Fundamental Theorem of Exterior Calculus
intrinsic derivative, 241–244
definition of, 242
formal properties of, 243
geodesic curvature via, 244
of m-manifold, 284–286
Shape Operator formula for, 243
visualized, 242
inversion, 68
effect on Riemann sphere, 68
is anticonformal, 69
preserves circles, 69
isometries
definition of, 61
direct, 65
group structure of, 65–66
of H^3, 81
of flat spacetime, 74–79
of hyperbolic plane as Möbius transformations, 73
of Riemann sphere, 73, 90
opposite, 65
symmetry groups of surfaces of constant curvature, 72–74
versus bendings, 141
isothermal coordinates, 40, 84
Jacobi Equation
computational proof of, 301–302
general formula for 2-surface, 37
geodesic polar coordinates proof of, 274–276
general formula for, 36
in n-manifold, 302
introduced, 269
negative curvature, 272–274
on general surface, 336
positive curvature, 270–272
Sectional Jacobi Equation, 299–302
cancellation of parallel transport, 232
portraits of, 316
LIGO detector, 231
limit rotation, 74
line field, 211
applications to physics, 214
as flow around barriers, 213
developing formulas, 212
Poincaré–Hopf Theorem applies to, 213
singular points of, 212
Linear Algebra (Visual), 221
Listing, 166
Lobachevsky, 4
initially sought 3-dimensional non-Euclidean Geometry, 79
named horosphere, 82
loop, 175
Lorentz
contraction, 75
Special Theory of Relativity, 75
symmetries of spacetime as Möbius transformations, 74–79
Lorentz transformations, 74–79
as spin-matrices, 77
as spin-transformations, 77
boost, 78, 93
classification of, 78
fixed null rays of, 77
four archetypes, 77
four-screw, 78
as Möbius transformations, 77
null rotation, 79
preservation of spacetime interval, 77
loxodrome, 87
lune, 168
Leibniz Rule, see Forms, exterior derivative
Lemaitre, Georges, 474
level curves, 203
Levi-Civita connection, 242
Levi-Civita, Tullio, 231
discovery of parallel transport, 232
portrait of, 232
Levy, Anthony, xxvii
L’Huilier, Simon-Antoine-Jean, 190, 226
Lie Bracket, 287
Lie, Sophus, 287
Liebmann, Heinrich
equivalence of Möbius and Lorentz transformations, 74
sphere rigidity theorem, 21, 454–455
light cone
picture of, 316
Mercator projection, 86
loxodrome, 87
rhumb line, 87
meridian, 121
Merton College, Oxford, xviii, xxvii
measures
conformal, 39
conformal stereographic, 47
curvature formula, 36, 261
definition of, 31
definition of, 31
formula in orthogonal coordinates, 37
Gauss’s notation differs from ours, 37
general formula for 2-surface, 36
in orthogonal coordinates, 262
of H^2 in H^3, 91
of H^3, 79
of Beltrami–Poincaré disc model, 62, 90
of Beltrami–Poincaré half-plane model, 56
of conformal map of pseudosphere, 55
of hemispherical H^3 in H^3, 81
of horosphere, 92
of pseudosphere, 53
of pseudosphere via parameterized tractrix, 88
do torus, 90
space interval, 75
tensor, 363–364
used to change tensor valence, 366–368
Meusnier’s Theorem, 117
Meusnier, Jean-Baptiste, 110
Minding’s Theorem, 21, 276, 336
Minding, Ferdinand, 53
minimal surface, 130
Minkowski, 382
spacetime geometry, 74
spacetime interval, 75
worked with Schwarzschild, 319
miracles
false, xxiii
true, xxiii
Misner, Charles, 475
Lorentz
is anticonformal, 69
effect on Riemann sphere, 68
is anticonformal, 69
preserves circles, 69
isometries
definition of, 61
direct, 65
group structure of, 65–66
of H^3, 81
of flat spacetime, 74–79
of hyperbolic plane as Möbius transformations, 73
of Riemann sphere, 73, 90
opposite, 65
symmetry groups of surfaces of constant curvature, 72–74
versus bendings, 141
isothermal coordinates, 40, 84
Jacobi Equation
computational proof of, 301–302
general formula for 2-surface, 37
geodesic polar coordinates proof of, 274–276
general formula for, 36
in n-manifold, 302
introduced, 269
negative curvature, 272–274
on general surface, 336
positive curvature, 270–272
Sectional Jacobi Equation, 299–302
cancellation of parallel transport, 232
portraits of, 316
LIGO detector, 231
limit rotation, 74
line field, 211
applications to physics, 214
as flow around barriers, 213
developing formulas, 212
Poincaré–Hopf Theorem applies to, 213
singular points of, 212
Linear Algebra (Visual), 221
Listing, 166
Lobachevsky, 4
initially sought 3-dimensional non-Euclidean Geometry, 79
named horosphere, 82
loop, 175
Lorentz
contraction, 75
Special Theory of Relativity, 75
symmetries of spacetime as Möbius transformations, 74–79
Lorentz transformations, 74–79
as spin-matrices, 77
as spin-transformations, 77
boost, 78, 93
classification of, 78
fixed null rays of, 77
four archetypes, 77
four-screw, 78
as Möbius transformations, 77
null rotation, 79
preservation of spacetime interval, 77
loxodrome, 87
lune, 168
Leibniz Rule, see Forms, exterior derivative
Lemaitre, Georges, 474
level curves, 203
Levi-Civita connection, 242
Levi-Civita, Tullio, 231
discovery of parallel transport, 232
portrait of, 232
Levy, Anthony, xxvii
L’Huilier, Simon-Antoine-Jean, 190, 226
Lie Bracket, 287
Lie, Sophus, 287
Liebmann, Heinrich
equivalence of Möbius and Lorentz transformations, 74
sphere rigidity theorem, 21, 454–455
light cone
picture of, 316
Mercator projection, 86
loxodrome, 87
rhumb line, 87
meridian, 121
Merton College, Oxford, xviii, xxvii
measures
conformal, 39
conformal stereographic, 47
curvature formula, 36, 261
definition of, 31
definition of, 31
formula in orthogonal coordinates, 37
Gauss’s notation differs from ours, 37
general formula for 2-surface, 36
in orthogonal coordinates, 262
of H^2 in H^3, 91
of H^3, 79
of Beltrami–Poincaré disc model, 62, 90
of Beltrami–Poincaré half-plane model, 56
of conformal map of pseudosphere, 55
of hemispherical H^3 in H^3, 81
of horosphere, 92
of pseudosphere, 53
of pseudosphere via parameterized tractrix, 88
do torus, 90
space interval, 75
tensor, 363–364
used to change tensor valence, 366–368
Meusnier’s Theorem, 117
Meusnier, Jean-Baptiste, 110
Minding’s Theorem, 21, 276, 336
Minding, Ferdinand, 53
minimal surface, 130
Minkowski, 382
spacetime geometry, 74
spacetime interval, 75
worked with Schwarzschild, 319
miracles
false, xxiii
true, xxiii
Misner, Charles, 475
Lorentz

For general queries, contact webmaster@press.princeton.edu
Möbius band, 166
classification of closed surfaces, 166
strip, 166
Möbius transformations, 67–74
as isometries of H^3, 81
as Lorentz transformations, 77
as rotations of the Riemann sphere, 73, 90
as symmetry group of flat
spacetime, 74–79
characterized by circle-preserving
property, 81
classification of, 78
decomposition into simpler
transformations, 67
elliptic, 78
explanation of matrix
correspondence, 71
fixed points of, 77
form a group, 71
four achetypal Lorentz
transformations, 77
hyperbolic, 78
inversion in a circle, 67
isometries of Riemann sphere, 73
loxodromic, 78
matrix representation of, 70–71
nonsingular, 67
normalized, 71
normalized matrix defined uniquely
up to sign, 71
parabolic, 79
rotations of sphere via antipodal
points, 73
singular, 67
symmetry groups of surfaces of
constant curvature, 66, 72–74
moment of force, 128
monkey saddle, 136
complex equation, 137
curvature of, 224
generalized, 137
Morgan, Frank, xxvi
Riemannian Geometry, 481
naked singularity, 464
Needham, Faith, xxviii
Needham, Guy, xxvi
Needham, Hope, xxviii
Needham, Mary, xxvii
Nel, Stanley, xxvi
nematic field, 478
network (topological), 186
neutron star, 329, 331
Newcomb, Simon, 322
Newton
and Celestial Mechanics, 210
and the falling apple, 307
elliptical orbits in linear field, 123
embraced geometrical methods in
1680s, xviii
explained Kepler’s Laws, 124
explained the ocean tides, 311
general curvature formula, 100
general curvature formula, 99
geometric definition of tractrix, 52
investigated tractrix, 22
Law of Gravitation, 308
parametric curvature formula, 103
Principia, xviii–xx
Principia, area is the clock, 124
Principia, Lemma II, 99
Principia, Proposition 1, 124
Principia, Proposition 2, 126
Principia, Proposition 10, 123
Principia Proposition 31, 309
priority battle with Leibniz, xviii
proof of Kepler’s Second Law,
124–126
Second Law of Motion, 97
shunned his 1665 calculus in the
Principia, xviii
synthetic method of fluxions, xviii
Westfall’s biography of, xviii
Ultimate Equality, see Ultimate
Equality
Newtonmas, 98
Nobel Prize (2011), 332
Nobel Prize (2017), 231
Nobel Prize (2020), 464
non-Euclidean Geometry,
see
Nobel Prize for Physics, 464
on Lambert, 5
pioneering use of 2-spinors, 70
studied under Hodge, 377
Perelman, 6
Perrmutter, Saul, 332
Peterson–Maimardi–Codazzi Equations,
448
geometric meaning of, 450
use in Hilbert’s Lemma, 453
phase portrait, 195
photons (spinning), 470
Pixar, xxvi
planar point, 136
surrounded by negative curvature,
137
surrounded by positive curvature,
137
Plato, 185
Platonic Forms, xxiii
Platonic solids, 185, 227
Poincaré, see Beltrami–Poincaré
half-plane
and celestial mechanics, 210
and Euler characteristic, 184
as father of topology, 165
as prophet of Hyperbolic Geometry,
5
discovery of Möbius isometries of
H^3, 81
rediscovery of hyperbolic disc
model, 62
rediscovery of hyperbolic half-plane
model, 57
Special Theory of Relativity, 75
Poincaré Conjecture, 6
Poincaré disc, see Beltrami–Poincaré
disc
Poincaré Lemma, 396, 418
Poincaré–Hopf Theorem, 206
also applies to line fields, 213
Hairy Ball Theorem, 472
on sphere, 206, 213
on torus, 207
physical applications of, 477
proof of, 207–208
point at infinity, 44
polar decomposition, 222
Polya, 201
mechanical proof of Snell’s Law, 87
Polya vector field, 201
divergence-free and curl-free, 324
physical examples of, 201
polygonal net, 186
polyhedral spike, 145
curvature of, 146, 147
spherical image of, 147
Polyhedral Theorema Egregium, 147
attributed to Hilbert, 148
discovered by Maxwell, 148
visualization of, 146
polyhedron
and Theorema Egregium, 147
curvature of, 145–147
dual, 227
positive definite, 222
positive semidefinite, 222
potential, 396
Pythagoras’s Theorem
Pythagoras, 3
punctured plane, 419
Pythagoras, 3
Pythagoras’s Theorem
characterizes flatness, 3
Pythagorean triples
Babylonian examples, 3
definition of, 3
general formula for, 25
radius of curvature, 98
Rebka, Glen, 322
redshift
gravitational, 322
of galaxies, 332
refraction, 58
rhumb line, 87
Ricci Calculus, 231
Ricci tensor, 302–306
definition of, 305
effect on bundle of geodesics, 305
geometrical meaning of, 304–306
notation, 304
sign conventions, 305
symmetry of, 305
Ricci, Gregorio, 231, 298
portrait of, 303
Riemann
as father of topology, 165
Darrigol’s analysis of, 298
definition of genus, 166
discovered Differential Bianchi Identity, 298
Foundations of Geometry lecture (1854), 297
French Academy Prize Essay (1861), 298
Gauss’s reaction to lecture by, 298
Klein’s reaction to, 298
portrait of, 281
Spivak’s analysis of, 298
Riemann curvature operator, 287, 290
antisymmetry of, 290
Riemann sphere, 44
as representation of null cone in spacetime, 76
fixed points under Mobius transformation, 77
rotated by complex inversion, 69
rotations as Mobius transformations, 73, 90
used to label light rays, 92
Riemann tensor, 281
and exponential operator, 339
and vector commutator, 287–288
antisymmetry of, 290
changing valence of, 367
components of, 292–293
defined, 290
defined via parallel transport, 286–287
different notational conventions, 290
history of, 297–298
is a tensor, 291–292
number of components, 281, 338
Riemann curvature operator, 287
standard definition of, 360
symmetries of, 294–295, 337
vector holonomy, 293
visualization of, 289
Weyl curvature, see Weyl curvature
Riess, Adam G., 332
Robertson, 474
Rodrigues, Olinde, 17
discovered extrinsic curvature formula, 134
introduced spherical map, 131
Rodrigues-Gauss map, 131
rotation matrix, 152
Royal Institution of London, 381
Royal Observatory at Greenwich, 274
Saccheri, 5
Saddle Point, 196
Sagittarius A*, 331, 464
Schild’s Ladder, 284
Schild, Alfred, 284
Schmidt, Brian P., 332
Schutz, Bernard, 325
Schwarzschild radius, 321, 329
Schwarzschild Solution, 320
interior, 321
Schwarzschild, Karl, 319, 321
portrait of, 321
Second Fundamental Form, 151
sectional curvature, 282, 296–297
Segerman, Henry, 303
self-adjoint matrix, 153
dual 2-form, 470
Shape Operator, 151
also called the Second Fundamental Form, 164
Cartesian formula, 222
curvature formula, 222
curvature interpretation of, 159
curvature interpretation visualized, 160
determinant of, 153
determined by three normal curvatures, 161
diagonalized matrix of, 153
effect on asymptotic directions, 163
eigenvectors and eigenvalues of, 152, 223
general matrix of, 158, 161
geometric meaning of components, 160
is linear, 152
is symmetric, 153
matrix representation of, 152
of saddle, 223
visualization of, 150
Singer
Atiyah–Singer Index Theorem, 165
spherical map, 131
singular point, 195
singular value decomposition
discovered by Beltrami, 154
geometric derivation of, 154–156
in \(\mathbb{R}^3 \), 222
matrix form of, 155
singular values of, 154
statement of, 154
twist of, 154
visualization of, 155
Sink, 200
skew symmetric, 222
Snell, 58
Snell’s Law, 58
Fermat’s two proofs of, 58
Generalized, 59
mechanical proof of, 87
Newtonian proof of, 58
Ptolemy’s experiments, 58
soap films, 130
Source, 200
physics of, 201

spacetime
4-velocity, 316
4-vector, 74
absolute, observer-independent structure of, 75
causal structure of, 316
diagrams, 315–316
event, 74, 316
event horizon, 330
Gravitational Field Equation, 319
interval, 75
light cone, 316
Lorentz transformation, 76
metric, 314–315
metric tensor, 314
Minkowski, 74
null cone, 316
null vector, 315
singularity of, 330, 464
spacelike vector, 315
spherical Schwarzschild geometry, 320
symmetries as Möbius Transformations, 74–79
tetrad, 315
tidal forces, 317
time-like vector, 315
Weyl curvature, 319
Weyl curvature formula, 340
world-line, 315
spacetime interval, 75
preservation by Lorentz transformation, 77
vivid interpretation of, 75
spaghettification, 330
Special Theory of Relativity, 74, 382
aberration formula, 93
discrepancy between clocks in relative motion, 75
Einstein, 75
Einstein’s 1905 paper, 382
Lorentz, 75
Lorentz transformation, 76
Minkowski, 74
Poincaré, 75
spacetime interval, 75
Spectral Theorem, 157
sphere
Archimedes–Lambert metric, 86
Archimedes–Lambert projection, 85
area in cylindrical polar coordinates, 88
area of small circle on, 20
central cylindrical projection, 86
central projection, 32, 83
central-cylindrical metric, 86
circumference of small circle on, 20, 28
Clairaut’s theorem, 121
curvature of, 134, 142
extrinsic curvature, 132
genus of, 166
Global Gauss–Bonnet Theorem for, 168–169
holonomy on, 245–246
in \mathbb{R}^3, 92
isometries as Möbius Transformations, 73
Liebmann’s rigidity theorem, 21
longitude-latitude metric formula, 34
lune of, 168
Mercator projection, 86
other surfaces with same intrinsic geometry, 21
preservation of antipodal points used to derive rotations of, 73
projective map, 32
projective metric formula, 33
projective model, 32
Riemann, 44
rigidity of, 454–455
stereographic metric, 47, 83
stereographic projection of, 44
tessellation of, 26
Spherical Geometry
absolute unit of length, 15
Euclidean illusion for small figures, 16
gedesics are great circles, 6
Harriot’s angular excess theorem, 8
perpendicular bisector of, 25
Spherical Axiom, 6
spatial maps, 131
spatial and orientation, 135
spatial covers closed surface, 214
spatial curvature as local expansion of area by, 132
spatial degree determined by Euler characteristic, 174, 217
spatial degree of, 180
spatial folds of image, 182
“Gauss map”, 131
spatial generalized, 144
spatial index of, 178
spatial negative covering by, 173
spatial of bridged bagels, 174
spatial of thick pancake, 173, 174
spatial positive covering by, 173
spatial precedence for terminology, 131
spatial preserves holonomy, 255
spatial preserves parallel transport, 255
spatial related to honey-flow, 215
spatial “Rodrigues–Gauss map”, 131
topological degree of, 173
spin-matrix, 77
spin-transformation, 77
2-spinor, 70
spinal objects, 71
stable node, 200
Star Trek
Captain Kirk, 191, 482
Dr. McCoy, 38
forms proof of (“Star Trek phaser”) metric curvature formula, 452
geometric proof of (“Star Trek phaser”) metric curvature formula, 266
Mr. Spock, 191, 476, 482
NCC-1701, 435
(“Star Trek phaser”) metric curvature formula, 38
The City on the Edge of Forever, 38
The Doomsday Machine, 191
stereographic projection, 44
conformality, 46
formulas, 47–49
image of line, 45
image of point, 44
preservation of metric under Möbius transformation, 73
spatial preserves circles, 49
used to identify light rays with complex numbers, 77
Stiefel vector field, 208, 227
Stiefel, Eduard, 208
stiffness, 271
Stilwell, xxvii
Mathematics and Its History, xxi, xxvii
transformation of Escher diagram, xxvii, 63, 64
Stilwell, Elaine, xxvii
Stokes’s Theorem, see Fundamental Theorem of Exterior Calculus
streamline, 195
stress-energy tensor, 326
surface of revolution
Clairaut’s Theorem, see Clairaut’s Theorem
curve of, 114, 142, 220, 221
meridian of, 121
normal of, 168
of constant curvature, 89
of constant positive curvature, 21
of tractrix is pseudosphere, 22
parallel of, 123
principal radii of curvature, 112
total curvature, 169
surfaces of constant mean curvature, 480
SVD, see singular value decomposition
symmetric matrix, 153
geometric meaning of, 156
Tabachnikov, Sergei, 58
tensors, 360–369
addition of, 361
and Linear Algebra, 361–362, 364–365
antisymmetric, 369, 370
basis tensors, 362
changing valence, 366–368
components of, 362–363
contraction, 365–366
disturbed vectors, 363
covariant indices, 363
definition of, 360