CONTENTS

List of Illustrations ix
Prologue xvii
Acknowledgements xxv

Introduction 1

PART ONE: THE GREEN SAHARA 7
1. Origins 9
2. Birth of the Sahara 22
3. Hippo Hunters of the Sahara 40

PART TWO: A SEA OF SAND 59
4. Through a Glass Darkly 61
5. Water and Sand 73
6. A Handful of Dust 93
7. Wood-Smoke at Twilight 105

PART THREE: THE SAHARA TODAY 125
8. In the Land of Great Drought 127
9. Human Impact on the Sahara 143
Contents

10. Life in the Sahara: Adapting to Aridity 160

Epilogue: Will the Sahara Become Green Once More? 178

Notes 183
Further Reading 211
Index of Subjects 213
Index of People 217
Index of Places 219
Introduction

The Sahara is vast. From the Atlantic Ocean to the Red Sea (map 1), it extends across a distance of 5000 kilometres. Its southern limit is at roughly 16° N and its northern limit at about 30° N, equivalent to a distance of about 3000 kilometres. It covers an area of roughly 9.2 million square kilometres, or almost four times that of the Mediterranean, which has an area of 2.5 million square kilometres. The Sahara is so big that any generalisation about it can be unwise. However, a glimpse at a rainfall map of North Africa (fig. I.1) shows that if we ignore the Saharan uplands, the lines of equal rainfall (isohyets) run parallel to one another and show a rapid decrease in rainfall with distance from the northern and southern coasts. The vegetation zones of North Africa (fig. I.2) also run parallel to the northern and southern coasts and, except in the uplands, which have their own microclimate and upland ecosystems, become increasingly adapted to aridity with distance inland. At present, the summer and winter rains do not penetrate very far into the Sahara, so that much of that vast desert is largely devoid of vegetation except in sheltered uplands and sporadic desert oases where groundwater comes to the surface. Between about 15,000 and 5000 years ago the situation was very different. The tropics received more radiation from the sun, the summer monsoon was accordingly stronger, and both summer and winter rains reached as far as the present-day arid heart of the Sahara. As a result, the vegetation belts also moved further inland, so that Mediterranean winter rainfall plants colonised the northern Sahara and tropical summer rainfall plants colonised the southern and central Sahara. In effect, the vegetation zones that we see today had at that time shifted more than a thousand kilometres further inland along both northern and southern margins of the Sahara—the time when the Sahara was green.
Figure I.1. Present-day rainfall zones in North Africa, after Williams (1988), fig. 3.4, adapted from *Atlas of Africa* (1973), p. 35.

Figure I.2. Present-day vegetation zones in North Africa, after Williams (1988), fig. 3.5, adapted from *Atlas of Africa* (1973), p. 39.
Introduction

My first visit to the Sahara in the northern summer of 1962 to the southeast Libyan Desert gave me the impression of being on another planet. Not a blade of grass for hundreds of miles. Stark black hills (figures I.3–I.7) rising from endless plains with a thin surface layer of fine gravel. Great humpbacked sand dunes aligned in seemingly endless rows parallel to the wind. Sand, dust, and wind; wind, dust, and sand. And yet it had not always been so. Hard to believe, but in all suitable...
rock exposures, prehistoric artists had engraved or painted scenes of cattle camps and herds of giraffes and elephants. They left behind their stone arrowheads, grindstones and polished axe heads, ostrich eggshell beads, and the bones of fish, turtles, even crocodiles and hippos. How was this possible? The answer lay partly buried beneath the ever-shifting sands in the form of now dry lakes and defunct river channels. Their former presence prompted the questions: when, why, and how had the present desert once been able to support such an abundance of life? My attempt to answer these questions provides the reason for this book.

The book is intended for the nonspecialist reader interested in the natural world. My aim is to reveal how the Sahara Desert came into being and to show that, on a number of occasions in the past, it had been ‘a green and pleasant land’ well able to sustain an abundance of plant
Gara et Tuila, SE Libyan Desert (30/8/62)

Figure 1.6. Sketches of a sandstone hill near Kufra in the SE Libyan Desert showing undercutting of the softer beds of isolated sandstone remnants (30 and 31 August 1962).

Undercut sandstone isolated mounds, SE Libyan Desert (31/8/62)

South of Agedabia, Libyan Desert (18/8/62)

Figure 1.7. Sketch showing relief inversion of ancient dunes in the northern Libyan Desert (18 August 1962). The resistant beds acting as caprocks on the top of the dunes today were initially deposited in the hollows between the former dunes and were cemented by calcium carbonate in the groundwater. Later wind erosion removed the former dunes and resulted in progressive inversion of relief.
and animal life and to attract diverse groups of prehistoric hunters and herdsmen until it became too dry to support much life. Questions raised and answered in this book include why the Sahara was previously much wetter, why it became dry, and whether it will become wetter once more. A related question is whether human activities might have caused the Sahara to become a desert. I also consider the impact upon prehistoric and modern human societies of extreme climatic events such as prolonged droughts.

The book is divided into three parts and concludes with a short epilogue. Part One provides a concise account of how the Sahara came into being and explains when and how the Saharan highlands and lowlands were fashioned, culminating in a description of the time when it was last a land of lakes and rivers and was aptly called the Green Sahara. Part Two looks at how the Sahara became progressively drier, with sand dunes developing from the alluvial sands brought down from the uplands by desert rivers. This was a time of constant tug-of-war between flowing water and wind-blown sand. Part Three looks at the Sahara today and considers how extreme climatic events such as prolonged droughts affect human societies and how human activities can aggravate (or minimise) the impact of such extreme events. The epilogue asks whether the Sahara could become green once more and what humans can do to live in harmony with our greatest desert as well as with the drier regions of the earth more generally.
INDEX OF SUBJECTS

Adrar Bous: age, 28; cow skeleton, 50; fossils, 27, 43, 50; lakes, 27, 41–3, 45–7, 51; Neolithic cow, 50; prehistoric occupation, 27, 42, 45–7, 51; ring-complex, 28
Afar Desert: fossils, 109; hominins, 109; prehistory, 107–10; volcanoes, 109
African Humid Period, 155–6
African tectonic plate, northward movement, 35
agriculture, origins, 116
albedo: definition, 132; links to drought, 132–4
Amazon Basin: desert dust, 93; rain forest, 128; rainfall, 128
Antarctica, glaciation, 30, 68, 71–2
Anthropopithecus erectus, 107
Aqualithic culture, 57
Ardipithecus, 107–10
aridity: adaptation to, 160–76; animal adaptations to, 162–73; human adaptations to, 163–71, 173–4, 175–6; plant adaptations to, 172–3
Aterian, 114–5
Atlantic Ocean: desert dust in Atlantic deep-sea sediments, 94, 103–4; marine sediment cores, 94, 103–4
Atlas Mountains, glaciation, 31, 95
Australopithecus, 107–10
Australopithecus afarensis, 108
baboon, 44, 83
Basement Complex rocks, Sahara, 14–15, 17–18, 22–3
Bilharzia, 46. See also schistosomiasis
Biomphalaria, 46
blood rain, 101. See also desert dust
Bos brachyceros, 50
Bos taurus, 49
Bulinus, 46
camel, 163, 166, 167, 169, 174
canoe, papyrus, 55
catfish, 42, 49
cattle: early domestic cattle in the Sahara, 49; rock art, 55
Cercopithecus patas, 44, 83
chariots, 52
coprolite, crocodile, 53
crocodiles, Sahara, coprolites, 53; dwarf, 84; fossil, 41, 43, 45
Darfur conflict, 149–50
desert dust: blood rain, 101; definition, 94; deposition in Amazon Basin, 93; fertiliser, 93; in marine sediments, 94, 103–4; nutrients, 93; origins, 86, 95, 104; recycling, 103; role in cloud formation, 93; sources, 95, 102; trajectory, 94, 96–7; transport, 68, 96, 101; traps, 88
desert pavement, 88
desertification: causes, 61, 147–51; consequences, 147–9; definition, 146–7; deforestation, 153–4; fluctuations, 145–6, 151; international responses to, 153–5; natural, 150–2
diatoms, 101
dinosaurs: extinction, 32; meaning, 31; in the Sahara, 31–2

domestication: cattle, 116; early animal, 116; plant, 116

drought: albedo model, 132–3; biogeophysical model, 132–3; causes, 128–41; definition, 127–8; edaphic, 128; historic, 130, 132, 134–41, 142; links to albedo changes, 132–3; links to civil unrest, 132, 149–50; links to disease, 140; links to El Niño-Southern Oscillation, 134–9; links to famine, 131–2, 136, 140–1, 142; links to sea surface temperature, 129–30; links to volcanic eruptions, 140–1; Sahel, 129–32

dune: active, 81, 85, 118; antiquity of, 97, 144; barchan, 81–2; clay, 86, 88; climbing, 81; erg, 80; fixed, 85, 118; linear, 81; longitudinal, 81; lunette, 81–2; nebkha, 80; orientation, 75; seif, 80; source-bordering, 86, 88, 121; star, 80; tamarisk mound, 80; types, 80–2; whaleback, 80
dust. See desert dust
dust storm, 99–102

Early Stone Age, 28, 111. See also Lower Palaeolithic

East African Orogeny, 22, 23, 25

El Niño, 134–9

El Niño-Southern Oscillation, 134–9

Elaeis guineensis (oil palm), leaf fossils, 37–9

Epi-Palaeolithic, 116

Epic of Gilgamesh, 105

Ethiopia: drought, 132; prehistory, 108; uplift, 67; volcanism, 67

fire: discovery of, 113; prehistoric, 113

flood, 105

foggara, 52

fossil: dinosaurs, 31–2; fish, 41, 49, 117; hippos, 40, 43, 45; leaves, 37–9; pollen, 53–4, 89; soil, 88; trees, 12, 23, 33; wood, 23, 33

dinosaurs: extinction, 32; meaning, 31; in the Sahara, 31–2

domestication: cattle, 116; early animal, 116; plant, 116

drought: albedo model, 132–3; biogeophysical model, 132–3; causes, 128–41; definition, 127–8; edaphic, 128; historic, 130, 132, 134–41, 142; links to albedo changes, 132–3; links to civil unrest, 132, 149–50; links to disease, 140; links to El Niño-Southern Oscillation, 134–9; links to famine, 131–2, 136, 140–1, 142; links to sea surface temperature, 129–30; links to volcanic eruptions, 140–1; Sahel, 129–32

dune: active, 81, 85, 118; antiquity of, 97, 144; barchan, 81–2; clay, 86, 88; climbing, 81; erg, 80; fixed, 85, 118; linear, 81; longitudinal, 81; lunette, 81–2; nebkha, 80; orientation, 75; seif, 80; source-bordering, 86, 88, 121; star, 80; tamarisk mound, 80; types, 80–2; whaleback, 80
dust. See desert dust
dust storm, 99–102

Early Stone Age, 28, 111. See also Lower Palaeolithic

East African Orogeny, 22, 23, 25

El Niño, 134–9

El Niño-Southern Oscillation, 134–9

Elaeis guineensis (oil palm), leaf fossils, 37–9

Epi-Palaeolithic, 116

Epic of Gilgamesh, 105

Ethiopia: drought, 132; prehistory, 108; uplift, 67; volcanism, 67

fire: discovery of, 113; prehistoric, 113

flood, 105

foggara, 52

fossil: dinosaurs, 31–2; fish, 41, 49, 117; hippos, 40, 43, 45; leaves, 37–9; pollen, 53–4, 89; soil, 88; trees, 12, 23, 33; wood, 23, 33
La Niña, 136
lake fluctuations, Sahara. See Sahara, lakes
lakeside cemeteries, Gobero prehistoric
site, 48, 122
land degradation. See desertification
Landsat space imagery, 83
Last Glacial Maximum, 30, 31
Late Stone Age, 115–6, 118. See also Palaeoli-
thic, Upper
Lates niloticus (Nile perch), 49, 117
Levallois, 114
Libyan desert: climatic change, 4, 11; land-
forms, 3–5, 10; prehistory, 4; rock art, 52;
sand dunes, 89; springs, 55–6
Lower Palaeolithic, 83, 111–2. See also Early
Stone Age
luminescence dating, 48

Maerua crassifolia, tree, 29
Matmata Hills, Tunisia: climate change, 103;
desert dust, 103; Roman dams, 152–3; soil
conservation, 154
Mediterranean: desiccation, 71; salinity
crisis, 71; salt desert, 71
Mesolithic, 122
metamorphism, 14, 23
microlith, 122
Middle Awash Valley, fossil hominins,
108–9
Middle Stone Age, 98, 112, 114–5; Aterian,
114–5; Levallois, 114; Mousterian, 114–5.
See also Palaeolithic, Middle
Mousterian, 114–5

nebkha, 80
Neolithic: cattle, 29, 41, 47, 50–1, 116–7;
herders, 41, 47; pottery, 56, 116; rock art,
54–5, 99; Sahara, 41, 47, 56; stone tools,
47, 116
Nile perch, Sahara, 41, 43, 45, 49
Nubian Sandstone: aquifer, 29, 89, 165;
fossil wood, 23, 33; petrified forest, 12, 23,
33; plateau, 37

oasis, 13–14

ocean, global cooling, 68–9

oil palm, fossils, 37–8

Olea laperrinei, 83

olive tree, 44, 83

Palaeolithic: Lower, 28, 111; Middle, 28;
Upper, 115–6

Panicum turgidum, 118

Papio Anubis, 44, 83

pastoralism: adaption to desert environments,
145, 149–50; arrival in the Sahara, 49–51;
influence upon spread of desert, 150, 158–9

Patas monkey, 44

petrified forests, 12, 23, 33

pollen, fossil, 53–4, 89

pottery, Neolithic, 56, 116

prehistoric cemeteries, 48, 122

prehistoric migrations, 45, 106–7, 122–3

prehistoric rock art, 29, 40, 41, 54–6, 179

prehistoric tools, 33, 45, 47, 113

Pteroclidae, 162

Qanat. See foggara

Quaternary, ice ages, 30–1

radar rivers, 43, 44, 83

radiocarbon dating, 45, 47

rain shadow, 65

Red Sea Hills, climatic change, 164–5

relict fauna, 44, 83–4

relict flora, 44, 83

ring-complex, 2–3, 26–9, 67

rock engravings. See prehistoric rock art

rock paintings. See prehistoric rock art

Sahabi rivers, 77

Sahara: aquifer, 29, 89, 165; birth of, 35, 59,
67–70, 178; causes of present aridity, 62–7;
climate change, 4, 11, 23, 28, 31–2, 35, 37–9,
40, 46–9, 57, 68–9, 71, 102, 104, 117–9, 178;
desiccation, 35, 59, 67–70; dinosaurs, 8, 23,
31–3; dunes, 7, 69, 75; dust (see desert dust);
Index of Subjects

Sahara (continued)
flooding by the sea, 20, 21, 23, 34; former rivers, 4, 12, 13, 43, 77–8, 83, 92; fossil fauna, 27, 40–1, 43; fossil trees, 12, 23, 33; geology, 14–19, 21, 22, 26, 29; glaciation, 30; human impact, 158–9; lakes, 20, 41–3, 45, 88, 103, 119, 156–7, 165–6; landforms, 7, 12–13, 19, 20, 39, 68, 70, 77, 90–1; natural museum, 12, 178; oases, 13–14, 89, 119; onset of aridity, 35, 59, 67–71, 93; prehistoric fauna, 27, 40–1, 43; prehistoric hunter-gatherers, 49, 56; prehistoric occupation, 4, 7–8, 27, 28–9, 39, 45, 48–9, 84; prehistoric rock art, 29, 40, 41, 54–6, 179; radar rivers, 44–5; refugia, 37, 43, 83, 123; rift valleys, 67, 68; ring-complexes, 23, 26–8, 67; river erosion, 20, 90; rivers, 26, 35, 43–4, 59, 76; salt, 19; uplands, birth of, 35–7, 68; vegetation changes, 40, 54, 71, 83, 89, 120–1; volcanoes, 18, 23, 35, 37, 68
Sahel, drought, 129–31; meaning, 129–30
Sahelanthropus tchadensis, 110
sand: origin, 76, 92; threshold wind velocity, 79–80; transport, 79; traps, 80
sandstorm, 99
Schistosomiasis, 46. See also bilharzia
sea, flooding the Sahara. See Sahara
sea level, fluctuations, 106
serir, meaning, 19
silicified wood. See fossil, wood
Sirocco, 97

soil, fossil, 88, 96
source-bordering dune. See dune
Southern Oscillation. See El Niño-Southern Oscillation
Spaceborne imaging radar, 83
Stone tools: Acheulean/Acheulian, 111, 112; earliest, 61, 110–11; Oldowan, 111, 112; prehistoric, 61, 110–6
tamarisk mound, 80
tankwa, papyrus canoe, 55
Tectona grandis (teak), tree rings as drought index, 137–8
tectonic plate, 24–5, 29, 34, 35, 67
Tenerian prehistoric culture, 47
Tethys Sea, drying up, 59, 69, 179
Tibetan Plateau, uplift, 68
Trade Winds, 69, 79, 104
turtles, Sahara, 41, 42, 45
Typha, 47

vegetation history. See Sahara
volcanic eruptions, links to drought, 140–1
Walker Circulation, 135
Westerlies, 180
Wind, erosion, 12, 95, 98, 118
Younger Dryas, 119, 121–2
Younger Granite, 28
<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aboriginal people, Australia</td>
<td>56, 106, 170</td>
</tr>
<tr>
<td>Adams, Bill (Professor)</td>
<td>180</td>
</tr>
<tr>
<td>Almásy, László (Count)</td>
<td>175</td>
</tr>
<tr>
<td>Arkell, Anthony J. (Professor)</td>
<td>47, 84</td>
</tr>
<tr>
<td>Aubrèville, A. (Professor)</td>
<td>153</td>
</tr>
<tr>
<td>Auden, W.H.</td>
<td>113</td>
</tr>
<tr>
<td>Avni, Yoav (Dr)</td>
<td>152</td>
</tr>
<tr>
<td>Bacon, Francis</td>
<td>155</td>
</tr>
<tr>
<td>Baggara people</td>
<td>55</td>
</tr>
<tr>
<td>Bagnold, Ralph Alger (Brigadier)</td>
<td>9, 73–7, 79, 175–6</td>
</tr>
<tr>
<td>Balbus, Cornelius (Legate)</td>
<td>52</td>
</tr>
<tr>
<td>Bedouin people</td>
<td>170, 176</td>
</tr>
<tr>
<td>Beja/Hadendowa people</td>
<td>149, 164</td>
</tr>
<tr>
<td>Bell, Michael</td>
<td>131</td>
</tr>
<tr>
<td>Bilharz, Theodor (Dr)</td>
<td>46</td>
</tr>
<tr>
<td>Bishop, Bill (Professor)</td>
<td>109</td>
</tr>
<tr>
<td>Black, Russell (Professor)</td>
<td>28</td>
</tr>
<tr>
<td>Blake, William</td>
<td>73, 146</td>
</tr>
<tr>
<td>Boucher de Crévecœur de Perthes, Jacques</td>
<td>111</td>
</tr>
<tr>
<td>Brunet, Michel (Professor)</td>
<td>110</td>
</tr>
<tr>
<td>Bryson, Reid (Professor)</td>
<td>144</td>
</tr>
<tr>
<td>Buckland, William Dean</td>
<td>105–6</td>
</tr>
<tr>
<td>Burkitt, Miles</td>
<td>112</td>
</tr>
<tr>
<td>Cambyses II (King)</td>
<td>52, 99</td>
</tr>
<tr>
<td>Charney, Jules (Professor)</td>
<td>132</td>
</tr>
<tr>
<td>Chatwin, Bruce</td>
<td>174</td>
</tr>
<tr>
<td>Clark, John Desmond (Professor)</td>
<td>112, 167</td>
</tr>
<tr>
<td>Coleridge, Samuel Taylor</td>
<td>127</td>
</tr>
<tr>
<td>Cyrus the Great (King)</td>
<td>99</td>
</tr>
<tr>
<td>Darwin, Charles</td>
<td>97, 101, 102, 107</td>
</tr>
<tr>
<td>Davis, Diana (Dr)</td>
<td>145</td>
</tr>
<tr>
<td>Davis, W.M. (Professor)</td>
<td>22</td>
</tr>
<tr>
<td>deMenocal, Peter</td>
<td>104, 153</td>
</tr>
<tr>
<td>Diodorus Siculus</td>
<td>164–5</td>
</tr>
<tr>
<td>Diori, Hamani (President, Niger)</td>
<td>132</td>
</tr>
<tr>
<td>Dobson, Matthew (Dr)</td>
<td>97, 102</td>
</tr>
<tr>
<td>Doughty, Charles M.</td>
<td>160</td>
</tr>
<tr>
<td>Drake, Nick (Professor)</td>
<td>44</td>
</tr>
<tr>
<td>Dubois, Eugène</td>
<td>107</td>
</tr>
<tr>
<td>Ehrenberg, Christian Gottfried (Professor)</td>
<td>101, 102</td>
</tr>
<tr>
<td>Ehrlich, Anne</td>
<td>61, 144</td>
</tr>
<tr>
<td>Ehrlich, Paul</td>
<td>61, 144</td>
</tr>
<tr>
<td>Einstein, Albert</td>
<td>180–1</td>
</tr>
<tr>
<td>Eliot, T.S.</td>
<td>93, 99</td>
</tr>
<tr>
<td>Faure, Hugues (Professor)</td>
<td>53</td>
</tr>
<tr>
<td>Forbes, Rosita</td>
<td>175</td>
</tr>
<tr>
<td>Foucauld, Père Charles de</td>
<td>13</td>
</tr>
<tr>
<td>Fulani/Peul people</td>
<td>149</td>
</tr>
<tr>
<td>Fur people</td>
<td>149, 168, 169</td>
</tr>
<tr>
<td>Garamantes</td>
<td>52</td>
</tr>
<tr>
<td>Goran/Tibu people</td>
<td>149, 165, 168, 175</td>
</tr>
<tr>
<td>Griffin, Bill</td>
<td>77</td>
</tr>
<tr>
<td>Griffiths, J.F.</td>
<td>100</td>
</tr>
<tr>
<td>Grove, A.T. (Dick)</td>
<td>100</td>
</tr>
<tr>
<td>Hadendowa/Beja people</td>
<td>149, 164</td>
</tr>
<tr>
<td>Hadley, George (Sir)</td>
<td>62</td>
</tr>
<tr>
<td>Haile Selassie, Emperor</td>
<td>132</td>
</tr>
</tbody>
</table>
Hall, David (Lieutenant-Colonel), 9
Halley, Edmund (Sir), 62
Hassanein Bey, Ahmed M., 166, 175
Haynes, C. Vance (Professor), 74, 88–9
Herodotus, 40, 52, 61, 95, 99
Holmes, Arthur (Professor), 68
Honegger, Matthieu (Professor), 47
Hyksos people, 52
Ibn Ali as-Senussi, Sayyid Muhammad, 166
Ibn Battutah, Muhammad Ibn Ibrahim, 173–4
Ibn Khaldun, Abd Ar-Rahman, 174
Issar, Arie (Professor), 176
Issawi, Bahay (Dr), 165
Kendrew, W.G., 96
Kipling, Rudyard, 105
Kröpelin, Stefan (Dr), 156
Lamb, Hubert H. (Professor), 141
Lamb, Peter (Professor), 129–30, 131
Lamprey, Hugh, 145
Leakey, Louis (Dr), 111, 114
Leakey, Mary, 111
Leopold, Aldo, 147
Lhote, Henri, 52, 55
Lyell, Charles, 101
Mabbutt, Jack (Professor), 147
Mamunta, ben Tchoko, 163
Mengistu, Haile Mariam, 132
Monod, Théodore (Professor), 44
Montgomery, David, 181
Moorhouse, Geoffrey, 19
Murray, Thomas, 144
Napoleon, Bonaparte, 97
Noy-Meier, Imanuel (Professor), 173
Ondaatje, Michael, 174–5
Owen, Richard (Sir), 31
Peul/Fulani people, 149
Rattray, J.M., 169
Robért, Karl-Henrik (Dr), 180
Rognon, Pierre (Professor), 13
San people, 56
Sarnthein, Michael (Professor), 85
Schild, Romuald (Professor), 98
Selassie, Yohannes Haile (Dr), 109
Seren, Paul (Professor), 48
Smith, Andy (Professor), 46, 163
Smith, J.D., 120–1
Sölinan, K.H., 100
Sonnini de Manoncourt, Charles, 33
Sparks, Bruce, 51
Stebbing, E.P., 146
Steinbeck, John, 96
Stewart, Douglas, 143
Sutton, John, 57
Tacitus, 146
Talbot, Mike (Professor), 89, 130, 131, 163
Tibou/Goran, 149, 165, 168, 175
Tolstoy, Leo, 9
Toynbee, Arnold, 174
Tuan, Yi Fu (Professor), 154–5
Tuareg people, 149, 168
von Däniken, Erich, 52
Walker, Gilbert Thomas (Sir), 134–5
Wendorf, Fred (Professor), 98
White, Tim (Professor), 109
Wright, David K., 158
Zwaya people, 166
INDEX OF PLACES

Adamawa Mountains, Cameroun, 157
Addis Ababa, Ethiopia, 13, 108
Adrar Bous, Ténéré Desert, Niger, 27, 28, 42, 43, 45–8, 50, 53, 92, 122, 158, 162–3
Afar Desert, Ethiopia, 44, 109, 110, 113, 115, 117, 159, 164
Afar Rift, 62
Afghanistan, 68
Agadès, Niger, 48, 55, 131
Agung volcano, Indonesia, 140, 141
Air Mountains, Niger, 27–8, 34, 44, 52, 53, 68, 71, 77, 83, 92, 149, 163, 168
Al Ain, Oman, 170
Alashan Plateau, Inner Mongolia, China, 151
Alaska, 95
Algeria, 13, 19, 23, 32, 41, 53, 77, 81, 86, 89, 103, 140, 172
Alps, 35, 97
Amazon basin, 93, 94, 97, 128
Anatolia, 50, 116
Antarctica, 30, 68, 71
Arabia, 29, 30, 66, 68, 97, 162, 165
Arafura Sea, Australia, 106
Arak Gorge, Algeria, 13
Argentina, 136
Arkenu. See Jebel Arkenu
Assekrem, Hoggar Mountains, Algeria, 13
Aswan, Egypt, 72
Atlantic Ocean, 68, 71, 76, 94, 97, 101, 103, 119, 129, 130, 145, 179
Atlas Mountains, 16, 31, 35, 44, 63, 68, 77, 83, 95, 157, 168
Augila, Libya, 10
Aurès Mountains, Algeria, 103, 172
Australia, 114, 122, 134, 137, 139, 142, 154, 170, 197
Awash River, Ethiopia, 44
Azaouak Basin, Niger, 130
Bangladesh, 140
Barbados, 97
Beijing, China, 113
Bengal, 140
Benghazi, Libya, 175
Bir Kiseiba, Egypt, 116
Bir Sahara, Egypt, 89, 98, 165
Bir Tarfawi, Egypt, 89, 98, 165–6
Biskra, Algeria, 89
Blue Nile, 100
Bodélé Depression, Chad, 162
Bokhara, 173
Borkou, Chad, 19, 166
Brahmaputra River, 25
Brazil, 134, 137
Burkina Faso, 130
Cairo, Egypt, 33, 72, 137, 174
Calanscio Sand Sea, Libyan Desert, 19
Calanscio Serir, Libyan Desert, 19
California, 136, 147
Cameroun, 18, 157
Cameroun Mountains, 28, 157
Canary Islands, 68
Cape Verde, 101
Chad, 53, 66, 75, 77, 126, 130, 156, 166, 175
Chad Basin, 20, 35, 37, 43, 60, 67, 71, 77, 93, 96, 102, 109–10
Index of Places

Chicxulub crater, Yucatan Peninsula, Mexico, 32
China, 100, 101, 113, 134, 137, 138, 139, 140, 142, 151, 158
Cholistan Desert, Pakistan, 51, 144
Choukoutien prehistoric site, China, 113
Congo/Zaïre basin, 94
Crete, 97

Dakhla Oasis, Egypt, 19, 32, 34, 75, 98
Dakota Badlands, USA, 152
Darb al Arba‘in, 19
Darb al Arba‘in Desert, 89, 176
Darfur Province, Sudan, 149, 169, 175
Darwin, Australia, 135
Djebel, Algeria, 53
Djurab Desert, Chad, 109

East Africa, 67, 68, 113, 137, 139
East African Highlands, 63
Ecuador, 136–7
Egypt, 19, 21, 32, 51, 52, 60, 66, 80, 86, 95, 97, 106, 150, 169, 171
El Berbera Oasis, Mauritania, 13–14
El Chichón volcano, Mexico, 141
El Fasher, Sudan, 75, 175
Eldgjá volcano, Iceland, 141
Ennedi mountain, Chad, 84, 102, 149, 156, 168, 175
Eritrea, 28
Erkowit, Red Sea Hills, Sudan, 164
Ethiopia, 39, 67, 113, 115, 132, 137, 142, 159, 164, 167, 169
Ethiopian Highlands, 44, 63, 67, 109, 150
Ethiopian Rift, 19
Euphrates River, 116, 117

Fayum Depression, Egypt, 122
Fezzan, Libya, 20, 52
Finland, 97

Gadeb prehistoric site, Ethiopia, 112
Ganges River, 25

Gao, Mali, 52
Gilf Kebir, Egypt, 56, 175
Gobero prehistoric site, Ténéré Desert, Niger, 48–50, 51, 122
Gona Valley, Afar Desert, Ethiopia, 61, 110
Gondwana, 16, 17, 26, 32, 65
Great Eastern Erg, Algeria, 80
Great Sand Sea, Egypt and Libya, 12, 80
Great Western Erg, Algeria, 80
Greece, 97
Gulf of Aden, 19
Gulf of Guinea, 18

Hadar, Afar Desert, Ethiopia, 110
Hamada el Akdamin, Libyan Desert, 64
Harappa, 144
Harar, Ethiopia, 167
Hoggar Mountains, Algeria, 13, 19, 20, 30, 31, 35, 37, 53–4, 68, 71, 83, 95, 149, 168

Iceland, 95
Iferouane Oasis, Niger, 163
India, 134, 137, 138, 142, 144, 158
Indian Ocean, 129, 130, 139, 145
Indonesia, 137
Indus River, 25
Iran, 68, 116
Ireland, 11, 96, 97
Irharhar River, Algeria, 77
Israel, 35, 86, 97, 115, 150, 152, 170

Jakarta, Indonesia, 134
Java, 137, 138, 139
Jebel Araknu, Libya, 10–11, 29, 56, 90–2, 175
Jebel Marra, Sudan, 18, 19, 23, 35, 37–9, 44, 54, 68, 71, 83, 120, 168, 169
Jebel ’Uweinat, Libya, 27, 29, 44, 52, 55, 56, 75, 92, 175

Kalahari, 56
Kenya, 114
Kerma, Sudan, 47
Kharga Oasis, Egypt, 98
<table>
<thead>
<tr>
<th>Place</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khartoum, Sudan</td>
<td>33</td>
</tr>
<tr>
<td>Krakatoa/Krakatau volcano, Indonesia</td>
<td>140, 141</td>
</tr>
<tr>
<td>Kufra Oasis, Libyan Desert</td>
<td>10, 77, 84, 99, 166, 168, 175</td>
</tr>
<tr>
<td>Kufra Rivers</td>
<td>77</td>
</tr>
<tr>
<td>Laguna Palcacocha, Ecuador</td>
<td>136</td>
</tr>
<tr>
<td>Lake Chad</td>
<td>42, 102, 119, 140, 157</td>
</tr>
<tr>
<td>Lake Lyadu, Ethiopia</td>
<td>64</td>
</tr>
<tr>
<td>Lake Tana, Ethiopia</td>
<td>55</td>
</tr>
<tr>
<td>Lake Victoria, Uganda</td>
<td>128</td>
</tr>
<tr>
<td>Lake Yoa, Chad</td>
<td>156</td>
</tr>
<tr>
<td>Laki volcano, Iceland</td>
<td>141</td>
</tr>
<tr>
<td>Lesbos, Greece</td>
<td>33</td>
</tr>
<tr>
<td>Levant, 50, 116, 170, 171</td>
<td></td>
</tr>
<tr>
<td>Libya, 9, 19, 20, 23, 27, 28, 33, 34, 42, 78, 80, 97–9, 168, 174, 175</td>
<td></td>
</tr>
<tr>
<td>Libyan Desert, 3, 5, 41, 52, 56, 71, 77, 82, 84, 89, 90, 168, 174–5, 176</td>
<td></td>
</tr>
<tr>
<td>Libya, 19, 60, 126, 130</td>
<td></td>
</tr>
<tr>
<td>Mars, 98</td>
<td></td>
</tr>
<tr>
<td>Matmata Hills, Tunisia</td>
<td>103, 150</td>
</tr>
<tr>
<td>Mauritania, 30, 63, 81, 90, 155, 169</td>
<td></td>
</tr>
<tr>
<td>Mediterranean Sea, 59, 69, 71, 72, 76, 77, 78, 97, 129, 145, 179</td>
<td></td>
</tr>
<tr>
<td>Mesopotamia, 51, 105</td>
<td></td>
</tr>
<tr>
<td>Mexico, 141, 171</td>
<td></td>
</tr>
<tr>
<td>Middle Awash Valley, Ethiopia</td>
<td>108–9, 159</td>
</tr>
<tr>
<td>Mohenjo-Daro, 144</td>
<td></td>
</tr>
<tr>
<td>Montana, USA, 119</td>
<td></td>
</tr>
<tr>
<td>Morocco, 32, 77, 86, 115</td>
<td></td>
</tr>
<tr>
<td>Museé de l’Homme, Paris</td>
<td>55</td>
</tr>
<tr>
<td>Nabta Playa, Egypt</td>
<td>116</td>
</tr>
<tr>
<td>Negev Desert, Israel</td>
<td>35, 86, 150, 152, 170</td>
</tr>
<tr>
<td>New Mexico, USA, 137</td>
<td></td>
</tr>
<tr>
<td>Niamey, Niger, 132</td>
<td></td>
</tr>
<tr>
<td>Niger, 19, 28, 32, 34, 67, 126, 130, 131, 163, 175</td>
<td></td>
</tr>
<tr>
<td>Niger River, 119</td>
<td></td>
</tr>
<tr>
<td>Nigeria, 28, 66, 67, 130</td>
<td></td>
</tr>
<tr>
<td>Nile River</td>
<td>19, 43, 44, 47, 48, 72, 80, 100, 122, 137, 138, 139, 141, 150, 169</td>
</tr>
<tr>
<td>Nile Valley, 51, 60, 100, 113, 117, 119</td>
<td></td>
</tr>
<tr>
<td>Northern Territory, Australia</td>
<td>106</td>
</tr>
<tr>
<td>Norway, 119</td>
<td></td>
</tr>
<tr>
<td>Nubian Desert, Sudan</td>
<td>34</td>
</tr>
<tr>
<td>Ogaden, Ethiopia</td>
<td>34</td>
</tr>
<tr>
<td>Oklahoma, 96</td>
<td></td>
</tr>
<tr>
<td>Olduvai Gorge, Tanzania</td>
<td>110</td>
</tr>
<tr>
<td>Oman, 170</td>
<td></td>
</tr>
<tr>
<td>Omo Delta, Ethiopia</td>
<td>115</td>
</tr>
<tr>
<td>Ounianga, See Wanyanga</td>
<td></td>
</tr>
<tr>
<td>Pacific Ocean</td>
<td>130</td>
</tr>
<tr>
<td>Pakistan, 68, 144</td>
<td></td>
</tr>
<tr>
<td>Paris, 13, 44, 55</td>
<td></td>
</tr>
<tr>
<td>Persepolis</td>
<td>170</td>
</tr>
<tr>
<td>Peru, 134, 136</td>
<td></td>
</tr>
<tr>
<td>Petrified Forest National Park, Arizona, USA, 33</td>
<td></td>
</tr>
<tr>
<td>Pinatubo volcano, Philippines</td>
<td>140, 141</td>
</tr>
<tr>
<td>Porto Praya, Cape Verde</td>
<td>101</td>
</tr>
<tr>
<td>Potwar Plateau, Pakistan</td>
<td>68</td>
</tr>
<tr>
<td>Pyrgos, Greece</td>
<td>97</td>
</tr>
<tr>
<td>Qoz Abu Dulu, Sudan</td>
<td>80</td>
</tr>
<tr>
<td>Rajasthan Desert, India</td>
<td>51, 54</td>
</tr>
<tr>
<td>Rebiana Sand Sea, Libya</td>
<td>84, 89</td>
</tr>
<tr>
<td>Red Sea, 19, 39, 72, 179</td>
<td></td>
</tr>
<tr>
<td>Red Sea Hills, 28, 63, 149, 164–5, 169, 172</td>
<td></td>
</tr>
<tr>
<td>Sahabi Rivers</td>
<td>77</td>
</tr>
<tr>
<td>Sahel, 129–30, 131–4, 140, 141</td>
<td></td>
</tr>
<tr>
<td>Saoura River, Algeria</td>
<td>77</td>
</tr>
<tr>
<td>Selima Oasis, Sudan</td>
<td>75, 89, 119</td>
</tr>
<tr>
<td>Selima Sand Sea, Sudan</td>
<td>75, 86</td>
</tr>
<tr>
<td>Senegal basin, 140</td>
<td></td>
</tr>
<tr>
<td>Senegambia, 140</td>
<td></td>
</tr>
<tr>
<td>Sinai Desert, Egypt</td>
<td>35, 103, 107, 113, 176</td>
</tr>
<tr>
<td>Sirte, Libya</td>
<td>99</td>
</tr>
<tr>
<td>Siwa Oasis, Egypt</td>
<td>99</td>
</tr>
</tbody>
</table>
Index of Places

Solo River, Java, 107
Somalia, 19, 34, 68
Somme River, France, 111
South Africa, 139
South Sudan, 19, 23, 120
Spain, 171
Straits of Gibraltar, 72
Sudan, 19, 23, 28, 29, 33, 47, 66, 81, 86, 120–1, 126, 145, 149, 150, 164, 168, 169, 175
Sumatra, Indonesia, 139
Sweden, 97
Tademait Plateau, Algeria, 13, 19
Tahiti, 135
Tamanrasset, Algeria, 13
Tambora volcano, Indonesia, 140, 141
Tassili (Tassili n’Ajjer), Algeria, 41, 55
Ténéré Desert, Niger, 27, 47, 48, 53
Tethys Sea, 59, 69, 179
Thailand, 137
Thar Desert, India, 144
Tibesti Mountains, Chad, 19, 20, 35, 37, 54, 68, 71, 75, 77, 83, 84, 102, 149, 156, 168, 174, 175
Tibetan Plateau, 25, 68
Tigray Province, Ethiopia, 169
Tigris River, 116
Tilemsi Valley, Mali, 60
Timbuktu, Mali, 52, 173
Touggourt, Algeria, 89
Trinil, Java, 107
Tunisia, 32, 81, 103, 150, 153
United States, 134, 136
Uruk, Mesopotamia, 105
‘Uweinat, Jebel, Libya. See Jebel ‘Uweinat

Wadi Azaouak, Niger, 163
Wadi el Atrou, Egypt, 33
Wadi Sura, Gilf Kebir, Egypt, 175
Wadi Zermei, Chad, 84
Wanyanga, Chad, 84, 156, 166
Western Desert, Egypt, 32, 34, 56, 74, 98, 165
White Nile, Sudan, 100, 139

Yucatan Peninsula, Mexico, 32
Zagros Mountains, Iran, 116
Zerzura, lost oasis, 174