Contents

Acknowledgments xi
Chapter 1. Introduction 1
Chapter 2. A preview 5
 2.1 Basic concepts 5
 2.2 First example: SU(n) 8
 2.3 Second example: E6 family 12
Chapter 3. Invariants and reducibility 14
 3.1 Preliminaries 14
 3.2 Defining space, tensors, reps 17
 3.3 Invariants 19
 3.4 Invariance groups 22
 3.5 Projection operators 23
 3.6 Spectral decomposition 25
Chapter 4. Diagrammatic notation 27
 4.1 Birdtracks 27
 4.2 Clebsch-Gordan coefficients 29
 4.3 Zero- and one-dimensional subspaces 31
 4.4 Infinitesimal transformations 32
 4.5 Lie algebra 35
 4.6 Other forms of Lie algebra commutators 37
 4.7 Classification of Lie algebras by their primitive invariants 38
 4.8 Irrelevancy of clebsches 38
 4.9 A brief history of birdtracks 39
Chapter 5. Recouplings 42
 5.1 Couplings and recouplings 42
 5.2 Wigner 3n-j coefficients 44
 5.3 Wigner-Eckart theorem 46
Chapter 6. Permutations 49
 6.1 Symmetrization 49
 6.2 Antisymmetrization 51
 6.3 Levi-Civita tensor 53
 6.4 Determinants 55
 6.5 Characteristic equations 57
CONTENTS

6.6 Fully (anti)symmetric tensors 57
6.7 Identically vanishing tensors 58

Chapter 7. Casimir operators 60

7.1 Casimirs and Lie algebra 61
7.2 Independent casimirs 62
7.3 Adjoint rep casimirs 64
7.4 Casimir operators 64
7.5 Dynkin indices 66
7.6 Quadratic, cubic casimirs 69
7.7 Quartic casimirs 70
7.8 Sundry relations between quartic casimirs 72
7.9 Dynkin labels 75

Chapter 8. Group integrals 76

8.1 Group integrals for arbitrary reps 77
8.2 Characters 79
8.3 Examples of group integrals 80

Chapter 9. Unitary groups 82

P. Cvitanović, H. Elvang, and A. D. Kennedy

9.1 Two-index tensors 82
9.2 Three-index tensors 83
9.3 Young tableaux 84
9.4 Young projection operators 90
9.5 Reduction of tensor products 94
9.6 $U(n)$ recoupling relations 97
9.7 $U(n)$ 3n-j symbols 98
9.8 $SU(n)$ and the adjoint rep 102
9.9 An application of the negative dimensionality theorem 104
9.10 $SU(n)$ mixed two-index tensors 105
9.11 $SU(n)$ mixed defining \otimes adjoint tensors 106
9.12 $SU(n)$ two-index adjoint tensors 109
9.13 Casimirs for the fully symmetric reps of $SU(n)$ 114
9.14 $SU(n), U(n)$ equivalence in adjoint rep 115
9.15 Sources 116

Chapter 10. Orthogonal groups 118

10.1 Two-index tensors 119
10.2 Mixed adjoint \otimes defining rep tensors 120
10.3 Two-index adjoint tensors 121
10.4 Three-index tensors 124
10.5 Gravity tensors 127
10.6 $SO(n)$ Dynkin labels 130

Chapter 11. Spinors 132

P. Cvitanović and A. D. Kennedy

11.1 Spinography 133
11.2 Fierzing around 136
11.3 Fierz coefficients 140
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4</td>
<td>6-j coefficients</td>
<td>141</td>
</tr>
<tr>
<td>11.5</td>
<td>Exemplary evaluations, continued</td>
<td>143</td>
</tr>
<tr>
<td>11.6</td>
<td>Invariance of γ-matrices</td>
<td>143</td>
</tr>
<tr>
<td>11.7</td>
<td>Handedness</td>
<td>145</td>
</tr>
<tr>
<td>11.8</td>
<td>Kahane algorithm</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>Chapter 12. Symplectic groups</td>
<td>148</td>
</tr>
<tr>
<td>12.1</td>
<td>Two-index tensors</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Chapter 13. Negative dimensions</td>
<td>151</td>
</tr>
<tr>
<td>P. Cvitanović and A. D. Kennedy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>$SU(n) = SU(-n)$</td>
<td>152</td>
</tr>
<tr>
<td>13.2</td>
<td>$SO(n) = Sp(-n)$</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Chapter 14. Spinors’ symplectic sisters</td>
<td>155</td>
</tr>
<tr>
<td>P. Cvitanović and A. D. Kennedy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.1</td>
<td>Spinsters</td>
<td>155</td>
</tr>
<tr>
<td>14.2</td>
<td>Racah coefficients</td>
<td>160</td>
</tr>
<tr>
<td>14.3</td>
<td>Heisenberg algebras</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>Chapter 15. $SU(n)$ family of invariance groups</td>
<td>162</td>
</tr>
<tr>
<td>15.1</td>
<td>Reps of $SU(2)$</td>
<td>162</td>
</tr>
<tr>
<td>15.2</td>
<td>$SU(3)$ as invariance group of a cubic invariant</td>
<td>164</td>
</tr>
<tr>
<td>15.3</td>
<td>Levi-Civita tensors and $SU(n)$</td>
<td>167</td>
</tr>
<tr>
<td>15.4</td>
<td>$SU(4)$–$SO(6)$ isomorphism</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>Chapter 16. G_2 family of invariance groups</td>
<td>170</td>
</tr>
<tr>
<td>16.1</td>
<td>Jacobi relation</td>
<td>171</td>
</tr>
<tr>
<td>16.2</td>
<td>Alternativity and reduction of f-contractions</td>
<td>172</td>
</tr>
<tr>
<td>16.3</td>
<td>Primitivity implies alternativity</td>
<td>174</td>
</tr>
<tr>
<td>16.4</td>
<td>Casimirs for G_2</td>
<td>177</td>
</tr>
<tr>
<td>16.5</td>
<td>Hurwitz’s theorem</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>Chapter 17. E_8 family of invariance groups</td>
<td>180</td>
</tr>
<tr>
<td>17.1</td>
<td>Two-index tensors</td>
<td>181</td>
</tr>
<tr>
<td>17.2</td>
<td>Decomposition of Sym3A</td>
<td>183</td>
</tr>
<tr>
<td>17.3</td>
<td>Diophantine conditions</td>
<td>186</td>
</tr>
<tr>
<td>17.4</td>
<td>Dynkin labels and Young tableaux for E_8</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>Chapter 18. E_6 family of invariance groups</td>
<td>190</td>
</tr>
<tr>
<td>18.1</td>
<td>Reduction of two-index tensors</td>
<td>190</td>
</tr>
<tr>
<td>18.2</td>
<td>Mixed two-index tensors</td>
<td>193</td>
</tr>
<tr>
<td>18.3</td>
<td>Diophantine conditions and the E_6 family</td>
<td>194</td>
</tr>
<tr>
<td>18.4</td>
<td>Three-index tensors</td>
<td>194</td>
</tr>
<tr>
<td>18.5</td>
<td>Defining \otimes adjoint tensors</td>
<td>196</td>
</tr>
<tr>
<td>18.6</td>
<td>Two-index adjoint tensors</td>
<td>201</td>
</tr>
<tr>
<td>18.7</td>
<td>Dynkin labels and Young tableaux for E_6</td>
<td>202</td>
</tr>
<tr>
<td>18.8</td>
<td>Casimirs for E_6</td>
<td>205</td>
</tr>
<tr>
<td>18.9</td>
<td>Subgroups of E_6</td>
<td>207</td>
</tr>
<tr>
<td>18.10</td>
<td>Springer relation</td>
<td>208</td>
</tr>
</tbody>
</table>
Chapter 19. F_4 family of invariance groups

19.1 Two-index tensors
19.2 Defining \otimes adjoint tensors
19.3 Jordan algebra and $F_4(26)$
19.4 Dynkin labels and Young tableaux for F_4

Chapter 20. E_7 family and its negative-dimensional cousins

20.1 $SO(4)$ family
20.2 Defining \otimes adjoint tensors
20.3 Lie algebra identification
20.4 E_7 family
20.5 Dynkin labels and Young tableaux for E_7

Chapter 21. Exceptional magic

21.1 Magic Triangle
21.2 A brief history of exceptional magic
21.3 Extended supergravities and the Magic Triangle
Epilogue

Appendix A. Recursive decomposition

Appendix B. Properties of Young projections

H. Elvang and P. Cvitanović

B.1 Uniqueness of Young projection operators
B.2 Orthogonality
B.3 Normalization and completeness
B.4 Dimension formula

Bibliography

Index
Chapter One

Introduction

This monograph offers a derivation of all classical and exceptional semisimple Lie algebras through a classification of "primitive invariants." Using somewhat unconventional notation inspired by the Feynman diagrams of quantum field theory, the invariant tensors are represented by diagrams; severe limits on what simple groups could possibly exist are deduced by requiring that irreducible representations be of integer dimension. The method provides the full Killing-Cartan list of all possible simple Lie algebras, but fails to prove the existence of F_4, E_6, E_7 and E_8.

One simple quantum field theory question started this project; what is the group-theoretic factor for the following Quantum Chromodynamics gluon self-energy diagram

\[\begin{array}{ccc}
 & \bullet & \\
 \bullet & \rightarrow & \bullet \\
 \end{array} \quad = ? \tag{1.1} \]

I first computed the answer for $SU(n)$. There was a hard way of doing it, using Gell-Mann f_{ijk} and d_{ijk} coefficients. There was also an easy way, where one could doodle oneself to the answer in a few lines. This is the “birdtracks” method that will be developed here. It works nicely for $SO(n)$ and $Sp(n)$ as well.

Out of curiosity, I wanted the answer for the remaining five exceptional groups. This engendered further thought, and that which I learned can be better understood as the answer to a different question. Suppose someone came into your office and asked, “On planet Z, mesons consist of quarks and antiquarks, but baryons contain three quarks in a symmetric color combination. What is the color group?” The answer is neither trivial nor without some beauty (planet Z quarks can come in 27 colors, and the color group can be E_6).

Once you know how to answer such group-theoretical questions, you can answer many others. This monograph tells you how. Like the brain, it is divided into two halves: the plodding half and the interesting half.

The plodding half describes how group-theoretic calculations are carried out for unitary, orthogonal, and symplectic groups (chapters 3–15). Except for the “negative dimensions” of chapter 13 and the “spinster” of chapter 14, none of that is new, but the methods are helpful in carrying out daily chores, such as evaluating Quantum Chromodynamics group-theoretic weights, evaluating lattice gauge theory group integrals, computing $1/N$ corrections, evaluating spinor traces, evaluating casimirs, implementing evaluation algorithms on computers, and so on.

The interesting half, chapters 16–21, describes the “exceptional magic” (a new construction of exceptional Lie algebras), the “negative dimensions” (relations between bosonic and fermionic dimensions). Open problems, links to literature, software and other resources, and personal confessions are relegated to the epilogue, monograph’s Web page birdtracks.eu. The methods used are applicable to field-theoretic model building. Regardless of their potential applications, the results are sufficiently intriguing to justify this entire undertaking. In what follows we shall forget about quarks and quantum field theory, and offer instead a somewhat unorthodox introduction to the theory of Lie algebras. If the style is not Bourbaki [29], it is not so by accident.

There are two complementary approaches to group theory. In the canonical approach one chooses the basis, or the Clebsch-Gordan coefficients, as simply as possible. This is the method which Killing [189] and Cartan [43] used to obtain the complete classification of semisimple Lie algebras, and which has been brought to perfection by Coxeter [67] and Dynkin [105]. There exist many excellent reviews of applications of Dynkin diagram methods to physics, such as refs. [312, 126].

In the tensorial approach pursued here, the bases are arbitrary, and every statement is
invariant under change of basis. Tensor calculus deals directly with the invariant blocks of
the theory and gives the explicit forms of the invariants, Clebsch-Gordan series, evaluation
algorithms for group-theoretic weights, etc.

The canonical approach is often impractical for computational purposes, as a choice of
basis requires a specific coordinatization of the representation space. Usually, nothing that
we want to compute depends on such a coordinatization; physical predictions are pure scalar
numbers (“color singlets”), with all tensorial indices summed over. However, the canonical
approach can be very useful in determining chains of subgroup embeddings. We refer
the reader to refs. [312, 126] for such applications. Here we shall concentrate on tensorial
methods, borrowing from Cartan and Dynkin only the nomenclature for identifying irre-
ducible representations. Extensive listings of these are given by McKay and Patera [234] and
Slansky [312].

To appreciate the sense in which canonical methods are impractical, let us consider using
them to evaluate the group-theoretic factor associated with diagram (1.1) for the exceptional
group E_8. This would involve summations over 8 structure constants. The Cartan-Dynkin
construction enables us to construct them explicitly; an E_8 structure constant has about
$248^3/6$ elements, and the direct evaluation of the group-theoretic factor for diagram (1.1) is
tedious even on a computer. An evaluation in terms of a canonical basis would be equally
tedious for $SU(16)$; however, the tensorial approach illustrated by the example of section 2.2
yields the answer for all $SU(n)$ in a few steps.

Simplicity of such calculations is one motivation for formulating a tensorial approach
to exceptional groups. The other is the desire to understand their geometrical significance.
The Killing-Cartan classification is based on a mapping of Lie algebras onto a Diophan-
tine problem on the Cartan root lattice. This yields an exhaustive classification of simple
Lie algebras, but gives no insight into the associated geometries. In the 19th century, the
geometries or the invariant theory were the central question, and Cartan, in his 1894 thesis,
made an attempt to identify the primitive invariants. Most of the entries in his classifica-
tion were the classical groups $SU(n)$, $SO(n)$, and $Sp(n)$. Of the five exceptional algebras,
Cartan [44] identified G_2 as the group of octonion isomorphisms and noted already in his
thesis that E_7 has a skew-symmetric quadratic and a symmetric quartic invariant. Dickson
characterized E_6 as a 27-dimensional group with a cubic invariant. The fact that the orthog-
onal, unitary and symplectic groups were invariance groups of real, complex, and quaternion
norms suggested that the exceptional groups were associated with octonions, but it took
more than 50 years to establish this connection. The remaining four exceptional Lie algebras
emerged as rather complicated constructions from octonions and Jordan algebras, known as
the Freudenthal-Tits construction. A mathematician’s history of this subject is given in a
delightful review by Freudenthal [130]. The problem has been taken up by physicists twice,
first by Jordan, von Neumann, and Wigner [173], and then in the 1970s by Gürsey and col-
laborators [149, 151, 152]. Jordan et al.’s effort was a failed attempt at formulating a new
quantum mechanics that would explain the neutron, discovered in 1932. However, it gave
rise to the Jordan algebras, which became a mathematics field in itself. Gürsey et al. took
up the subject again in the hope of formulating a quantum mechanics of quark confinement;
however, the main applications so far have been in building models of grand unification.

Although beautiful, the Freudenthal-Tits construction is still not practical for the evaluation
of group-theoretic weights. The reason is this: the construction involves $[3 \times 3]$ octonionic
matrices with octonion coefficients, and the 248-dimensional defining space of E_8 is written as
direct sum of various subspaces. This is convenient for studying subgroup embeddings [291],
but awkward for group-theoretical computations.

The inspiration for the primitive invariants construction came from the axiomatic approach
of Springer [314, 315] and Brown [34]: one treats the defining representation as a single
vector space, and characterizes the primitive invariants by algebraic identities. This approach solves the problem of formulating efficient tensorial algorithms for evaluating group-theoretic weights, and it yields some intuition about the geometrical significance of the exceptional Lie groups. Such intuition might be of use to quark-model builders. For example, because $SU(3)$ has a cubic invariant $\epsilon^{abc} q_aoqbq_c$, Quantum Chromodynamics, based on this color group, can accommodate 3-quark baryons. Are there any other groups that could accommodate 3-quark singlets? As we shall see, G_2, F_4, and E_6 are some of the groups whose defining representations possess such invariants.

Beyond its utility as a computational technique, the primitive invariants construction of exceptional groups yields several unexpected results. First, it generates in a somewhat magical fashion a triangular array of Lie algebras, depicted in figure 1.1. This is a classification of Lie algebras different from Cartan’s classification; in this new classification, all exceptional Lie groups appear in the same series (the bottom line of figure 1.1). The second unexpected result is that many groups and group representations are mutually related by interchanges of symmetrizations and antisymmetrizations and replacement of the dimension parameter n by $-n$. I call this phenomenon “negative dimensions.”

For me, the greatest surprise of all is that in spite of all the magic and the strange diagrammatic notation, the resulting manuscript is in essence not very different from Wigner’s [345] 1931 classic. Regardless of whether one is doing atomic, nuclear, or particle physics, all physical predictions (“spectroscopic levels”) are expressed in terms of Wigner’s $3n-j$ coefficients, which can be evaluated by means of recursive or combinatorial algorithms.

Parenthetically, this book is not a book about diagrammatic methods in group theory. If you master a traditional notation that covers all topics in this book in a uniform way, more elegantly than birdtracks, more power to you. I would love to learn it.
Figure 1.1 The “Magic Triangle” for Lie algebras. The “Magic Square” is framed by the double line. For a discussion, consult chapter 21.
Index

2-index tensor
- $SO(n)$, 119
- $SO(n)$ adjoint, 121
- $SU(n)$ adjoint, 109
- $U(n)$, 82
- Young tableau, 89

3-index tensor
- $SO(n)$, 124
- $U(n)$, 83

3-j coefficient, 44
3-j symbol, 44

$SU(n)$, 98–105

3n-j, $U(n)$, 98
3n-j coefficient, 40
3n-j symbol, 44
3-vertex, spinster, 157

6-j coefficient
- spinorial, 141–143
- 6-j coefficient, 44
- 6-j symbol, 44

abelian group, 15
adjoint rep, 32, 33

$SU(n)$, 109
- dimension, 32
- reality, 35
- $SU(n)$, 102, 106, 115

algebra, 17
- associative, 17
- of invariants, 22, 108
alternativity relation, 172, 174, 179

Angelopoulos, E., 232
antisymmetric tensor, 58
antisymmetricization operator, 51, 83

AS relation, 41
associative algebra, 17

basis vector, 15
Betti number, 64, 233
binor, 151, 154, 160, 161, 218
birdtracks, 27–37
- history, 39
- named, 41
Bourbaki, 1, 232
bra-ket formalism, 47

Cartan
- canonical basis, 35, 38
- roots, 43
- spinor, 132
Cartan, E., 132
Cartan-Killing classification, 1, 2, 60, 75, 186, 235
- form, 35, 64, 181
casimir, 60–75
- orthogonality, 68
- quartic, 70–75
- $SU(n)$, 114
- symmetrized, 62
Casimir operator, see casimir character, 79, 231
- orthonormality, 79

characteristic equation, 7, 9, 23, 57, 62
E_6, 193, 197
E_7, 222
E_8, 182, 229
F_4, 215, 217
$SU(3)$, 166

$U(n)$ 2-index tensor, 82
$U(n)$ 3-index tensor, 84
class algebra, 26
clebsch, 7, 29–32
- irrelevancy, 38

Clebsch-Gordan coefficient, see clebsch series, 44, 78

Clifford algebra
- Grassmann extension, 155, 159
-color algorithm, 93
-commutator
- Lie algebra, 36, 37
- Lorentz group, 38
completeness
- relation, 24, 31, 43
- spinster, 157
- Wigner 3-j, 160
-conjugate, hermitian, 18
-coordinate reflection, 32

Coxeter
dual number, 233
-graph, 186
-Coxeter, H. S. M., 75, 232
cubic invariant

\(SU(3), 164–166 \)

curvature scalar, 129

decomposition

irreducible, 26

\(S_n \) reps, 94

defining

irrep, 25

rep, 18

vector space, 17

Deligne, P., 232

determinant

birdtrack, 57

diagonalizing matrix, 23

diagrammatic notation, see birdtracks

history, 39

d\(_{ijk}\) tensor, 111–113

\(F_4, 211 \)

dimension

adjoint rep, 32

color algorithm, 93

group, 32

Lie algebra, 32

\(SO(n) \), 131

\(U(n) \), 89, 92

Dirac, P. A. M., 132, 155

Dirac \(\gamma \) matrix, 43, 132–147, 168, 174

Grassmann valued, 155

direct product, Young tableau, 95

dual

Coxeter number, 233

rep, 16, 18

space, 16

vector space, 18

Dynkin diagram, 75

Dynkin index, 66–68

cubic, 69

\(F_4, 213 \)

quadratic, 67, 69

\(SO(n) \), 120

sum rules, 68

\(U(n) \) 2-index tensor, 83

Dynkin label, 39, 75, 87

\(SO(n) \), 130

\(SU(n) \), 103

\(E_6, 190–209 \)

Springer construction, 208–209

triality, 205

\(E_7, 218–228, 234 \)

\(E_8, 180–190 \)

\(E_8 \) primitive assumption, 180

El Houari, M., 232

Elvang, E., xi

\(F_4, 210–217 \)

Feynman diagram, 27, 40

Fierz coefficients, 136–141

Fierz identity, 139

Frege, F.L.G., 39

Frobenius’s theorem, 178

\(G_2, 170–179 \)

Gell-Mann \(d_{ijk} \) tensor, see \(d_{ijk} \) tensor

\(\lambda \) matrix, 33, 38, 43

generator

transformation, 32

\(GL(n, F) \), 16

grand unified theories, 70

Grassmann, 155

Clifford algebra, 155

extension, Clifford algebra, 159

gravity tensors, 127

Gross, B. H., 234

group, 14–15

abelian, 15

dimension, 32

general linear, 16

integral, 76–81

integral, \(SU(n) \), 80

invariance, 22

order, 15

\(SU(3) \), 164

symmetric, 49–58

Hamilton-Cayley, see characteristic equation

handedness

spinorial, 145–146

Harter, W. G., 14, 26

Heisenberg algebra, 155, 161

hermitian

conjugation, 18, 28

matrix, 19

history

birdtracks, 39

Hurwitz’s theorem, 179

IHX relation, 41

index permutation, 49

index summation, repeated, 15

infinitesimal transformation, 32–38

invariance condition, 33

antisymmetric tensor, 58

symmetric tensor, 58

invariance group, 22

invariant, 20

algebra, 22, 108

composed, 20

matrix, 19

primitive tensor, 21

tensor, 19

tensor operator, 48

tree, 21

vector, 19

irreducible
INDEX

decomposition, 26
representation, see irrep
irrep, 25–26, 77

Jacobi relation, 37–180
Johansen, A., xi

Kahane algorithm, 146–147
Kamiya, N., 232
Klein-Nishina crosssection, 132
Kronecker delta, 16, 22, 49
Kronecker product
Young tableau reduction, 95

Landsberg, J. M., 233
lattice gauge theories, 70
Levi-Civita tensor, 21, 53–55, 63, 102, 104, 106, 116, 131, 152, 153
E_6, 207
$SO(3)$, 172
$SU(3)$, 166
$SU(4)$ - $SO(6)$, 168
$SU(n)$, 167

supersymmetric invariants, 218

Levinson, I. B., 47
Lie algebra, 35–38
$SO(n)$, 38
$U(n)$, 38
commutator, 36, 37
dimension, 32
Lie product, 17
linear space, 15
Lorentz group commutator, 38

Magic Triangle, 229–234
Mandelstam variables, 41, 44
Manivel, L., 233
matrix
diagonalizing, 23
hermitian, 19
invariant, 19
product, 17
rep, 17
metaplectic reps of $Sp(n)$, 155

Minkowski group $SO(1, 3)$, 118
multiparticle state, 89

negative dimensions, 149, 151–154
E_7, 218
spinsters, 159
$SU(n)$ 3-j, 104

normalization
Young projection operator, 240

observables, simultaneous, 25
Okubo, S., 232
order of a group, 15
orthogonal group, see $SO(n)$

orthogonality
casimir, 68
relation, 24
spinor, 136
spinster, 157
Wigner 3-j, 160
Young projection operators, 240

orthonormality
relation, 31

Pauli matrix, 33
Penrose
binor, 154, 218
Levi-Civita tensor, 53
negative dimensions, 151
strand network, 141
Young projection operators, 116, 127

Penrose, R., xi, 40, 160, 161
permutations, 49–58
phase convention, 44
plethysm, 49
primitive
invariant tensor, 21
primitiveness assumption, 21
E_8 family, 180
product
Lie, 17
matrix, 17
projection operator, 23–26, 29–32, 50
propagator, 27, 39

quartic casimir, 70–75

relations, 72

Racah coefficient, 160
recoupling coefficient, 158
recoupling relations, 44
$U(n)$, 97
reduced matrix elements, 47–48
reflection, coordinate, 32
rep
character, 79
defining, 18
dual, 16, 18
irreducible, 26, 77
matrix, 17
spinster, dimension, 159
standard, 16
$SU(n)$, 89
tensor, 18
repeated index summation, 15
representation, see rep
representation space, 16
Ricci tensor, 129
Riemann-Christoffel tensor, 127
Sp symmetric group, 49–58
scalar multiplication, 15
Schur’s Lemma, 6, 47, 135
secular equation, see characteristic equation
sextonians, 177
simultaneous observables, 25
singlet, 77
skew-symmetric invariant, 63, 148, 153, 155, 157, 167, 225
$SO(1, 3)$ Minkowski group, 118
$SO(n)$, 118–131
casimirs, 62, 63
dimensions, 131
Dynkin labels, 130
Lie algebra, 38
spinor reps, 132–147
space
adjoint, 33
defining vector, 17
dual, 16, 18
linear, 15
vector, 15
span, 15
special unitary group, see $SU(n)$
spectral decomposition, 14, 25
spinography, 133–147
spinor, 132–147
dimension sum rule, 138
handedness, 145–146
Kahane algorithm, 146–147
orthogonality, 136
spinster, 155–161
completeness, 157
orthogonality, 157
recoupling coefficient, 158
rep dimension, 159
trace, 157
$Sp(n)$, 148–150
casimirs, 63
metaplectic reps, 155
spinster reps, 155–161
Springer E_6 construction, 208–209
standard representation space, 16
standard tableau, 87
strand network, 141
structure constant, 17, 36
STU relation, 41
s, t, u variables, 44
$SU(3)$, 164–166
subgroup, 15
embedding, 39
sum rule
spinor dimensions, 138
$SU(n)$ 3-j, 6-j, 101
$SU(n)$, 162–169
3-j, 98
adjoint rep, 102, 106, 115
casimirs, 114
Dynkin label, 103
Lie algebra, 38
Young tableaux, 89
symmetric group, 49–58
tensors, 57
tensors, invariance, 58
symmetrization operator, 50, 83
symmetry breaking, 39
symplectic group, see $Sp(n)$
symplectic invariant, 148
tensor, 18
2-index, $U(n)$, 82
3-index, $SO(n)$, 124
3-index, $U(n)$, 83
adjoint \times defining, $SU(n)$, 105
decomposition, 94
fully antisymmetric, 58
fully symmetric, 57
gravity, 127
invariant, 19
mixed adjoint \otimes defining, $SO(n)$, 120
operator
invariant, 48
rep, 18
vanishing, 58
trace
birdtrack, 56
spinster, 157
transformation
generator, 32
infinitesimal, 32–38
tree invariant, 21
triality, E_6, 205
trivalent graph, 40, 41
$U(2)$
Young tableau, 89
$U(n)$, 82–115
2-index tensor, 82
3-index tensor, 83
decomposition, 94
dimension, 89
Lie algebra, 38
recoupling relations, 97
rep dimension, 92, 93
Young proj. oper, 239–242
unitary group, see $U(n)$
vacuum bubbles, 45, 47
Vanagas, V. V., 47
vanishing tensors, 58
vector
basis, 15
invariant, 19
space, 15
defining, 17
dual, 18
INDEX

Vogel, P., 232

weak coupling expansions, 70
Weyl tensor, 129
Weyl, H., 14, 132, 138
Wigner
 6j coefficient, 65
 3-j completeness, 160
 3-j orthogonality, 160
 3n-j symbol, 44
 3n-j coefficient, 40
Wigner, E. P., 3, 40
Wigner-Eckart theorem, 6, 42, 46–139

Young polynomial, 92
Young projection operator, 90–92
 3-j, 98
 completeness, 94
 decomposition, 94
 normalization, 91, 240
 orthogonality, 240
 properties, 92, 239–242
Young tableau, 84–89
 2-index tensor, 89
 3-j, 98
 conjugate, 103
 definition, 87
 Kronecker product reduction, 95
 length, 91
 standard, 87
 transpose, 87
 U(2), 89
 U(n), 89
 U(n) dimension, 92
Yutsis, A. P., 47