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Chapter One

Introduction

1.1 Time-Delay Systems

Time-delay systems, also called systems with aftereffect or dead-time, hereditary
systems, equations with deviating argument, or differential-difference equations
[42], are ubiquitous in practice. Some representative examples are found in

• chemical industry: rolling mills, milling processes, cooling systems, combus-
tion systems, chemical processes,

• electrical and mechanical engineering: networked control systems, teleopera-
tion, robotic manipulators, unmanned aerial vehicles,

• biomedical engineering: 3D printing/additive manufacturing, neuromuscular
electrical stimulation,

• managementand traffic science: trafficflow, supply chain, populationdynamics.

The most common forms of time delay in dynamic phenomena that arise in
engineering practice are actuator and sensor delays [133, 134]. Due to the time
it takes to receive the information needed for decision-making, to compute con-
trol decisions, and to execute these decisions, feedback systems often operate in
the presence of delays. As shown in figure 1.1, actuator and sensor delays are
involved in feedback loops.

Another big family of time delays are transmission delays in networked con-
trol systems (NCS). As the name implies, NCSs are systems where the plant
is controlled via a communication network. The typical feature of an NCS, as
illustrated in figure 1.2, is that information (plant output, control input, etc.)
is exchanged through a network among system components (sensor nodes, con-
troller nodes, actuator nodes, etc.). In comparison with traditional feedback
control systems, where the components are usually connected via point-to-point
cables, the introduction of communication network media brings great advan-
tages, such as low cost, reduced weight, simple installation/maintenance, and
long-distance control. However, the performance of an NCS is heavily affected
by the communication delays in both the controller-to-actuator and sensor-to-
controller channels.

Although the presence of delays sometimes may have a stabilizing effect,
for some special systems, time delay is a source of instability in general. In
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Figure 1.2. Networked control systems with transmission delays in controller-to-
actuator and sensor-to-controller channels

accordance with Bode’s performance limitation formulas, the existence of delays
can severely hamper the performance of physical systems. As a result, the poor
performance and catastrophic instability created by delays require the designer
to take into account the delays in the control synthesis.

Besides their practical importance, time-delay systems also contribute many
mathematical challenges to the analysis and design in control theory. As is well
known, the time-delay systems belong to the class of functional differential equa-
tions that are infinite-dimensional, as opposed to the finite-dimensional ordinary
differential equations (ODE). The state of the delay system is a function (or a
vector of functions) rather than a vector. Its characteristic equation is not a poly-
nomial, but involves exponentials. Thus the stability analysis requires Krasovskii
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functionals rather than Lyapunov functions. For the aforementioned reasons,
time-delay systems are both of theoretical and practical importance, and they
have drawn the attention of scholars including control engineers, scientists and
mathematicians.

Over the past seventy years, delay systems have been an active area of rese-
arch in control engineering, and major breakthroughs have been reported to deal
with delays. The first systematic work of methodological significance may go
back to 1946 in the paper by Tsypkin [129]. A couple of breakthroughs in sta-
bility analysis were reported in the late 1950s/early 1960s with the papers by
Razumikhin in 1956 [115] and by Krasovskii in 1962–1963 [74, 75]. As a coun-
terpart of Lyapunov methods for systems without delay, two main methods are
named after their authors: the Krasovskii method of Lyapunov functionals and
the Razumikhin method of Lyapunov functions. They are frequently used for
stability analysis of time-delay systems. Almost during the same period, Smith
introduced the celebrated Smith predictor in 1959 [119], which has seen success
in industrial applications, and perhaps been second in popularity to proportional
integral differential (PID) controllers, especially among process control practitio-
ners [106].

The next well-known landmark in the control of time-delay systems occurred
during the years 1978–1982, when the framework of “finite spectrum assign-
ment” and the “reduction” approach were proposed by Manitius and Olbrot
in 1979 [104], Kwon and Pearson in 1980 [94], and Artstein in 1982 [2]. Their
basic idea was to make use of the future values of the state, i.e., the so-called
“predictor state,” in the feedback laws, to compensate for the delay. After the
control signal reaches the plant, in a time interval equal to the delay, the state
evolves as if there were no delay at all.

Another burst of research activity occurred in the 1990s after the introduc-
tion of linear matrix inequalities (LMI). Because of the unavailability of efficient
numerical algorithms for the general form of LMI, most of the earlier works on
the stability of linear systems via the Lyapunov method were formulated in
terms of Lyapunov equations and algebraic Riccati equations. With the realiza-
tion that LMI is a convex optimization problem, the direct Lyapunov method
for linear ODEs leading to stability conditions in terms of LMIs became popular.
The development of the efficient interior point method led to the formulation of
many control problems and their solutions in the form of LMIs [21], which are
capable of providing the desired stability/performance guarantees [41, 42].

In subsequent years, thousands of papers and dozens of books have appeared
to deal with the control problem of time-delay systems by adopting various tech-
niques coming from both finite-dimensional and infinite-dimensional systems.
The most recent significant books and surveys summarizing the achievements
are those by Gu and Niculescu [53], Niculescu [109], Gu, Kharitonov, and Chen
[51], Zhong [136], Richard [116], Krstic [80] and Fridman [41, 42]. Still, many
basic control problems for time-delay systems remain unsolved. Control of delay
systems remains a very active area of research.
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1.2 Delay Compensation or Not

Among the basic control problems for time-delay systems, the most challenging
ones may arguably be those in which the system has to be controlled through
a delayed input, which are non-trivial even when the system is linear and even
when the delay is constant. To illustrate the multitude of possible methods in
control of time-delay systems, it is useful to consider control of the standard
linear state-space model

Ẋ(t)=AX(t)+BU(t−D), (1.1)

where X(t) is the state vector, U(t) is the control input with the constant delay
D> 0, and A and B are system and input matrices with appropriate dimensions.
If the delay value is zero, the plant (1.1) is the standard linear time-invariant
(LTI) system such that

Ẋ(t)=AX(t)+BU(t) (1.2)

and the standard control feedback is such that

U(t)=KX(t), (1.3)

where K renders the closed-loop system matrix A+BK Hurwitz.

1.2.1 No Compensation and State Delay

When the delay value is larger than zero and no compensation is employed for
the input delay, the feedback law becomes

U(t−D)=KX(t−D), (1.4)

which renders the closed-loop system such that

Ẋ(t)=AX(t)+BKX(t−D), (1.5)

=AX(t)+A1X(t−D), (1.6)

where A1 =BK. The system (1.6) represents the simplest LTI system with a
single discrete constant state delay. As a result, the control problem with input
delay is transformed into a problem with state delay. Concentrating on the sys-
tem (1.6), a large share of the literature investigates the control gain K and
the maximum upper bound of delay that still guarantees the stability with-
out compensation [49, 54, 109–111]. Furthermore, the control problem for the
single discrete state delay can be nontrivially extended to the case of multiple
discrete state delays such that Ẋ(t)=AX(t)+

∑N
k=1AkX(t−Dk), the case of
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distributed state delay such that Ẋ(t)=AX(t)+
∫ 0

−D
AdX(t+ θ)dθ, the case of

time-varying state delay such that Ẋ(t)=AX(t)+A1X
(
t−D(t)

)
, and so on.

To deal with distinct types of state delay, a variety of LMI-based methods are
proposed, such as the H∞ control [45, 47, 125], the descriptor system approach
[39], and so on. Different LMI techniques like the Schur complement lemma,
Jensen’s inequality, Wirtinger’s inequality, and Halanay’s inequality could result
in delicate differences on the maximum upper bound of delay to ensure stability
[38–47, 49–54, 118]. And the different Lyapunov-based functionals lead to differ-
ent delay-dependent or delay-independent stability conditions, which have dis-
tinct conservatism. Furthermore, the sampled-data networked control systems,
which are widely used in computer implementation nowadays, can also be trans-
formed into time-delay systems and be analyzed using the methods for time-
delay systems [95–100].

1.2.2 Delay Compensation by Predictor Feedback

As presented above, a large portion of the available results are finite-dimensional
control laws without compensation for delay, whose applicability are limited to
systems with “short” delays. In contrast, infinite-dimensional control laws are
expected to compensate for the delay so that the stabilization of general systems
with long delays can be achieved. Considering the LTI systems with input delay
(1.1), instead of the control law (1.4) with no compensation, we aim to compen-
sate for the delay by the control design such that U(t−D)=KX(t) or U(t)=
KX(t+D). The effective method to compensate for the delay with arbitrarily
finite length is the well-known “predictor feedback,” which is also called the
“finite spectrum assignment” or “reduction” method. Just as its name implies,
the class of predictor feedback laws make use of the future (predicted) values
of the state, so that they are able to compensate for the delay. In other words,
after the control signal reaches the state of the plant, the delay is compensated
for and the state evolves as if there were no delay at all. A challenge in develop-
ing predictor feedback laws is the determination of an implementable form for
the future values of the state. This is overcome by a distributed integration of
the actuator state over the past time interval. Having determined the predictor
state, we then obtain the control law by replacing the state in a nominal state
feedback law (which stabilizes the delay-free plant) with the state’s predictor.

The first mathematically and practically significant development in control
design for delay compensation was the introduction of the Smith predictor by
Otto Smith in 1959 [119], in which the linear stable systems with constant input
delays were addressed. Later on, the control design for the linear stable time-
delay systems was extended to the linear unstable time-delay systems by Mayne
in 1968 [105], Manitius and Olbrot in 1979 [104], and Kwon and Pearson in 1980
[94], in which the finite spectrum assignment technique for the compensation of
input delays was introduced and the open-loop stability restriction was removed.
In 1982 Artstein [2] systematized this methodology and named the method a
“reduction” to emphasize that the stabilization problem for linear systems with
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input delays can be reduced to the stabilization problem of a delay-free (reduced)
system.

Among the numerous difficulties in the design and analysis of predictor-based
control laws, one key challenge is the construction of a Lyapunov-Krasovskii
functional for stability analysis of the closed-loop system under predictor feed-
back. Such a construction is not easy because the overall state of the system
consists of the finite-dimensional internal states of the plant and the infinite-
dimensional actuator state. With the novel idea of treating the input delay as
a first-order hyperbolic transport partial differential equation (PDE), in 2008
Krstic and Smyshlyaev [92, 93] introduced an infinite-dimensional backstepping
transformation that enabled the construction of a Lyapunov-Krasovskii func-
tional for linear systems with constant input delays under predictor feedback.
Simultaneously, the first predictor feedback design for nonlinear systems was
introduced by Krstic in 2008 [78]. After that, based on the PDE framework, the
predictor feedback has seen a booming growth in compensating for various kinds
of input delays in diverse system classes. For example, with the utilization of
PDE and nonlinear control concepts [58, 60, 61, 62, 64, 65, 69–71, 86, 87, 130–
131], for linear or nonlinear systems [4–20, 59, 63, 66, 67], delays are handled
in forms of single-input delay [22–32], [153, 154, 159], multi-input delays [73,
127–128, 155–157], time-varying delays [33, 84], state-dependent delays [34, 35],
distributed delays, and delays on the state, which are summarized in the books
[15, 68, 80].

It is worth mentioning that the classic predictor-based controllers are feed-
back laws of an infinite-dimensional state and require care in their practi-
cal implementation [107]. Zhou developed a truncated predictor feedback that
involves finite-dimensional state feedback in [137–148]. In [68] and the refer-
ences therein, concentrating on both linear and nonlinear systems, Karafyllis
and Krstic offered three different implementations of the predictor feedback law:
the direct implementation, the dynamic implementation, and the hybrid imple-
mentation. The three different ways of implementing lead to the corresponding
closed-loop systems with important differences.

1.2.3 Examples

For the purpose of more intuition and understanding of delay impact on systems,
we offer several examples.

Example 1.1. Networked Control Systems
A general class of sampled-data networked control systems with time delay

are shown in figure 1.3.
To concentrate on the input delay, we assume that the sensor is able to

continuously measure the plant state and there is no transmission delay in the
sensor-to-controller channel. Furthermore, we distinguish the actuator and the
controller signals by denoting them as V (t) and U(t), respectively. As a result,
the sampled-data NCSs in figure 1.3 are reduced to NCSs in figure 1.4.
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Figure 1.4. NCSs without compensation for input delay under continuous mea-
surements

As shown in figure 1.4, there is no predictor feedback to compensate for the
constant controller-to-actuator delay D. Thus we have

Ẋ(t)=AX(t)+BV (t)

=AX(t)+BU(t−D)

=AX(t)+BKX(t−D)

=AX(t)+A1X(t−D), (1.7)

where the input-delay problem is transformed into a state-delay problem. In this
case, the delay D has to be short and the problem was discussed in section 1.2.1.

In contrast, for figure 1.5, the predictor feedback is brought in to compensate
for the constant controller-to-actuator delay D. Thus we have, for t≥D,

Ẋ(t)=AX(t)+BV (t)

=AX(t)+BU(t−D)

=AX(t)+BKX(t)

= (A+BK)X(t). (1.8)
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Figure 1.5. NCSs with compensation for input delay under continuous
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Figure 1.6. Liquid level systems in practice

As a result, the system evolves as if there is no delay at all after t≥D, and the
delay value D can be arbitrarily large, which was discussed in section 1.2.2.

Example 1.2. Liquid Level Systems in Chemical Industry or
Bioengineering

As illustrated in figure 1.6, the liquid level systems exist widely in the chem-
ical industry and bioengineering. For the liquid level system, the fresh liquid
continuously enters the reaction container through the inlet, whereas the waste
liquid is drained through the outlet, which is regulated by a valve. The plant
state X(t) represents the liquid volume in the container, and the control input
is employed to govern the valve’s opening and closing. The reaction container
with the outlet valve is located in the working field, whereas the control com-
mand is produced from a remote control room, and they are connected by a
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Figure 1.7. Four different cases of control of liquid level systems

long-distance communication network that is subject to a constant controller-
to-actuator delay D. For simplicity, we assume that the liquid volume satisfies
the following scalar dynamic equation with the initial condition X(0)= 1:

Ẋ(t)=X(t)+U(t−D). (1.9)

As demonstrated in Case 1 of figure 1.7, the control input is zero such that
U(t−D)≡ 0. This means, if the outlet valve is kept closed, the liquid persis-
tently enters the container through the inlet with an exponentially increasing
volume.

For Case 2 of figure 1.7, there is no input delay such that D≡ 0. This means,
at a certain moment t∗, once the control command is activated, the valve is
opened and the control input U(t)=−2X(t)+Xr (where Xr =0.8 is a constant
set-point representing the desired reference liquid level in the container) kicks
in immediately. After the time instant t∗, the volume of liquid flowing into the
container is less than the volume of liquid getting out of the container, and finally
the liquid level will be reduced to a fixed position of the reference set-point and
arrive at a steady state.

In Case 3 of figure 1.7, the input delay is not zero such that D> 0 and
there is no compensation for the delay. This means, at a certain moment t∗, we
send a command to open the valve to slow down the rising liquid level and let
U(t)=−2X(t)+Xr by using the current state of that time. However, because
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Figure 1.8. Car-following behavior in realistic traffic environment

of the delay, this valve is kept closed and the control U(t)=−2X(t)+Xr does
not act on the plant until D unit time later. Thus after that moment t∗ +D, we
have Ẋ(t+D)=X(t+D)+U(t)=X(t+D)− 2X(t)+Xr, which is equivalent
to Ẋ(t)=X(t)+U(t−D)=X(t)− 2X(t−D)+Xr. From Case 3 of figure 1.7,
when the delay value is large, it is apparent that the closed-loop time-delay
system is not stable and the liquid level cannot be regulated to the desired
set-point.

In Case 4 of figure 1.7, the input delay is not zero such that D> 0, but
the predictor feedback is introduced to compensate for the delay. This means,
at a certain moment t∗, we send a command to open the valve to slow down
the rising liquid level. Due to the existence of a delay, we set U(t)=−2X(t+
D)+Xr by predicting the state of D unit time later. Thus at the moment
t∗ +D, this valve opens and the control U(t)=−2X(t+D)+Xr acts on the
plant and we have Ẋ(t+D)=X(t+D)+U(t)=X(t+D)− 2X(t+D)+Xr =
−X(t+D)+Xr, which is equivalent to Ẋ(t)=X(t)+U(t−D)=X(t)−2X(t)+
Xr=−X(t)+Xr. That is to say, after t∗ +D, the volume of liquid entering into
the container is less than the volume of liquid exiting the container, and thus the
liquid level will be reduced to a fixed position to achieve the reference set-point
regulation.

Example 1.3. Platoon Control of Car-Following Vehicles
As demonstrated in figure 1.8, car-following behaviors for a platoon of vehi-

cles (in which one vehicle follows another) are very common in realistic traffic
environments. Generally speaking, the main task of platoon control for car-
following models is to regulate a chain of vehicles to an ideal steady state, at
which the following vehicles track the leading vehicle with a desirable veloc-
ity and simultaneously keep a safe and comfortable inter-vehicle spacing. The
widely employed third-order linear vehicle dynamics [102, 113, 135] are taken
into account as follows:

ṗi(t)= vi(t), (1.10)

v̇i(t)= ai(t), (1.11)

ȧi(t)=
1

τi
ui(t−Di)− 1

τi
ai(t), (1.12)
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Figure 1.9. Platoon control of car-following vehicles with input delay

where pi(t), vi(t), and ai(t) denote the position, velocity, and acceleration of the
ith vehicle; ui(t) is the ith vehicle’s control input, which actually denotes the
engine’s driving/braking torque governed by the throttle/brake pedal command.
τi is the engine time constant. Di is the time delay, which might be either the
reaction delay for human-driver vehicles or computation or engine response delay
for autonomous vehicles.

As shown in figure 1.9, the inter-vehicle distance is introduced as

ei(t)= pi−1(t)− pi(t)− li−1, (1.13)

where li for i=0, 1, · · · , n is the length of the vehicle i, and accordingly the
desired/reference spacing is defined by eri (t). The control objective is to reg-
ulate the actual inter-vehicle spacing to achieve the desired value such that
limt→∞

(
ei(t)− eri (t)

)
=0.

To achieve the above control target, the input delay Di has to be handled
carefully, otherwise a big time delay of the actuator could cause a catastrophic
car accident.

1.3 Adaptive Control for Time-Delay

Systems and PDEs

The stabilization of systems with actuator delay is not an easy task, especially
when the system information is incomplete [36, 85, 114]. An effective method
to deal with uncertainties in ODE systems is adaptive control [132, 152, 158,
160, 161], which has been extensively studied and summarized in the classic
books [3, 48, 57, 108, 117, 126]. Early work on adaptive control of uncertain
time-delay systems [37, 110, 112] focused on the uncertainty of parameters rather
than the delay. Adaptive backstepping control of uncertain linear systems with
input delay had been proposed by [150, 151]; however, by regarding the input
delay as unmodelled dynamics, neither identification nor compensation for the
delay is considered by the control design.



12 CHAPTER 1

The standard prediction-based compensation for input delay has the premise
that the delay value of every actuator channel is known, as well as that the
information is available on the plant and actuator state and plant parame-
ters [2, 18, 20, 72, 73, 94, 104, 119, 127, 128, 142]. However, the fact is that
such a prior knowledge may be hard to acquire in practice. Due to the infinite-
dimensional nature of time-delay systems, conventional adaptive control meth-
ods for finite-dimensional ODE systems cannot be directly applied to addressing
uncertain delays. Instead, adaptive control approaches for infinite-dimensional
PDE systems provide potential solutions. In [101], a boundary control law
and an adaptation law were proposed for Burgers’ equation with unknown
viscosity. In [90, 120, 121], adaptive boundary control schemes with different
update laws (Lyapunov-based, passivity-based, and swapping-based) were devel-
oped for unstable parabolic PDEs with unknown parameters in the PDE or
boundary condition. A systematic summary of adaptive control methodology for
parabolic PDEs was given in [91, 122]. Focusing on another big family of PDEs—
anti-stable wave PDEs—[30] and [79, 81], respectively, provided full-state and
output feedback adaptive controls under the large uncertainty in anti-damping
coefficient. The adaptive-based infinite-dimensional backstepping transforma-
tion initially motivated and developed for the boundary control and stabiliza-
tion of uncertain PDE systems shed new light on addressing uncertain LTI-ODE
systems with input delays.

An important step forward on compensation for input delay was made in [92].
With the novel idea of treating the actuator delay as a first-order hyperbolic
PDE, LTI-ODE systems with input delays are converted into a class of ODE-
PDE cascades. Under the assumption that all system information is available,
a prediction-based boundary control and a backstepping transformation were
developed. A tutorial introduction of such ODE-PDE cascade representation and
PDE-backstepping-based predictor feedback with its extensions was offered in
[82]. By regarding the input delay as a parameter in the transport PDE, this
kind of PDE-based framework makes it possible for the application of adaptive
control of PDEs to LTI-ODEs with input delays [88, 149].

1.4 Results in This Book: Adaptive Control for Uncertain

LTI Systems with Input Delays

LTI systems with discrete or distributed input delays usually come with the fol-
lowing five types of basic uncertainties:

• unknown actuator delay,
• unknown delay kernel,
• unknown plant parameter,
• unmeasurable finite-dimensional plant state,
• unmeasurable infinite-dimensional actuator state.
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In this book, we design adaptive and robust predictor feedback laws for the
compensation of the five above uncertainties for general LTI systems with input
delays. When some of the five above variables are unknown or unmeasured, the
basic idea of certainty-equivalence-based adaptive control is to use an estimator
(a parameter estimator or a state observer) to replace the unknown variables
in the nominal backstepping transformation and the predictor feedback of the
uncertainty-free systems. The PDE boundary control law is designed to sat-
isfy the stabilization boundary condition of the target closed-loop system, the
observer is chosen to estimate the unmeasurable variables with a vanishing esti-
mation error, and the adaptive update law of the unavailable signal is selected
to cancel the estimation error term in Lyapunov-based analysis.

In addition, the main content of the book is mainly concerned with the delay-
adaptive linear control of linear systems with input delays. Results for delay-
adaptive control of nonlinear systems can be found in [29], and the predictor
control of various nonlinear systems can be found in [20, 76, 83]. Results for
delay-adaptive control of a class of linear feedforward systems with simultaneous
state and input delays can be found in [8], whereas delay-robust control of non-
linear or linear systems with time-varying delays can be found in [16, 31, 67, 77].

1.5 Book Organization

The book has three parts.
Part I: In the first part of the book we consider adaptive control of uncertain

single-input LTI systems with discrete input delay. The results in this part could
be easily (or even trivially) extended to systems with multiple inputs when the
delay is the same in all the input channels.

In chapter 2, by assuming all information of interest about the system is
known to designers, we provide the introductory idea of predictor feedback and
infinite-dimensional backstepping through the nominal single-input LTI systems
with discrete input delay. To help readers in the field of control of delay sys-
tems who are not accustomed to the PDE notation, we first present an alter-
native view of the backstepping transformation based purely on standard ODE
delay notation. Then the backstepping transformation is described in PDE and
rescaled unity-interval transport PDE notation. It is convenient for readers to
compare the relationship among the different notational frameworks and the
subtle differences in distinct notations.

In chapter 3, a variety of adaptive predictor control techniques are provided
to deal with different uncertainty collections from four basic uncertainties (delay,
parameter, ODE state, and PDE state). In the presence of a discrete actuator
delay that is long and unknown, but when the actuator state is available for
measurement, a global adaptive stabilization result is obtainable. In contrast,
the problem where the delay value is unknown, and where the actuator state is
not measurable at the same time, is not solvable globally, since the problem is not
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linearly parameterized in the unknown delay. In this case, a local stabilization
is feasible, with restrictions on the initial conditions such that not only do the
initial values of the ODE and actuator state have to be small, but also the initial
value of the delay estimation error has to be small (the delay value is allowed to
be large but the initial value of its estimate has to be close to the true value of the
delay). Please note that among different uncertainty combinations in chapter 3,
we do not consider the case of coexistence of an unknown parameter vector and
unmeasurable ODE state of the finite-dimensional part of the plant.

In chapters 4 and 5, output-feedback adaptive control problems involving
uncertainties in both an unknown plant parameter and unmeasurable ODE plant
state are taken into account. In this case, the relative degree plays a major role
in determining the difficulty of a problem. As a result, chapter 4 considers the
relatively easier case where the relative degree is equal to the system dimension,
whereas chapter 5 considers the more difficult case where there is no limitation
on the relative degree. Please note that trajectory tracking requires additional
tools, as compared to problems of regulation to zero.

Part II: In the second part of the book we consider adaptive control of
uncertain multi-input LTI systems with distinct discrete input delays.

In chapter 6, by assuming all the system information is known to the designer,
we provide the elementary PDE-based framework of the exact predictor feedback
and the infinite-dimensional backstepping transformation for the nominal multi-
input LTI systems with distinct discrete input delays.

In parallel with the single-input systems, chapter 7 provides the adaptive
global stabilization results for uncertain multi-input systems via the assump-
tion that the actuator states in distinct control channels are measurable, whereas
chapters 8 and 9 provide the adaptive local stabilization results for uncertain
multi-input systems under the assumption that the measurements of actuator
states are unavailable.

Part III: In the third part of the book we address adaptive and robust control
problems of uncertain LTI systems with distributed input delays.

In chapter 10, under the premise of an uncertainty-free system, a fundamen-
tal predictor feedback framework to compensate for distributed input delays is
developed for both single-input and multi-input systems. By modeling a linear
system with distributed delay as an ODE-PDE cascade, we employ a couple of
important conversions: the reduction-based change of variable converts a stabi-
lization problem of a delayed system into a stabilization problem of a delay-free
(reduced) system, and the forwarding-backstepping transformation contributes
to a convenient stability analysis of the target closed-loop system.

When some information of the system (such as delay, delay kernel, param-
eter, ODE state, and PDE state) is unavailable, chapters 11 and 12 solve the
adaptive and robust stabilization problems for single-input and multi-input sys-
tems, respectively. When both the finite-dimensional plant state and the infinite-
dimensional actuator state are measurable, the global adaptive state feedback
is used to handle the uncertainties in delay, delay kernel, and plant parameter.
When the delay, delay kernel, and plant state are simultaneously uncertain, the
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Table 1.1. Uncertainty Collections of Linear Systems with Actuator Delays

Part I: Predictor Feedback of Single-Input LTI Systems with Discrete Input Delay

Organization of
the Book Input Delay Parameter ODE State PDE State

Chapter 2 known known known known
Section 3.2 known known unknown known
Section 3.3 unknown known known known
Section 3.4 unknown known known unknown
Section 3.5 unknown unknown known known
Section 3.6 unknown known unknown unknown
Section 3.7 unknown unknown known unknown
Chapter 4 and

section 5.2
unknown unknown unknown known

Section 5.3 unknown unknown unknown unknown

Part II: Predictor Feedback of Multi-Input LTI Systems with Discrete Input Delays

Organization of
the Book Multi-Input Delays Parameter ODE State PDE States

Chapter 6 known known known known
Section 7.2 unknown known known known
Section 7.3 unknown known unknown known
Section 7.4 unknown unknown known known
Chapter 8 unknown known known unknown
Section 9.2 unknown known unknown unknown
Section 9.3 unknown unknown known unknown

Part III: Predictor Feedback of LTI Systems with Distributed Input Delays

Organization of
the Book Delay Delay Kernel Parameter ODE State PDE State

Chapter 10 known known known known known
Sections 11.1,12.1 unknown known known known known
Section 11.2 unknown unknown known known known
Sections 11.3,12.2 unknown unknown unknown known known
Sections 11.5,12.3 unknown unknown known unknown known
Sections 11.4,12.4 unknown unknown known known unknown

adaptive control problem may not be globally solvable in its most general form
as the relative degree plays an important role in the output feedback. Thus
the robust output feedback is employed. Similarly, when the delay and actua-
tor state are unknown at the same time, the adaptive control can only achieve
local stabilization both in the initial state and in the initial parameter error.
For this case, instead of the adaptive method, the robust output feedback is
considered.

To clearly describe the book is organization, different combinations of uncer-
tainties considered in the book are summarized in table 1.1, from which the
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readers can make their own selections to address a vast class of relevant prob-
lems they face.

1.6 Notation

Throughout the book, the actuator dynamics (of the control input with delays)
are modeled by a transport PDE whose state is u(x, t), where t is time and x
is a spatial variable that takes values in the interval [0, 1] or [0, D]. When the
plant being controlled (or whose state is estimated) is an ODE, then the overall
state of the system is the state of the ODE, X(t), along with the state of the
PDE, u(x, t).

For a finite-dimensional ODE vector X(t), its Euclid norm is denoted by
|X(t)|.

For an infinite-dimensional PDE function u(x, t), u : [0, 1]×R
+ →R,

‖u(x, t)‖=
(∫ 1

0

u(x, t)2dx

)1/2

. (1.14)
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Hölder’s inequality, 296
hyperbolic PDEs, xiii

infinite-dimensional, 12
input delays, 4
input-to-state stability, 308

Kreisselmeier-filters, 61, 86, 102

linear matrix inequality, 21
linear parametrization, 37, 136
linear time-invariant systems, 20,
122, 219

Lyapunov-Krasovskii functional, 24
Lyapunov stability, 304

multi-input, 135, 199

networked control systems, 6

observer canonical form, 59, 84
ODE-PDE cascade, 12
ordinary differential equation, 37
output feedback, 264, 282, 287

partial differential equation, 38
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